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Abstract 
 
An ensemble of stochastic daily rainfall projections has been investigated. The 
ensemble was generated using the Nonhomogeneous hidden Markov model (NHMM) 
downscaling model and driven by atmospheric predictors from four GCMs (for three 
emissions scenarios and two periods). The aim has been to see what changes in 
regional rainfall come about as a result of using particular GCMs, scenarios, and 
periods.  
 
Significant research highlights, breakthroughs, and snapshots 
 

• Climate change projections of daily rainfall for 30 stations in the lower 
Murray–Darling Basin have been produced, and these are suitable for 
assessing the hydrological impact of changes in rainfall timing, frequency, and 
intensity.  

• For a number of hydrologically relevant metrics, we see an overall consistency 
in the projected changes. The projections indicate a decrease in total rainfall, 
particularly in winter (April–October), an increase in daily maximum rainfall, 
a decrease in less extreme daily rainfall (e.g. 95th and 90th percentile), a 
decrease in the number of rainfall events, and an increase in the length of runs 
of consecutive dry days. 

• By mid-century (2046–2065), there is considerable overlap in the projections 
obtained from the three emissions scenarios. In contrast, by the end of the 
century (2081–2100) the projections have diverged, with the changes in 
rainfall proportional to the relative strengths of the respective scenarios. This 
suggests that global mitigation efforts would reduce the magnitude of future 
rainfall changes over the study region.  

• Uncertainties in the range of projected changes are dominated by differences 
between the projections obtained from the four GCMs. This suggests the 
continuing need for GCM improvement and for better assessment and 
selection of which GCMs can be used with confidence.  

 
Statement of results, their interpretation, and practical significance against each 
objective 

 
Objective 1: Assess hydrologically relevant properties of weather state and 
multi-site rainfall projections obtained from stochastically-downscaled GCM 
runs for selected scenarios and periods. 
 
The changes in NHMM downscaled weather-state sequences are driven by the 
changes in atmospheric predictors projected by the GCM scenarios. The projected 
multi-site daily rainfall series are conditional on these weather-state sequence 
changes, and thus in turn the predictor changes. Tables 1 and 2 summarise projected 
weather-state frequency changes, using the Mk3.5 projections as an example (see 
Appendix A for the other GCMs). The first number in each cell is the mean 
probability of occurrence (i.e. frequency) of the weather state for the given 
downscaled scenario. The second number, in brackets, is the number of ‘standard 
errors’ between this probability and the baseline 20th century downscaled weather-
state probability (20C3M). It is thus a measure of the relative significance of the 
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projected change in weather-state frequency. [Note: plots of the weather states are 
presented in Appendix A of the Project 1.5.2 & 3 report]. 
 
There is strong consistency in the direction of the state changes across virtually all the 
scenarios and periods. The dry State 1 increases in frequency for all scenarios and 
periods for both summer and winter, and the wet State 2, likewise, decreases. 
There is also a consistent response in the magnitude of the state changes to the 
different emissions scenarios by the end of the century, corresponding to the relative 
strength of each scenario. Thus the relatively high emission A2 produces the largest 
changes for all weather states for both summer and winter. The response is more 
mixed for mid-century, given that by then greenhouse gas concentrations have not 
significantly diverged between the scenarios. The B1 scenario has a low emission 
trajectory, so greenhouse gas concentration growth between mid (2046–2065) and late 
(2081–2100) century is small compared to the other two scenarios investigated. As a 
result, for several states the B1 end-of-century change is less than the mid-century 
change. Some mid-century changes are also greater than the end-of-century changes 
for the two higher emission scenarios (e.g. winter State 4). In both cases this indicates 
the potential for projected changes to be as responsive to interdecadal climate 
variability as they are to long-term climate change.  
 
The downscaled projections for annual rainfall, averaged across the 30 stations, 
indicate a decrease for both the 2046–2065 and 2081–2100 periods for all scenarios 
and climate models (Figure 1), except for a slight increase for CCAM for the A2 
scenario in 2081–2100. 
 
