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1. INTRODUCTION

Increasing interest has been devoted in the last
decade to the downscaling of the information offered
by Global Circulation Models (GCMs) for use on
regional scales. The main reason for this effort is the
lack of reliability of GCMs in representing regional cli-
mates (von Storch et al. 1993). Two general approaches
have been developed to downscale the large-scale
information: (1) A dynamical approach consisting of a
physical interpolation of the GCM coarse grid to a finer
grid; this is usually accomplished by Limited Area
Models, which are nested into the GCM and obtain the
required boundary conditions from it (Giorgi & Mearns
1991). (2) A statistical approach, in which an empirical
relationship between a large-scale variable and a vari-
able affected by local factors is used to obtain reliable
small-scale information; a wide variety of statistical
techniques have been used for this purpose. 

There is a large number of papers comparing differ-
ent empirical downscaling techniques (e.g. Biau et al.
1999, Huth 1999, Zorita & von Storch 1999, Tang et al.
2000). There are also some comparisons of the dynam-
ical and empirical approaches (Wilby & Wigley 1997,
Kidson & Thompson 1998, Murphy 1999). The main
advantage of the statistical approaches is their low
computational cost, while their weak point is that they
assume that the underlying physical relationship
between the variables is stationary, a doubtful assump-
tion in an altered climate. They also require a strong
statistical relationship between the variables. On the
other hand, the dynamical approach is designed to
reproduce altered climates by means of simplified
physical equations but, in the smaller scales, still
requires empirical parameterizations (keeping them
subject to the problem of the stationarity). The compu-
tational effort of this approach is much greater. Empir-
ical downscaling techniques can be classified as linear
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(e.g. linear regression and CCA) or non-linear (e.g.
analog based techniques, neural networks and
weather typing methods), allowing different degrees
of complexity. 

The analog search method is straightforward in
reproducing non-linear relationships between the
variables. Its computational costs are low compared
with other non-linear techniques such as neural net-
works, which need to be iteratively trained. In short-
term forecast applications (Lorenz 1969, Ruosteenoja
1988, van den Dool 1989) analogs are searched in the
past history of the predictand variable and the forecast
relies on the similar evolution of the present situation
and the past analog one. Several ways for searching
analogs can be applied (Barnett & Preisendorfer 1978,
Toth 1991). The easiest one is a simple search of a
single analog in a pool of historic cases. It can be
improved, e.g. by searching for similarities in the pre-
sent situation and in the evolution which gave rise to it.
But, even reducing the number of degrees of freedom
(d.f.) by characterizing the atmosphere by its flow at a
single level, the analogs found are mediocre, and they
do not perform better than a persistence model. This is
why analog search was rejected long ago as a model
for short-range weather forecast. For downscaling pur-
poses the analog scheme must be changed to include
local-scale variables, as applied by Dehn (1999), Zorita
& von Storch (1999), Timbal & McAvaney (2001), Tim-
bal et al. (2003). In this case the approach is to look for
an analog in a large-scale field (supposed to be reliably
predicted by GCMs) and then use the local target field
simultaneous to the large-scale analog to reconstruct
the local-scale field (Zorita & von Storch 1999). No
errors from leading time extrapolation arise in this kind
of analog search. However, there are 2 main sources of
error in any statistical downscaling technique: (1) The
predictor field does not explain all of the variability of
the predictand field, and (2) errors inherited from the
simulated large-scale variable. 

The main problem with the use of the analog method
is the need for a huge pool of historic cases to find good
analogs (van den Dool 1994). The quality of the
analogs can be improved by employing a larger library
for the search, but this can only be achieved when
studying an artificial climate, such as that created by a
long GCM integration (e.g. Luksch & von Storch 1999).
Observational data are insufficient for finding good
analogs, and this problem can only be overcome by
selecting a reduced set of relevant d.f. and searching
for similarities on it.

The high dimensionality of the atmospheric phase
space is usually reduced through the use of principal
component analysis (PCA) (Luksch & von Storch 1999,
Zorita & von Storch 1999, Timbal & McAvaney 2001).
This classical approach will be referred to here as

PCA-Analog Downscaling Model (DM, hereafter). The
analogs selected by this method only take into account
the predictor field, and they would be the same for any
predictand related to the same predictor. For instance,
even though the physical mechanisms of temperature
and precipitation variability are different over our area
of interest (Sáenz et al. 2001a,b), the large scale
analogs selected for reconstructing both variables
would be the same. The selection of the analog cases of
the predictor should involve the corresponding predic-
tand field. One such approach (Fraedrich & Rückert
1998) uses a quadratic metric with free coefficients that
are iteratively fitted to optimize the forecast error.
Unfortunately, the method loses the simplicity of the
analog method and becomes similar to a neural net-
work. Since the length of the observation records is
insufficient to find good analogs, van den Dool (1994)
proposed the construction of artificial analogs by lin-
early combining all records, with weights determined
by a least squares procedure. This really involves the
predictand field, but the analog method merely
becomes a multivariate linear regression model, losing
its non-linear properties.

