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Abstract

This paper compares three statistical models for downscaling heavy daily precipitation occurrence and amounts at multiple

sites given lagged and contemporaneous large-scale climate predictors (such as atmospheric circulation, thickness, and

moisture content at the surface, 850 and 500 hPa). Three models (a Radial Basis Function (RBF) Artificial Neural Network

(ANN), Multi Layer Perceptron (MLP) ANN and a Conditional Resampling Method (SDSM)) were applied to area-average and

station daily precipitation amounts in northwest (NWE) and southeast (SEE) England. Predictor selection via both stepwise

multiple linear regression and compositing confirmed vorticity and humidity as important downscaling variables. Model skill

was evaluated using indices of heavy precipitation for area averages, individual sites and inter-site behaviour.

When tested against independent data (1979–1993), multi-site ANN models correctly simulated precipitation occurrence

80% of the time. The ANNs tended to over-estimate inter-site correlations for amounts due to their fully deterministic forcing,

but performance was marginally better than SDSM for most seasonal-series of heavy precipitation indices. Conversely, SDSM

yielded better inter-site correlation and representation of daily precipitation quantiles than the ANNs. All models had greatest

skill for indices reflecting persistence of large-scale winter precipitation (such as maximum 5-day totals) or dry-spell duration in

summer. Overall, predictability of daily precipitation was greater in NWE than SEE.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

General Circulation Models (GCMs) are instru-

mental to projections of global climate

change. However, their coarse spatial resolution
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(typically w300 km) limits their usefulness for

regional impact studies. As a consequence tech-

niques have been developed to ‘downscale’ coarse

GCM output to the finer spatial scales required for

impact assessment. Overviews of downscaling

approaches have been provided elsewhere (see

Giorgi and Mearns, 1991; von Storch et al., 1993;

Hewitson and Crane, 1996; Wilby and Wigley,

1997). The methods dealt with in this paper are

regression-based but, to date, relatively few have
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been explicitly developed for heavy precipitation at

multiple sites.

Regression-based downscaling methods use

empirical relationships between local scale predic-

tands and regional scale predictor(s). Individual

downscaling schemes differ according to the choice

of mathematical transfer function, predictor variables

or statistical fitting procedure. To date, linear and non-

linear regression, artificial neural networks (ANNs),

and canonical correlation have all been used to derive

predictor–predictand relationships (e.g. Conway

et al., 1996; Crane and Hewitson, 1998; Schubert

and Henderson-Sellers, 1997). The main strength of

regression methods is the relative ease of application,

coupled with their use of observable trans-scale

relationships. Unfortunately, regression models sel-

dom explain all of the observed climate variability

(especially in precipitation series). Regression

methods also assume stationarity of model parameters

under future climate conditions, and scenarios are

known to be highly sensitive to the choice of predictor

variables and statistical transfer function (Winkler

et al., 1997). Furthermore, downscaling future

extreme events using regression methods is proble-

matic since these phenomena, by definition, often lie

at the margins or beyond the range of the calibration

data set.

To date, there have been relatively few examples

of ANNs applied to climate downscaling and even

fewer to the task of multi-site precipitation modelling.

Table 1 lists examples of previous studies showing

mixed success by ANNs for downscaling daily

precipitation amounts. Possible explanations include

the simplistic treatment of days with zero amounts

and/or the highly skewed distribution of wet-day

amounts biasing the training process towards small, or

even negative, values. In this paper, we address this

problem via a two-stage modelling procedure using

Radial Basis Function (RBF) ANNs (Broomhead and

Lowe, 1988; Moody and Darken, 1989) and Multi

Layer Perceptron (MLP) ANNs (Rumelhart and

McClelland, 1986). Analogous to conventional

weather generation techniques, precipitation is mod-

elled using separate occurrence and amounts pro-

cesses (Wilks and Wilby, 1999). We are particularly

interested in the ability of the ANNs to downscale

indices of heavy daily precipitation (defined herein as

R90th percentile amount). By way of a reference
point, results from the ANNs are compared with those

produced by a conditional resampling method (Wilby

et al., 2003).

Having introduced the principle features of the

ANNs and resampling procedure, part one of this

investigation describes methods of predictor vari-

able selection. Three approaches were compared:

stepwise multiple linear regression (SWLR), a

compositing procedure, and a Genetic Algorithm

(GA). In part two, the three downscaling methods

are used to predict daily precipitation at multiple

sites in northwest (NWE) and southeast (SEE)

England. All models were evaluated against

indices of heavy daily precipitation and multi-

site behaviour using data that were not employed

in model calibration.
2. Model descriptions and data

Unlike previous studies, we model each site

simultaneously rather than training downscaling

models on a site by site basis (Table 1). The main

advantage of this approach is the capture of both the

temporal and spatial dependency of multi-site pre-

cipitation by model weights. Previous studies have

favoured MLP networks so, in order to provide a

comparison, the less well-known RBF network has

also been used. One advantage of the type of RBF

network employed here is the speed of training (a few

seconds) in comparison to the MLP.
2.1. Radial basis function (RBF) networks

The RBF network consists typically of two layers,

where the hidden layer nodes contain prototype vectors

(or basis centres), which are in effect hidden layer

weights. The distance between the input and the

prototype vector determines the activation level of the

hidden layer with the non-linearity provided by a basis

function. The activation function in the output layer

can be non-linear, however, training is considerably

faster if an ordinary linear weighted sum of these

activations are performed, and this approach was

consequently adopted. Mathematically the output from

the final layer node(s) yk (for the kth output node) is



Table 1

Examples of recent downscaling studies involving the use of ANNs

Region Predictand Predictors ANN type Authors

Ciapas, Mexico DP average of 11

stations

Sea level pressure, 500 hPa field MLP Hewitson and

Crane (1992)