 
Table 1.  Summer Mk3.5 downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 

State 20C3M A1B mid* A1B end* A2 mid A2 end B1 mid  B1 end 
1 0.525  0.556 

(1.67) 
0.565 
(1.95) 

0.573 
(2.21) 

0.578 
(2.75) 

0.569 
(2.05) 

0.533 
(0.41) 

2 0.083  0.068 
(1.49) 

0.055 
(3.07) 

0.058 
(2.67) 

0.051 
(3.73) 

0.058 
(2.80) 

0.070 
(1.46) 

3 0.100  0.095 
(0.73) 

0.089 
(1.72) 

0.084 
(2.11) 

0.085 
(2.32) 

0.087 
(2.04) 

0.099 
(0.19) 

4 0.055  0.063 
(2.81) 

0.064 
(3.22) 

0.062 
(2.13) 

0.068 
(4.17) 

0.062 
(2.35) 

0.062 
(3.09) 

5 0.237  0.218 
(2.12) 

0.227 
(0.92) 

0.223 
(1.30) 

0.219 
(1.74) 

0.224 
(1.08) 

0.236 
(0.06) 

* ‘mid’ refers to the 2046–2065 period; ‘end’ refers to the 2081–2100 period 
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Table 2.  Winter Mk3.5 downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 

State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.439  0.512 

(3.45) 
0.550 
(5.26) 

0.495 
(2.60) 

0.562 
(6.09) 

0.488 
(2.40) 

0.513 
(3.89) 

2 0.117  0.089 
(2.81) 

0.067 
(4.95) 

0.093 
(2.09) 

0.063 
(5.74) 

0.091 
(2.61) 

0.087 
(2.87) 

3 0.098  0.083 
(2.48) 

0.071 
(4.22) 

0.085 
(2.08) 

0.069 
(4.50) 

0.087 
(1.51) 

0.083 
(2.55) 

4 0.206  0.200 
(0.65) 

0.201 
(0.45) 

0.214 
(1.11) 

0.199 
(0.79) 

0.208 
(0.24) 

0.208 
(0.23) 

5 0.140  0.116 
(2.64) 

0.111 
(3.53) 

0.113 
(3.11) 

0.107 
(4.06) 

0.126 
(1.49) 

0.108 
(3.59) 
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Figure 1.  Annual rainfall change (%). 

 
Two climate models (GFDL and Mk3.5) consistently project a decline in summer 
(Nov–Mar) rainfall, and two (CCAM and MRI) indicate an increase in summer 
rainfall (Figure 2). This is interesting considering that the CCAM model is nudged by 
the Mk3.0 atmosphere and uses the Mk3.0 sea-surface temperatures as the ocean 
boundary condition. In contrast, all four climate models show a decrease in winter 
(Apr–Oct) rainfall (Figure 3). Since winter rainfall accounts for two-thirds of the 
annual rainfall and produces the majority of streamflow for this region, this decrease 
in winter rainfall would cause additional water-availability concerns in the south-
eastern corner of the Murray–Darling Basin, especially since water shortages are 
already producing a critical problem in the region. 
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Figure 2.  Summer rainfall change (%). 
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Figure 3.  Winter rainfall change (%). 

 
 
The 2046–2065 monthly distribution of projected changes indicates a January and 
February rainfall increase and an April–October rainfall decline (Figure 4). However, 
there are inconsistencies between the GCMs. For example, three GCMs (GFDL, 
Mk3.5, and MRI) project a monthly rainfall decline for December, but CCAM 
projects an increase for this month for the 2046–2065 period.  
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The decreasing rainfall trend for April–October is more significant for the period 
2081–2100 than 2046–2065 (Figure 5). It implies that the change becomes larger as 
atmospheric gas emissions accumulate. 
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Figure 4.  Monthly rainfall change (%) for 2046–2065 vs 1961–2000. 
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Figure 5.  Monthly rainfall change (%) for 2081–2100 vs 1961–2000. 
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The annual maximum daily rainfall is projected to intensify in the future, particularly 
by the end of the century (Figure 6). This result implies a potential for a slight 
increase in the probability of intense floods in the study region.  
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Figure 6.  Changes in annual maximum daily rainfall (%). 