Another drawback of the analog method is its inabil-
ity to reconstruct downscaled results beyond the limits
of the calibration library. This would be a problem if
the downscaled variable were affected by a trend
breaking the limits of the observation records. This
problem also depends on the size of the library. The
greater the number of different climates covered by
the library, the higher will be the probability of finding
more extreme analogs.

This study proposes a new approach to the usual
analog DM by finding the analogs in the space of the
CCA temporal expansion coefficients (we will refer to
this method as CCA-Analog DM). This study compares
the downscaling skill of the CCA-Analog DM with the
PCA-Analog DM and with the linear plain CCA DM, to
find a relevant non-linear part in the relationship be-
tween predictor and predictand fields. 

The use of an empirical downscaling technique re-
quires a strong relationship between a large-scale
variable and the regional scale target variable. The
relationship between large-scale atmospheric circula-
tion over the Atlantic Ocean and precipitation over SW
Europe (see Zorita et al. 1992, von Storch et al. 1993,
Trigo et al. 1999, Ulbrich et al. 1999) has been selected
to test the CCA approach for searching analogs. We
use sea level pressure (SLP) to characterize Atlantic
circulation; geopotential height is less adequate, due to
its increase with global warming, which is not reflected
in the circulation (Zorita et al. 1995). The downscaling
target region is the northern coast of the Iberian Penin-
sula (Cantabrian Coast, Fig. 1), which has a behavior of
precipitation variability that is different from the rest of
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the Iberian Peninsula (Rodríguez-Puebla et al. 1998,
Serrano et al. 1999, González-Rouco et al. 2000, Sáenz
et al. 2001b). The relationship between SLP and
Atlantic circulation is stronger during the rainy winter
months, while small-scale convective storms dominate
precipitation over the area during the summer season.
Therefore, only winter data have been analyzed. 

Precipitation time scales are shorter than the
monthly scale used in this study. Nevertheless,
monthly total rainfall amounts are driven by the
monthly average circulation as shown by the signifi-
cant canonical correlations obtained in previous stud-
ies (Zorita et al. 1992, von Storch et al. 1993, González-
Rouco et al. 2000). The processes linking precipitation
to circulation are non-linear; however, there must be a
linear part which is captured by the CCA linear DM.
The monthly average of these processes may lead to a
near-linear net relationship, which is well represented
by a linear DM such as CCA. On the other hand, the
monthly average could keep a significant non-linear
part which is only captured by a non-linear method
such as the analogs used in this work.

We test our technique with observed data sets
described in Section 2 and further details of the down-
scaling methods are given in Section 3. The results
obtained with the common CCA linear DM, a sensitiv-
ity test on several parameters of the usual PCA ap-
proach to the analogs, and a comparison of the new
approach with the other 2 techniques are discussed in
Section 4. An appendix points out several important
issues in the selection of the pre-filtering for the CCA
space.

2. DATA

The monthly SLP field used is the NCAR 5° × 5°
analyses (Jenne 1975). The main reason for using these
old analyses instead of the new Reanalysis at a 2.5° ×
2.5° resolution is that the old one starts in 1899 giving
half a century more data. The missing values in this
data set have been filled by González-Rouco (1997)
using a step by step multiple regression procedure.
The selected predictor region is 70° W to 20° E and 35°
to 70° N, designed to include the main features of the
large-scale circulation modes governing precipitation
over the Iberian Peninsula (Zorita et al. 1992, von
Storch et al. 1993, Ulbrich et al. 1999, González-Rouco
et al. 2000, Sáenz et al. 2001b). 

Monthly accumulated precipitation data over the
Cantabrian Coast were taken from the station homog-
enized precipitation data set compiled by González-
Rouco et al. (2001) at the Universidad Complutense de
Madrid (UCM). A total of 16 stations from this data set
are in the region limited by 10° to 1° W and 42° to 44° N
(Fig. 1). The time period covered by this data set is
1899–1989.

Monthly precipitation with much higher resolution
(a 0.5° × 0.5° grid, 59 grid points over the Cantabrian
Coast) is provided by the Climate Research Unit
(CRU), University of East Anglia (New et al. 2000) but
this data set has been disregarded on the basis of
Fig. 2, which shows the deseasonalized winter
monthly time series in Lugo (dotted line) and at the
nearest grid point of the CRU dataset (solid line). The
variability during the first half of the century is very
small and this situation appears at all grid points over
the western part of the selected area. The quality of
the CRU analyzed data on our target area is not high
enough for reliable downscaling in the following
sections. 