Colorado Plateau,

USA

DP at 54 sites split

into 5 regions

700 hPa geopotential heights MLP McGinnis (1997)

N.E. Mexico Local winter rain-

fall, 20 grid points

Sea level pressure, 500 hPa heights, 1000–500 hPa

thickness

MLP individual

models

Cavazos (1997)

N.E. Mexico and

S.E. Texas

DP at 20 grid

points

700–500 hPa thickness, 700 hPa moisture SOM/ MLP indi-

vidual models

Cavazos (1999)

Susquehanna

basin

DP at 16 grid cells 1000 and 500 hPa heights, 1000, 700 and 500 hPa

specific humidities

MLP individual

models

Crane and Hewit-

son (1998)

Portugal Daily tempera-

tures

1000 and 500 hPa geopotential heights MLP Trigo and Paluti-

kof (1999)

Iberian Peninsula Winter DP and

MP, 1 site

Daily sea level pressure MLP Zorita and von

Storch (1999)

Texas and

California

Surface wind

speeds

Large scale GCM output MLP Sailor et al.

(2000)

Bucharest,

Romania

Winter DP at 12

grid points and

Bucharest

500–1000 hPa thickness, 700 hPa geopotential heights,

700 hPa moisture

SOM/MLP Cavazos (2000)

Mid USA Surface air tem-

peratures

Max daily temperature MLP Snell et al. (2000)

New Zealand MP and MT

anomalies at 5

sites

Zonal and meridional mslp gradients, 850–700 hPa

thickness, relative vorticity and horizontal divergence

at 500 hPa

MLP Mpelasoka et al.

(2001)

Kyushu Island S.

Japan

Extreme precipi-

tation in Chikugo

river

Precipitable water and wind speeds at 850 hPa MLP- classifier Olsson et al.

(2001)

Indianapolis,

USA

DP & DT 700 and 500 hPa heights, 850 hPa temperature, sea

level pressure and column average relative humidity

MLP Schoof and Pryor

(2001)

Iberia DP Sea level pressure MLP Trigo and Paluti-

kof (2001)

British Columbia,

Canada

Stream flow 500 hPa height, 850 hPa specific humidity, 1000–

500 hPa thickness and sea level pressure

MLP Cannon and

Whitfield (2002)

West Antarctica Surface pressure

and temperature

Pressure: 850 and 700 hPa heights, 850–700 hPa

thickness, 850 hPa wind speed and direction. Tem-

perature: 850 hPa height, 850–700 hPa thickness,

850 hPa temp advection

MLP Reusch and Alley

(2002)

Reviews Various Crane et al.

(2002) and Hsieh

and Tang (1998)

Key: DP, daily precipitation; MP, monthly precipitation; DT, daily temperature; MT, monthly temperature.
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expressed by the following:

ykðxÞ Z
XM

jZ1

wkjfjðxÞCwk0 (1)

Where x is the d-dimensional input vector with

elements xi, and wkj are the output layer weights

together with the bias wk0, and M is the number of

hidden layer nodes or basis centres. The basis function
fj (x) provides the non-linearity. There are six basis

functions that are widely recognised as having useful

properties for RBF networks (Bishop, 1995). These are

multiquadratic, gaussian, inverse multiquadratic, thin

plate spline, cubic and linear. For example, the cubic

basis function has the form fjðxÞZ jjxKujjj
3, where x

is the d-dimensional input vector with elements xi and

uj is the vector determining the centre of the basis

function fj and has elements uji. If the RBF network
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has the bias parameters absorbed into the weights then

this gives

ykðxÞ Z
XM

jZ0

wkjfjðxÞ (2)

which in matrix form becomes

yðxÞ Z wf (3)

where WZ(wkj) and fZ(fj). In matrix form (where T

denotes the transpose of a matrix)

FTFWT Z FT T (4)

where F is an N!M matrix with elements fn
j , W is an

C!M matrix with elements Wkj and T is an N!C

matrix with elements tn
k . For nZ1,.,N jZ1,.,M kZ

1,.,C, where N is the number of data points, M is the

number of basis centres, and C is the number of output

nodes. If FTF is non-singular then F*Z[FTF]K1

FT, where F* is an M!N matrix known as the pseudo

inverse of F. The solution for the optimal weight

vectors can then be expressed as

WT Z F*T (5)

There are several methods of extracting the best

solution for the weight vectors, however, Singular

Value Decomposition (SVD) is used here due to its

robustness (Press et al., 1993).

One of the advantages of the RBF network is the

ability to choose suitable parameters for the hidden

units without having to perform a full non-linear

optimisation of the network. This is because of the

distinction between the roles of the first and second

layer weights. In the first layer the basis centres uj can

be determined by unsupervised training using the

predictor input vector {xn} without making use of the

predictand. This can be accomplished by methods

such as a clustering algorithm that is based on a

distance measure between the input vectors. The

method used here is K-means clustering which assigns

data points to the cluster (of k clusters) having the

nearest centroid. The distance measure between the

data vector and cluster centre used is Euclidean and

the algorithm type is the convergent clustering version

(Anderberg, 1973).

