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Summary

Uncertainty analysis is used to make a quantitative eval-
uation of the reliability of statistically downscaled climate
data representing local climate conditions in the northern
coastlines of Canada. In this region, most global climate
models (GCMs) have inherent weaknesses to adequately
simulate the climate regime due to difficulty in resolving
strong land=sea discontinuities or heterogeneous land cover.
The performance of the multiple regression-based statistical
downscaling model in reproducing the observed daily
minimum=maximum temperature, and precipitation for a
reference period (1961–1990) is evaluated using climate
predictors derived from NCEP reanalysis data and those
simulated by two coupled GCMs (the Canadian CGCM2
and the British HadCM3). The Wilcoxon Signed Rank test
and bootstrap confidence-interval estimation techniques are
used to perform uncertainty analysis on the downscaled
meteorological variables. The results show that the NCEP-
driven downscaling results mostly reproduced the mean and
variability of the observed climate very well. Temperatures
are satisfactorily downscaled from HadCM3 predictors
while some of the temperatures downscaled from CGCM2
predictors are statistically significantly different from the
observed. The uncertainty in precipitation downscaled with
CGCM2 predictors is comparable to the ones downscaled
from HadCM3. In general, all downscaling results reveal
that the regression-based statistical downscaling method
driven by accurate GCM predictors is able to reproduce the

climate regime over these highly heterogeneous coastline
areas of northern Canada. The study also shows the appli-
cability of uncertainty analysis techniques in evaluating the
reliability of the downscaled data for climate scenarios
development.

1. Introduction

The starting point for most climate scenarios de-
velopment is the Global Climate Models (GCMs)
which have horizontal resolutions of hundreds of
kilometres (around 350 km in general). However,
many impact assessments need point scale infor-
mation or local climate variables which are highly
sensitive to fine-scale climate variations and feed-
backs that are parameterized in coarse-scale mod-
els (e.g. Wilby et al., 2004; Mearns et al., 2003).
Hence, there is a clear need for more reliable
high-resolution scenarios at a spatial scale much
finer than that provided by global or even some
regional climate models (see for example the re-
cent European PRUDENCE project, http:==www.
dmi.dk=fþu=klima=prudence=, e.g. Christensen
et al., 2002). Two major downscaling approaches,
namely, dynamical downscaling and statistical



downscaling, are commonly used for climate
scenario development at higher resolution. Dynam-
ical downscaling generates regional-scale in-
formation by developing and using Regional
Climate Models (RCMs) with the coarse GCM
data used as boundary conditions. Statistical
downscaling (SD) methods, on the other hand,
involve developing quantitative relationships
between large-scale atmospheric variables, the
predictors, and local surface variables, the pre-
dictands. Since they are derived from the histor-
ical observed data, they can provide site specific
information as recommended in many climate
change impacts studies.

Many types of statistical methods, such as
regression techniques (e.g. Wilby et al., 2002),
artificial neural networks (e.g. Coulibaly et al.,
2005) or weather generator (e.g. Katz, 1996;
Semenov and Barrow, 1997) have been devel-
oped and applied for downscaling climate vari-
ables. As downscaling predictability and skill
varies seasonally, regionally and between differ-
ent periods of record as well as according to the
considered variable (e.g. Gachon et al., 2005),
verification of the physical plausibility of the
downscaling results is essential. It is also impor-
tant to test the SD model with independent data
and apply the model to a wide range of climate
model outputs, to evaluate the uncertainties asso-
ciated with the GCM structures and skills to
reproduce the key atmospheric variables related
to the local climate regime. Therefore, in order to
have reasonable confidence on the reliability of
the downscaled future climate scenarios, one nec-
essary condition (not sufficient) is to make uncer-
tainty analysis (with statistical objective criteria)
on the downscaled data (with a comprehensive
assessment of all SD methods, GCMs and RCMs)
to evaluate its performance in reconstructing the
observed climate regime for the baseline period
(Khan et al., 2006a, b).

Whereas GCM simulated temperature changes
in the north are higher than in southern areas of
Canada (see Barrow et al., 2004), it is also evi-
dent that coarse-resolution GCMs have inherent
difficulty to simulate a reliable climate regime in
coastal or island regions, and=or of highly het-
erogeneous land=cover. Therefore, these antici-
pated changes are less reliable especially for
Nordic areas of Canada where sea ice and snow
cover are present over the major part of the year,

and in which the temperature regime is highly
sensitive to fine scale climate forcings from the
underlying surface conditions (e.g. Gachon et al.,
2003; Barrow et al., 2004). Gachon et al. (2005)
have identified similar problem in the case of
statistically downscaled information, especially
in northern areas and around Hudson Bay in win-
ter season. Accordingly, a careful evaluation of
the reconstructed climate regimes (both from
GCMs and downscaling outputs) is very impor-
tant for northern applications, where reliable in-
formation on the magnitude and the timing of the
thawing=freezing cycle is needed for the study of
hydrologic, human health and environmental is-
sues. Therefore, the main objective of this study
is to evaluate the most widely used multiple
regression-based statistical downscaling model
(SDSM; Wilby et al., 2002) with respect to its
potential to reproduce the mean, variability and
the probabilities of extreme temperature and
precipitation of the observed climate regime in
northern Canada.