In order to remove any seasonal bias from the
records of our analog library, the data sets were desea-
sonalized by removing monthly climatology. Decem-
ber, January and February monthly anomalies were
selected. The common time period covers 1899–1989
on a monthly basis (273 time records, 91 years × 3
records yr–1). This period has been split into two:
1899–1960 and 1961–1989. The latter period is with-
held as a known future to validate the downscaling
models while the former is used to perform the CCA,
and as the library for the analog search.

The leading variability modes according to an
S-mode PCA using the anomaly field covariance matri-
ces are shown in Figs. 3 & 4. Degeneracy of the eigen-
values is assessed through North et al. (1982) sampling
error bars. The variance fraction retained at several
truncation levels is shown on the graphs along with the
degenerate multiplets. The first and second SLP empir-
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Fig. 1. Atlantic NCAR SLP grid and Cantabrian Coast UCM
stations. Lower panel: light gray is >800 m, dark gray is
>1600 m elevation. Ebro River course is depicted at lower 
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ical orthogonal functions (EOFs) resemble the North
Atlantic Oscillation (NAO) and East Atlantic (EA)
patterns (Fig. 3). The leading precipitation EOFs
show, respectively, a zonal and a meridional gradient
(Fig. 4). 

3. METHODOLOGY

We used 2 different statistical downscaling tech-
niques concerned with finding a relationship between
2 fields. The first (or left) one is a large-scale field
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Fig. 2. Deseasonalized monthly precipitation anomaly according to the CRU (grid point 43°15’N, 7°15’W) and UCM (Lugo station, 
43°15’N, 7°28’W) data sets; r: correlation between both series up to, and after 1950

Fig. 3. Variance fraction explained by the 10 leading EOFs from the NCAR SLP (top). Degenerate multiplets (due to overlapping 
error bars) are joined by lines. Spatial loadings for the 4 leading EOFs (bottom panels). Units: hPa
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slp (t,xj) defined over a large scale spatial domain xj, j =
1...Nx for each time t. The second (or right) one
pre(t,yk) is restricted to a regional scale domain yk, k =
1...Ny. The statistical relationship found is then used to
reconstruct the regional scale field solely from the
large-scale data. 

3.1. Canonical correlation analysis

We used CCA as a standard baseline technique for
downscaling as it has been widely used for this pur-
pose (von Storch et al. 1993, Huth 1999, González-
Rouco et al. 2000). CCA searches for spatial projection
patterns, pl(xj) and ql(yk), such that their temporal
expansion coefficients, al(t) and bl(t), show the maxi-
mum possible correlation. The fields slp(t,xj) and
pre(t,yk) are, then, linearly decomposed as:

(1)

Since the canonical correlation patterns are not
orthogonal, left and right adjoint spatial patterns (pl

A

and ql
A) are defined in order to solve the previous

equations for the temporal expansion coefficients (von
Storch & Navarra 1995). For example,

(2)

solves for the SLP left expansion coefficient with a sim-
ilar equation for the right field. The same equations
would could project any future fields slp(t’,xj) or
pre(t’,yk) (with t’ out of the temporal range used to
derive the CCA spatial patterns) and obtain the canon-
ical coordinates of those fields.

The maximum correlation property allows the use
of this technique as a DM. The SLP future field (pro-

vided by a GCM or, as in this study, by withholding a
part of the available observed data) projected onto
the adjoint SLP patterns yields temporal expansion
coefficients which are used along with the precipita-
tion canonical patterns ql(yk) to reconstruct the
regional field. Minimizing the squared error through
a linear model between the expansion coefficients
gives the following expression for the reconstructed
precipitation field:

�pre (t ’,yk) = (3)

where ρl = corr(al,bl) is the canonical correlation.
To filter out spatial noise a PCA-based pre-filtering

has been carried out on each CCA decomposition (Bar-
nett & Preisendorfer 1987). That is, the coordinates of
the fields that enter the CCA calculation are the lead-
ing principal components instead of the real grid point
coordinates. 

3.2. Analog search

One of the key aspects of the analog search is the
selection of the similitude measure to select the past
analogs. Looking for analogs in real space is usually
inadequate due to the high number of d.f. (van den
Dool 1994). With the Atlantic area selected for this
study and the 5° × 5° resolution of the NCAR data set,
a real phase space search would take place in a 152-
dimensional space. Most of these grid points are highly
correlated or involve noise; moreover, this 152-dimen-
sional space is mostly empty. Taking an SLP measure-
ment precision of 0.1 hPa, a pressure range from 995 to
1035 hPa and the spatial resolution of the NCAR data
set the 273 records at our disposal only fill 0.45% of the
phase space. 
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Fig. 4. Variance fraction explained by the 10 leading EOFs from the UCM precipitation data set (top). Degenerate multiplets (due
to overlapping error bars) are joined by lines. Spatial loadings for EOF1 (bottom left) and EOF2 (bottom right). Units: mm/month
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The usual method for the reduction of the dimen-
sionality of the search space is the projection onto the
space spanned by the leading EOFs obtained from an
S-mode PCA. That is, given the first Nε EOFs (ep(xj),
p = 1...Nε), the coordinates in the PCA-space γp of any
given spatial pattern of anomalies with real-space
coordinates Γ(xj) are:

(4)

and the similitude of this pattern to the anomaly field at
each time t is measured by the euclidean distance in
this space:

(5)

where αp(t) are the standardized (zero mean, unit vari-
ance) principal components (PCs) of the SLP field
slp(t,xj) = ∑p αp(t)ep(xj). The use of standardized coor-
dinates gives a meaning to the distances we work with
in the reduced phase space. The distances are mea-
sured in standard deviations and give information on
the goodness of an analog, as it is possible to estimate
whether a given analog pattern is near or far from the
base case, depending on the numeric value of the dis-
tance. On the other hand, the standardized distance
assigns the same importance in the analog search to all
EOFs, even though the variance of the SLP field
accounted for by each EOF decreases when increasing
their order. The effect of both PC scalings (standard-
ized and variance-carrying) on the DM skill is tested in
the intercomparison in Section 4.2.1.

The analog DM consists in finding the time t* in our
analog library for which the distance dΓ(t*) is mini-
mum, and to reconstruct the predictand with its own
value at time t* (Fig. 5). This downscaling model will
be referred to as PCA-Analog DM.

Several historical cases may approach the minimum
distance. Selection of a single analog would disregard

other analogs of nearly equal quality, which could give
rise to different precipitation situations. One way to
take into account these close analogs is to use the
n closer circulations to the base case and average their
precipitation counterparts to reconstruct the field. A
simple average would tend to reduce the quality of a
good analog if the remaining n–1 were less good. In
order to avoid this problem a weighted average is
employed (Fig. 5) using weights which decrease with
the square of the distance to the base case. The effect
of these weightings is tested in Section 4.2.1.

3.3. The CCA approach to analogs

The projection onto the PCA truncated space not
only reduces the dimensionality of the data but also
removes high-frequency spatial noise. This allows a
search for patterns with similarities in their main char-
acteristics, while disregarding small local differences.

The PCA is not the only procedure to obtain projec-
tion patterns that reduce the dimensionality of phase
space and noise. The CCA patterns described in the
previous section also constitute a valid projection
space. Noise in the CCA was filtered with the Barnett
& Preisendorfer (1987) PCA pre-filter. With the use of
the CCA space as projection space the analogs are
searched in a space with a topology that takes into
account the predictand field. The euclidean distance
between a base case Γ(xj) and the SLP field at time t in
this case is:

(6)

where NC = min(Nε
slp,Nε

pre); Nε
slp and Nε

pre are the
number of EOFs retained in the CCA pre-filtering of
the SLP and precipitation fields, respectively. The
selection of Nε

slp and Nε
pre is crucial in order to obtain
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analogs different from those obtained by projection on
the PCA-space (see Appendix 1).

4. VALIDATION OF THE DOWNSCALING MODELS

The skill of the downscaling techniques is measured
by 2 different scores: (1) The correlation between the
original anomaly field and the field reconstructed dur-
ing the validation period; this correlation skill is insen-
sitive to the level of reconstructed variability and only
accounts for the agreement in the peaks of the recon-
structed precipitation series. (2) To account for the
variability reproduced by the downscaling models, a
variance skill is defined as the ratio of the variance of
the reconstructed series during the validation period to
the variance of the original series during this period.
The latter skill score should equal 1 for the models to
reproduce the right level of variability.

4.1. Linear CCA DM

The CCA applied to NCAR analyses data and UCM
precipitation stations over the Cantabrian Coast dur-
ing the calibration period (1899–1960) yields the spa-
tial patterns shown in Fig. 6. The 4 leading SLP EOFs
and the 2 leading precipitation EOFs have been
retained in the PCA pre-filtering in order to optimize
the stability of the CCA patterns. The stability has
been assessed by a Monte Carlo test on the congru-
ence coefficient (Richman 1986, Cheng et al. 1995) of
patterns obtained from 200 random subsamples with
90 temporal records each (out of a total of 186 in the

calibration period). This PCA pre-filter selection (4,2)
shows non-overlapping North et al. (1982) sampling
error bars and, consequently, no degenerate multiplet
is likely to be broken in this truncation.

The first pair (Fig. 6, left) of canonical correlation
patterns (CCPs) has a canonical correlation of 0.86 and
the second pair has 0.68. The first SLP CCP describes a
counterclockwise circulation around a center south of
Ireland and explains 20% of the total variance of the
field. The associated precipitation CCP (Fig. 6, bottom
left) shows decreasing precipitation anomalies from
west to east on the Cantabrian Coast. This precipita-
tion pattern explains 56% of the total variance of the
precipitation anomaly field. The relation can be physi-
cally explained through the advection of moist (dry) air
by the corresponding anomalous circulation during
positive (negative) phases. The SLP part of the second
CCA mode (Fig. 6, top right) shows 2 opposite-sign
centers. A positive anomaly maximum is located in the
center of the northern Atlantic Ocean, while a negative
weaker center is located over Italy. The induced anom-
alous circulation over the Cantabrian Coast is north to
south and accounts for 13% of the variance of the SLP
field. A precipitation gradient decreasing from the
coast to the interior is found for the precipitation part of
this mode, explaining 15% of the variance. 