The main parameter that needs to be set is the

number of nodes in the hidden layer. Too many

and the generalisation properties of the network
will be poor; too few and the network will not

‘learn’ the problem. In order to explore this effect

the network was run with 2–100 nodes, monitoring

the error against the validation set. The six basis

functions were also compared, and found to have a

negligible effect on network performance.
2.2. Multi-layer perceptron (MLP) network

The MLP network is not necessarily restricted to

one hidden layer, although it has been demonstrated

that any continuous function can be mapped to an

arbitrary degree of accuracy by a single hidden layer

(Hornik et al., 1989). The configuration used in this

investigation is a single hidden layer. Mathematically

the output from the final layer node(s) yk is
yk Z fð2Þ
XM
jZ0

wð2Þ
kj fð1Þ

Xd

iZ0

wð1Þ
ji xi

 ! !
k Z 1;.;C

(6)

where xi is the ith input of input vector x, wji is the

weighting factor on the link between the ith input and

the jth output, wkj is the weighting factor on the link

between the jth input and the kth output, and yk is the

output from the kth output node and the non-linear

transformation of the linear sums is catered for by the

activation functions f(1) and f(2). There is no

constraint that the same function is used at each

layer although this is usually the case. The above

equation can be readily generalised to any number of

hidden layers. The goal in ‘training’ a MLP is to find

the values of the weight vectors that result in the

minimum error between the network output and the

desired target value.

The most popular method for training a MLP is the

error back-propagation algorithm as popularised by

Rumelhart and McClelland (1986). The term back-

propagation refers to the signalling back of errors

through the MLP network so that adjustments can be

made to the weights of the preceding layer. This is

often referred to as the credit assignment problem,

which refers to the level of responsibility apportioned

to previous layers of weights for the output error. The

algorithm uses gradient descent search in weight
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space to minimise the error defined as

E Z
1

N

X
k

ðtk KykÞ
2 (7)

where tk is the target output from the kth node in the

output layer and yk is the actual computed output from

the kth node. With respect to each weight the

derivative of the error E is set proportional to weight

change

Dwjk ZKh
vE

vwjk

(8)

where the parameter h is the learning rate. This

method alone results in very slow progress in weight

space and a popular modification is to introduce a

momentum term (Plaut et al. 1986) that in effect adds

inertia, hence the name. This modified relationship is

given by:

Dwjkðn C1Þ Z hðdjykÞCaDwjkðnÞ (9)

The momentum factor, a, allows the previous

weight change to influence the current one and for a

constant gradient increases the effective learning rate

from h to h/(1Ka). Inclusion of the momentum term

is now so popular it is regarded as a standard feature

of most MLP networks.
2.3. Conditional resampling method

The conditional resampling method involves two

distinct steps. First, the generation of a ‘marker’

precipitation series at a key station (or the area

averages of several sites) conditional on a set of large-

scale atmospheric predictor variables. Secondly, the

resampling of observed daily precipitation from

constituent sites, conditional on the downscaled

precipitation series of the marker site.

Full technical details of the Statistical Down

Scaling Model (SDSM) and an evaluation of the

conditional resampling method are provided by Wilby

et al. (2002, 2003). SDSM is best described as a

hybrid of stochastic weather generator and regression-

based methods, because regional circulation patterns

and atmospheric moisture variables are used to

condition local weather generator parameters (e.g.

precipitation occurrence and intensity) at individual

sites. Normalised predictors are routinely employed in
order that the same models may, if necessary, be

applied to future climate scenario generation using

normalised GCM output.

For multi-site applications, the single site model is

first used to generate daily precipitation at a ‘marker’

site, in this instance the area average amounts (as in

Palutikof et al., 2002). Wet-day amounts are

resampled from the empirical distribution of area

averages conditional on the large-scale atmospheric

forcing and a stochastic error term. The actual wet-

day amount is determined by mapping the modelled

normal cumulative distribution value onto the

observed cumulative distribution of amounts at the

marker site. The area average is then disaggregated to

the constituent amount falling on the same day at each

station in the multi-site array.

Resampling in this way preserves both the area

average of the marker series and the spatial covari-

ance of the multi-site array (Wilby et al., 2003). Use

of area averages (instead of single sites as the marker

series), reduces the risk of employing a non-

homogeneous or non-representative record, and

increases the signal-to-noise ratio of the predictand.

As with other resampling methods, the maximum

daily value generated cannot exceed the maximum

daily amount in the observations. However, synthetic

N-day totals can exceed observed N-day totals if the

atmospheric conditioning produces a sequence pre-

viously unseen in the training set.

2.4. Data sets

The precipitation data employed in this study are

for sites in the contrasting regions of NWE and SEE.

These homogeneous regions were initially defined by

Wigley et al. (1984) and Gregory et al. (1991), and are

now widely used in analyses of UK precipitation (e.g.

Jones and Conway, 1997; Goodess et al., 2003). Daily

area averages and multi-site precipitation series were

obtained for a network of 13 stations in NWE and 27

stations in SEE for the period 1961–2000 (Fig. 1).

The atmospheric predictor variables originate

from the National Center for Environmental Pre-

diction (NCEP) re-analysis data set (Kalnay et al.,

1996). The candidate predictor set contained

25 normalised daily predictors (describing atmos-

pheric circulation, thickness, and moisture

content at the surface, 850 and 500 hPa), for nine



Fig. 1. Distribution of precipitation stations in relation to the grid-

boxes used for downscaling in SEE and NWE.
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grid-boxes covering the British Isles, for the period

