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ABSTRACT
A model output statistics based method for downscaling seasonal ensemble predictions is outlined, and examples
of ensemble predictions of precipitation and 2-m temperature are verified against observing stations in Scandinavia,
Europe, north-western America, the contiguous United States and Australia. The downscaling from seasonal ensemble

predictions from coupled ocean/atmosphere general circulation models to daily precipitation time series for individual
observing stations is performed in three steps: (i) a spatial downscaling of ensemble mean seasonal means from dynamical
model output to station level by means of patterns derived from a singular value decomposition analysis of model output

and observations; (ii) application of the downscaling transformation to the model output ensemble and subsequent
calibration of the downscaled ensemble; (iii) a stochastic generation of daily precipitation conditioned on predictions
of the probability of a wet day in the season and daily persistence. In the majority of the examples, the downscaling is

found to provide more skilful predictions than the raw dynamical model output.

1. Introduction

Several potential applications exist for seasonal to interannual
climate prediction, including crop yield prediction and predic-
tion of tropical disease, which are both treated elsewhere in this
issue (Cantelaube and Terres, 2005; Marletto et al., 2005; Morse
et al., 2005). Most existing application models require seasonal
climate input on a spatial scale much smaller than that of present-
day dynamical seasonal climate prediction models. In addition
to inaccuracy associated with lack of horizontal resolution, cou-
pled ocean/atmosphere models suffer from a substantial drift
away from the observed climate (Stockdale, 1997), a drift that
also needs to be corrected. A variable that is often poorly pre-
dicted on local scale is precipitation, which is also one of the
most important variables for many applications. One approach
to improve poor predictions of precipitation is that of statistical
downscaling. Statistical downscaling aims at specitying the local
field (the predictand, e.g. precipitation) from a large-scale field
(the predictor), which is accurately predicted by the dynamical
model.

The choice of predictor depends on the predictand. Two con-
ditions should be satisfied: (i) it must be possible to specify
the predictand accurately from the predictor, and (ii) the pre-
dictor should be well predicted by the dynamical model. For
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precipitation, large-scale fields, such as mean sea level pressure,
geopotential height, relative humidity, vorticity and divergence,
are all predictor candidates (Wilby and Wigley, 2000), but also
precipitation predicted by the dynamical model can—and will
in this paper—be used as predictor.

A natural first approach to the specification of the predictand
is to use linear regression, but more advanced methods (e.g. arti-
ficial neural networks) can also be applied. An important choice
regards the choice of ‘training’ data set. Traditionally, statis-
tical downscaling makes use of relationships that are derived
between observed (or analysed) predictor and predictand fields,
such as, for example, the 700-hPa height field and precipitation.
However, predictions based on this perfect prognosis approach
(Wilks, 1995) are sensitive to model errors in the predictor field.
If, instead, the training predictor is chosen as a model field,
model systematic errors will automatically be accounted for in
the predictions. This approach is known as model output statistics
(MOS; Wilks, 1995) and is widely applied to numerical weather
predictions to obtain point predictions. MOS predictions are not
normally referred to as downscaling, as the predictor is normally
obtained from immediately surrounding model grid points, rather
than from large-scale fields. The major drawback of MOS is the
need for a long series of hindcasts using an unaltered model.
That is, every time the dynamical model undergoes a major up-
grade, a long series of hindcasts must be recomputed in order to
derive new MOS relations that take into account possibly altered
systematic errors of the dynamical model.
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The DEMETER (Development of a European Multi-model
Ensemble system for seasonal to inTERannual prediction) set of
model hindcasts (Palmer et al., 2004) provide a data set that is
well suited for a MOS-based downscaling. To date, there is only
limited experience with downscaling of seasonal predictions,
whereas in climate change modelling statistical downscaling has
been applied extensively, but using the perfect prog approach
(e.g. von Storch et al., 1993). As a result of the different na-
ture of the problem, climate change modelling (and subsequent
downscaling) cannot be verified in the same manner as seasonal
predictions.

In addition to spatial downscaling, some applications may also
require a downscaling in time, i.e. time series in a higher tem-
poral resolution specified from seasonal or monthly time series
(Goddard et al., 2001). Most crop yield models, for example,
require daily weather input. The raw output from dynamical
models is available as the required daily values, but as surface
variables typically are available as grid cell averages and the
horizontal resolution is relatively coarse in seasonal prediction
models, the resulting time series are smoother than time series
that are observed at single stations, particularly for precipitation.
Alternatively, synthetic daily time series can be generated using
a stochastic weather generator, which is conditioned on seasonal
output of the dynamical model. Stochastic weather generators
have been widely used for simulating weather (precipitation,
temperature, global radiation, etc.) for use in crop yield models
(Richardson, 1981; Parlange and Katz, 2000). They have also
been used in connection with climate change studies (Wilks,
1992; Katz, 1996; Mearns et al., 1997; Semenov and Barrow,
1997; Palutikof et al., 2002), but little has been done in relation
to seasonal prediction.