An uncertainty analysis is made on the down-
scaled data to evaluate the performance of the
SDSM method in reproducing the observed cli-
mate variables for the baseline period (1961–
1990) when provided with climate predictors
simulated by two different GCMs, after calibrat-
ing and validating of the model with reanaly-
sis predictors. The analysis focuses on monthly
and seasonal mean values and variability of tem-
perature and precipitation over different climate
regimes in the northern Canada. Two complemen-
tary methods, namely the Wilcoxon Signed Rank
test (Wilcoxon, 1945) and confidence intervals
constructed using bootstrap resampling (Efron
and Tibshirani, 1993) have been employed to per-
form the uncertainty analysis on the SD outputs.
As suggested in Wilby et al. (2004), it is important
to recognize that increased precision of downscal-
ing results for the current period does not neces-
sarily imply an increased confidence in regional
or local climate scenario information compared to
raw-GCM output. However, these methods will
allow the use of objective statistical criteria to
identify the most robust results, in term of the
reliability and realism of GCMs and downscaled
variables relative to observed climatology under
present conditions, and help to evaluate the poten-
tial added values or new insight that have been
gained through the use of downscaling methods.
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This paper is structured in six sections. Section 2
describes the region of interest and the database
used for the study, while Sect. 3 provides the
methodology for the multiple linear regression-
based SDSM downscaling model, and the uncer-
tainty analysis techniques employed in this study.
Section 4 presents the SDSM downscaling results
along with the results of the uncertainty analysis
on the downscaled precipitation and temperature
data for the baseline period. Section 5 discusses
the results and summarizes the findings of the
study. General conclusions are provided in Sect. 6.

2. Region of interest and database

The region of interest in this study is the extreme
northern part of Canada from Hudson and Baffin
Bay areas in the east, to Beaufort and Canadian
archipelago in the west (see Fig. 1). The main
reasons for the choice of this region for uncer-
tainty analysis of global climate models and sta-
tistical downscaling model outputs are as follows:

1. Stronger climate change signal are suggested
in the north by most climate models (e.g.
Houghton et al., 2001; Barrow et al., 2004);

2. Stronger biases in GCMs simulation of surface
temperatures are identified in the northern
areas of Canada and especially in winter as
shown in Chapter 8 of IPCC (Intergovernmen-
tal Panel of Climate Change, e.g. Houghton
et al., 2001; see also Barrow et al., 2004).
Hence, there is relatively less confidence in
the climate change signal in that region and
season unless the uncertainties associated with
the simulated data are explicitly assessed;

3. Stronger biases in SD results of temperature
are reported for the Hudson Bay during winter
months (e.g. Gachon et al., 2005). So it is
important to analyze if this is systematic over
all northern areas (i.e. not only limited to
Hudson Bay region, but also over different
areas near Hudson Bay, Baffin Bay, Canadian
Archipelago and Beaufort Sea);

4. Climate change in the northern areas will
potentially have strong impacts on ecosys-
tem, permafrost, animals, biodiversity, human
health, and transportation (e.g. the issues re-
garding the ice free conditions of the North
West Passage). Hence, it is important to de-
velop better knowledge and confidence on cli-
mate change regime in this particular region

Fig. 1. Geographic locations of
the five climate stations in
Northern Canada considered in
this study. The stations are iden-
tified by red points and are all
located over northern coastline
areas
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of Canada. Moreover, this is the first study
that provides statistical downscaling results
for northern Canada.

The downscaling models are developed (cali-
brated and validated) first using climate pre-
dictors derived from the National Centre for
Environmental Prediction (NCEP) reanalysis data
set (Kistler et al., 2001) for the recent past and
current time period (1961–1990 and 1991–2000,
respectively). Then, predictors simulated by two
coupled GCMs, namely the Canadian global cli-
mate model version 2 (CGCM2; Flato et al., 2000;
Flato and Boer, 2001) and the Hadley Center
general circulation model (HadCM3; Gordon
et al., 2000), are used to downscale the climate
information for the baseline period (1961–1990).
Besides the large scale climate variables (predic-
tors), the viability of downscaling techniques
also depends critically upon access to high-qual-
ity local predictands. Therefore, historical daily
precipitation and temperature records at five
climate stations located in various northern re-
gions, from Hudson and Baffin Bay areas to the
Beaufort Sea and the Canadian archipelago (Fig. 1,
geographical coordinates are presented in Table 1)
are used for the downscaling exercise. The Envi-
ronment Canada homogenized temperature (i.e.
daily minimum and maximum temperature, here-
after called Tmin and Tmax, respectively), and re-
habilitated precipitation dataset (Vincent et al.,
2002) are used for this study. This dataset mini-
mizes the risk of introducing additional uncer-
tainty due to the changes in climate monitoring
practices or due to the non-homogeneity of indi-
vidual site records. The preparation of the poten-
tial predictors from NCEP reanalyses and the
GCMs’ output involves data extraction, re-gridd-

ing and standardisation. Pre-processed data were
obtained from CCSN (Canadian Climate Scenar-
ios Network) project of Environment Canada
(http:==www.ccsn.ca). The NCEP and GCMs
predictors available for the downscaling experi-
ment are enumerated in Table 2.

3. Methodology

3.1 Statistical down-scaling model (SDSM)

The multiple-regression statistical downscaling
model, SDSM, implements a statistical represen-
tation of empirical relationships between local
predictands, such as daily temperature and pre-
cipitation, and the large scale atmospheric vari-
ables or predictors. The downscaling procedure
of the SDSM software (version 3.1 recently devel-
oped by Wilby and Dawson, 2004) is performed
through a number of steps such as quality control
and data transformation, screening of predictor
variables, model calibration and weather genera-
tion (see more details in Wilby and Dawson,
2004). As suggested in Wilby et al. (2004), pre-
dictors have to be chosen based on both their
relevance to the downscaled predictand, and their

Table 1. Meteorological stations where observed precipita-
tion and temperature data are used for the downscaling
exercise

Station location (in degrees)

Latitude
(N)

Longitude
(W)

Altitude
(m)

Cape Dorset 64.2 76.5 51
Inuvik 68.3 133.5 68
Iqaluit 63.8 68.5 34
Resolute Bay 74.8 94.9 67
Shepherd Bay 68.8 93.4 51

