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Abstract

There is an obvious imbalance between, on the one hand, the importance of spatio-temporal variability of precipitation for

river flows and, on the other, their representation in current empirical downscaling models that are applied for climate scenarios.

The imperfect variability results from incomplete forcing of the large scales. The last IPCC report mentioned three regression-

based methods that try to overcome the imperfection of point-wise variability: randomization, inflation, and expanded

downscaling, Here, we analyze and compare these methods with respect to their spatial variability and how that relates to river

runoff. Using the downscaled temperature and precipitation for observed and simulated large-scale forcings (climate scenarios),

we applied the hydrologic model HBV for two river basins in Germany. We discuss the obvious and hidden model

imperfections regarding present and future precipitation climate, along with their relevance for runoff. The overall picture is

quite diverse, and it appears that temporal characteristics, i.e. time-lagged effects, are at least as important as spatial

characteristics. We conclude that, although the models agree in a number of essential projections for river flow, a more

consistent picture requires the full spatio-temporal variability as it depends on the large scale atmosphere.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

River runoff, in its extreme forms of floods and

droughts, is one of the most vitally felt possible

impacts of global warming. And while at first sight

runoff might appear as a handy and simple

1-dimensional quantity being easy to calibrate and
0022-1694/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.jhydrol.2005.01.025

* Corresponding author.

E-mail addresses: gerd.buerger@mail.met.fu-berlin.de

(G. Bürger), ychen@bgc-jena.mpg.de (Y. Chen).
validate, it is known to be among the most complex

and challenging phenomena in the field of climate

impact research. This is owed to the circumstance that

runoff acts as a spatial and temporal integrator of

meteorological fields, and is thus sensitive to the

entire spatio-temporal structure of those fields.

Inadequate representation of either the spatial corre-

lations and/or the temporal autocorrelation of these

fields leads to errors in the simulated runoff, which are

thus rather complex and difficult to isolate.

Supposedly no other field therefore requires such

a detailed knowledge about the spatio-temporal
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signature of climate change than hydrologic systems.

The simulation of climate change is done using

general circulation models (GCMs) that are driven by

estimates of historic and future greenhouse gas

emissions, and which convey the global climate

information on a fairly large-scale coordinate system.

It is obvious that these models are incapable of giving

any such detail. This information must be externally

derived from procedures known as downscaling.

However, downscaling often reveals a trade off

between the spatial and temporal detail, in the sense

that highly resolved temporal scales are often poor in

the spatial domain, and vice versa. For example, daily

precipitation scenarios are usually encountered as

point simulations for a number of recording stations

(Karl et al., 1990; Bardossy and Plate, 1991; Wilby

and Wigley, 1997; Bronstert et al., 2000; Bürger,

2002), while spatially explicit simulations are pre-

ferably encountered in a context with a poorly

resolved temporal scale (such as monthly or annually,

cf. Grabs, 1997; Kilsby, 2000; Kleinn et al., 2002).

Through the event of regional circulation models

(RCMs) a reconciliation between the two domains

seems possible. But despite enormous progress with

these models—the actual resolution is 1/6 degrees—

RCM errors are still too large, especially over

complex terrain, for a direct coupling to hydrologic

models (Machenhauer et al., 1998; Giorgi and

Mearns, 1999; Jacob et al., 2001).

If observations are not a limiting factor empirical

downscaling techniques offer a very pragmatic

alternative to the complex and expensive dynamical

simulations, for hydrologic applications in particular,

since the spatial and temporal detail of a dense

observational network can be fully utilized. Many

different schemes have been developed, all of them in

some way or another formalizing the experience that

local weather is governed, at least partly, by the

prevailing large-scale circulation patterns. The main

question is now: How does one deal with the

unexplained part? Or how can one link the unexplained

to the explained part? For hydrologic applications this

is of major importance as, e.g. the daily variation of

precipitation is largely unexplained but contributes

strongly to the overall river flow variability. Since in

this case usually no other information is available

stochastic, or quasi-stochastic elements populate the

downscaling schemes to restore the original local
variability. This can be done in various ways, each of

which has its own advantage and disadvantage.

Roughly, the available methods can be grouped into

three different schemes, one using weather-types (cf.

Bardossy and Plate, 1992; Charles et al., 1999; Wilks

1999), one using resampling techniques or analogues

(cf. Buishand and Brandsma, 2001; Palutikof et al.,

2002)) and one using regression. The limitations of

these schemes is marked by imperfect representation

of local daily variability in a future climate. Conduct-

ing a thorough comparison of the schemes with respect

to hydrologic applications is overwhelmingly complex

and can only be performed in small steps. Inspired by

the last IPCC report (IPCC, 2001, 10.6.3.) the current

study focuses on regression-based models. The report

reflects on problems to represent point-wise daily

variability and how to overcome them. Three

approaches are cited that successfully restore the

point-wise daily variability: randomization (RND,

Buma and Dehn, 1998), inflation (IFN, Karl et al.,

1990), and expanded downscaling (EDS, Bürger,

1996), all built on the regression scheme. There are

two questions that we want to answer: First, to what

extent does the restoration distort spatial corre-

lations?—And second, how should one deal with the

unexplained part in view of climate change?

For an observational network of temperature and

precipitation stations from two river basins in

Germany we simulate corresponding downscaled

series, driven by observed and simulated atmospheric

fields of the global atmosphere. In a final step, the

simulated series of each basin drive a hydrologic

model and generate the appropriate runoff. Our

analysis is twofold: First, we compare various

precipitation statistics and interpret them from their

basic mathematical assumptions. Second, we try to

understand the simulated runoff from these statistics

and discuss additional effects, such as those stemming

from temperature and temporal characteristics.