The results are consistent with those found for the
entire Iberian Peninsula (von Storch et al. 1993, Zorita
& Storch 1999, González-Rouco et al. 2000).

The correlation between the precipitation anomaly
field reconstructed by the CCA downscaling model and
the observations is shown in Fig. 7. The correlation for
the calibration period (1899–1960) is shown as an upper
limit to the predictability of the precipitation by this
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Fig. 6. Canonical correlation patterns obtained using the period 1899–1960 for the NCAR SLP (hPa) and the UCM precipitation 
(mm/month). The first (left) and second (right) pairs show canonical correlations 0.86 and 0.68, respectively
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method, since the canonical expansion coefficients
themselves were used for this reconstruction without
temporal extrapolation. Higher correlations are found
for the western part of the area (where the variability of
precipitation is also higher). During the validation pe-
riod a decrease in correlation is found in the basin of the
Ebro River (values <0.5, which is the threshold for a
95% significance level), possibly related to the moun-
tain ranges (see Fig. 1), which surround the basin and
block the westerly circulation associated with the first
CCA mode (Fig. 6, top left) and the northerly circula-
tion associated with SLP CCP2 (Fig. 6, top right).

4.2. Non-linear Analog DMs

4.2.1. PCA-Analogs

PCA is the most common statistical tool for dimen-
sionality reduction in analog searches. The 4 leading
SLP EOFs explain a large and disjoint—according to
North et al. (1982) sampling error bars—part of the
total variance of the field (Fig. 3) so this number seems
reasonable for our PCA-Analog search.

Sensitivity analysis of the PCA-Analog DM was
based on the correlation and variance skills. These
skills are plotted for each of the UCM stations in Figs. 8
& 9. Fig. 8 shows the correlation skill for one analog
(n = 1) and for averages of the 3 and 6 nearest analogs
in a PCA-space with a dimension Nε = 4. The lower
part of Fig. 8 illustrates the CCA-Analog approach and
will be discussed in Section 4.2.2. Some stations are
predicted well (western part of the area), whereas pre-
dictions for Reinosa, Oña and Logroño (RNS, ONA and
LGN) are poor. The correlation skill grows with the
number of averaged analogs but improves little when
more than 3 are used.

Fig. 9 shows the variance skill using a number n = 1,
3 and 6 of averaged patterns. The level of reproduced
variability is good for n = 1 (no average). The averag-
ing of the patterns smoothes the extreme values. The
(weighted) mean value at each grid point is always less
than or equal to the value of the patterns being aver-
aged, thus the variance of the mean pattern is also less.
The opposite effect is observed in the variance skill
with respect to the correlation skill: the bigger the n,

206

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
n = 1
n = 3
n = 6

GJN CTP STD CRN BBO SSB LUG RNS STG ONA LON LGN PTV BRG ORS PSG

-0.4
-0.2
 0.0
 0.2
 0.4

Fig. 8. Correlation skill of the PCA-Analog DM at each station while the smoothing average runs through n = 1, 3, 6 (top panel).
The bottom panel shows the improvement when using the projection of the analog search over the CCA space. PCA-Analog uses 

Nε = 4 and CCA-Analog Nε
slp = 4 and Nε

pre = NC = 2. See Fig. 1 for abbreviations

Fig. 7. Correlation (100) between observed and CCA DM
reconstructed precipitation for 1899–1960 and 1961–1989 (i.e. 

correlation skill)



Fernández & Sáenz: Searching for analogs in CCA space

the smaller is the variance skill (cf. Figs. 8 & 9). An
intermediate value of n = 3 was therefore used in the
analyses described below.

Averaging should be avoided for the purpose of
obtaining the correct level of variability in the recon-
structed field. Variance with a good fit is inherent to
the analog methods because the predictand is built
with elements of the observed variable. Thus, even
though the predictor does not explain all of the vari-
ability of the predictand, the variance is well re-
produced and includes actual precipitation noise in
addition to the signal. This avoids
artificially inflating the variance by
adding noise, which is the usual
approach in other downscaling tech-
niques (von Storch 1999). The vari-
ance may even be overestimated
(Fig. 9). This means that the analogs
found are, on average, further re-
moved from the mean state.