It has been documented that dynamical models can provide
skilful seasonal forecasts, i.e. forecasts that are better than clima-
tology, particularly in the tropics (Stockdale et al., 1998), but it
has also been demonstrated that the prediction skill, notably for
precipitation, can be improved using statistical techniques to cor-
rect the raw model output. Feddersen et al. (1999) showed how
statistical correction using the leading modes of a singular value
decomposition analysis (SVDA), also known as a maximum co-
variance analysis (MCA), could improve the skill of seasonal
precipitation simulations made with an atmospheric general cir-
culation model forced by observed sea surface temperature. Sim-
ilar results using related statistical correction methods applied to
a number of different atmospheric model simulations have been
reported for a number of later studies (Gershunov et al., 2000;
Kharin and Zwiers, 2001; Tippett et al., 2003; Widmann et al.,
2003; Kang et al., 2004).

The present work is an extension to the above studies in that
we apply statistical downscaling/correction to predictions from
more realistic coupled ocean/atmosphere forecasting systems,
i.e. sea surface temperature is not prescribed, but part of the
prediction; we deal with full ensembles, not only the ensemble
mean; we look into the benefits of multi-model forecasting after
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statistical downscaling has been applied individually to each en-
semble from three different models; we demonstrate how to gen-
erate daily time series of precipitation using a stochastic weather
generator conditioned on downscaled seasonal mean predictions.

The paper is organized as follows. Following this introduc-
tion, in Section 2 we describe the downscaling methodology,
comprising spatial downscaling of seasonal mean precipitation,
downscaling and calibration of seasonal ensemble predictions
and stochastic generation of daily precipitation conditioned on
downscaled seasonal mean predictions. In Section 3, the statis-
tical downscaling method is illustrated by several examples, and
conclusions are presented in Section 4.

2. Methodology

Statistical downscaling allows endless possibilities for the choice
of predictor fields. As we are mainly interested here in outlining
a method for statistical downscaling, we intend to keep things
simple and let fine-tuning of the method depend on the particular
application.

2.1. Downscaling seasonal ensemble mean predictions

As systematic errors in the DEMETER models cannot be ig-
nored, a MOS-based downscaling is preferred, following the
approach in Feddersen et al. (1999) and Feddersen (2003). The
predictor field is chosen to be the model output equivalent of
the predictand, i.e. if the predictand is precipitation in a region,
then the predictor is chosen as precipitation predicted by the dy-
namical model in a region encompassing the predictand region.
An SVD analysis (Bretherton et al., 1992) is applied to a training
data set of predictor and predictand, and observed precipitation
is linearly regressed on the leading SVD modes. The regression
equation is derived using the ensemble mean of the model pre-
dictions, as ensemble averaging reduces climatic noise and so is
an estimate of the predictable part of the ensemble.

Following Bretherton et al. (1992), the standardized predictor
(ensemble mean model output), X;, and standardized predictand,
y;:, time series (where index i denotes time) are expanded in terms
of patterns (g,,, h,,) and time series (¢,,.;, Vi),

X ~ Zum,igmv (1)
m

Yi ~ Z Um,ihm- (2)

The time series are given by projection of the standardized fields
on the respective patterns, i.e.

Up,i = Xi * 8, (3)

and similarly for v,, ;. By choosing the patterns g,, and h,, as sin-
gular vectors of an SVD decomposition of the cross-covariance
matrix of the x and y fields, the covariance between u;; and
vy, is maximized, and the covariances between u,,; and v,,;
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are maximized subject to the condition that g,, is orthogonal to
g1,...,8nu1,andh, is orthogonal to h,, ..., h,_;.

An estimate for the predictand is obtained by multiple linear
regression on the u,, ; time series, i.e.

i’i = ZAmum,iv (4)

m

where A, is calculated so as to minimize the expected root-
mean-square (rms) difference between §; and y;.

The number of modes m (pairs of patterns and time series) that
are included in the sums above should ideally explain the frac-
tion of the covariance between GCM output and observations
that is not due to climatic noise. In practice, this is accomplished
by sorting the singular vectors of the SVD analysis according to
the corresponding singular values (that are proportional to the
covariance fraction explained by the singular vectors) and in-
cluding singular vectors corresponding to the singular values in
descending order until the singular values, or close pairs of sin-
gular values, are small compared to the first singular values and
are no longer significantly different from the subsequent singu-
lar values (see North et al., 1982, for a more detailed discussion
of the related problem of the spectrum of eigenvalues of empir-
ical orthogonal functions). For the DEMETER predictions we
typically include between two and six singular vectors.