Only after this paper’s first review a recent study

(Wilby et al., 2003) came to our attention that has a

similar intention by conducting a model intercompar-

ison for multisite downscaling. The main differences

are that, first, it has a focus solely on current climate

and, second, the models are distinguished by different

temporal behavior of one ‘marker’ site, from which the

other sites are simulated using a resampling scheme.
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2. Simulating local variability

All models under investigation are based on the

regression scheme. To fully understand the generation

of local variability we will describe that scheme with

some detail, in particular its failure for hydrologic

applications. Then follow the model recipes to

reestablish local variability.

Each model defines a statistical relation between

the large-scale, atmospheric process, g, and some

local record of meteorological variables, l. For the

standard case of linear regression the assumed relation

is of the form

l Z Lg (1)

with a matrix L that by definition minimizes the

resulting (squared) model error. Specifically, if we

denote the cross covariance of any two (multivariate)

processes x and h by Cxh, then the solution matrix LR

is given by the well-known linear regression term

LR Z ClgCK1
gg (2)

See Appendix A for a derivation of Eq. (2); there we

also show how, in the presence of small global-local

correlations, the model generates small amplitudes for

avoiding large errors. For daily precipitation this

correlation is particularly poor, rendering the model

useless for downscaling applications.
2.1. How variability is added

We describe three approaches to deal with the

unexplained portion of local variability. We empha-

size that ‘unexplained’ here means ‘linearly unex-

plained’, but the exact definition of that portion will

be given later in Section 3. Each approach utilizes

some form of normalization. That means a basic state

is estimated from observations and the model

simulates anomalies relative to this state. Further-

more, since the large-scale atmospheric forcing fields

are predominantly Gaussian, all precipitation data

must be transformed to a (more or less) normal variate

prior to any simulation. In this study, we use a generic

normalization scheme for all models as described in

Bürger (2002), cf. also Ledermann, (1984). It defines

a 1–1 correspondence between daily precipitation

series and normal variates with zero mean and unit
variance, using appropriate thresholds for dry days (so

that the occurrence process is treated internally).
2.1.1. Randomization

The randomization model (RND) is an additive

model of the form

l Z LRg C3 (3)

The error model, i.e. the simulation of an adequate

process 3, can be defined in various ways. For

example, it can be a simple white noise process of

the Richardson type (Richardson, 1981) or a multi-

variate autoregressive model of order one (AR(1), cf.

Brockwell and Davis, (1991). We applied the latter

scheme; it is capable of memorizing local effects of

the past day, but not more, and has correct spatial

covariance.
2.1.2. Inflation

Instead of adding independent noise, the inflation

model (IFN) alters the regression matrix itself, so

that

l Z LIg (4)

gives correct local variance. This can easily be

achieved by multiplying the jth row of LR by sj=ŝj,

the ratio of observed and simulated standard

deviation from the regression model. Note that by

changing the l-components in this way the mutual

correlations between them are changed as well. It is

interesting to note that IFN generates a smaller error

than RND. A proof for the 1-dimensional case is

given in Appendix B.
2.1.3. Expansion

EDS is an extension of the inflation model, having

the same form as (4) but using a different matrix.

Instead of a posteriori ‘repairing’ the regression

model with appropriate scaling coefficients, EDS

modifies the basic regression equation itself, in the

following way: While for regression the matrix L

should unconditionally minimize the (squared) model

error, for EDS one introduces a side condition

expressing the fact that the observed covariance be

preserved (see Appendix C). This defines a nonlinear

optimization problem that has a unique solution LE,

called the EDS model. When driving EDS with
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the global fields that were used for calibration

(analyses), the entire covariance structure of the

local fields is reproduced. This applies likewise to

any atmospheric process g of the same climate (with

respect to Cgg). Such g generates realistic local

variability that is representative of the present climate,

at least as can be measured by the covariance matrix.

That behavior is altered if the global covariance Cgg

changes, for example in a GCM scenario. For details

please consult Bürger, (1996).

Note that the RND model implicitely disregards

the unexplained portion of atmospheric variability,

which amounts to assuming a constant Cgg! Climate

change that unfolds in Cgg (i.e. in variability) can

therefore not be covered by this model. Moreover,

being purely stochastic the memory of the model

(with respect to short-term fluctuations) has faded

after only one day. For hydrologic applications, as we

will see below, this can have major implications.

2.2. The hydrologic model

For the continuous simulation of river discharge

we have applied the ‘Nordic’ version of the

conceptual rainfall-runoff model HBV (Sælthun,

1996), which represents a synthesis of various

versions of HBV used in Scandinavia. In these

countries, HBV has been in operational use for over

20 years. Moreover, successful applications of HBV

are reported from some 30 countries with different

climatic conditions (Bergström, 1992; Bergström,

1995). The main reasons to apply HBV for our

study were the sound physical description of the main

runoff generating processes without exceeding a

certain level of complexity, and the relatively low

computational resources required for a climate impact

simulation run over 100 years or more. The HBV

model has been thoroughly validated in connection

with climate downscaling studies, using observed as

well as simulated global climate (cf. Bronstert et al.,

2002; Bürger, 2002; Menzel and Bürger, 2002).

The general structure of HBV consists of three

model components: (1) Snow accumulation and snow

melt, (2) the simulation of soil moisture and runoff,

and (3) a response and river routing procedure. The

model expects precipitation and temperature data on

input. Usually, HBV is applied at daily time steps, but

appropriate data availability allows a higher temporal
resolution. HBV is a lumped model, i.e. it describes

the catchment as a spatially homogeneous system.