Table 2. Predictor variables considered from NCEP,
CGCM2 and HadM3 data sets

No. Predictors No. Predictors

1 Mean sea level pressure 14 850 hPa divergence
2 Surface airflow

strength
15 850 hPa airflow

strength
3 Surface zonal velocity 16 850 hPa zonal

velocity
4 Surface meridional

velocity
17 850 hPa meridional

velocity
5 Surface vorticity 18 850 hPa vorticity
6 Surface wind direction 19 850 hPa geopotential

height
7 Surface divergence 20 850 hPa wind

direction
8 500 hPa airflow strength 21 850 hPa divergence
9 500 hPa zonal velocity 22 Near surface relative

humidity
10 500 hPa meridional

velocity
23 Specific=relative

humidity at 500 hPa
11 500 hPa vorticity 24 Specific=relative

humidity at 850 hPa
12 500 hPa geopotential

height
25 Near surface specific

humidity
13 500 hPa wind direction 26 Mean temperature

at 2 m
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accurate representation by the climate models
used for climate change simulation (e.g. Wilby
and Wigley, 2000). Previous studies show that
SDSM performs relatively well in simulating the
main characteristics of temperature regime, but it
explain only a fraction of the observed climate
variability, especially in precipitation series (e.g.
Wilby and Dawson, 2004; Dibike and Coulibaly,
2005; Gachon et al., 2005). Furthermore, down-
scaling climate variables using regression meth-
ods tends to be problematic since most extreme
events lay towards the tails of the distribution or
beyond the range of the calibration data set (e.g.
Wilby et al., 2004). A recent study of Gachon
et al. (2005) gives further details around the
strengths and weaknesses of this tool in down-
scaling extreme indices of temperature and pre-
cipitation over eastern Canada. One of the main
conclusions of that study is that SDSM has not
performed well in reproducing the temperature
regime in the north when GCMs (in that case,
CGCM1 and HadCM3) are used as sources of
predictors. In that region, SD models are strongly
affected by biases in the underlying GCMs, and
works are needed to systematically assess the
accuracy of candidate predictors in that particular
area (e.g. Gachon et al., 2005).

3.2 Selection of predictor variables

Once the SDSM downscaling model is calibrated
and validated using NCEP predictors, then the
corresponding GCM predictors are used to down-
scale the daily predictand variables. In the pro-
cess, the downscaling model propagates the
uncertainty from the driving GCM fields, and can-
not correct biases or uncertainties existing in the
GCM itself (e.g. Hewitson and Crane, in press).
Validation of climate model outputs has shown
that some potential CGCM2 and HadCM3 pre-
dictors, such as the near surface temperature and
specific=relative humidity, have significant dif-
ferences from the corresponding NCEP predictor
variables (not shown here). This type of systema-
tic biases and time shifts between some of NCEP
and the corresponding GCMs predictors suggest
that it is preferable not to use such variables as
predictors so as to prevent the propagation of the
discrepancies in these atmospheric fields into
the statistical downscaling process from the host
GCMs.

It is also necessary to specify the optimum lo-
cation of the large scale predictor fields to achieve
the best performance in downscaling local cli-
mate variables (e.g. Wilby et al., 2004). The opti-
mal location of predictors may vary by region
and the use of spatial correlation can be helpful
in identifying the optimal geographic location for
each potential predictor. For this study, such anal-
ysis was experimented for some of the potential
predictor variables at one of the climate stations
(not presented here). The main purpose was to
analyze if it is necessary to use climate predictors
from grid points other than the one which is the
closest to the predictand. In most cases, the dif-
ferences in the values of the correlation coeffi-
cients at the different grid point in the vicinity of
the predictand are too small (in the order of 0.01
and 0.04 for temperature and precipitation, re-
spectively) to make any significant difference in
the downscaling performance. As a result, in all
subsequent downscaling exercises in this study,
NCEP and GCM predictors located only at the
grid point closer to each particular predictand are
used to calibrate and validate the SDSM model.
The most commonly used predictors for the down-
scaling of temperature for the study area are the
500 and 850 hPa geopotential heights, relative
and specific humidity at 850 hPa and vorticity
at 500 hPa. This confirms the strong relationships
between mid-tropospheric geopotential thickness
and surface temperature regime, as this Canadian
sector corresponds to an area where the presence
of the upper level cold trough is very common,
corresponding to the coldest air conditions at
all tropospheric levels in Arctic, as suggested in
Overland et al. (1997). On the other hand, the
most commonly used predictors for the down-
scaling of precipitation are mean sea level pres-
sure, 500 hPa geopotential height, 850 hPa zonal
velocity, and specific humidity at 500 and 850 hPa.

As shown in Table 3, the amount of explained
variance (R2) obtained for the calibration period
(using NCEP predictors) varies between 0.11 and
0.23 for precipitation, and between 0.52 and 0.59
for temperature. The relatively low explained var-
iance for precipitation underlines the more sto-
chastic nature of precipitation occurrence and
magnitude, and the difficulty to capture the char-
acteristics of the variability of the precipitation
regime in the downscaling process (compared to
temperature), as also suggested in other studies
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(e.g. Wilby and Wigley, 2000; Wilby et al., 2003;
Gachon et al., 2005). However, the exclusion of
the near surface temperature and specific=relative
humidity from the list of potential predictors also
contributed to the relatively low performance of
the downscaling model (for example, the ex-
plained variance for temperature in this study
for northern stations is around 0.55 compared
to typical values of 0.75 in Gachon et al., 2005).
Nevertheless, the significant difference between
the NCEP and GCMs values of these predictors
justifies their exclusion in order to avoid a con-
siderable reduction in downscaling performance
when SDSM is supplied with the corresponding
GCMs predictors.

3.3 Uncertainty analysis

To have confidence on the climate scenarios
downscaled from GCM outputs, one has to be
at least convinced that the downscaled outputs
can represent the current state of the temperature
and precipitation regimes reasonably well. In
other words, the downscaling outputs ability to
represent the baseline climate is a necessary con-
dition (not sufficient) to have reasonable con-
fidence on the reliability of the climate change
anomalies computed from the scenarios runs. The
aim of the uncertainty analysis is, therefore, to
evaluate the performance of the downscaling
method in reproducing the mean value and vari-
ability of observed meteorological variables when
provided with climate predictors for the baseline
period.