1961–2000 (Table 2). Mean sea level pressures in

the NCEP re-analysis are known to have a positive

bias from 1941 to 1967, but the worst affected

areas lie outside the domain of the present study

(see Reid et al., 2001). In addition, the phase
Table 2

Candidate predictor variables available for each grid box

Predictor Description

TEMP Mean temperature at 2 m

MSLP Mean sea level pressure

H850 850 hPa geopotential height

H500 500 hPa geopotential height

USUR Near surface westerly wind

U850 Westerly wind at 850 hPa

U500 Westerly wind at 500 hPa

VSUR Near surface southerly wind

V850 Southerly wind at 850 hPa

V500 Southerly wind at 500 hPa

FSUR Near surface wind strength

F850 Wind strength at 850 hPa

F500 Wind strength at 500 hPa

ZSUR Near surface vorticity

Z850 Vorticity at 850 hPa

Z500 Vorticity at 500 hPa

DSUR Near surface divergence

D850 Divergence at 850 hPa

D500 Divergence at 500 hPa

QSUR Near surface specific humidity

Q850 Specific humidity at 850 hPa

Q500 Specific humidity at 500 hPa

RSUR Near surface relative humidity

R850 Relative humidity at 850 hPa

R500 Relative humidity at 500 hPa
difference between the timing of the precipitation

day (ending 09GMT), and the NCEP daily averages

(indicative of conditions at midday) was accom-

modated by employing forward lagged daily

predictor variables in the downscaling schemes.

Following Goodess et al. (2003) predictors were

selected from grid boxes overlying target regions

(i.e. NWE and SEE), as well as from adjoining

westerly grid-boxes (Fig. 1) to capture

spatially remote forcing (Wilby and Wigley,

2000; Brinkmann, 2002).
3. Methodology

Available data were partitioned as follows:

1961–1978 and 1994–2000 for calibration;

1979–1993 for validation (standard periods used by

partners in the EU project Statistical and Regional

dynamical Downscaling of Extremes for European

Regions, STARDEX). Three methods were employed

to identify downscaling predictors that have the most

significant influence on the predictand. These were

SWLR, a compositing procedure and a Genetic

Algorithm (GA). A wet-day threshold of 1 mm/day

was generally employed, however, other thresholds

(5, 10, 15 and 20 mm/day) were also used to test their

affect on predictor selection by SWLR.
3.1. Diagnostics

To compare the occurrence process for the three

models the Percentage of Forecasts Correct (PFC) and

the Critical Success Index (CSI) were employed

(Wilks, 1995). The CSI measure is required because a

1 mm threshold gives the proportion of dry days as

60% for the NWE and 70% for the SEE, so clearly a

model could predict all dry days and still have a

percentage accuracy of 70% for the SEE. The CSI

compares the observed and modelled time series in the

following way

CSI Z M11=ðM11 CM10 CM01Þ (10)

and the PFC is defined as:

PFC ZðM11 CM00Þ=ðM00 CM10 CM01 CM11Þ (11)

Where M11 is the number of correct wet-days, M10 is

modelled wet and observed dry days, M01 is observed



Table 3

STARDEX diagnostic tests for daily precipitation

90% Quantile of rain day amounts

(mm/day) [PQ90]

Maximum number of consecutive

dry days [PXCDD]

Let Rij be the daily precipitation amount for day i of period j. Then counted is the largest number of

consecutive days, where: Rij% threshold, where threshold is a user specified variable

Greatest 5 day total rainfall

[Px5D]

Let Rkj be the precipitation amount for the N day interval k of period j, where k is defined by the last day.

Then the maximum N day values for period j are: PxNDjZmax(Rkj)

Simple Daily Intensity

(rain per rain day) [PINT]

Let Rwj be the daily precipitation amount for wet-day w(ROwd-cutoff) of period j, where threshold is a

user specified variable. Then the mean precipitation amount at wet-days is: PINTj Z
Pw

wZ1 Rwj=W

No. of events O90th percentile

[PN90]

Let Rwj be the daily precipitation amount at wet-day w(ROthreshold) of period j and let Rwn90 be the

90th percentile of precipitation at wet-days in the specified period. Then the percent of time is

determined, where: RwjORwn90

The % of total rainfall from events

O90th percentile [PF90]

Let Rj be the sum of daily precipitation amount for period j and let Rwj be the daily precipitation amount

at wet-day w(R(threshold) of period j and Rwn90 the 90th percentile of precipitation at wet-days in the

specified period. Then PF90j is determined as: PTR90j Z
Pw

wZ1
Rwj

Rj
; whereRwj ORwn90
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dry and modelled wet-days, and M00 is correct dry

days.

Model performance was further evaluated using six

STARDEX diagnostics of daily precipitation (see

Table 3 for definitions), the Root Mean Squared Error

(RMSE) and percentage of explained variance (E%).

The STARDEX indices focus on extreme events, such

as the maximum number of consecutive dry days

(PXCDD). The standard deviation of wet-day

amounts, lagK1 autocorrelation for individual pre-

cipitation series, and inter-site correlation coefficient

were also computed for multi-site applications.

Finally, quantile-quantile plots of observed and

downscaled daily precipitation amounts were pro-

duced for representative sites in each region.

3.2. Stepwise multiple linear regression

procedure (SWLR)

Series of area-average precipitation occurrence

were prepared for the various wet-day exceedance

thresholds (see above). SWLR was then applied using

all predictor variables for coincident, lagK1 and

lagC1 daily time steps. The selection process was

halted once the improvement in the correlation

between observed and fitted series was less than 1%.

Independent validation data were used to verify the

skill of predictors selected from the calibration period.

Wet-day amounts modelling was undertaken using the

same thresholds, noting that increasing wet-day

thresholds led to progressively smaller training sets.

For example, the NWE calibration set had only
67 days greater than the 20 mm threshold equating to

just 0.9% of the data.

3.3. Compositing procedure

SWLR predictor selection is biased towards

reproducing mean wet-day amounts. In order to

weight the predictor variable selection towards

heavier events a compositing method was trialed.