Even though a catchment may be subdivided into 10

equal-area elevation zones the parameters used are

generally the same for all the sub-areas. Therefore, we

decided to use the semi-distributed HBV-D, a

derivative of the ‘Nordic’ HBV-model (Krysanova

et al., 1999). This model version allows to classify a

catchment into an optional number of sub-basins

which are regarded as primary hydrological units. In

analogy to the original model version the sub-basins

are then classified into 10 height intervals, but each

considering up to 15 vegetation types with a proper

parameterization. For the two catchments of the

current study, parameter calibration and further

details are described in Schwandt (2004).
3. Downscaled precipitation

We compare the performance of the three down-

scaling models using observed and simulated atmos-

pheric conditions. The observed fields were taken

from the reanalysis project conducted by the National

Center of Environmental Prediction (NCEP, cf.

Kalnay et al., 1996) of the USA; we selected a grid

defined by the rectangle between (10 W, 40 N) and

(20 E, 60 N), for the following group of predictors

variables:
(A)
 500 hPa geopotential height
(B)
 850 hPa temperature
(C)
 700 hPa specific humidity
These variables reflect the main global agents that

affect local precipitation: circulation (A), temperature

(B), and moisture (C). The original NCEP grid size of

2.5!2.5 had to be interpolated to the slightly coarser

GCM resolution of 2.8!2.8. All fields were projected

onto the major principal components so that they hold

99% of the variance. The components (142 as a

whole) were scaled to ensure that each field

contributes equally to the final predictor variance.

All fields were normalized relative to the annual cycle

by centralizing and scaling with the respective means

and (inverse) standard deviations.

The simulated fields were generated by the

coupled atmosphere ocean GCM ECHAM4/OPYC3



G. Bürger, Y. Chen / Journal of Hydrology 311 (2005) 299–317 303
of the DKRZ, using a T42 resolution (see Roeckner et

al., 1996). From the model fields we selected the same

area and variables as before for NCEP, and projected

them onto the leading set of NCEP EOFs. By filtering

out the seasonal cycle we obtained the final predictor

set for the subsequent downscaling. The filtering

included a seasonal rescaling due to incorrect seasonal

amplitudes in the GCM fields. Finally, therefore, the

first two moments of the GCM predictor fields (of

some undisturbed 30-year base period) were made

identical to the analyses; higher moments were not

considered.

There are two simulations of the GCM: One with

stationary climatic conditions (300 year ‘control run’)

and one driven by the IPCC emission scenario IS95a,

usually termed ‘business as usual’. This run starts in

1860 and continues to the year 2100. Before 1990,

emissions are estimated from historic measurements

while after they are taken from IS95a. Aerosol effects

are not included here. For the scenario, the seasonal

cycle is determined from the model period 1961–1990

while an arbitrary 30-year period is chosen for the

control run. The downscaled results of the NCEP

analyses, the control and the business-as-usual run of

the GCM will be denoted by ANA, CTL, and BAU,

respectively.

The analysis has been conducted for the Ruhr and

the Neckar basin in Germany. The mostly mountai-

nous Ruhr basin is located in the state of North-Rhine

Westphalia east of the city of Cologne. In the

predominantly maritime climate, precipitation over

the basin mostly occurs through westerly cyclonic

activity. From that basin we selected five climate

stations recording temperature, together with another

53 precipitation gauges. The Neckar basin is located

in the South-West of Germany with lesser maritime

and westerly cyclonic influence. From that basin we

selected six climate stations recording minimum,

maximum, and average temperature, and further 37

precipitation records; all data were measured on a

daily basis. Except for the validation experiment

described in the next section, the models were

calibrated using global and local data from the

WMO base period of 1961–1990. This applies to
(A)
 the calculation of the annual cycle and its

anomalies;
(B)
 the subsequent EOF calculation;
(C)
 the normalization step of the local variables;
(D)
 the definition of the matrices LR, LI, and LE.
Any simulated climate change must be regarded

relative to this base climate. The important step of

normalizing the local variables was done using the

probit approach (Ledermann, 1984). With the probit

function one is able to transform any quantity to a

normal variate with zero mean and unit variance. (The

nonlinearity of the probit measures the deviation from

normality, which for precipitation is obviously quite

strong.) The probit parameters define the climatology

of that quantity. To avoid artificial expansion of low

frequencies, such as slow climatic trends, by the

models IFN and EDS, all datasets have been high-pass

filtered using a threshold of one month. Only the

shorter time scales are modeled after Section 2.1; the

longer time scales are simulated using linear

regression. Being regression-based, the definition of

any of the three models requires no more than the

knowledge of the first two moments of the global and

local variables. This renders them quite robust against

overfitting. For independent validation of the EDS

model see below, and more thoroughly in (Bürger,

2002); this source also provides further details about

the method.

3.1. Current climate

In Fig. 1 we see a typical winter and summer

simulation of areal precipitation, P, for the Ruhr

basin; for this case, the model was calibrated with

independent data. Especially for summer it is evident

that fast observed fluctuations are not reproduced by

RND for which those are stochastic; slower variations

(month to month and longer) are better reproduced.