Two complementary methods have been em-
ployed to analyze the uncertainty of the output of
the statistical downscaling model, namely hy-
pothesis testing and confidence intervals.

3.3.1 Hypothesis testing

The hypothesis testing method used in this study
is the Wilcoxon Signed Rank test (Wilcoxon,
1945) which is a non-parametric method used
to test the null hypothesis of no median differ-
ence in paired samples. It requires calculating the
test statistic and p value for the null hypothesis,
and either accept or reject the hypothesis at a
given significant level � based on the p value.
The p value is the probability of wrongly reject-
ing the null hypothesis if it is in fact true (type 1
error). An � value of 0.05 which corresponds to
5% significance level is used in this study. Small
p-values suggest that the null hypothesis is unlike-
ly to be true and the null hypothesis is rejected
when p<0.05. In this study, the analysis was per-
formed by comparing observed climate variables
with the corresponding downscaled variables. As
three different set of SDSM simulations have
been considered with predictor variables derived
from NCEP, CGCM2 and HadCM3, and with
100 simulations for each case, the hypothesis
tests are also repeated 100 times for each season-
al or monthly variable from which we calculate
the rejection percentage of all simulated values.

3.3.2 Confidence intervals

A confidence interval is a measure of uncertainty
regarding the true value of a statistics or estimate.
Resampling is used to estimate confidence inter-
vals for the statistics of a distribution. In the pres-
ent analysis, the non-parametric technique known
as Bootstrap simulation (Efron and Tibshirani,
1993) is used to estimate confidence intervals.
Bootstrapping is used to generate a pseudo pop-
ulation of a test statistic by re-sampling from
the original data set. In essence, the bootstrap

Table 3. Relevant NCEP predictors selected for downscaling daily temperature and precipitation and the corresponding
explained variances for the data at each of the five stations in Northern Canada. R2 corresponds to explained variance. The
corresponding number for each predictor is given in Table 2

Station Tmax Tmin Precipitation

Predictors R2 Predictors R2 Predictors R2

Cape Dorset 11, 12, 19, 24 0.52 11, 12, 19, 24 0.53 1, 3, 5, 16, 23, 24 0.22
Resolute Bay 11, 12, 19, 24 0.54 11, 12, 19, 24 0.53 1, 9, 12, 16, 23, 24 0.17
Shepherd Bay 11, 12, 19, 24 0.59 11, 12, 19, 24 0.59 1, 5, 9, 12, 16, 23 0.11
Iqaluit 9, 12, 19, 24 0.53 11, 12, 19, 24 0.52 1, 12, 16, 21, 23, 24 0.23
Inuvik 11, 12, 19, 24 0.54 9, 11, 12, 24 0.56 1, 9, 12, 18, 23, 24 0.13
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method takes random samples, known as pseudo-
samples, with replacement from the original one
repeatedly. The statistic in question (mean values
and standard deviations in our case) is then cal-
culated for each pseudo-sample.

In this analysis, each time series of observed
climate variable is paired with each of the corre-
sponding downscaled variable taken from the one
hundred SDSM simulations. One thousand boot
strap samples are generated from each such pairs
to calculate two sets of statistic for each of the
bootstrap sample pairs, namely the differences
between the mean and the standard deviation
values of the observed and simulated variables.
Then the bootstrap percentile method is used to
calculate the confidence interval by ranking the
one thousand statistics calculated from the boot-
strap samples and selecting the appropriate per-
centile (5th percentile for the lower confidence
limit and 95th percentile for the upper confidence
limit) for the confidence interval required (90%
in our case). This procedure is repeated for each
of the one hundred SDSM simulation outputs.
The overall upper bound and lower bound of
the statistic’s 90% confidence interval is then cal-
culated by averaging the upper bound and lower
bounds of the hundred simulations, respectively.
All the above steps are repeated for the three sets
of SDSM simulations driven from the three sets
of predictors. The best simulation result is iden-
tified as the one with the smallest confidence
interval and which includes zero between its
upper and lower confidence limits.

4. Results

First, and before starting the uncertainty analysis,
the Tmax, Tmin, and precipitation values down-
scaled from NCEP, CGCM2 and HadCM3 pre-
dictors are analyzed in terms of their basic
distribution, mean and median values and of their
variability in comparison with the observed time
series. The downscaling results corresponding to
the NCEP predictors are shown over the two
separate periods of calibration and validation
(i.e. 1961–1990 and 1991–2000, respectively).
Box-plots of the mean values present graphically
the simulated and observed distributions of the
monthly climate statistics calculated for each
year, both for the calibration and for the valida-
tion periods (Figs. 2 and 3). Such box-plots are

used to assess the performance based on the
monthly distribution of the one hundred SDSM
simulations compared to the monthly distribution
of the corresponding observed values. The size of
the box indicates the spread around the median
and the outliers outside the 1.5 IQR (inter quan-
tile range) limits and gives a useful indication
around the scattering of each simulated series
compared to the observed ones (Figs. 2 and 3
for an example at one station). The downscaling
results corresponding to the two series of GCMs
predictors over the 1961–1990 baseline period
are also presented. The probability density func-
tion plots at seasonal scale (Fig. 4) presents how
good the downscaled data reproduced the statis-
tical distribution of the observed data including
the extremes in using both the NCEP and GCMs
predictors. Histograms of monthly mean biases
(MB) for Tmax and Tmin are also presented (Figs. 5
and 6) to show the models biases at one of the
climate stations considered (e.g. Cape Dorset).
Moreover, quantile–quantile plots and histo-
grams of monthly mean errors of precipitation
at the same station are presented in Figs. 7 and
8. The results of all the five stations are sum-
marised by plotting the monthly biases at each
of the five stations in Fig. 9. The mean and re-
lative biases (MB and RB for temperature and
precipitation, respectively) are computed from
observed and simulated climate variables and
averaged over the100 simulations, as follows:

MB ¼ 1

n

Xn

i¼1

ðXEst;i � XObs;iÞ ð1Þ

or

RB ¼ 1

n

Xn

i¼1

ððXEst;i � XObs;iÞ � 100=XObs;iÞ ð2Þ

where XObs,i is the ith observed value (monthly),
XEst,i is the ith estimated=simulated value (month-
ly), and n is the number of data.