The predictand comprises precipitation from a set of observing
stations. A choice has to be made regarding the dynamical model
output predictor region: it should encompass the corresponding
observations and be large enough to resolve the relevant large-
scale patterns. For example, for downscaling over Scandinavia
the model output region is chosen to include a good part of the
North Atlantic in order to resolve the North Atlantic Oscillation
pattern (Feddersen, 2003).

2.2. Downscaling and calibrating seasonal
ensemble predictions

Having thus obtained a procedure (which is nothing but a linear
transformation of the model output) for downscaling the en-
semble mean, the natural extension to downscaling of the full
ensemble is to apply the same linear transformation to the in-
dividual ensemble members, i.e. to project the individual stan-
dardized ensemble members, x; ; on to the ensemble mean SVD
modes, g,, as in eq. (3) and apply the regression equation (eq. 4)
to each ensemble member. However, the linear regression does
not, in general, ‘explain’ all variance. Consequently, we expect
the ensemble spread to be too small to capture the verifying
observations, so that a calibration of the ensembles is necessary.

The well-known problem with regression-based statistical
predictions having less variance than observations is frequently
accounted for by inflating the statistical predictions, i.e. the pre-
dicted anomalies are rescaled or inflated so that the variance of
the inflated predictions is increased so as to match the variance
of the corresponding observations (Klein et al., 1959). An unfor-

tunate side effect of this approach is that the predictions after the
inflation are no longer optimal in a least-squares sense. However,
for ensemble predictions we can ‘add’ extra variance to the pre-
dictions and still keep the ensemble mean fixed by increasing the
ensemble dispersion. Using the method of analysis of variance
(ANOVA) it is found that the total variance of the predictions
for each station can be estimated as the sum of the variance of
the ensemble mean and the internal variability reflected in the
ensemble dispersion of the individual ensembles (Rowell et al.,
1995; Rowell, 1998). Thus, for the predictand y; ;, where indices
i and j here, and in the following, denote time and ensemble
member, respectively, we have that the total variance for each
station is the sum of the ensemble mean variance and internal
variance (the average ensemble dispersion).

With N being the number of years, n the number of ensemble
members, [1; the estimated ensemble mean of the downscaled
variable,

== i )

| &
=~y 6
y=x5 2 y ©)
an estimate for the ensemble mean variance, 62,,, is given by

2 I ZN 2
Oem = N1 iZI(lM_y)v 7

and an estimate for the internal variability, 651[, by

1
i

N n
= N DO Gig— ) ®)

i=1 j=1
An estimate for the total variance for each station is given by

n—1
A2 A2 A2
Otot = Oem + n Oints ®

where the factor (n — 1)/n is included in order to obtain an
unbiased estimate (Rowell et al., 1995; Rowell, 1998).

When o2, < o2, i.e. when the downscaled variable does not
account for all the observed variance, then a stochastic ‘noise’
term, 7 is added to each ensemble member of the downscaled
variable in order to introduce the variance that is not accounted

for (von Storch, 1999), i.e.
Vi, =i+ (10)

If n is statistically independent of J; ;, then the total variance of
i, is given by eq. (9) with addition of the variance of the noise,
0727, to the internal variability, i.e.

R N -1,
Gt%)t* = Uezm + (Uiit + an ) (1D
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If the total variance of y;; is to match the observed variance
then

n

6, = (6ans — G- (12)

n—1

If identical levels of noise are added to each of the N ensembles,
then the ensemble dispersion of the ‘noisy’ ensembles, y?, is
given by

D, = Dj +o,. (13)

where the dispersion of the ith downscaled ensemble is estimated
as

N l n R R
by = > Gry— ) (14)
j=1

n—1%

It follows from eq. (13) that addition of noise to the ith ensemble
leads to an increase of the ensemble dispersion by a factor

2
2 _ %
a: =1+ —D}Z,_ . (15)

Thus, the desired average ensemble dispersion can be obtained
by rescaling or inflating the individual ensemble members rela-
tive to the ensemble mean:

Vij =i +ai(ij — ). (16)

Alternatively, the variance that is not accounted for by the
ensemble mean can be added to the forecast, using eq. (10) di-
rectly. The probability distribution of the stochastic term, 7 is in
general not known, except in the limit where the ensemble mean
explains none of the observed variance. In this case where there
is no predictive skill, it makes sense to assume that the variance
is described by the climatological distribution, so that a probabil-
ity forecast is always given by the climatological distribution. In
the other limit where all the observed variance is accounted for
by the linearly transformed ensemble members, nothing should
be added. In between the two limiting cases, one approach is to
use a distribution which is obtained by scaling the climatologi-
cal distribution such that the total variance matches the observed
variance. A first approach would be to assume white noise, but
results of Huth et al. (2001) suggest that this is not sufficient, and
so modelling the noise by an autoregressive process may yield
better results.