 
 
The 99th percentile of daily rainfall does not have as significant a trend as daily 
maximum rainfall (Figure 7). The changes are smaller than those of maximum daily 
rainfall, and there are more climate models and scenarios indicating a decreasing 
trend. 
 
The 95th and 90th percentiles of daily rainfall, in contrast, are projected to decrease in 
the future, especially for the 2081–2100 period (Figures 8 and 9). This conclusion is 
consistent with the majority of recent climate-change modelling literature, where 
projections of increased extremes alongside decreasing means are common (IPCC 
2007, and references therein).   
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Figure 7.  Changes in 99th percentile of daily rainfall (%). 
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Figure 8.  Changes in 95th percentile of daily rainfall (%). 
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Figure 9.  Changes in 90th percentile of daily rainfall (%). 

 
 
The number of dry days would increase (Figure 10) and wet days decrease 
(Figure 11), a result consistent across all climate models and emission scenarios. This 
conclusion is in line with analysis of GCM projections by Pitman and Perkins (2008). 
Together with the projected decrease in annual rainfall and an increase in maximum 
daily rainfall, this would lead to decreased runoff and streamflow, suggesting more 
severe water-availability problems for the study region. 
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Figure 10.  Change in dry day occurrence (%). 
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Figure 11.  Change in wet day occurrence (%). 

 
 
The maximum length of consecutive dry days is also projected to increase 
(Figure 12). This change would also have implications for runoff and streamflow, and 
hence water availability. Correspondingly, there is a consistent projection of the 
maximum length of consecutive wet days decreasing (Figure 13). This change in daily 
sequencing, combined with fewer events with reduced amounts, would lead to drier 
catchment soil profiles and would further reduce runoff. 
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Figure 12.  Changes of maximum consecutive dry days (%). 
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Figure 13.  Changes of maximum consecutive wet days (%). 

 
 
 
Objective 2: Compare these properties for transient and stabilised periods in the 
emissions scenarios. 
 
Detailed analysis of stabilised period projections has not been undertaken. It was 
originally envisaged that long stabilised runs would be analysed for return periods of 
extended dry and wet events (e.g. multi-year droughts). However only one GCM, 
Mk3.5, has such long runs available and so no comparison or assessment of a range of 
responses was possible. This aspect of downscaled projections may be looked at in 
future work.  
 
 
Objective 3: Assess the consistency, range, and relative sources of uncertainty in 
the projected changes to the hydrologically relevant metrics. 
 
The results presented for the two periods for the different GCM and emission 
scenarios highlight the consistencies and the relative contribution to uncertainty 
between the GCMs, scenarios, and periods. In common with other studies (e.g. Fowler 
et al. 2007, Kay et al. 2009), the differences between the GCMs produce the greatest 
source of uncertainty. Appendix B, Table B1, presents a summary of the range of 
uncertainty by station, highlighting the large between-GCM ranges and smaller 
between-scenario ranges. The projected rainfall changes for individual stations also 
highlight that the range in uncertainty increases with time (end-of-century projections 
compared to the mid-century) and with the intensity of the emissions scenario (i.e. for 
mid-century there are lower between-scenario uncertainties). These results are 
summarised, averaging across the 30 stations, in Table 3. Using an example for 2046–
2065, the mean range in projected annual rainfall change across the three scenarios for 
the Mk3.5 was 3.4%, whereas the mean range across the four GCMs for A2 was 
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14.2%. The maximum range for an individual station is 30.7% across the GCMs for 
the A2 scenario in 2081–2100. 
 