4.1 Downscaling results corresponding
to NCEP predictors

The following results focus on comparing the
monthly mean values between the observed and
simulated results for the calibration (1961–1990)
and validation (1991–2000) periods. In general,
the SDSM downscaling results for daily Tmax and
Tmin at each of the five stations reproduce the
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observed values reasonably well. As representa-
tive example, box-plots of the monthly mean
values of Tmax and Tmin at Cape Dorset are pres-

ented in Fig. 2, both for the calibration and vali-
dation periods. The plots clearly show that the
performance of the SDSM model using NCEP
predictors is very good and it is almost as good
over the validation period as it is over the cali-
bration one, except where huge changes in the ob-
served climate regime appear between the two
periods (as for June, July, August, and December
for the IQR values) inducing some discrepancies
in IQR for the validation period. But, the median
values are well reproduced even for these partic-
ular months (i.e. SDSM is able to capture the
change in median values of Tmax and Tmin), and
the changes in all other months are well captured
by the SD model. This suggests that the model
is able to cope with such a change in atmospher-
ic predictors, which results in a corresponding
change in local predictand as well. Similar results
are obtained for the downscaled data at the other
four stations (Iqaluit, Inuvik, Resolute Bay and
Shepherd Bay) which are not presented here.

As shown in Fig. 3 for the Cape Dorset station,
SDSM is also able to reproduce the median
characteristics of monthly mean precipitation

Fig. 3. Box-plots of SDSM downscaling results for daily
precipitation with NCEP predictors at Cape Dorset: 1
observed calibration (1961–1990), 2 downscaled calibration
(1961–1990), 3 observed validation (1991–2000), and 4
downscaled validation (1991–2000)

Fig. 2. Box-plots of SDSM
downscaling results for daily Tmax

and Tmin with NCEP predictors
at Cape Dorset: 1 observed cali-
bration (1961–1990), 2 down-
scaled calibration (1961–1990),
3 observed validation (1991–
2000), and 4 downscaled vali-
dation (1991–2000)
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reasonably well. However, the SDSM model pro-
duces many more outliers than observed series,
both in the calibration and in the validation peri-

ods. Even if the distribution of the observed
values for almost all stations shows changes in
the precipitation regime between the calibration

Fig. 4. Empirical seasonal probability density functions of (a) Tmax and (b) Tmin for the observed as well as the raw-GCMs,
and SDSM downscaled data for the baseline period (1961–1990) at Cape Dorset
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and validation periods, the main features of the
monthly mean precipitation at each climate sta-
tion are well reproduced by the NCEP predictors
based SDSM downscaling results.

4.2 Downscaling result corresponding
to GCMs predictors

Ensembles of synthetic daily weather series are
generated based on the regression parameters
calibrated with the predictor variables identified
earlier (see Table 3), but in this case derived from
the CGCM2 and HadCM3 simulations over the
baseline 1961–1990 period. These downscaling
results are compared with the raw-GCMs near

surface temperature and precipitation outputs so
that the value gained by downscaling is evaluat-
ed and compared to observed climatology. The
downscaled results corresponding to the NCEP
predictors are also included as a reference to
evaluate the corresponding downscaled values
based on GCMs ones.

4.2.1 Temperature downscaling

Empirical probability density functions (PDF) at
seasonal scale are used to compare the raw-
GCMs and SDSM downscaled Tmax and Tmin

with the observed statistical distribution. These
PDFs are shown in Fig. 4 for Cape Dorset station

Fig. 5. Histograms of MB be-
tween (a) the monthly mean va-
lues and (b) standard deviation
of observed data and the corre-
sponding raw-GCMs and SDSM
downscaled data of Tmax (in �C)
at Cape Dorset over the baseline
period (1961–1990)

Fig. 6. Histograms of MB be-
tween (a) the monthly mean va-
lues and (b) standard deviation
of observed data and the corre-
sponding raw-GCMs and SDSM
downscaled data of Tmin (in �C)
at Cape Dorset over the baseline
period (1961–1990)
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over the 1961–1990 period. Those clearly con-
firm the problems associated with the distribution
of raw temperature data from GCMs, especially
in simulating variability and extreme values with

unrealistic high frequencies of temperature values
near 0 �C over spring, summer and fall seasons.
Also, the GCM raw data even exhibited a bimod-
al distribution both for minimum and maximum

Fig. 7. Empirical quantile–quantile plots for the observed as well as the raw-GCM and downscaled precipitation data (in
mm=day) for the baseline period (1961–1990) at Cape Dorset

Fig. 8. Histograms of MB be-
tween (a) the monthly mean va-
lues and (b) standard deviation
of observed data and the corre-
sponding raw-GCMs and SDSM
downscaled data of monthly
mean precipitation (in mm=day)
at Cape Dorset over the baseline
period (1961–1990)

Uncertainty analysis of statistically downscaled temperature and precipitation regimes 159



temperature which is not observed in the study
area (i.e. systematic for all the five stations, not
shown here). These biases do not only result
from coarse scale resolution of the two GCMs
and=or from the land=sea surface conditions of
the GCM grid point(s) closer to the predictands,
but also are issued from the surface physical pro-
cesses parameterized in the GCMs. In that case,
the oceanic and=or land surface conditions are

not well reproduced by the two GCMs during
the frost-thaw period inducing a strong shift
and delay in the overlying simulated air tempera-
tures from the surface diabatic fluxes (i.e. radia-
tive, latent and sensible heat) as suggested for
example over ice free conditions in Hudson Bay
in Gachon et al. (2003). The results also show
that the downscaling has definitely improved
the simulated distribution of Tmax and Tmin which

Fig. 9. Monthly absolute biases of Tmax, Tmin, and monthly relative biases of precipitation at each of the five climate stations
for the baseline period (1961–1990). Cape Dorset, Inuvik, Iqaluit, Resolute Bay and Shepherd Bay correspond to each symbol
from left to right for each month, respectively
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are (after downscaling) more close to the observed
data than the raw-GCMs outputs. Similar results
to the one shown in Fig. 4 are also obtained for
the remaining four climate stations and are gen-
erally more accurate with HadCM3 predictors
than those obtained with CGCM2 ones.