The performance of IFN and EDS is comparable in

many respects, with IFN often being stronger than

EDS, especially in winter. The following two figures

demonstrate that this is a systematic behavior. Fig. 2

depicts the daily areal average of the full Ruhr dataset

in the form of a qq-plot, distinguished by the winter

(Oct–Mar) and summer (Apr–Sep) season. To account

for its stochastic nature we actually used 10

realizations of RND. One sees that for winter the

spread of RND rather closely follows the diagonal of

perfectly reproduced scales. This is similar in

summer, but with a larger spread and a tendency to



Fig. 1. Precipitation simulation for the Ruhr basin, for typical time spans. For winter 1967 (upper panel) it is evident that fast fluctuations of

RND (dots, they are stochastic) are uncorrelated to the observations (OBS, heavy line), whereas larger clusters are better reproduced. IFN

(dashed-dots) and EDS (dashed) perform satisfactory on both temporal scales, but in most cases IFN is bigger. The summer 1980 simulation

(lower panel) appears more erratic. The heavy event around July 20 is reproduced quite well by IFN, and too weak by EDS and especially RND.

Precipitation is shown as the average over.

Fig. 2. qq-plot of daily observed vs. simulated precipitation P, areally averaged for the Ruhr basin. RND (crosses) comprises 10 realizations. For

winter (left panel), both RND and EDS (dashed) reproduce observed (OBS, heavy line) scales with good accuracy, while IFN-simulated values

(dashed-dots) are too large. For summer, the situation is somewhat reversed, with more accurate levels on the side of IFN and too low values,

especially for scales greater than about 25 mm/d, for EDS. RND performs best on all scales.
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Fig. 3. Like Fig. 2, for the Neckar. The overestimation of IFN scales is apparent for both seasons. Winterly EDS scales are satisfactory except

the extremes which are too weak, similarly to RND. Summerly RND and EDS scales are too weak either.

Table 1

Average inter-station correlation, in %, in exceeding the 50- and

99%-percentile (that is, Kendalls tb), for observed and simulated

precipitation, based on 1961–1990

OBS RND IFN EDS

Ruhr

Winter Q50 75 55 81 59

Q99 49 33 69 37

Summer Q50 73 53 79 53

Q99 35 30 54 21

Neckar

Winter Q50 75 51 80 53

Q99 49 30 64 19

Summer Q50 73 51 79 50

Q99 31 25 56 23

In all cases, RND (one realization) and EDS are too low and IFN is

too high. The correlations are better reproduced for the Ruhr than

for the Neckar.
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underestimate the strong events. Note that the RND

spread is generated by some fixed statistical procedure

with parameters that are calibrated to match the

natural variation. Because systematic RND errors

would show up as a bias the spread approximates the

uncertainty that stems from natural fluctuations and/or

estimation errors. That means, a very rough measure

for the confidence strip about the diagonal of the

qq-plot (i.e. observations) is given by the width of the

RND spread of the corresponding observed scale.

This uncertainty, at least, must be taken into account

when assessing the performance of RND and the other

models. Moreover, while ‘true’ distributions are

smooth our shown discrete estimates are spoiled by

sampling errors. This applies in particular to the

extremes, including those from observations (see

below).

On this background, the IFN model strongly

overestimates all winterly and many of the summerly

scales, while the EDS is almost perfect in winter but

too weak in summer. For the Neckar (Fig. 3), the

overestimation of IFN scales is even stronger. For

winter, RND and EDS show similarly good perform-

ance, with exceptions for the very extremes, which

are too weak. Summerly medium to large scales are

too weak for both models. The extremes are

more uncertain compared to the Ruhr. Note that

the rightmost vertical RND column represents
the maximum observed P; especially for the Ruhr

winter and Neckar summer this might well be an

outlier (a sampling effect) so that the curves are

somewhat misleading. Since the IFN is designed to

preserve the local scale of a single variable, its obvious

failure must be attributed to forming the areal average.

In Appendix D we prove that the IFN model does in

fact not preserve the scale of areal means, due to a

misrepresentation of spatial correlations. Whether they

are higher or lower than observations depends on the

context. In our case they are too strong, as Table 1
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shows. Using for any station as a binary measure the

exceedance of the 50% (Q50) and the 99% (Q99)

percentile, respectively, the Table shows their mutual

correlation (or equivalently, Kendalls tb) averaged

over all station pairs. In contrast, the RND and EDS

simulated correlation is too weak, corresponding to

the summerly averages from Figs. 2 and 3. Note in

particular the very low Q99 values of EDS for the

Neckar winter, which evidently conflict with the

claimed preservation of local covariance by EDS.
Fig. 4. Precipitation characteristics for various EDS simulations for the N

Summerly (right panel) mP is only correct for ANA (thin line) but too stro

slightly too high in all models and IP too low for ANA. For the BAU scenar

twofold, as there is a positive signal only for IP accompanied by a negativ
Since the correct working of the EDS core module

(Eq. (C1)) is without doubt this failure must be

attributed to deficiencies in the normalization step.

We suspect that the driving NCEP fields are not fully

Gaussian—they were only normalized via mean and

standard deviation (and not via the probit)—so that

non-Gaussian distribution tails are causing these

effects. This can of course be remedied, but it is

certainly a drawback of the EDS model to be so

sensitive to the details of that distribution.
eckar. The present winter (heavy line) climate is well reproduced.

ng when forced with the GCM (dashed: CTL; crosses: BAU); fP is

io, winterly increase is obvious for mP and IP. The summer picture is

e signal in fP.
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3.2. Future climate

The former section defined the internal error of the

various downscaling methods by using ‘perfect’

large-scale forcing fields. This error will be super-

imposed by external errors in the GCM-simulated

large-scale forcing. To detect and analyze climate

change signals more safely it is useful to have at least

one further independent simulation of the GCM, such

as the control run. Systematic errors are identical in

both and should become visible in the downscaling

result.