The sensitivity analysis for the
dimensionality of the phase space is
shown in Fig. 10, along with the
effects of the standardized coordi-
nates. The correlation skill is similar
for standardized and variance-carry-
ing coordinates in a low-dimensional
phase space, but the use of standard-
ized coordinates is not recommended
when high order EOFs are included.
When the distance along each dimen-
sion is weighted according to the vari-

ance explained by that mode (Fig. 10, right) the corre-
lation skill initially oscillates but attains a stable value
with the 14th EOF. Even though only the 4 leading
EOFs are stable for explaining the SLP variability
according to our Monte Carlo test, the first 10 to
13 EOFs seem to be related to the precipitation over
the area under study. 

The same stabilization occurs in the variance skill at
about 10 dimensions (Fig. 11; variance skill ±SD for 16
stations). The reconstruction with the standardized
metric (Fig. 11, left) shows similar skill for the first few
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dimensions, but declines with growing dimensionality.
This effect is, however, due to the smoothing (n = 3)
since for n = 1 the average variance skill is nearly 1 at
all dimensionalities (data not shown).

4.2.2. CCA-Analogs vs. PCA-Analogs

A stable selection of CCA patterns is reached with
the PCA pre-filter Nε

slp = 4, Ne
pre = 2 (Section 4.1.,

Figs. 8 & 9). In Fig. 8 the bars represent the CCA-
Analog correlation skill minus that of the PCA-Analog.
Thus, positive bars mean that CCA-Analog DM
improves over the PCA-Analog DM. No clear improve-
ment in correlation skill is evident with the new
method. The selection of single analogs (n = 1, black
bars on Fig. 8) seems to be better with the new ap-
proach since 0.1 in correlation skill is gained in several
stations and 0.2 in Cervera del Pisuerga (PSG). For
averaged searches (n = 3 or 6) the skill is similar in both
CCA-Analog and PCA-Analog DM.

The lower part of Fig. 9 shows CCA-Analog minus
PCA-Analog results for variance skill difference; as
variance skill should be close to 1, negative bars also
represent an improvement if the corresponding PCA-
Analog reconstructed variance skill is >1. For instance,
the negative bars in Bilbao, Reinosa and Logroño
(BBO, RNS, LGN) correct the variance overestimated
by PCA-Analog DM for these stations, and most under-
estimates are corrected as well.

In the comparison carried out in Figs. 8 & 9 the PCA-
Analog DM searches for analogs with 4 d.f. while the
CCA-Analog DM only uses 2. The information about
the circulation over the North Atlantic is being con-

densed into 2 d.f. They are chosen to
reproduce the precipitation on the
Cantabrian Coast with a skill similar
to that reached by the PCA-Analog
DM with 4 d.f.

The comparison of the PCA-Analog
DM and the CCA-Analog DM should
take place in a search space of the
same dimension where the search
library equally fills the phase space
by both methods. Thus, in Fig. 12 the
PCA-Analog DM has been reduced to
2 d.f. by projection over the 2 leading
EOFs. In this case the skill improve-
ment of the CCA-Analog DM is
apparent. But, in this comparison, the
predictor signal entering each DM is
different. While the CCA-Analog DM
makes use of 84% of the variance of
the predictor field, the PCA-Analog
DM has only 61%.

Since the reconstruction of the precipitation is deter-
mined by SLP analogs selection, the explanation of the
CCA-Analog improvement should be in the SLP ana-
log selection differences. Fig. 13 shows the time corre-
lation at each grid point of the NCAR SLP predictor
field and the analog reconstructed field (in this case
the predictor itself is reconstructed by the analogs
found, and compared with its own base patterns) by
means of the ordinary PCA-space analog search and
the CCA-space search during the independent period
1961–1989. Correlations are very high over a wide
area in the case of the PCA-space search. In the CCA-
space search, however, the high correlation area is
reduced to an elongated region over the east Atlantic.
This means that the PCA search uses patterns similar
to a base case over the whole area, while the CCA
search only considers the high correlation area shown
in Fig. 13, resulting in a less reliable SLP field. How-
ever, our efforts are not directed towards reconstruct-
ing the SLP field itself, but the precipitation induced by
this field. The analog patterns selected by the CCA-
Analog DM provide a more accurate reproduction of
the circulation which determines precipitation over the
Cantabrian Coast, even though these patterns do not
fit the predictor as well as the patterns derived from
the PCA-space approach.

The domain for the analog search is important and
sometimes regarded as a parameter that needs to be
optimized (Timbal & McAvaney 2001). The search pro-
jecting onto the CCA-space performs this domain opti-
mization automatically. The domain is weighted with
high loading factors where the circulation is interest-
ing for the precipitation. A manual selection of the
domain is usually bounded to rectangular (Timbal &
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McAvaney 2001) or circular (van den Dool 1989)
regions, although systematic selection of irregular
regions is not a completely unexplored field (Barnett &
Preisendorfer 1978). 