Additional complications can be expected for a multivariate
noise model where the different parameters cannot be assumed
independent (temperature and precipitation are, for example, not
independent in winter in Northern Europe where a wet and mild
winter is more likely than a wet and cold winter). The ensem-
ble inflation method (16) preserves both autocorrelations and
multivariate relations and so is preferred throughout this paper.
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2.3. Stochastically generated daily precipitation
conditioned on seasonal predictions

In order to generate daily time series of precipitation (down-
scaling in time) we apply a stochastic weather generator which
is a two-state (precipitation/no-precipitation) first-order Markov
chain, where the probability of precipitation on a day is condi-
tioned on occurrence of precipitation on the previous day (Katz,
1977). This model is characterized by the transition probabilities:

Py = probability of precipitation, given no precipitation the
previous day;

P, = probability of precipitation, given precipitation the previ-
ous day.

Alternatively, the probabilities can be expressed as the prob-
ability of a wet day, m, and the first-order autocorrelation or
persistence, d, of the daily precipitation occurrence series. 7
and d are related to the transition probabilities by (Katz, 1996)

P

r=— a7
14+ Poy — Py

d= P, — Py. (18)

As 7 is confined to the interval [0, 1], and d is confined to the
interval [—1, 1] (although in practice d > 0) we transform 7
and d, using the log-odd transform and the Fisher Z-transform,
respectively, to obtain (Wilks, 1999)

71/=1n< il ) (19)
1—m

d =L <ﬂ> (20)

7’ and d' can be specified linearly from the u,,; time series
similarly to the way in which the seasonal mean precipitation,

and y; is specified from u,, ; in eq. (4). Having predictions of 7’
and d', it is straightforward to transform back to predictions of
Py and Py}, and then stochastically simulate daily sequences of
wet and dry days.

For wet days, the precipitation amount is specified by ran-
domly sampling the probability distribution for precipitation.
Daily precipitation is generally well described by a gamma dis-
tribution (Stephenson et al., 1999), but downscaling experiments
where ERA-15 data were used as predictor, showed that only
the mean (and not the variance) could be skilfully predicted,
so instead we sample daily precipitation from an exponential
distribution (which is a special case of the gamma distribution)
that is completely characterized by the daily mean precipitation
on a wet day. The latter is given by the downscaled seasonal
mean precipitation divided by 7 times the number of days in the
season.

Additional weather parameters, such as minimum and max-
imum 2-m temperature, potential evaporation and total solar
radiation, are normally assumed to follow normal distributions
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with mean and possibly variance conditioned on the occurrence
of precipitation and downscaled from the dynamical seasonal
forecast model. Time series of the additional weather parame-
ters are modelled by a first-order autoregressive process, but it
is beyond the scope of this paper to demonstrate all aspects of
stochastic weather generators. Details can be found, for example,
in Katz (1996) and Parlange and Katz (2000).

3. Downscaling examples

In order for the statistical downscaling to produce robust re-
sults, a relatively long period of model hindcasts and corre-
sponding observations is required. In the following, the 40-yr
period 1961-2000 is chosen. Model hindcasts are available for
this period from three of the modelling groups in DEMETER:
Météo-France, the European Centre for Medium-Range Weather
Forecasts (ECMWF) and the UK Meteorological Office (Palmer
et al., 2004).

The downscaling examples are limited by limited availabil-
ity of long records of observational data. In the following,
we consider monthly means of observed precipitation and 2-
m temperature from two data sets. (i) Nordklim (data available
from http://www.smhi.se/hfa_coord/nordklim/; Tuomenvirta
et al. 2001), which covers the Nordic region (Denmark, Fin-
land, Iceland, Norway and Sweden). Figure 1 shows the loca-
tion of Nordklim stations used in the following; only stations
in Scandinavia and Finland are used. The five Danish stations
for which daily data are available (Laursen, 2004) are indi-
cated with ‘+’ signs. (ii) The World Meteorological Organiza-
tion (WMO) Global Climate Observing System (GCOS; data
available from http://www.wmo.ch/web/gcos/gcoshome.html).