For each region, area-average amounts were ranked in

descending order from largest to smallest daily

precipitation totals. Averages of the associated

predictor variables were then calculated for the top

100 events. The statistical significance of each

predictor average was tested using a bootstrap method

in which 10,000 means were calculated for 100

randomly selected (with replacement) predictor

values. Composited means lying outside the 2.5 and

97.5 percentiles of the bootstrapped distribution were

deemed to be significantly different from chance.

3.4. Genetic algorithm (GA)

The pioneering work of Holland (1975) illustrated

how the Darwinian evolution process could be

applied, in the form of an algorithm, to solve a wide

variety of problems. Due to the biological motivation,

this highly parallel adaptive system is now called the

genetic algorithm (GA). The GA has a population of

individuals competing against each other in relation to

a measure of fitness, with some individuals reprodu-

cing, others dying, and new individuals arising



Table 4

Selection of predictor variables for NWE precipitation using the sub-periods 1961–1978 and 1994–2000

Step Occurrence Amounts

Predictor Lag r Predictor

(SWLR)

Lag r Predictor

(composited)

Lag Weight

1 U850WA C1 0.49 ZSURWA C1 0.30 ZSURWA C1 1.38

2 Z850WA C1 0.63 Q500WA 0 0.42 Q500WA 0 1.28

3 ZSURWA 0 0.65 F850WA C1 0.49 MSLPWA C1 1.16

4 RSURIR 0 0.67 ZSURWA 0 0.50 Q500IR 0 1.14

5 USURWA 0 0.68 U500WA C1 0.52 Z850WA C1 1.10

6 F500WA C1 0.68 Z500WA C1 0.53 F500WA C1 1.08

7 Q500WA 0 0.68 S500IR K1 0.54 F850WA C1 1.07

8 H500IR 0 0.69 ZSURIR C1 0.55 U500WA C1 1.01

9 RSURWA C1 0.69 QSURIR 0 0.55 U850WA C1 0.99

10 Q850IR 0 0.70 TEMPWA C1 0.56 H850WA C1 0.98

The first four characters in each predictor name refer to Table 2, the last two characters specify the grid box (WA, Wales; IR, Ireland). The

wet-day threshold was 1.0 mm/day. Note: bold type indicates the predictor variables used.
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through combination and mutation. In this instance,

the GA uses the trained RBF network as a fitness

function so that the modelled/observed error could be

minimised to evolve an optimal subset of predictor

variables, which had been encoded into each member

of the population.
4. Results

The results are split into four parts. Section 4.1

deals with predictor selection, Section 4.2 with

precipitation occurrence, Section 4.3 with variability,

autocorrelation and quantiles of daily amounts at
Table 5

As Table 4 but for SEE

Step Occurrence Amounts

Predictor Lag r Predictor

(SWLR)

Lag

1 ZSURSW 1 0.53 ZSURSE 1

2 MSLPSW 0 0.59 Q500SE 0

3 MSLPSE 0 0.61 VSURSE 0

4 RSURSE 1 0.62 FSURSE 1

5 Z500SW 1 0.64 Z850SE 1

6 ZSURSE 0 0.65 RSURSE 1

7 F500SE 1 0.65 DSURSE 0

8 USURSW 0 0.66 F500SE 1

9 ZSURSE 1 0.66 F850SE 0

10 Q500SE 0 0.67 QSURSE 0

SW, South West England; SE, Southern England.
individual sites, and Section 4.4 with diagnostics of

multi-site behaviour.
4.1. Predictor selection

Tables 4 and 5 show the leading predictor variables

identified by SWLR (without seasonal stratification)

for NWE and SEE, respectively, using a 1 mm/day

threshold. Tables 4 and 5 also report the ten most

heavily weighted predictors identified by the compo-

siting procedure for each region. The results highlight

the gain of employing forward lagged predictors,

which are thought to compensate for the mismatch

between the NCEP day and the precipitation day.
r Predictor

(composited)

Lag Weight

0.36 ZSURSE 1 1.87

0.43 Z850SE 1 1.66

0.48 Z850SW 1 1.54

0.5 ZSURSW 1 1.51

0.51 MSLPSE 1 1.39

0.51 MSLPSE 1 1.33

0.52 H850SE 1 1.19

0.52 H850SW 1 1.17

0.52 Z500SW 1 1.09

0.53 Z500SE 1 1.06
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In contrast, backward lagged predictors were note-

worthy by their absence, possibly reflecting the use of

grid boxes to the west of the target regions (i.e. spatio-

temporal substitution). Overall, secondary (airflow)

variables tended to dominate over moisture variables

for both selection methods and regions, with NWE

exhibiting slightly more predictability than SEE.

Vorticity at the surface (ZSUR) and at 850 hPa

(Z850) were the most frequently selected variables for

precipitation occurrence and amounts in both regions,

consistent with previous analyses for the UK (Conway

et al., 1996). Specific humidity at 500 hPa (Q500) was

second for both methods in NWE and for the SWLR

set in SEE. Beyond this, there was little consistency

amongst the variables chosen by the two methods.

Mean sea level pressure (MSLP) was ranked in third

and fifth positions for NWE and SEE, respectively, by

compositing, but was not selected by SWLR. Relative

humidity at 500 hPa (R500) and 850 hPa (R850) were

notable omissions given their prominence in other

studies (e.g. Beckman and Buishand, 2001).