We tested whether this domain optimization occurs
and the CCA-Analog approach is less sensitive to the
selection of the predictor domain than the PCA
approach. Two other domains were selected (Fig. 14):
(1) A wider domain, D1, including the previous domain
D0 used throughout this study. (2) A smaller domain,
D2, centered over the area with high SLP correlation in
the CCA-Analog approach (Fig. 13, right). The perfor-
mance of each DM on each domain has been summa-

rized in 2 numbers: the average correlation skill and
the average variance skill, computed over the 16 pre-
cipitation stations (Table 1). The correlation skill of a
smaller area is similar to that obtained for a larger area
(D2 compared to D0) if the former covers the areas with
certain skill for prediction of the latter. This is true for
both PCA- and CCA-analog DMs. The CCA-Analog
DM also provides a good skill for an even larger area
such as D1. However, the correlation skill of the PCA-
Analog DM decreases substantially in this larger pre-
dictor area. The selection of D2 was motivated by the
results obtained for D0, which is why the information
contained in D0 can be obtained from D2. The CCA
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method selects the domain of interest automatically,
performing better than the PCA approach in all 3
cases.

The average variance skill behavior (vs in Table 1) is
different. The PCA approach gives very similar skills
for the 3 domains. As long as the area of interest for the
precipitation is included in the search domain, the
explained variance is extracted from the data and the
non-relevant information does not reduce the skill, as
was the case for the correlation skill. In the CCA
approach the skills are better and the domain D0 per-
forms best.

4.3. Linear vs. non-linear CCA approaches

The correlation skill of the non-linear technique is
systematically lower than that obtained by the CCA
DM (Fig. 15). As both techniques yield very similar
skills, the CCA-Analog DM does not seem to be cap-
turing any extra non-linear elements in the relation-
ships between the variables, at least on this time scale
(see also Zorita & von Storch 1999). The variance skill
is improved by the non-linear method, as the analog
methods reproduce the variance better than a raw
CCA DM.

Due to the particular behavior of daily precipitation
(which often has a value of zero), its probability density
function (PDF) is highly skewed. When monthly total
precipitation is used, the PDF tends to be more normal.
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Fig. 14. Domains used to test the sensitivity of the results to
the predictor area. The small domain D2 is located over the 

higher loadings in Fig. 13 (right)

PCA-Analog CCA-Analog
cs vs cs vs

D0 0.47 0.56 0.54 0.71
D1 0.25 0.58 0.43 0.64
D2 0.46 0.59 0.55 0.65

Table 1. Average correlation (cs) and variance (vs) skills over
16 precipitation stations for 3 different domains D0, D1 and 

D2 (cf. Fig. 14)
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The χ2 statistic measures the deviation of a PDF from
normality (Wilks 1995). χ2 is essentially the mean
squared distance to a normal PDF with the same mean
and variance.Using the monthly total precipitation is
insufficient to normalize the PDFs (Fig. 16). The PCA-
Analog and CCA-Analog reconstructed precipitation
PDFs show a level of nonnormality similar to that of the
observed precipitation. The PDF of the CCA DM
reconstructed precipitation is more normal than that of
the observed precipitation (note the logarithmic scale),
even though it is not statistically significant at the 5%
significance level. The statistic values at Gijón and A
Coruña (GJN and CRN) are closely reproduced by the
linear model, because observed precipitation is more
normally distributed at these 2 stations.

GCMs represent the most useful approach to get
information about the future evolution of the large-
scale climate. But, as long-term climate prediction is
not an initial value problem, temporal correlation of a
long-range simulation with observed variables cannot
be expected. The same is true for the downscaled
information. The information derived from GCMs
needs to be interpreted in a probabilistic way. The cor-
rectness of multiyear averages, variance, or trends
implies the conservation of the PDF. If a downscaling
model does not preserve the non-normality of the PDF
(as shown in the case of the CCA DM for the
Cantabrian Coast), any change in the PDF due to forc-
ing (e.g. greenhouse gases, volcanism, SST tropical
forcing) will be obscured by the normalization of the
PDF that has resulted from downscaling. No clear con-
clusions can be drawn from the CCA DM downscaled
precipitation PDF in a climate change experiment
since the climate change effects on the PDF and the
DM-induced normalization are merged in the change
of the PDF.

5. CONCLUSIONS

A new phase space for the selection of atmospheric
analogs when used for downscaling has been pro-
posed. The standard PCA technique for dimensionality
reduction of the phase space is insensitive to local
fields in downscaling. The approach presented here
consists in a projection onto the space spanned by the
leading CCA spatial patterns of the predictor, and this
should select circulations induced by the predictor
field relevant to the local predictand field.

The new approach finds d.f. of the North Atlantic cir-
culation with greater relevance to precipitation over
the Cantabrian Coast. When working with a reduced
number of dimensions in the phase space, the direc-
tions selected by the CCA-Analog DM are more accu-
rate and yield higher predictive skills than the stan-
dard approach (projection onto the EOFs).

This improvement by the CCA-Analog DM method
derives from the automatic selection of the large-scale
domains of interest for the precipitation. The low sen-
sitivity of the correlation and variance skills to different
predictor regions supports this idea.