Histograms of mean biases (MB) are also
plotted for the monthly mean and standard devia-
tion values of the climate variables to show the
monthly biases associated with both the raw-
GCMs and the SDSM downscaled data at each
of the five climate stations. Because of the close
similarity between the results corresponding to
the different climate stations, the histograms of
only Cape Dorset are presented hereafter. Figures
5 and 6 reveal that Tmax and Tmin data simulated
by the two GCMs have strong biases (in terms of
monthly mean and standard deviation) for most
of the months. The raw-GCM data shows a warm
bias for the autumn months while the rest of the
seasons have cold bias, as also suggested by the
seasonal PDFs. In general, the monthly biases in
the raw CGCM2 temperature are higher than
those corresponding to HadCM3. Over all the
five climate stations, the CGCM2 monthly tem-
perature biases range between 10 and 30 �C (with
the highest biases being in summer and winter
seasons at Inuvik, Iqaluit and Shepherd Bay)
while that of HadCM3 are in the order of 5–
10 �C, suggesting a more systematic problem
with the surface processes representation in the
CGCM2 model compared to HadCM3 (as sug-
gested also in the CGCM1 model studied over
the Hudson Bay area in Gachon et al., 2005).
Moreover, the monthly errors in standard de-
viation between the observed and simulated
values shown in Figs. 5 and 6 reveals that the
raw CGCM2 overestimates the temperature var-
iability for almost all seasons, while HadCM3
underestimates the variability for summer and
autumn seasons, and overestimates for winter and
spring seasons. As noted in the seasonal PDF
curves, Figs. 5 and 6 also shows that the down-
scaling has definitely improved the GCM outputs
by strongly reducing the temperature biases com-
pared to the raw-GCM, in terms of both monthly
mean and standard deviation values. In general,
while the downscaling done with the NCEP pre-
dictors give the best agreement with the observed
data in terms of mean monthly temperature and
their standard deviations, the downscaling from

the HadCM3 also gave very good results. How-
ever, the downscaled data from CGCM2 still
contain some negative biases in spring season
and positive biases in the autumn months com-
paratively larger that the one downscaled from
HadCM3. This is illustrated in more detail with
the uncertainty analysis results presented in
Sect. 4.3.

4.2.2 Precipitation downscaling

Figure 7 shows the empirical quantile–quantile
plot for daily precipitation at Cape Dorset with
observed as well as the raw-GCMs and SDSM
downscaled data. The GCM-driven downscaling
results have definitely improved the frequency
distribution in reducing the over and underesti-
mation of medium range and higher quantiles of
daily precipitation, compared to the raw CGCM2
and HadCM3, respectively. Similar results are
also obtained for the remaining four climate sta-
tions (not shown). The histograms of MB for the
monthly mean and standard deviation values of
precipitation at Cape Dorset are shown in Fig. 8.
Those reveal that the raw precipitation data simu-
lated by CGCM2 has shown strong bias for most
months, as this GCM overestimates the precipi-
tation for most of the year. On the contrary, the
raw HadCM3 precipitation data is more close to
the observed with smaller negative biases for few
months. While the raw-CGCM2 overestimates
the precipitation variability, the raw-HadCM3
underestimate this values for almost all seasons.
The results in Fig. 8 also show that the statistical
downscaling has definitely improved the GCMs
outputs by reducing the biases observed in the
monthly mean and standard deviations of the raw-
CGCM2 precipitation data. It has also improved
the HadCM3 data especially for those months
and climate stations where the raw HadCM3 has
stronger biases. Surprisingly, there is no signifi-
cant difference between the three sets of down-
scaled precipitation series which uses the NCEP
or the two GCMs predictors, as also noted in
Gachon et al. (2005).

Figure 9 summarizes the statistical downscal-
ing performances for Tmax, Tmin and precipitation
over all the five climate stations considered in
this study. The figure presents absolute biases
for Tmax and Tmin and relative biases for precipi-
tation, on monthly basis and for each station. The
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results for Tmax and Tmin show that the ones
downscaled from NCEP give the best perfor-
mance. The ones downscaled from HadCM3 also
have smaller biases in most of the cases, except

some overestimation of Tmax and Tmin in May
and June and underestimation in March, April,
September and October. However, the tempera-
ture data downscaled from CGCM2 show consis-

Fig. 10. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly mean values of Tmax (in �C) is zero (top) and the corresponding 90% confidence intervals (bottom,
UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset

Fig. 11. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly standard deviation values of Tmax (in �C) is zero (top) and the corresponding 90% confidence
intervals (bottom, UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset
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tent biases for most of the stations and for most
months except January, February and March. On
the other hand, the results of the precipitation
downscaling show that while the biases associ-
ated with that downscaled from NCEP are relative-
ly smaller, the ones downscaled from CGCM2
and HadCM3 show more or less similar results.
There is also no major difference in the precipi-
tation downscaling performances from season to
season, or from station to station.

4.3 Results of the uncertainty analysis

The results presented below mainly focus on the
uncertainty analysis of the SDSM downscaled
temperature and precipitation data, with a special
emphasis on the GCM-driven results. The re-
jected percentage in Wilcoxon Signed Rank hy-
pothesis test is presented on a seasonal basis in
Tables 4 and 5 for all the stations. The monthly
values of rejected percentages and the corre-
sponding confidence intervals are also presented
on Figs. 10–15, but only for the Cape Dorset
station.