Nordklim stations
75N

70N

65N

60N

55N

SE 10 15€ 20E 25€ 30€
Fig 1. Location of stations used for downscaling in Scandinavia. The
five Danish stations for which daily data are available are indicated
with ‘4 signs.

120E 150E 180 150w 120W sow 60w 30w 0 30E

Fig 2. Location of stations used from the GCOS data set. The symbols
indicate four different downscaling regions.

Although the GCOS coverage is global, sufficiently long time
series are only available in Europe, North America and Aus-
tralia, and even here the network of GCOS stations is relatively
sparse. Figure 2 shows the location of GCOS stations used in the
following. The stations are divided into four different downscal-
ing regions (indicated by different symbols in Fig. 2): Europe,
north-west America (Alaska and western Canada), the contigu-
ous United States and Australia.

The Nordklim data set is a quality controlled data set where
both monthly temperature and precipitation data have been
tested for homogeneity for many stations, and possible inhomo-
geneities (e.g. caused by instrument changes) have been adjusted.
The GCOS data are used ‘as is’, i.e. the quality control, if any,
that has been applied varies from country to country. Stations
have only been included in the following if the data series are
complete or nearly complete. Missing data have been replaced
by the 1961-2000 seasonal average in the training of the down-
scaling regression equations, whereas missing data are ignored
in the validation.

3.1. Downscaling seasonal ensemble mean predictions

The statistical downscaling has been applied to model hindcasts
for Europe, north-west America, the contiguous United States,
Australia and Scandinavia for a lead time of two months for four
different seasons. Tables 1 and 2 show cross-validated mean
anomaly correlations (Déqué and Royer, 1992; Déqué, 1997)
for the multi-model ensemble mean. The skill scores are mostly
positive, indicating modest predictive skill beyond that of cli-
matology. In the cross-validation, one year is withheld from the
predictand data set and a prediction is made for the withheld year
(Michaelsen, 1987). This is repeated for all years yielding 40 yr
of predictions for validation. The statistical significance of the
skill scores has been tested using a Monte Carlo type resampling
approach, where the time series of observed precipitation and
temperature have been randomly resampled 500 times in order
to estimate a distribution for ‘random’ skill scores, and the actual

Tellus 57A (2005), 3



DOWNSCALING OF SEASONAL ENSEMBLE PREDICTIONS 403

Table 1. Multi-model (Météo-France, ECMWF and UK
Meteorological Office models) mean anomaly correlation for
cross-validated ensemble mean predictions of seasonal precipitation

statistically downscaled to stations in five selected regions for seasons 5
JFEM, AMLI, JAS and OND. Period is 1961-2000, and lead time is two g 1
months. Statistical significance at the 5% level is indicated by bold g n
numbers o
>
£
JFM AMJ JAS OND 5
Europe 0.22 0.15 0.12 0.17 |
NW America —0.11 —0.17 0.12 —0.23
Contiguous US 023 0.05 —0.07 0.02 1965 1970 1975 1980 1985 1990 1995 2000
Australia 0.12 0.07 0.22 0.28 Year
Scandinavi 0.27 0.12 0.08 0.06
candmavia Fig 3. Cross-validated anomaly correlation for 2-m temperature
predictions for Europe in the JAS season. The dashed curves represent
Table 2. As Table 1, but for seasonal mean 2-m temperature individual models, and the solid curve represents multi-model.
IPM AMJ JAS OND Correlations in time
Europe 0.22 0.23 0.35 0.19
NW America 0.29 0.13 0.24 -007 ™
Contiguous US 0.23 0.10 0.36 0.05
Australia 0.19 0.22 0.32 0.23
Scandinavia 0.13 0.28 0.14 007

Table 3. Comparison of mean anomaly correlation for individual
models and multi-model for selected seasonal ensemble mean

predictions
Precipitation 2-m temperature
Europe Scand. Europe Scand.
JFM JFM JAS AMJ
Météo-France 0.07 0.11 0.16 0.33
ECMWF 0.30 0.09 0.35 0.14
UK Met Office 0.03 0.28 0.25 0.15
Multi-model 0.22 0.27 0.35 0.28

skill score has been compared to this distribution. The signifi-
cance at the 5% level is indicated in Tables 1 and 2.

The multi-model approach has a positive impact on the mean
anomaly correlation skill score. In cases where the skill varies
considerably between the individual models, the skill of the
multi-model is comparable to the skill of the best of the in-
dividual models. This is illustrated in Table 3, showing mean
anomaly correlations for the most skilful cases in Europe and
Scandinavia. Note that no single model is consistently better or
worse than the other models.