Table 3.  Range (%), by GCM and emissions scenario, of 30-station minimum, 
maximum, and mean projected annual rainfall change  
 2046–2065 
 B1* A1B A2 CCAM* GFDL Mk3.5 MRI
Min 6.5 9.0 7.6 0.3 2.1 0.6 5.7
Max 13.9 15.8 21.3 4.3 10.6 6.6 13.7
Mean 9.9 12.0 14.2 2.1 6.5 3.4 10.6
  
 2081–2100 
 B1* A1B A2 CCAM* GFDL Mk3.5 MRI
Min 6.7 17.7 18.7 0.4 3.7 7.3 5.3
Max 14.4 28.6 30.7 7.2 11.3 13.1 13.6
Mean 9.9 22.6 25.8 2.8 7.1 10.2 9.1
    
* Note B1 is the range across only three GCMs and CCAM is the range across only two scenarios, A1B and A2, due 

to the unavailability of a CCAM B1 scenario 
 
The pervasive impact of GCM bias, which varies across the GCMs, on our confidence 
in these projections cannot be ignored. The magnitude of GCM bias for current 
climate for the SEACI region proved greater than that expected (see report for Project 
1.5.2 & 3) compared to previous successful application of the NHMM in south-west 
Western Australia  (Charles et al. 2007) and the Mount Lofty Ranges, South Australia 
(Charles et al. 2008, Heneker and Cresswell 2008). Timbal et al. (2008), for example, 
found great consistency when downscaling 11 IPCC 4AR GCMs for SWWA winter 
rainfall, whereas here there is less consistency. There is also the argument that the 
large range of GCM uncertainty is an aspect that calls for close assessment, as was 
undertaken in the Murray–Darling Basin Sustainable Yields Project (CSIRO 2008). 
 
Despite the marked decrease in confidence due to the GCM limitations, there is a 
general consistency in several aspects of the projected rainfall changes. Overall, the 
results point to decreased rainfall totals, particularly in winter, which, combined with 
the intensity changes for all but the extreme events and increased length of dry spells, 
suggests that runoff and streamflow responses might be significant.  
 
An important, and potentially confounding, issue is the limitation imposed by having 
only one projection per GCM and scenario, rather than multiple ensemble members. 
Thus, the decadal variability of the respective GCMs can have a large influence on the 
comparisons between periods. Ideally, we would like to have several current and 
future GCM runs for each GCM and scenario if we are to better understand natural 
variability in relation to long-term change.  

 
Summary of methods and modifications (with reasons) 
 
Stochastically downscaled multi-site daily rainfall projections were assessed for 
changes to the following hydrologically relevant metrics:  

• Annual rainfall 
• Summer (Nov–Mar) and winter (Apr–Oct) rainfall 
• Monthly distribution of rainfall 
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• Maximum daily rainfall 
• 90th, 95th, and 99th percentile of daily rainfall 
• Number of dry and wet days (wet day is ≥ 1.0 mm) 
• Number of consecutive dry and wet days.  

 
The projections were produced by stochastically downscaling an ensemble of multiple 
GCMs, emissions scenarios, and periods using the Nonhomogeneous hidden Markov 
model (NHMM, Hughes et al. 1999, Charles et al. 1999). Four GCMs were used, 
three of which were coupled models as used in the Intergovernmental Panel on 
Climate Change’s Fourth Assessment Report (IPCC AR4): CSIRO Mk3.5 (Australia), 
GFDL CM2.0 (USA), and MRI CGCM2.3.2a (Japan). The fourth was the CSIRO 
CCAM atmospheric model that used far-field ‘nudging’ and sea-surface temperatures 
from a Mk3.0 run. CCAM is a variable-grid model that is run over Australia at a finer 
horizontal resolution. 
 