Predictor variables from the Wales (WA) grid box

tend to influence NWE amounts; whereas the balance

was more even between WA and IR (Ireland) for

occurrence (Fig. 1). Similarly, for SEE the southern

England (SE) grid box dominates. This supports the

view that downscaling should involve the use of both

propinquitous and remote predictors of precipitation

(Wilby and Wigley, 2000; Brinkmann, 2002). This is

an implicit assumption of traditional methods invol-

ving airflow indices or circulation patterns covering
Table 6

Correlations between observed and downscaled area average precipitation

Diagnostic SWLR

Winter Summer Annual

PQ90 0.34 0.44 -0.04

PXCDD 0.77 0.7 0.86

PX5D 0.29 -0.23

PINT 0.37

PN90 0.36 0.41 0.17

PF90 0.63 0.38 0.09

Average r 0.47 0.39 0.2

RMSE (mm) 3.1

E (%) 48

Results are stratified by season and by method of predictor variable select

explained variance (E %) of daily amounts are also shown. Note: the be

because identical occurrence series were employed.
large spatial domains. An added advantage is that

mixtures of grid-boxes could help reduce anomalies in

GCM predictors due to smoothing of the underlying

orography.

The wet-day threshold was also found to influence

SWLR predictor selection (not shown). For example,

a threshold of 5 mm/day yielded only two predictors

in common with the 1 mm/day threshold model for

NWE for both the occurrence (Q500WA, U850WA)

and amounts (Q500IR, ZSURWA). However, there

was greater overlap between the SWLR amounts

model and the predictors selected by compositing

(Q500IR, H850WA, ZSURWA, F500WA) suggesting

some convergence between the methods at higher

thresholds. This might be expected because the

smallest wet-day total in the NWE (SEE) composited

set was 18.48 (17.74) mm, and the average daily total

was 22.80 (23.43) mm. In contrast, results for SEE

showed more agreement between the 1 mm/day and

5 mm/day SWLR amount models (ZSURSE,

Q500SE, FSURSE, QSURSE) and less with the

compositing (only ZSURSE). Overall, models with

predictors obtained for higher thresholds yielded less

explained variance than the 1 mm/day models in both

NWE and SEE.

Correlation coefficients between downscaled and

observed STARDEX indices for area-averages indi-

cated that the SWLR had an advantage over the

compositing procedure in the vast majority of cases

although gains were marginal in the case of NWE

(Tables 6 and 7). This view is supported by the overall
diagnostics in NWE using 1979–1993

Composited

Winter Summer Annual

0.24 0.27 -0.02

0.77 0.7 0.86

0.41 -0.26

0.54

0.26 0.16 -0.18

0.57 0.18 -0.07

0.45 0.29 0.14

3.13

47

ion. The overall Root Mean Squared Error (RMSE) and percentage

st values are in bold, ties are greyed. PXCDD values are the same



Table 7

Correlations between observed and downscaled area average precipitation diagnostics in SEE using 1979–1993

Diagnostic SWLR Composited

Winter Summer Annual Winter Summer Annual

PQ90 0.6 0.15 0.32 0.28 -0.21 0.18

PXCDD 0.57 0.29 0.03 0.57 0.29 0.03

PX5D 0.82 0.31 0.58 0.53 0.18 0.29

PINT 0.8 0.07 0.39 0.48 -0.31 0.11

PN90 0.44 -0.01 0.29 0.19 -0.37 0.03

PF90 0.68 0.37 0.39 0.49 0.24 0.11

Average r 0.65 0.2 0.33 0.42 -0.03 0.12

RMSE (mm) 2.86 3.03

E (%) 44 37
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RMSE and E% statistics. Therefore, predictor vari-

ables identified by SWLR were utilised for subsequent

multi-site investigations. As an aside, the GA

approach yielded far too many predictors for statisti-

cal regression applications despite efforts to constrain

selections via penalty functions and, consequently,

was pursued no further.
4.2. Precipitation occurrence

The RBF configuration for NWE comprised 30

nodes with an inverse quadratic transfer function and,

for the MLP, a 13-node network trained for 2000

epochs. For SEE the RBF comprised 19 nodes with an

inverse quadratic function and, the MLP had 11 nodes

and 1000 epochs. These configurations did not yield
Table 8

Model comparison for multi-site precipitation occurrence in NWE

Station PFC

RBF MLP SD

HAYDON BRIDGE 75 70 67

LYME PARK RESR 77 77 70

MORECAMBE 78 79 70

GRIZEDALE 79 79 71

APPLEBY CASTLE 77 75 70

DOUGLAS 76 76 69

KEELE 77 76 69

PEN-Y-FFRIDD 76 74 71

LOGGERHEADS 76 75 70

RINGWAY 77 71 69

SLAIDBURN 80 79 72

NEWTON RIGG 79 79 71

CARLISLE 77 78 70

Mean 77 76 70
the smallest overall RMSE in the validation set.

Rather, to avoid over-fitting, the network with the

least number of nodes and stable RMSE was chosen

(i.e. just after the error measure begins to equalise for

the validation set).