With respect to the effects of global warming on

precipitation we focus on the two parameters of daily

frequency and intensity. If there are such effects they

are likely to have different characteristics in winter

and summer. In this section, we concentrate on the

comparison of RND and EDS; the IFN simulations are

characterized by overestimated amplitudes known

from the former section, while they are otherwise

similar to EDS.

The main results of the EDS simulation are shown

in Fig. 4 for the Neckar basin; the Ruhr results are

comparable. The Figure depicts, for the winter and

summer season separately, smoothed annual averages

of daily mean (mP), frequency (fP) and intensity (IP) of

precipitation, formed as an average over all precipi-

tation stations. Several things are noticeable.
†
 ANA-simulated IP is somewhat weak.
†
 Present summer values of mP and IP are too strong

for the GCM driven simulations CTL and BAU,

the latter between 1961 and 1990; this can be

attributed to errors in (the covariance structure of)

the simulated summerly atmosphere.
†
 The CTL simulation is stationary (and does not

differ markedly between the three models).
†
 Winterly mP and IP are projected to increase in the

BAU scenario while fP remains stationary.
†
 The positive signal for summerly IP is balanced by

a negative signal of summerly fP, leading to a zero

net effect for mP.

To focus on the consequences of global warming

we now show the same statistics for the BAU scenario

only, as simulated by all models RND, IFN, and EDS.

For RND we again used 10 realizations. As before,

the Neckar scenarios are sufficiently representative of
both basins, so we only show those in Fig. 5. All

models reproduce the present climate statistics quite

satisfactory, except for summerly IP which is too

strong (cf. Fig. 4). For the future, all models equally

project the winterly statistics with stationary frequen-

cies and increasing intensities, along with a decrease

of summerly frequencies. They fail to consistently

project the evolution of summerly intensities: While

RND-simulated intensities remain stationary through-

out the model period EDS simulates increasing IP,

starting with the 21st century. This raises the

following questions:
(A)
 Can we understand the behavior of fP and IP?
(B)
 Why does EDS simulate summer intensification

but not RND?
ad (A): Signals in fP are most likely caused by

changes in the large-scale atmospheric circulation,

such as the occurrence and duration of cyclonic flow

or blocking. Therefore, slow variations in the forcing

fields are the main drivers for fP characteristics. Slow

variations are handled equally in all models, see

above, which therefore produce similar fP signals. The

intensification of single precipitation events is likely

caused by the enhanced water holding capacity of

warmer air (cf. Trenberth, 1999) so that more water

can precipitate per event. This effect is multiplied

by another effect of global warming: enhanced

evaporation and advection of moisture from the

global oceans will increase the supply of water

as well.

ad (B): Only the (linearly unresolvable) short-term

variability of the atmosphere is treated differently in

RND and EDS, and can thus be accounted for their

deviating results: While that variability is ignored by

RND and replaced by short-term noise of constant

characteristics, the EDS model allows for the slow

variation of that characteristic. This is possible as

the EDS defines a function between the statistics of g

(Cgg) and l (Cll), see Eq. (A4). Note that this function

must not be mistaken, as von Storch (1999) does, as

the model function between g and l itself. One such

variability signal is found by inspecting mean and

variance of atmospheric humidity in the BAU

scenario. Fig. 6 depicts the annual mean and standard

deviation, calculated as the daily variation about the

respective annual mean, of the leading principal



Fig. 5. Similar to Fig. 4, but only the BAU scenario by models RND (crosses), IFN (dashed), and EDS (solid). Present climate (black bars) is

reproduced satisfactorily, although some summerly values, especially IFN, appear slightly too high. The models agree in projecting stationary

frequencies and increasing intensities for winter and decreasing frequencies for summer. RND simulated IP is stationary while IFN and EDS

project an intensification.
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component of the North-Atlantic/European specific

humidity at 700 hPa. This principal component series

is a rather prominent predictor field. Not only do we

see a strong increase in the mean itself but also an

increase in the variation about that mean. In this case,

the increase is governed by the exponential growth

with temperature of the water holding capacity of the

atmosphere (from the Clausius–Clapeyron equation),

and so is a direct nonlinear effect. Another possible

variability signal, and certainly not the last, is a shift

in the storm tracks, as a change in variance of the

geopotential height fields. All these signals would
have a strong effect on local precipitation which

cannot be captured by the RND model.

The different projections for summer intensities

become even more pronounced if one looks at

extreme events. To conduct an extreme value analysis

we have to observe the fact that each of the results is

based on the WMO baseline period of 30 years used

for calibration, so that robust estimates of return

periods will be confined to that scale at most. We have

conducted analyses for a number of 30-year time

spans. To utilize the full spectrum of GCM variability

the control run was split into 10 adjacent pieces,



Fig. 6. BAU-scenario of atmospheric moisture, in terms of annual mean (solid) and standard deviation (dashed) of the first EOF of specific

humidity (taking a North-Atlantic section from the ECHAM IS95a scenario run); heavy lines indicate smoothing.
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which increases the sample size considerably. This

results in 13 different 30-year spans, as follows:
†
 1961–1990 observations (OBS)
†
 1961–1990 simulations from atmospheric obser-

vations (ANA)
†
 Ten 30-year spans from the control simulation

(10!CTL)
†
 2061–2090 from the global warming scenario

(BAU)

For each time span, we calculated the respective

empirical cumulative distribution function (cdf) for

the summer season. To acknowledge for the involved

uncertainty we have not applied any function fits

(such as Gumbel) to the groups of discrete points.