IPCC Scenarios A1B, A2, and B1 were used in this study (mid, high, and low 
emissions trajectories respectively), although they do not represent the full range of 
possible climate change. These are the standard emission scenarios used in AR4. 
Projections were produced for 20-year periods for the middle (2046–2065) and end 
(2081–2100) of the century. These are the IPCC standard periods for which data are 
available for all the IPCC AR4 GCMs. 
 
For each of the 24 ensemble members (4 GCMs × 3 emission scenarios × 2 periods) 
the NHMM was driven by the extracted atmospheric predictors to generate 100 
realisations of multi-site daily rainfall for the 30 stations. These projected series were 
assessed for relative uncertainties and consistencies between the different GCMs, 
scenarios, and periods.  
 
Summary of links to other projects 
 
The results of this project can be compared to those obtained from GCM-scale results 
of Project 2.1.5a, the dynamically downscaled results of Projects 2.1.5b,c and 2.3.1, 
and the projections produced by Project 2.2.3. 
 
Since this is the final project within the current phase of SEACI, as well as reviewing 
the research completed (as presented here), it is also important to look to the future. 
This project has produced a large data base of multi-site daily rainfall projections for 
mid- and end of century. The stochastic nature of the NHMM allowed generation of 
multiple realisations of multi-site daily rainfall series conditional on the GCM 
projected atmospheric predictor series. Thus 100 realisations for the four GCMs 
(CCAM, GFDL, Mk3.5, MRI) for 20th Century (1961–2000) and three IPCC 
emissions scenarios (B1 – low; A1B – medium; A2 – high emissions pathways) for 
mid (2046–2065) and end (2081–2100) of century are available for use in further 
analysis and applications. An associated eWater project is currently assessing the 
NHMM results in comparison with several other statistical and dynamical 
downscaling approaches (Frost et al. 2009). 
 
Testing these NHMM-generated projections as input to hydrological models is now 
required to determine their adequacy, or otherwise, and to suggest improvements (for 
example, Charles et al. 2007, Fowler et al. 2007, and Wood et al. 2004 have shown 
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the benefits of statistical downscaling for hydrological applications). NHMM 
projections have been successfully applied to hydrological modelling investigations of 
catchment yield changes in the South-West of WA (Berti et al. 2004, Kitsios et al. 
2006) and South Australia (Charles et al. 2008, Heneker and Cresswell 2008). Such 
investigations in the Murray–Darling Basin, using the projections generated in this 
project, are planned for selected catchments using the SIMHYD hydrological model 
(Chiew et al. 2002).  
 
Publications arising from this project 
 
Charles, S.P. and Fu, G. (2008). Stochastic downscaling for regional precipitation 

projections. Proceedings, HydroPredict’2008, 15–18 September 2008, Prague, 
Czech Republic, pp. 269–272. 

 
Frost, A.J, Charles, S.P., Mehrotra, R., Timbal, B., Nguyen, K.C., Chiew, F.H.S., Fu, 

G., Chandler, R.E., McGregor, J., Kirono, D., Fernandez, E., and Kent, D. (2009). 
A comparison of multi-site daily rainfall downscaling techniques under Australian 
conditions (in preparation) 
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APPENDIX A.  PROJECTED WEATHER-STATE FREQUENCIES 
 
Table A1.  Summer CCAM downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid* A1B end* A2 mid A2 end 
1 0.548 0.551 

(0.18) 
0.552 
(0.20)

0.536 
(0.45)

0.555 
(0.30)

2 0.046 0.047 
(0.18) 

0.045 
(0.18)

0.048 
(0.16)

0.046 
(0.02)

3 0.088 0.091 
(0.35) 

0.089 
(0.09)

0.093 
(0.46)

0.097 
(0.95)

4 0.064 0.064 
(0.09) 

0.067 
(1.09)

0.066 
(0.63)

0.066 
(0.70)

5 0.254 0.247 
(0.62) 

0.248 
(0.61)

0.258 
(0.37)

0.235 
(1.67)