The PCA truncation in the PCA-Analog DM is some-
times carried out as a routine truncation of the noise,
and a high number of EOFs is considered, in order to
make sure that nearly 100% of the variance is taken
into account (Luksch & von Storch 1999, Timbal &
McAvaney 2001). The quality of the analogs depends
on this truncation, because the volume of the phase
space is being increased, while the number of patterns
in the search library is maintained constant. These
authors locate their truncations in the stable part of
Fig. 10 (right panel), but this procedure does not guar-
antee maximum skill or better analogs. Moreover, for
about 8 d.f. the search in standardized coordinates

(with very low skill for high order trun-
cations) shows average correlation skills
never attained by the search in vari-
ance-carrying coordinates and with less
dispersion between stations (data not
shown).

The results in correlation skill of the
CCA-Analog DM are similar to those of
the CCA DM and there is no gain in
using the non-linear (more costly)
model. The analog methods have better
variance skill. Even after smoothing, the
level of reproduced variability is higher
than the linearly reconstructed one, and
the average variance skill is very close
to one when no smoothing is applied
(but this reduces the correlation skill).

The linear CCA DM fails to reproduce
the non-normality of the precipitation
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PDFs, and the downscaled precipitation has more nor-
mal distribution than observed. This normalization
could erroneously be interpreted as a decrease in neg-
ative precipitation anomalies and an increase in posi-
tive ones. The analog models better maintain this non-
normality, which is more suitable for assessing GCM
climate change downscaled precipitation. But the ana-
log methods do not simulate possible trends leading to
extreme values larger than those observed during the
calibration period. 
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The PCA pre-filter proposed by Barnett & Preisendorfer
(1987) for the CCA calculation performs a PCA on both
fields and carries out the CCA over a reduced set of the
leading principal components to filter out the noise. Apart
from filtering the noise, the equations to solve are simpler
and the canonical correlation patterns in the PCA-space
coordinates are orthogonal.

The first point to take into account when dealing with this
pre-filter is that the total number of canonical patterns is
limited by the PCA truncation selected. The truncation
level will be referred to as (Nε

slp,Nε
pre); Nε

slp is the number
of EOFs retained in the left field (SLP) and Nε

pre the num-
ber retained in the right one (precipitation, in our exam-
ple). The maximum number of canonical patterns after a
(Nε

slp,Nε
pre) truncation is NC = min(Nε

slp,Nε
pre). In our exam-

ple, a truncation level of (4,2) has been used and the max-
imum number of canonical patterns is therefore NC = 2.

The canonical patterns in the EOF space can be obtained
through a singular value decomposition (SVD) of the
cross-covariance matrix of the PCs of both fields (Cαβ,
which is a Nε

slp × Nε
pre matrix)

(7)

where the L (Nε
slp × NC) and R (Nε

pre × NC) columns are
orthonormal vectors corresponding to the left and right
canonical patterns expressed in EOF-space coordinates
and Σ is a diagonal matrix containing the decreasing
canonical correlations. This is evident considering the
patterns ℑ and ℜ and the diagonal correlations matrix r of
the usual eigenvalue approach (e.g. see Zorita et al. 1992).

(8)

(9)

Substituting the SVD decomposition:

(10)

And this is equal to ℑr2 if, and only if, ℑ = L and r = Σ due
to the uniqueness of the eigenvalues of a symmetric matrix
once they are constrained by their orthonormality. To
return to real space coordinates it is necessary to recon-
struct the canonical patterns (which will no longer be
orthonormal vectors) using the EOF matrices E (Nslp ×
Nε

slp) and F (Npre × Nε
pre)

P = EL; Q  = FR (11)

where P (Nslp × NC) and Q (Npre × NC) are the standard
canonical correlation patterns. The coordinates in the PCA
or in the CCA space for our analog search are obtained by
projecting the field using the E or P matrices, respectively.
These matrices are related through the matrix L, which
has orthonormal columns. The matrix L is Nslp × NC, so if
Nslp < Npre, then NC = Nslp and L is a square orthogonal
matrix. In this case the PCA-space and the CCA-space are
related through a rigid rotation (L being the rotation
matrix) which leaves the distances between any pair of
points unchanged, and the analogs found by both methods
are exactly the same. As a result of this, a truncation with
Nslp > Npre must be selected in order to obtain different
analogs when using the CCA approach. The L matrix acts,
in this latter case, by merging the Nε

slp PCA coordinates
into a smaller number (NC = Npre) of directions interesting
for precipitation purposes.

  C C L R R L L LT T T
αβ βαℑ = ℑ = ℑΣ Σ Σ2

  C C rβα αβℜ = ℜ 2

  C C rαβ βαℑ = ℑ 2

 C L R
SVD

T
αβ = Σ

Appendix 1. PCA pre-filter selection
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