The results for NWE and SEE (Tables 8 and 9,

respectively) indicate that the occurrence skill of the

ANNs was very similar. However, SDSM was less

skillful in both regions, achieving for NWE an

average percentage correct of 70% and CSI of 0.49,

compared with 77% and 0.59 for the RBF. Similarly

for SEE, SDSM achieved an average percentage

correct of 72% and CSI of 0.35 compared with 80%

and 0.35 for the RBF. All models had less skill

downscaling precipitation occurrence in SEE, where

east-coast stations such as Manston proved to be most

problematic.
CSI

SM RBF MLP SDSM

0.50 0.51 0.42

0.61 0.61 0.50

0.61 0.61 0.50

0.67 0.67 0.54

0.58 0.58 0.48

0.59 0.60 0.47

0.56 0.56 0.46

0.60 0.60 0.50

0.56 0.58 0.48

0.57 0.55 0.47

0.67 0.67 0.54

0.60 0.60 0.50

0.56 0.56 0.47

0.59 0.59 0.49



Table 9

Model comparison for multi-site precipitation occurrence in SEE

Station PFC CSI

RBF MLP SDSM RBF MLP SDSM

Greenwich 79 79 72 0.44 0.48 0.34

Falconhurst 81 80 72 0.52 0.52 0.38

Dover W.Wks 78 78 70 0.45 0.47 0.33

Bedford (RAE) 79 79 72 0.42 0.40 0.32

Writtle 79 77 72 0.40 0.30 0.31

Shoeburyness 79 79 72 0.36 0.39 0.30

Stansted 78 79 71 0.44 0.47 0.33

Heathrow 81 81 73 0.45 0.48 0.34

Oxford 81 81 73 0.49 0.47 0.35

Long sutton 81 80 72 0.52 0.48 0.37

Rothamsted 80 79 72 0.48 0.45 0.36

Wisley 81 80 73 0.46 0.43 0.35

Gatwick 81 80 73 0.51 0.51 0.38

Kew (Roy Bot Gdns) 80 80 73 0.46 0.48 0.35

Goudhurst 81 80 73 0.51 0.45 0.38

East malling 80 80 72 0.45 0.48 0.34

Manston 78 78 71 0.37 0.42 0.28

Wye 78 78 72 0.44 0.36 0.34

Hastings 80 80 72 0.46 0.43 0.34

Eastbourne 80 79 72 0.48 0.43 0.35

Rustington 82 82 73 0.51 0.53 0.36

Martyr worthy 82 80 73 0.52 0.46 0.37

Southampton 82 82 73 0.51 0.52 0.35

Everton 82 81 72 0.51 0.47 0.35

Boscombe down 82 81 72 0.53 0.48 0.37

Hurn 82 82 73 0.53 0.53 0.36

Lyneham 82 81 72 0.55 0.50 0.35

Mean 80 80 72 0.47 0.46 0.35
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4.3. Variability, autocorrelation and quantiles

of amounts at individual sites

Figs. 2 and 3 compare the standard deviations of

observed and downscaled daily precipitation amounts

for winter, summer and annual for all stations in NWE

and SEE. The ANNs consistently under-represented

standard deviations (most notably at the high

elevation sites of Grizedale and Slaidburn), whereas

SDSM consistently over-represented variability in

amounts (but to a lesser degree). The seasonal biases

in the standard deviations of observed and modelled

daily precipitation amounts were up to 35% for the

ANN models, compared with w14% for SDSM.

Conversely, for SEE winter and annual amounts the

MLP returned biases of 20 and 14%, respectively,

compared with 35 and 45% for SDSM. The situation

was reversed for summer with biases of 33% for
the MLP and 9% for SDSM. In both regions, and all

seasons, the RBF performance was worse than the

MLP.

Figs. 2 and 3 also compare the lagK1 autocorrela-

tions for which the ANNs show consistent over-

estimation. This probably reflects the lack of back-

ward-lagged predictors (see Tables 4 and 5) or an

explicit autoregressive mechanism in the ANNs. In

comparison, SDSM provides better skill, but tended to

under-estimate serial correlation, in particular for

winter in SEE. This was attributed to the large

stochastic component of modelled precipitation

amounts in SDSM.

Downscaling model skill for precipitation amount

distributions was assessed at representative sites in

NWE (Grizedale [upland], Douglas [maritime],

Ringway [lowland]) and in SEE (Rothamstead [low-

land], Eastbourne [coastal], Oxford [lowland]).



Fig. 2. Multi-site standard deviations and autocorrelations for NWE. Key: Black diamonds (RBF); squares (MLP); triangles (SDSM).
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Quantile-quantile plots reveal that the ANNs consist-

ently under-estimated daily precipitation amounts

exceeding 10 mm/day in both regions (Figs. 4

and 5). This pattern of behaviour was also exhibited

when data were stratified by season (not shown),

highlighting the influence of the large number of

smaller events on ANN weights. Conversely, SDSM

slightly over-estimated quantiles except for the

maximum daily totals at Ringway and Eastbourne.

The sign of the anomalies of the largest events depend

critically on the magnitude of the heaviest precipi-

tation event resampled from the training set.

SDSM performs relatively well because the whole
distribution is being evaluated, rather than the time-

series attributes (see below).
4.4. Diagnostics of multi-site behaviour

Both ANNs performed relatively poorly with

respect to the inter-site correlation (Figs. 6 and 7)

due to the fully deterministic nature of the models

leading to over-estimation of inter-site correlation. In

comparison, the conditional resampling method of

SDSM has an ‘adjustable’ degree of randomness

yielding more realistic inter-site behaviour (Wilby

et al., 2003). Even so, there is a seasonal bias in



Fig. 3. Multi-site standard deviations and autocorrelations for SEE. Key: Black diamonds (RBF); squares (MLP); triangles (SDSM).
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the results with inter-site correlation too weak in

winter and too strong in summer. The skill of SDSM

was also generally greater in NWE than SEE,

presumably due to the greater influence of large-

scale Atlantic weather systems in the former region.

Box and Whisker plots (Figs. 8 and 9) indicate that

seasonal series of STARDEX diagnostics (with the

exception of PXCCD) are modelled marginally better

in SEE than NWE although the regional differences

are less pronounced in the case of SDSM. This is

partly an artefact of the different sample sizes,
the chosen metric of skill, and range of behaviour in

each region. Interpretations are further tempered by

the very low skill for most indices (other than PXCDD

and PX5D). Nonetheless, all models performed better

in winter than summer, presumably due to the more

vigorous circulation and scale of rain-bearing systems

at this time.