The predictive skill varies geographically within the down-
scaling region as well as from year to year. As an example,
Fig. 3 shows time series of anomaly correlations for predictions
of 2-m temperature for Europe in the JAS season, and Fig. 4
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Fig 4. Cross-validated anomaly correlations (in %) in time for
downscaled 2-m temperature predictions for Europe in the JAS season,
1961-2000.

shows correlations in time for the multi-model version of the
same predictions. Figure 3 suggests that it takes at least two bad
model predictions (anomaly correlation near zero or negative)
before the multi-model (three-model) prediction fails. Correla-
tions in time less than 0.6, as in Fig. 4, are representative for
correlations also for other seasons and regions. However, the ge-
ographical distribution of the correlations depends strongly on
the season. Point correlations in time based on only 40 values
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Table 4. Comparison between downscaled and raw multi-model
output skill for precipitation in seasons JFM, AMJ, JAS and OND. ‘+’
(‘=) indicates that downscaled predictions for most years are more
(less) skilful than raw model output in terms of anomaly correlations.
Statistical significance at the 5% level is indicated by ‘++’ or ‘——’

JFM AM]J JAS OND
Europe + ++ + +
NW America — + + _
Contiguous US + - + —
Australia 0 + + ++
Scandinavia ++ ++ + +

Table 5. As Table 4, but for 2-m temperature

JFM AMJ JAS OND
Europe + + + —
NW America + + + —
Contiguous US + - ++ +
Australia + - + 0
Scandinavia + + — ++

or less can be sensitive to missing data, while the mean anomaly
correlation is fairly robust. Both the geographical and seasonal
variations are in qualitative agreement with correlations be-
tween direct model output and ERA-40 reanalyses (see the
DEMETER verification web page, http://www.ecmwf.int/ re-
search/demeter/d/charts/verification/).

The predictive skill for 2-m temperature is generally higher
than for precipitation. However, if the raw multi-model ensemble
mean predictions are validated against observations (using model
output from the grid cell that includes the station location and
subtracting constant model bias), we find that the downscaling
generally adds more skill for precipitation than for temperature,
particularly in Europe and Scandinavia. Results of comparisons
between downscaled and raw model output are shown in Tables 4
and 5 where ‘4’ (‘—’) denotes that the downscaled predictions
for a majority of the years are more (less) skilful than the raw
model output. The comparison is based on time series of cross-
validated anomaly correlations (as in Fig. 3), which allows for
a simple test for statistical significance: with the null hypothesis
that the downscaled and raw model predictions ‘win’ the same
number of times in terms of anomaly correlation, a test in the bi-
nomial distribution gives that the null hypothesis can be rejected
at a 5% level when one or the other type of prediction wins in 26
or more years out of 40 yr (corresponding to 65% of the years).
If we only include years for which the ‘winning’ anomaly cor-
relation is positive, then slightly more than 65% of the years
are required for statistical significance. Statistical significance is
indicated by ‘++’ and ‘——"in Tables 4 and 5.

We note that while this test for statistical significance is simple
to apply, it does not provide the definitive answer as to whether

the downscaled predictions are more skilful than the raw model
output; anomaly correlations indicate only one aspect of skill—
other skill scores may lead to different results. Moreover, the
stations are unevenly distributed, so if there is a high concen-
tration of stations in an area where the downscaled predictions
are, e.g. more skilful than the raw model output, then the test for
statistical significance is biased. Also, a user of the downscaled
predictions may not be interested in the whole downscaling re-
gion, so if the test for statistical significance is applied only to
the stations that are relevant for him, the result may be different.

3.2. Downscaling seasonal ensemble predictions

The full ensemble is downscaled by applying the ensemble mean
based downscaling transformation to each member of the en-
semble, i.e. the individual standardized ensemble members are
downscaled by projecting them on to the model singular vectors
from the SVD analysis, and temperature or precipitation is speci-
fied by use of regression equations such as eq. (4). Subsequently,
the downscaled ensemble is inflated by rescaling the ensemble
about the ensemble mean by an amount that would make the to-
tal variance of the ensemble inflated predictions for the training
period match the observed variance, as described in Section 2.2.

In order to validate whether the downscaled ensemble predic-
tions are statistically consistent with the verifying observations
and capable of resolving different events, we consider rank his-
tograms (Anderson, 1996; Hamill and Colucci, 1997) and rela-
tive operating characteristics (ROC; Stanski et al., 1989).