* ‘mid’ refers to the 2046–2065 period; ‘end’ refers to the 2081–2100 period 
 
Table A2.  Winter CCAM downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end 
1 0.449 0.480 

(2.27) 
0.483 
(2.48)

0.475 
(5.25)

0.451 
(0.27)

2 0.100 0.087 
(1.96) 

0.091 
(1.74)

0.091 
(4.22)

0.099 
(0.65)

3 0.114 0.099 
(2.81) 

0.103 
(1.83)

0.106 
(2.92)

0.116 
(0.64)

4 0.218 0.213 
(0.84) 

0.216 
(0.36)

0.214 
(1.62)

0.218 
(0.14)

5 0.118 0.120 
(0.30) 

0.107 
(2.23)

0.114 
(1.63)

0.117 
(0.66)

 
Table A3.  Summer GFDL downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.543 0.602 

(2.90) 
0.659 
(5.42)

0.629 
(4.16)

0.629 
(4.05)

0.591 
(2.42) 

0.620 
(3.48)

2 0.064 0.047 
(2.20) 

0.036 
(3.83)

0.037 
(3.78)

0.040 
(3.92)

0.050 
(2.13) 

0.041 
(2.98)

3 0.087 0.072 
(2.58) 

0.057 
(5.01)

0.064 
(3.45)

0.064 
(3.88)

0.075 
(2.36) 

0.066 
(3.43)

4 0.069 0.072 
(0.53) 

0.069 
(0.16)

0.072 
(0.78)

0.067 
(0.65)

0.076 
(1.30) 

0.071 
(0.37)

5 0.237 0.208 
(2.47) 

0.180 
(4.56)

0.197 
(3.77)

0.200 
(2.91)

0.209 
(2.29) 

0.203 
(2.61)
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Table A4.  Winter GFDL downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.439 0.529 

(5.30) 
0.549 
(6.08)

0.487 
(2.52)

0.582 
(8.58)

0.472 
(1.48) 

0.498 
(2.72)

2 0.088 0.065 
(3.79) 

0.063 
(4.06)

0.076 
(1.92)

0.054 
(5.96)

0.081 
(0.81) 

0.072 
(2.17)

3 0.126 0.094 
(4.07) 

0.092 
(3.92)

0.111 
(1.54)

0.072 
(7.53)

0.119 
(0.58) 

0.105 
(2.05)

4 0.219 0.207 
(1.38) 

0.209 
(1.03)

0.223 
(0.58)

0.201 
(2.05)

0.227 
(0.90) 

0.215 
(0.43)

5 0.129 0.106 
(2.82) 

0.087 
(6.05)

0.103 
(3.52)

0.091 
(5.52)

0.101 
(3.39) 

0.111 
(2.61)

 
Table A5.  Summer Mk3.5 downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.525  0.556 

(1.67) 
0.565 
(1.95) 

0.573 
(2.21) 

0.578 
(2.75) 

0.569 
(2.05) 

0.533 
(0.41) 

2 0.083  0.068 
(1.49) 

0.055 
(3.07) 

0.058 
(2.67) 

0.051 
(3.73) 

0.058 
(2.80) 

0.070 
(1.46) 

3 0.100  0.095 
(0.73) 

0.089 
(1.72) 

0.084 
(2.11) 

0.085 
(2.32) 

0.087 
(2.04) 

0.099 
(0.19) 

4 0.055  0.063 
(2.81) 

0.064 
(3.22) 

0.062 
(2.13) 

0.068 
(4.17) 

0.062 
(2.35) 

0.062 
(3.09) 

5 0.237  0.218 
(2.12) 

0.227 
(0.92) 

0.223 
(1.30) 

0.219 
(1.74) 

0.224 
(1.08) 

0.236 
(0.06) 

 
Table A6.  Winter Mk3.5 downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.439  0.512 

(3.45) 
0.550 
(5.26) 