For NWE all models consistently performed

best for the maximum number of consecutive dry

days (PXCDD) with both ANNs outperforming

SDSM. This is to be expected because PXCDD



Fig. 4. Quantile-quantile plots for wet-day amounts at selected sites in NWE for the period 1979–1993.
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depends on the realism of the daily occurrence

process which was captured best by the ANNs. In

contrast, for SEE, the only skillful results were for

PX5D and PF90 in winter. Overall, the ANNs

performed marginally better than SDSM, although

the strength of the correlation between observed

and downscaled annual series was insignificant for

many STARDEX diagnostics, most notably PINT

and PX5D in summer.
5. Discussion and conclusions

Models of area-average and multi-site daily

precipitation were compared for northwest (NWE)

and southeast (SEE) England with particular emphasis

on heavy precipitation events. It was found that

stepwise linear regression (SWLR) was generally

more effective than compositing for predictor variable

selection when a Radial Basis Function (RBF) model



Fig. 5. Quantile-quantile plots for wet-day amounts at selected sites in SEE for the period 1979–1993.
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of area average precipitation was used to assess

predictor skill against data not used for calibration

(1979–1993). However, the overall gain was mar-

ginal. The importance of performing separate SWLR

for precipitation occurrence and amounts series was

shown by differences in the resulting predictor sets.

The SWLR and compositing analyses further confirm

the over-riding importance of vorticity and specific

humidity as downscaling predictors for daily
precipitation. Predictor selection was also sensitive

to the choice of wet-day threshold.

Having selected the predictors, RBF and Multi

Layer Perceptron (MLP) models were re-calibrated

using multi-site daily precipitation amounts in each

region. A conditional resampling model (SDSM) was

also trained using daily precipitation series at the

same sites. The realism of downscaled precipitation

amounts generated by the three models was then



Fig. 6. Inter-site correlations for NWE.
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compared using a range of diagnostics for heavy

precipitation events, as well as for temporal and

spatial dependency. None of the models performed

consistently well for all STARDEX indices. Overall,

the best results were returned by the ANNs for the

maximum number of consecutive dry days (PXCDD)

in NWE (all seasons) and greatest 5 day total rainfall

(PX5D) in SEE (winter). This suggests that the ANNs

captured some attributes of persistent, large-scale

events with reasonable skill. In contrast, annual series

of quantiles (PQ90) and exceedance thresholds

(PN90) for individual daily amounts were downscaled

with least skill. For SDSM, this is partly explained by
the large stochastic component to the amounts

modelling which means that any downscaled precipi-

tation series would not be expected to match

observations, although summary statistics should

concur. This was confirmed by an analysis of amount

quantiles downscaled by SDSM.

The ability of downscaling models to capture

prolonged heavy rainfall events is particularly import-

ant given observed trends in such extremes

(Fowler and Kilsby, 2003), and recent severe

autumn/winter flooding in the UK (Lamb, 2001).

Models should ideally replicate joint occurrence of

such events at multiple sites. The present study



Fig. 7. Inter-site correlations for SEE.
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suggests that these features can be downscaled by

SDSM with moderate success in winter, but less so in

summer. However, further research is needed to

account for seasonal and regional variations in

model skill, and to assess the capability of dynamical

models under the same conditions. Other work is

beginning to reveal how statistically and dynamically

downscaled heavy rainfall might translate into
changing flood frequencies in large river catchments

(Reynard et al., 2004).

The ANNs were more skillful than SDSM regard-

ing occurrence modelling at individual sites, returning

percent correct forecasts w80% for the MLP.

However, the ANNs significantly and consistently

over-estimated inter-site correlations of daily

amounts. This systematic bias was attributed to



Fig. 8. Distribution of correlation coefficients for observed and downscaled multi-site STARDEX diagnostics. The horizontal line shows the

median value, the box represents the interquartile range, the whiskers include 95% of values, and the circles denote outliers. These results are

based on all sites in NWE.
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the fully deterministic forcing of amounts, whereas

the stochasticity of SDSM leads to greater heterogen-

eity in the response surface and hence more realistic

(lower) inter-site relations. Even so, spatial autocor-

relation was still too high amongst downscaled
summer series due, presumably, to the difficulty of

resolving isolated convective storms.

Unlike previous studies, separate ANN models

were not constructed for each station. Rather, multi-

site behaviour was represented by a single set of



Fig. 9. Distribution of correlation coefficients for observed and downscaled multi-site STARDEX diagnostics. The horizontal line shows the

median value, the box represents the interquartile range, the whiskers include 95% of values, and the circles denote outliers. These results are

based on all sites in SEE.
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model weights and transfer functions for each

regional array. This raises the question as to what

extent such generalised models can resolve fixed (e.g.

topographic), variable (e.g. soil moisture) and random

(i.e. unexplained) local forcing in transfer function

weights (Hewitson and Crane, pers. comm.). Training
a single ANN against multiple outputs has the

advantage of parsimony but it is suspected that only

large-scale forcing is being captured in downscaled

precipitation series. (On this basis, predictability was

marginally greater in NWE than SEE). The realism of

downscaled precipitation changes will, therefore,
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hinge on the extent to which the variable local forcing

or large-scale forcing predominates under future

climate conditions. These mechanisms could be

explored by interrogating inter-variable relationships

amongst the precipitation, atmospheric and land-

surface schemes of dynamical models under current

and future climate conditions. Ultimately, however,

all downscaling methods depend on the faithful

reproduction of large-scale climatology by the

host GCM.
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