Fig. 7 shows, exemplified for the Neckar basin (the

Ruhr shows essentially the same), the resulting 13 cdfs

for both models RND and EDS. Note the increase of

sampling errors as one approaches the maximum of 30

years (for which the observed maximum is the only

sample). Estimates of return periods below about 5

years are more robust. For both models we note a

persistent underestimation of 1–5-year events in

the ANA simulation; this corresponds to the under-

estimation of these scales seen in Figs. 3 and 4.
The 10 cdfs of the CTL run indicate an overestimation

on a wide range of scales, in particular for summer. A

closer investigation revealed as the main source of

error incorrect correlations among the GCM predictor

variables. Possible improvements are on the side of

the GCM and hence beyond our control. Besides the

sampling errors mentioned above, the extreme events

(O5-year return period) show considerable spread in

the 10 cdfs, indicating rather strong fluctuation. For

RND, the BAU scenario is not distinguishable from

that ‘natural background’. EDS, however, simulates a

clear intensification on all scales, with increases

relative to the control run of up to 10 mm/d for a

typical 1-year event. The following section will show

if and how this affects the runoff generated from these

scenarios.
4. Downscaling runoff

In the former section we have analyzed the

performance of the three downscaling models with

respect to current as well as future precipitation

climate. As we saw, precipitation climate has many

aspects, such as occurrence or intensity properties



Fig. 7. Extreme value analysis of areal P for the Neckar, using 13 different cdfs, for summer simulations of RND (one realization, left panel) and

EDS (right panel). Compared to observations (heavy solid line), events of return periods O1 year are too weak for ANA (thin line) in both

models, while the 10 CTLs (crosses) are too strong. The BAU scenario (stars) is not significantly different for RND but shows a strong

intensification for EDS.
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along with spatial coherence, and we have tried to

cover them as good as possible. We further saw that

none of the models was perfect in all these aspects,

especially when spatial properties were included. In

this section, we feed the precipitation results into the

hydrologic model and try to assess the importance of

spatial precipitation coherence for its simulations.

Note that to contain the scope of this paper temporal

autocorrelation like, e.g. the duration of precipitation

events was not at all considered.

To obtain credible results from the model chain

GCM/downscaling/hydrologic model the follow-

ing two things are crucial: First, present river climate

should be reproducible from present atmospheric

climate via downscaling and hydrologic modeling;

second, simulated future trends of river climate should

be as consistent as possible with a given global

climate projection. In the above chain, the HBV is the

least problematic. Previous studies (cf. Menzel and

Bürger, 2002; Schwandt, 2004); see also http://dfnk.

gfz-potsdam.de) demonstrate that the error produced

by HBV is negligible against the errors in the input;

hence we simply ignore them. Accordingly, by
referring to runoff ‘observations’ we generally mean

HBV-simulations using observed precipitation.
4.1. Current climate

The following Fig. 8 corresponds with Fig. 1. For

the same winter and summer periods we show the

resulting Ruhr-runoff. The winterly overestimation by

IFN is evident from the December 26 peak discharge.

Here EDS appears slightly better than RND. The

summer period of 1980 is best simulated by EDS,

although the peak event of July 22 is not sufficiently

pronounced. The respective Nash–Sutcliff coeffi-

cients, corresponding to the entire period 1961–

1990, are for winter: IFN: 80%, EDS: 83%, and for

summer: IFN: 79%, EDS: 82% (RND with 72 and

76%, respectively for one specific realization, is not

comparable here due to its stochastic nature). The

overall representation of scales is shown in Fig. 9, as

an analogue of Fig. 2 with runoff replacing areal

average precipitation. For winter, we note that the

moderate scales are overestimated by IFN. For the

extremes, i.e. scales beyond about 15 mm/d, the RND

http://dfnk.gfz-potsdam.de
http://dfnk.gfz-potsdam.de


Fig. 8. This corresponds with Fig. 1, here with HBV generated runoff from the (spatially explicit) precipitation simulations of the three

downscaling models. Relative to OBS (i.e. HBV-simulation from observed precipitation) the December 26 high flow (upper panel) is too strong

in the IFN model and too weak especially for the RND model. The event around July 20, 1980, generated a high flow that is too strong in IFN,

and slightly too weak in the other. Note the two strong ‘artificial’ events in earlier July.

Fig. 9. Like Fig. 2, for the Ruhr runoff R. The winterly overestimation of R by IFN on all scales is obvious, and for flows larger than about

15 mm/d the same is true for the EDS. The RND simulations (crosses) do not exhibit any significant bias. For summer, all models overestimate

moderate flows around 5 mm/d. Note that the summer statistic is much noisier.
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Fig. 10. Like Fig. 9, for the Neckar. Strong overestimation of extreme R-scales by IFN and EDS. But note that the four strongest events all

belong to one simulated flood. For summer, the moderate events are too strong for IFN, and the extremes are much too weak for RND and EDS.
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spread envelopes all other simulations, observations

being roughly at the lower third and IFN at, and EDS

slightly below, the top. Therefore, a significant

departure from the present winter climate can at

most be stated for the extremes of IFN and EDS. For

example, four of the largest six simulated events (by

IFN and EDS) belong to just one particular flood!—

Many aspects can be understood from the areal

average seen in Fig. 2, except the extremes of RND

and EDS which appear too strong for runoff. The

question of significance left aside—note that the

runoff spread is considerable, their different behavior

might result from discrepancies in the temporal

domain (see below). Note again the overestimation

of all scales in the IFN model. Summerly flows are

similar in all models. It is interesting—but beyond our

grasp—that they all show a slight positive bias for

medium scales of about 5 mm/d. The uncertainty strip

for the extremes (as indicated by the RND spread) is

even larger here, and all simulations lie well within

that strip. Comparing this to Fig. 2 it is noticeable that

the underestimation of extremes by RND and EDS

does not seem to have any negative influence on the

runoff. This throws some light on the difficulty of the

verification problem here: Namely, it is well possible

that the negative spatial errors in those models are

balanced by positive errors generated in the temporal

domain. This is supported by the winterly figure
(including the Neckar, see below) where correct

spatial statistics lead to an overestimation of runoff.