0.495 
(2.60) 

0.562 
(6.09) 

0.488 
(2.40) 

0.513 
(3.89) 

2 0.117  0.089 
(2.81) 

0.067 
(4.95) 

0.093 
(2.09) 

0.063 
(5.74) 

0.091 
(2.61) 

0.087 
(2.87) 

3 0.098  0.083 
(2.48) 

0.071 
(4.22) 

0.085 
(2.08) 

0.069 
(4.50) 

0.087 
(1.51) 

0.083 
(2.55) 

4 0.206  0.200 
(0.65) 

0.201 
(0.45) 

0.214 
(1.11) 

0.199 
(0.79) 

0.208 
(0.24) 

0.208 
(0.23) 

5 0.140  0.116 
(2.64) 

0.111 
(3.53) 

0.113 
(3.11) 

0.107 
(4.06) 

0.126 
(1.49) 

0.108 
(3.59) 
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Table A7.  Summer MRI downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.561 0.584 

(1.01) 
0.553 
(0.31)

0.549 
(0.53)

0.590 
(1.24)

0.564 
(0.16) 

0.549 
(0.56)

2 0.051 0.040 
(1.44) 

0.054 
(0.43)

0.052 
(0.13)

0.041 
(1.49)

0.047 
(0.52) 

0.052 
(0.16)

3 0.081 0.073 
(1.07) 

0.085 
(0.43)

0.083 
(0.21)

0.072 
(1.28)

0.082 
(0.10) 

0.083 
(0.18)

4 0.067 0.071 
(0.96) 

0.069 
(0.30)

0.070 
(0.66)

0.067 
(0.10)

0.064 
(1.08) 

0.064 
(0.97)

5 0.239 0.231 
(0.60) 

0.239 
(0.05)

0.246 
(0.64)

0.230 
(0.72)

0.242 
(0.23) 

0.252 
(1.10)

 
Table A8. Winter MRI downscaled weather-state mean frequencies (and 
standard errors, in brackets, relative to 20C3M) 
State 20C3M A1B mid A1B end A2 mid A2 end B1 mid  B1 end 
1 0.450 0.514 

(3.36) 
0.534 
(4.20)

0.503 
(2.86)

0.541 
(4.11)

0.506 
(2.71) 

0.509 
(2.85)

2 0.104 0.083 
(2.38) 

0.083 
(2.99)

0.088 
(1.73)

0.082 
(2.40)

0.083 
(2.89) 

0.089 
(1.70)

3 0.127 0.105 
(2.03) 

0.091 
(3.97)

0.111 
(1.49)

0.094 
(3.10)

0.105 
(2.27) 

0.103 
(2.63)

4 0.206 0.202 
(0.45) 

0.196 
(1.03)

0.202 
(0.51)

0.190 
(1.98)

0.202 
(0.47) 

0.211 
(0.51)

5 0.113 0.095 
(2.26) 

0.096 
(2.28)

0.096 
(2.44)

0.093 
(3.16)

0.105 
(0.97) 

0.087 
(3.51)
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APPENDIX B.  Table B1. Range in mean annual percentage rainfall change by GCM and by scenario for 2046–2065 (left) and 2081–2100 
(right) 