The rank histogram shows the distribution of the verifying
observations in terms of ranked forecast ensemble members. If
all ensemble members a priori are equally likely, as is implicitly
assumed when probability forecasts are derived directly from
the ensemble, simply by determining the fraction of the mem-
bers that forecast a certain event, then the verifying observation
is equally likely to fall in any interval between two neighbour-
ing, ranked ensemble members, including the open ended in-
tervals ‘less than the smallest ensemble member’ and ‘greater
than the largest ensemble member’, and the rank histogram will
be approximately flat. A flat rank histogram indicates statisti-
cal consistency between forecasts and observations (but is not
a sufficient condition; Hamill, 2001). Conversely, if the rank
histogram is not flat, then the intervals between the ensemble
members are not equally likely. In particular, a U-shaped his-
togram, which is often encountered in medium-range forecasts,
is indicative of underdispersive ensembles that too often do not
capture the verifying observations.

Figures 5 and 6 show multi-model rank histogram examples
for downscaled 2-m temperature and precipitation predictions.
The examples are representative not only for the different sea-
sons and regions, but also for the individual models. The rank
histogram for 2-m temperature shows no systematic deviation
from a flat rank histogram and indicates that the ensemble in-
flation provides well-calibrated predictions; the deviations that
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Fig 5. Rank histogram for downscaled 2-m temperature for Europe in
JAS season for multi-model predictions in cross-validation mode.
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Fig 6. As Fig. 5, but for precipitation for Europe in JEM season.

are observed can be attributed to the limited sample size. For
precipitation, there appears to be a tendency for the low end of
the ensemble to be too small compared to observations, lead-
ing to a rank histogram where small ranks are underrepresented
compared to the perfect, flat rank histogram. A possible cause
for this problem is the application of the ensemble inflation to
positively skewed precipitation distributions.

Similar rank histograms for raw model output (with constant
model bias subtracted) are shown in Figs. 7 and 8. They indicate
that the raw model temperature ensembles are overdispersive,
while the raw model precipitation ensembles are underdisper-
sive.

ROC curves are obtained by plotting hit rate versus false alarm
rate for varying decision thresholds. The forecast is skilful if
the hit rate exceeds the false alarm rate (i.e. if the area under
the ROC curve exceeds 0.5). Figure 9 shows ROC curves for the
same 2-m temperature and precipitation examples as in Figs. 5
and 6; the predicted events are temperature and precipitation in
the upper tercile. The multi-model approach has a positive im-

Tellus 57A (2005), 3

p(rank) (%)

1 4 7 10 13 16 19 22 25 28
Rank

Fig 7. As Fig. 5, but for raw model output of 2-m temperature.
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Fig 8. As Fig. 6, but for raw model output of precipitation.

pact on the ROC score, which is partly caused simply by having
an ensemble three times larger than for the individual models.
Tables 6 and 7 list ROC areas for multi-model 2-m temperature
and precipitation predictions. The ROC areas lie between 0.5 and
0.7, indicating modest skill with temperature ensemble predic-
tions being, in general, slightly more skilful than precipitation
ensemble predictions. Statistical significance at the 5% level, cal-
culated as described in Section 3.1, is also indicated in Tables 6
and 7.

3.3. Stochastically generated daily precipitation
conditioned on seasonal predictions

Observed daily precipitation time series were only available for
the five Danish stations (indicated by ‘+’ signs in Fig. 1), so the
following is only an outline of the use of a stochastic weather
generator to ‘downscale in time’. Only precipitation is con-
sidered here, whereas elsewhere in this issue (Cantelaube and
Terres, 2005; Marletto et al., 2005) also stochastically generated
daily time series of minimum and maximum 2-m temperature,
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Fig 9. ROC curves for downscaled multi-model predictions for 2-m
temperature (solid line) and precipitation (dashed line) for Europe in
JAS season and JFM season, respectively.

Table 6. Multi-model (Météo-France, ECMWF and UK
Meteorological Office models) ROC area for cross-validated ensemble
predictions of upper tercile seasonal precipitation statistically
downscaled to stations in five selected regions for seasons JEM, AMJ,
JAS and OND. Period is 1961-2000, and lead time is two months.
Statistical significance at the 5% level is indicated by bold numbers

JFM AMJ JAS OND
Europe 0.58 0.53 0.54 0.53
NW America 0.52 0.51 0.54 0.57
Contiguous US 0.59 0.53 0.52 0.53
Australia 0.55 0.55 0.59 0.60
Scandinavia 0.59 0.59 0.55 0.52
Table 7. As Table 6, but for 2-m temperature

JFM AMJ JAS OND
Europe 0.67 0.65 0.69 0.55
NW America 0.62 0.61 0.65 0.49
Contiguous US 0.66 0.58 0.68 0.52
Australia 0.63 0.65 0.64 0.64
Scandinavia 0.59 0.67 0.60 0.56

potential evaporation and total solar radiation are used in crop
yield prediction.