The results for the Neckar, shown in Fig. 10, are

different. We note a striking overestimation of

extreme winterly flow by IFN and EDS and a similar

underestimation of summerly flow by RND and EDS.

While for winter the 4 strongest simulated R-values

belong to a single simulated flood, the too weak

summerly RND/EDS flow is more systematic (cf.

Table 1). Comparing this to Fig. 3 we find that it is the

only case where a simulated precipitation scale is not

‘amplified’ by the hydrologic model (in the sense that

too weak P generates correct R or correct P generates

too strong R). Given that areal P is a good proxy for R

one should, of course, try to explain the amplification

rather than its absence. But as that is most likely

related to deficiencies in the temporal domain of the

regression method itself this attempt goes beyond the

scope of the current study.
4.2. Future climate

The downscaled BAU climate scenarios as

described in Section 3.2 were used as forcing of the

HBV model. It turned out that the IFN- and EDS-

driven projections were rather similar, so we treat

them together. The resulting runoff R for the Ruhr

basin is depicted in Fig. 11 as follows: For each



Fig. 11. For the Ruhr, low (5%-quantile, lower panels) and high (95%-quantile, upper panels) annual flow from the BAU scenario from the RND

(crosses), IFN (dashed-dots) and EDS (dashed) model, in terms of runoff R (units: mm/d) using a 17-year moving average; left panel: winterly

flow, right panel: summerly flow. Current flow climate (heavy solid line) is reproduced successfully by all models, except summerly high flow

which is too weak in all models. Note that all models fluctuate remarkably synchronous. Winterly high flow is consistently projected to increase

as well as decreasing summerly low flow. But starting at about the year 2000 IFN/EDS diverge from RND with larger (especially low) flows.
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simulated year between 1860 and 2100 the low flow

(5%-quantile) and the high flow (95%-quantile) are

shown separately for the winter and summer season.

The present flow climate is reproduced quite well in

all models, except summer high flow which is slightly

too large. All models agree qualitatively in projecting

increasing winterly high flow and decreasing sum-

merly low flow. The strength of the signals are,

however, different. For example, the summerly

decrease of low flow is much more severe for RND.

Furthermore, RND-simulated summerly high flow at

the year 2100 is about 1 mm/d smaller than that of

IFN/EDS.

The differences are even more pronounced for the

Neckar, shown in Fig. 12. In the IFN/EDS simulations

for both seasons, the negative trend in low flow is

turned positive after about 2000. The same applies to

high flow, with runoff almost doubled in IFN/EDS

compared to RND at the year 2100. The parallels to

Fig. 5 are notorious, suggesting that one can attribute
the rise in summerly Neckar flow to a rise in

precipitation intensities.
5. Conclusions

We have analyzed the simulations of 3 different

downscaling models, RND (randomization), IFN

(inflation), and EDS, and compared their results

using subsequent hydrologic simulations. As a global

forcing we used observed as well as simulated

atmospheric fields, the latter representing either the

present or a warming climate. Not surprisingly, the

results are quite diverse and not easy to stratify. A

great complication arises from the superposition of

spatial and temporal correlation errors in the down-

scaled fields, and the possibility that both cancel each

other in the runoff simulation. Runoff alone is then a

bad indicator in the assessment of climate scenarios.

For successful simulations of the present climate



Fig. 12. Like Fig. 11, for the Neckar. Present runoff climate is within the standard error (not shown), except for summer high flow which is too

strong. Winterly high flow is projected to increase in all models, while RND simulates stationary and IFN/EDS increasing low flow. A decrease

of summerly low flow is only simulated by RND whereas under IFN/EDS it remains stationary. High flow increases for IFN/EDS and remains

stationary for RND.
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might be stemming from incorrect precipitation

statistics, whose errors only affect scenarios of future

climate. Our study focused on the analysis of the

spatial properties of the three models and compared

their results with the final runoff. It should be

complemented by further studies with emphasis on

the temporal behavior of these models.

None of the models was perfect even with respect

to the spatial behavior. We found it important to not

only state the failures but also try to understand them.

To summarize, we found that the RND model showed

very good performance with respect to present

climate, but was inherently unable to reflect changes

in the atmospheric variability. And we presented

evidence that such changes are to be expected in a

warming climate. The IFN model is the most simple

of the three models. But for multisite downscaling it is

flawed as it misrepresents spatial correlations. This

leads, for example, to incorrect scales in the simulated

areal precipitation. The EDS model might in theory

avoid the errors of the other two, but it turned out that
its performance heavily depends on the details of the

normalization. Because the driving atmospheric fields

were not perfectly transformed to Gaussian variates

the model produced considerable errors in the spatial

correlations. On the other hand, of all models it might

suffer most from biases in the simulated driving fields.

The model will certainly profit from an improvement

in the normalization.

The simulated runoff revealed other deficiencies

whose origin is partly unclear: Winterly high flow

climate is too strong for IFN and EDS, compared to

observations, although this is the result of only one

simulated flood in the case of the Neckar. And

summerly high Neckar flow is much too weak in RND

and EDS. These failures are likely to be related to the

overall climatic conditions of the respective basins.