Station B1 A1B A2 CCAM GFDL Mk3.5 MRI B1 A1B A2 CCAM GFDL Mk3.5 MRI 
1 9.08 12.71 17.21 2.30 2.40 4.79 13.71 10.71 25.56 28.43 7.18 4.87 7.31 12.54 
2 9.81 10.81 16.26 3.21 5.58 2.90 10.37 8.51 19.00 22.23 2.25 6.38 7.39 7.87 
3 8.56 11.74 13.02 1.60 5.89 2.35 9.96 8.71 19.61 22.04 1.12 8.04 9.78 7.71 
4 10.93 11.19 17.24 3.00 3.74 4.05 10.15 11.27 22.21 20.54 1.94 8.01 7.87 8.42 
5 10.10 10.95 14.08 2.58 6.11 3.44 11.12 10.71 23.69 27.36 4.26 4.91 8.59 9.33 
6 9.41 10.44 13.43 1.48 6.50 3.36 9.69 8.63 22.05 24.96 1.64 7.20 11.28 7.58 
7 9.56 11.76 12.88 1.07 6.69 3.90 9.99 9.03 22.70 25.97 2.38 6.80 10.11 9.74 
8 11.45 12.65 16.12 1.69 3.90 5.02 12.91 12.49 25.16 28.01 2.01 5.75 9.29 11.03 
9 9.72 12.03 14.18 1.55 7.68 2.27 10.40 9.97 23.16 25.43 0.91 10.15 11.45 7.90 

10 8.91 11.66 14.51 2.02 5.99 2.24 8.71 10.01 20.44 23.09 2.17 6.43 8.76 7.52 
11 10.49 13.51 17.86 4.23 6.80 4.12 12.54 11.46 25.25 29.58 2.82 8.75 12.25 11.04 
12 10.69 13.48 16.78 3.80 4.38 6.61 13.24 10.32 23.35 27.45 5.65 4.33 8.49 10.23 
13 11.94 13.80 16.43 2.58 3.31 4.46 13.63 14.35 28.62 29.66 2.72 4.27 9.47 13.07 
14 13.94 15.84 21.29 3.73 5.49 5.92 12.86 12.56 28.40 30.70 3.70 6.76 10.88 13.56 
15 8.52 13.67 17.14 2.83 6.33 3.88 12.60 11.84 24.67 30.57 4.07 5.55 12.21 10.70 
16 9.93 14.56 19.10 4.31 2.08 5.55 13.38 11.83 26.00 30.30 4.96 6.18 7.90 12.86 
17 10.10 10.84 13.60 1.79 5.82 2.60 10.06 9.51 22.61 28.33 4.42 5.41 9.95 9.58 
18 10.61 13.32 16.94 2.72 3.88 3.40 12.48 12.57 26.43 27.70 3.39 3.74 8.76 12.44 
19 11.23 12.93 14.37 2.06 7.58 3.55 10.89 10.37 24.93 28.92 2.26 7.67 11.49 7.28 
20 10.72 11.05 12.23 1.75 7.71 4.62 10.44 9.16 23.20 28.42 4.44 5.40 10.60 8.97 
21 10.14 12.61 14.33 2.62 8.30 3.48 10.24 8.13 22.34 27.73 3.94 8.75 12.67 8.11 
22 11.46 12.46 14.17 1.33 8.36 3.58 10.69 9.77 24.13 28.54 4.12 7.84 10.12 8.02 
23 10.62 12.01 13.67 1.47 8.35 2.92 11.33 10.00 23.18 27.20 2.81 6.53 11.45 8.12 
24 9.50 10.12 10.83 1.62 8.44 2.56 8.95 7.95 20.40 24.13 2.20 9.29 11.98 6.77 
25 7.71 10.73 8.67 1.10 9.25 1.62 8.72 7.09 18.73 22.12 1.06 10.60 12.16 6.68 
26 8.86 10.99 12.71 0.91 5.00 2.85 10.26 10.30 17.94 18.73 0.84 5.44 10.50 7.96 
27 8.89 9.04 8.96 2.07 8.43 2.62 8.01 6.69 17.68 20.89 2.97 4.74 7.88 5.26 
28 8.15 11.94 8.41 0.30 10.55 1.43 7.96 8.34 19.26 22.17 0.36 11.22 13.14 7.93 
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29 8.81 9.85 7.56 0.93 10.14 1.89 7.66 7.10 18.72 21.13 1.02 10.09 11.87 6.77 
30 6.49 12.60 11.07 1.78 9.29 0.55 5.69 7.77 18.51 20.82 0.64 11.35 11.39 6.90 

 