4.3.1 Uncertainty in downscaling Tmax

Figure 10a shows histograms of rejected percen-
tage in Wilcoxon Signed Rank test that median
difference in observed and SDSM downscaled
data of monthly mean values of Tmax at Cape
Dorset is zero, while Fig. 10b shows the corre-
sponding 90% confidence interval. For Tmax

downscaled from NCEP and HadCM3 predictors,
the rejected percentage (at 5% significance level)
in each month is either zero or very closes to zero
except in April. However, for Tmax downscaled
from CGCM2 predictors, the rejected percentage
is over 95% for most of the months except
January, February, March and July (see also in
Table 4 for all the stations at seasonal scale). The
90% confidence interval in Fig. 10b also shows
that while most of the confidence intervals calcu-
lated from the downscaled data based on NCEP
and HadCM3 predictors contains zero for almost
all months, the downscaled results from CGCM2
contain zero for only few months (January,
February, March and July). For the rest of the
year, the confidence intervals are on either side
of zero. This confirms the problem that exists in
the data downscaled from CGCM2 predictors in

capturing the monthly mean values in most of
the stations, as also suggested by the Wilcoxon
Signed Rank test. The figures also show that data
downscaled from NCEP predictors resulted in
smaller confidence interval (mostly between �0.1
and þ0.1 �C) than the one downscaled from
HadCM3 (mostly between �0.2 and þ0.2 �C).
This, of course, is not a surprise as the down-
scaling model is calibrated with NCEP predictors
which are reanalysis products. One can also see
from the figure that the confidence intervals are
smaller during summer months.

Similarly, Fig. 11a shows the histograms for
the rejected percentage in Wilcoxon Signed Rank
test that median difference in observed and SDSM
downscaled data of monthly values of the stan-
dard deviation of Tmax is zero. Here the histograms
show mixed pictures where the hypothesis is
rejected at different level for the different cases,
and the standard deviation of large proportion
of data downscaled from NCEP and HadCM3
were rejected for the winter and spring months.
Figure 11b shows the corresponding 90% confi-
dence interval for the difference between observed
and downscaled monthly standard deviations of
Tmax. The figures reveal that while some of the
confidence intervals calculated from the data
downscaled from NCEP predictors have the
smallest confidence interval, it has not contain
zero for most of the winter and spring months
showing overestimation of the variability during
these seasons. In general, the data downscaled
from CGCM2 seems to better represent the vari-
ability of the Tmax, than the one downscaled from
HadCM3.

4.3.2 Uncertainty in downscaling Tmin

Figure 12a shows histograms of rejected percen-
tage in Wilcoxon Signed Rank test that median
difference in observed and SDSM downscaled
data of monthly values of Tmin at Cape Dorset
is zero, while Fig. 12b shows the corresponding
90% confidence interval. The results for Tmin are
quite similar to the one for Tmax in that, the
rejected percentage for each month (at 5% sig-
nificance level) of Tmin downscaled from NCEP
and HadCM3 predictors is either zero or very
closes to zero except in April. However, for Tmin

downscaled from CGCM2 predictors, the re-
jected percentage is over 95% for most of the
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months, except January, February, March and July
(see also in Table 4 for all the stations at seasonal
scale). The corresponding 90% confidence inter-
val in Fig. 12b for the difference between the

observed and downscaled monthly mean values
of Tmin shows that while most of the confidence
intervals calculated from the downscaled data
based on NCEP and HadCM3 predictors contains

Fig. 12. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly mean values of Tmin (in �C) is zero (top) and the corresponding 90% confidence intervals (bottom,
UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset

Fig. 13. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly standard deviation values of Tmin (in �C) is zero (top) and the corresponding 90% confidence
intervals (bottom, UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset
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zero for almost all months, the downscaled re-
sults from CGCM2 contain zero for only few
months (January, February, March and July).

For the rest of the year, the confidence intervals
are on either side of zero. Figure 13a, on the
other hand, shows the histograms for the rejected

Fig. 14. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly mean precipitation (in mm=day) is zero (top) and the corresponding 90% confidence intervals
(bottom, UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset

Fig. 15. Histograms of rejected percentage in Wilcoxon Signed Rank hypothesis test that the difference between observed
and downscaled monthly standard deviation of precipitation (in mm=day) is zero (top) and the corresponding 90% confidence
intervals (bottom, UL means upper limit and LL means lower limit) over the baseline period at Cape Dorset
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percentage in Wilcoxon Signed Rank test that
median difference in observed and SDSM down-
scaled data of monthly values of the standard
deviation of Tmin is zero. Here the histograms
show that the hypothesis for standard deviation
is rejected in the winter and spring months for
the data downscaled from NCEP and HadCM3.
Figure 13b shows the corresponding 90% confi-
dence interval for the difference between observed
and downscaled monthly standard deviations of
Tmin. As for Tmax, the data downscaled from
CGCM2 seems to better represent the variabil-
ity of the Tmin than the one downscaled from
HadCM3.

4.3.3 Uncertainty in downscaling precipitation

Figure 14a shows histograms of rejected percen-
tage for monthly values of precipitation for Cape
Dorset, while Table 5 presents the rejected per-
centage by season for all stations. In general, the
rejected percentages are zero or close to zero for
most of the cases. Precipitation downscaled with
both CGCM2 and HadCM3 predictors have re-
jection of 20% or more for about four months,
while those downscaled with NCEP has three
months with similar rejection percentage. The
rejection percentages seem to be higher during
spring and autumn seasons for CGCM2 and dur-
ing winter and summer seasons for HadCM3.
Figure 14b shows the corresponding 90% confi-
dence interval for the difference between the
observed and downscaled monthly values of pre-
cipitation. Most of the confidence intervals cal-
culated from the downscaled data contains zero.
Similar to the case of temperature, the precipita-
tion downscaled from NCEP predictors result in
the smallest confidence interval (mostly between
�0.03 and þ0.03 mm=day), than the one down-
scaled from CGCM2 and HadCM3. The confi-
dence intervals for the precipitation downscaled
from CGCM2 are comparable to the one down-
scaled from HadCM3.