Since the Ruhr has a closer proximity to the North Sea

its climate is more maritime and strongly determined

by the circulation over the Atlantic. For the mountai-

nous catchment of the Neckar the small-scale local

effects are more relevant which are harder to relate to
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(downscale from) that circulation. Therefore, differ-

ences and errors in the mechanism to generate the

residual portion of local variability will show up more

pronounced for this basin. We can only speculate as to

what causes these deficits. For example, the temporal

structure is misrepresented that produces the typical

sequence of events prior to a big flood. Or, the local

normalization scheme (cf. Section 2.1) that transforms

the extreme values is too badly parameterized so

that small errors are systematically accumulated.

Furthermore, as indicated above, all models might

negatively be affected by the residual non-normality

of the atmospheric fields.

Despite the deficiencies in reproducing the present

climate the global warming projections are still

remarkably consistent, except for the above-men-

tioned case for RND. All models project an

intensification of winterly precipitation with station-

ary frequencies, leading to increased winterly high

flow when driving the hydrologic model. They also

project a rather strong decrease in the frequency of

summerly rainfall, which in turn might be attributable

for the projected negative trend in summerly low flow.

Evaporative effects through enhanced warming do

certainly play a major role here, too. For high flow,

rainfall intensity is more relevant, but here the models

diverge: While remaining stationary under RND the

IFN/EDS-simulated intensities show a marked

increase. We have attributed this increase to a strong

rise in the variability of atmospheric moisture as

simulated by the GCM. As described above, this

signal cannot be captured by RND.

Present summerly high flow was severely too weak

for the RND and EDS model and, as we suspect,

correct for IFN only because of a positive intensity-

bias. This points to a general deficiency in the

regression approach. To investigate this further a

comparison with other, for example weather-type or

resampling schemes, is advisable. One must always be

aware, however, that the calibration of any down-

scaling model is limited to periods of no more than a

few decades, as given by the availability of atmos-

pheric observations (analyses). Therefore, robust

statistics such as return periods of river floods, for

example, can only be derived for that order of

magnitude, and everything beyond is too uncertain.

For example, the 10 RND realizations as well as

the 10 CTL simulations showed clearly that even
the 30-year return period of the maximum flow is

loaded with uncertainty.
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Appendix A. Reduction of variance

Each model defines a statistical relation between

the large-scale, atmospheric process, g, and some

record of hydrologic variables, l. For the standard

case of linear regression the relation is of the form

l Z Lg (A1)

with a matrix L that is determined to minimize the

resulting model error. Specifically, if we denote the

cross covariance of any two (multivariate) process x

and h by Cxh, then L is defined as the matrix that

minimizes the trace of the error covariance C33, with

3ZLgKl. This is easily calculated as

min
L

fC33g Z min
L

fLCggLT K2LCgf CCllg (A2)

and solved by equating the resulting Jacobian to zero,

which yields the well-known linear regression term

LR Z ClgCK1
gg (A3)

The local variance reduction of this model can be

deduced as follows. First, we note that for any linear

model L

simulated local covariance Z LCggLT (A4)

From the canonical correlation matrix

K Z ClgCK1
gg CgfC

K1
ll (A5)

one knows that its norm obeys jKj!1 (all eigenvalues

are !1; cf. von Storch and Navarra, 1993). Hence, for

the simulated local covariance of the regression model

LR it follows from (3) that

jLRCggLT
Rj Z jKCllj! jCllj (A6)
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In words: using linear regression, the scale of the

simulated local variability (the left hand side of (4)) is

bound by the prevailing global-local correlations, and

smaller than the observed local variability (the right

hand side of (4)).

Note that using (A2) and (A5), the error covariance

of linear regression is

C33 Z ð1 KKÞCll (A7)

Appendix B. Model error

For 1-dimensional linear regression, (A7) becomes

h32i Z ð1 Kr2Þs2
l (B1)

The inflation error variance is

h32
I i Z hðLIg KlÞ2i Z 2s

2
l ð1 KrÞ (B2)

Both are related by r as follows:

h32
I i

h32
0i

Z
2

1 Cr
(B3)

For lZprecipitation, r lies in the order of 0.5

(using a suitable g), so that roughly h32
I iZ1:3h32

0i. The

randomization model always gives h32
RiZ2h32

0i, which

is considerably larger than the inflation error.
Appendix C. Expanded downscaling

With the notation of Appendix A, the basic

definition of EDS is as follows

min
L2S

fLCggLT K2LCgl CCllg

SZfLjLCggLT ZCllg

(C1)

which simply means that one seeks a matrix L that

minimizes the model error as in regression, but

subject to the constraint that the simulated covariance

be preserved. Eq. (C1) describes a nonlinear con-

straint minimization problem (nonlinear program-

ming problem). It can be shown that it has a unique

solution LE which we refer to as the EDS model. We

note the following:
†
 Disregarding the second equation results in the

standard linear regression model.
†
 Disregarding the off-diagonal elements in the

second equation results in the inflation model.

The latter is not trivial (relative to the authors

analytical skills): Why should the inflation model not

be sub-optimal in the sense of (C1). But random tests

showed it is in fact optimal.
Appendix D. Spatial correlations

For simplicity, we assume that we only have two

local variables, x and h, with mean zero. The

expectation of the sum is

hðx CyÞ2i Z Cxx C2Cxh CChh (D1)

The same equation applies to the simulated variables.

The INF model preserves the two outer terms, Cxx and

Chh, of the right-hand side of (D1), describing the

variance of the variables x and h, respectively. The

mixed terms, Cxh, are not preserved, nor is, hence,

the overall expression. While for the univariate case it

can be shown that the sum is generally expanded, the

situation for multivariate cases seems more complex,

so that the shrinking or expanding of the sum depends

on the context.
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