As an example, we consider precipitation in the AMJ season
for the station Nordby, which is the south-westernmost Danish
station in Fig. 1. The skill for this station in terms of cross-
validated correlations is shown in Table 8 for downscaled sea-

Table 8. Cross-validated correlations for downscaled predictions of
precipitation for station Nordby, Denmark in AMJ season for the three

models

Seasonal mean Prob. wet day Persistence
Météo-France 0.17 0.28 0.14
ECMWF 0.23 0.36 0.41
UK Met Office 0.04 —0.06 —0.05

sonal ensemble mean predictions, for predictions of the (log-odd
transformed) probability of precipitation and for predictions of
the (Fisher Z-transformed) daily persistence parameter. We note
that the level of skill for prediction of the latter two is comparable
to that of the conventional seasonal mean prediction.

The predicted probability of precipitation and daily persis-
tence are used to generate ensembles of long daily sequences
of occurrence of precipitation, using the method outlined in
Section 2.3. On wet days, the precipitation amount is sampled
from an exponential distribution whose mean is derived from the
downscaled seasonal precipitation ensemble.

The distribution of daily precipitation in the AMJ season for
Nordby for the 1961-2000 period is shown in Fig. 10 (note the
logarithmic scale on the ordinate). The figure shows the observed
distribution, the distribution of downscaled predictions, based on
predictions for each year in the 1961-2000 period and stochas-
tic generation of daily precipitation, and the distribution of raw
model output of daily precipitation. We note that the precipita-
tion in the dynamical models (raw model output) tends to be less
intense than the observed precipitation, which is to be expected
as the model precipitation approximately represents an average
over a model grid cell. Also, the number of days with less than
1 mm precipitation is underestimated by the dynamical models.
The stochastically generated daily precipitation suffers from the
same deficiencies as the raw model output, but to a much lesser
extent, and so agrees better with observations than the raw model
output.

4. Concluding remarks

We have outlined a method for downscaling seasonal ensemble
predictions. The main motivation for this work has been to enable
existing crop yield models to take advantage of seasonal climate
predictions.

The downscaling is performed in three steps: (i) a spatial
downscaling of ensemble mean seasonal mean precipitation and
2-m temperature from dynamical model output to station level;
(ii) application of the downscaling transformation to the model
output ensemble and subsequent inflation (calibration) of the
downscaled ensemble; (iii) a stochastic generation of daily pre-
cipitation conditioned on predictions of the probability of a wet
day in the season and daily persistence.
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Fig 10. Histograms for 1961-2000 climatological distribution of daily
precipitation amount for station Nordby, Denmark in AMIJ season: (a)
observed; (b) predicted using statistical downscaling of seasonal
precipitation and stochastic generation of daily precipitation; (c) raw
multi-model output.

Crop yield models also require input of daily values of a num-
ber of other variables, such as minimum and maximum temper-
ature, evaporation and solar radiation. Daily time series of these
variables can be modelled by a first-order autoregressive process,
where the variables are assumed to follow normal distributions
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with mean and variance conditioned on the occurrence of pre-
cipitation and downscaled from the dynamical seasonal forecast
model.

Our main focus has been on the derivation of the method-
ology. The examples have demonstrated that with the outlined
statistical methods, we are able to downscale precipitation and
2-m temperature and obtain skill scores that, although modest,
are significantly better than skill scores based on climatology.
The downscaled ensemble mean predictions are generally more
skilful for the observing stations than the raw model output, and
the downscaled ensemble predictions are statistically more con-
sistent with observations (flatter rank histograms) than the raw
model output. For the single station that we tested, we found that
the probability for a wet day in a season as well as the daily persis-
tence could be predicted with skill comparable to that found for
prediction of seasonal mean precipitation. Based on these pre-
dictions we can stochastically generate daily precipitation time
series, the climatological distribution of which agrees well with
that observed.

However, there is still room for improvement. For specific
target regions it is very likely that the skill of the downscaling
procedure can be improved by fine-tuning the predictor region
and possibly by including additional predictors. We chose to base
the downscaling on predictor patterns that were derived using an
SVD analysis of the cross-covariance between model output and
observations. Alternatively, one could use a canonical correla-
tion analysis instead. Although we found in the examples that
the downscaling generally led to increased predictive skill com-
pared to the raw model output, there were still cases in which the
raw model output was more skilful than the downscaled predic-
tions. Direct inclusion of the raw model in the predictions could
possibly further increase the predictive skill, e.g. by including a
residual term in the predictor as suggested by Kharin and Zwiers
(2001).

Evaluation of crop yield predictions using precipitation down-
scaled by the methods outlined in the present paper can be found
in Cantelaube and Terres (2005) and Marletto et al. (2005).
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