Figure 15a and b show similar test results for
the monthly standard deviation of precipitation.
In addition to showing similar level of uncertain-
ties in terms of rejected percentage in the hypoth-
esis testing, there seems to be no big difference
in the magnitude of the confidence interval of the
data downscaled from NCEP and the two GCMs.
Most of the confidence intervals also include the

zero value indicating that the downscaled precip-
itation has captured the variability in the observed
precipitation.

5. Discussion

First of all, the study confirms that temperature
data for the extreme northern part of Canada sim-
ulated by the two GCMs (CGCM2 and HadCM3)
generally exhibit strong biases in terms of
monthly mean and standard deviation. These dis-
crepancies are not only due to incorrect recon-
struction of the local climate regime in GCMs
due to their coarse resolution, with inherent dif-
ficulties to reproduce the land=sea contrasts as
for all areas studied here, but they are also due
to the major problem in physical parameteriza-
tion in most climate models. This problem is
related to surface processes over heterogeneous
conditions such as snow cover, sea ice and more
generally, frost=thaw length characteristics of the
soil, including water content and its phase distri-
bution during the year (i.e. solid versus liquid
phase). These processes have strong influence
on surface energetic budget and the overlying
air temperature and in particular over arctic and
sub-arctic regions (e.g. Covey et al., 2000; Walsh
et al., 2002; Barrow et al., 2004; Gachon et al.,
2005). In general, the study shows that the
regression-based statistical downscaling (with
SDSM) is able to capture most of the precipita-
tion and thermal regimes in northern Canada pro-
vided that the large scale climate predictors used
in the process are well simulated by the GCMs
considered. The downscaling exercise has defi-
nitely improved the GCMs outputs by reducing
the biases found in the raw CGCM2 and HadCM3
values, and improving the variability. However,
the data downscaled from CGCM2 still contain
negative temperature biases during the spring and
positive biases in the autumn, relatively larger
than the one downscaled from HadCM3. The sta-
tistical downscaling is also able to reproduce the
precipitation regime in general, and especially in
terms of median characteristics of monthly mean
precipitation and its standard deviation. How-
ever, inter-quantile ranges and higher percentiles
are sometimes overestimated, and the downscal-
ing produces many more outliers than observed
series. Moreover, no significant difference is ob-
served in the performance of SDSM in downscal-
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ing precipitation, either with the NCEP predictors
or with the predictors derived from the two
GCMs.

The uncertainty analysis shows that the per-
centage by which the null hypothesis (that there
is no median difference between the observed
and downscaled data) is rejected by Wilcoxon
Signed Rank test (at 5% significance level)
for almost all temperature downscaling with
NCEP and HadCM3 predictors is relatively small.
However, for temperatures downscaled from
CGCM2 predictors, the percentage rejected is
very high for most of the months except in
January, February, March and July indicating a
higher level of uncertainty associated with tem-
perature downscaled with CGCM2 predictors.
The inter-annual variability of the mean monthly
values of temperature is slightly underestimated
in the downscaled data irrespective of the source
of predictors. In general, the confidence intervals
are smaller during summer months, indicating a
better predictability during this season. The un-
certainty analysis for precipitation suggests that,
in general, the rejected percentage is small for
most of the cases, and there is no specific pat-
tern in terms of locations or seasons. The confi-
dence intervals for precipitation downscaled with
CGCM2 predictors are better (smaller) than the
ones downscaled from HadCM3, while those
downscaled from NCEP predictors resulted in
the smallest confidence interval. All the results
confirm that the downscaling performance and
predictability of the climate variables strongly
vary with the source of predictors, with seasons
and the location of the climate station considered
for the analysis.

6. Conclusions

Confidence on future climate scenarios at a
regional or local scale depends to a large extent
on the ability of the downscaled data to re-
construct the observed climate regimes. Hence,
this study has shown, in general, the potential
of the regression-based statistical-downscaling
technique in order to develop reliable climate
information using GCM predictors, over highly
heterogeneous surface conditions in northern
coastlines of Canada. However, uncertainty anal-
ysis has reveals that, even after careful screen-
ing of the most relevant predictors, some of the

downscaled data is still significantly different
from the observed values. This has been spe-
cially the case for CGCM2-driven downscal-
ing of temperature data over spring and fall
seasons. With such uncertainties in the down-
scaled data for the baseline period, it will be
difficult to have great confidence on climate
variables downscaled for future climate scenar-
ios in order to use them for a meaningful climate
change impact studies. Nevertheless, the added
values from downscaled results confirm that some
form of downscaling (i.e. SDSM in our case) is
still preferred to using directly raw-GCM out-
puts at the local scale, for impacts studies in
northern Canada.

In general, the study presented in this paper
shows one way of evaluating the reliability of
the downscaled data, and the added values of
downscaling using objective hypothesis testing
criteria and evaluating confidence intervals to
quantify the uncertainty associated with climate
scenarios development, as recommended in var-
ious studies or guidelines (e.g. Goodess et al.,
2003; Wilby et al., 2004). This approach may
help to better identify GCM predictors and down-
scaling techniques which are more appropriate
for generating reliable climate scenario informa-
tion. However, further work may be needed to
identify the more reliable GCMs and develop
more relevant predictors which can be used
effectively to better reconstruct the temperature
and precipitation regime. For example, Gachon
et al. (2005) have suggested that test with direct
thermal advection terms responsible for the main
part of the temperature regime in the Nordic
regions, especially in northern Canada in win-
ter, must be done in order not only to improve
the variability but also to better reconstruct the
tails of the temperature distribution. Moreover,
the use of the Canadian Regional Climate Model
outputs as candidate predictors for statistical
downscaling should be explored, not only for the
downscaling of temperature but also to improve
the downscaling of precipitation as this variable
needs mesoscale forcing and feedback better
resolved in regional than in global climate mod-
els. Other statistical downscaling techniques
should also be explored in conjunction with the
use of RCM simulations to evaluate the uncer-
tainties associated with the choice of downscal-
ing techniques.
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