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Abstract We design, apply, and validate a methodology
for correcting climate model output to produce internally
consistent fields that have the same statistical intensity
distribution as the observations. We refer to this as a
statistical bias correction. Validation of the methodology is
carried out using daily precipitation fields, defined over
Europe, from the ENSEMBLES climate model dataset. The
bias correction is calculated using data from 1961 to 1970,
without distinguishing between seasons, and applied to
seasonal data from 1991 to 2000. This choice of time
periods is made to maximize the lag between calibration
and validation within the ERA40 reanalysis period. Results
show that the method performs unexpectedly well. Not only
are the mean and other moments of the intensity distribu-
tion improved, as expected, but so are a drought and a
heavy precipitation index, which depend on the autocorre-
lation spectra. Given that the corrections were derived
without seasonal distinction and are based solely on
intensity distributions, a statistical quantity oblivious of
temporal correlations, it is encouraging to find that the
improvements are present even when seasons and temporal
statistics are considered. This encourages the application of
this method to multi-decadal climate projections.

1 Introduction

It is well known that general circulation model (GCM)
precipitation output cannot be used to force hydrological or
other impact models without some form of prior bias
correction if realistic output is sought (Sharma et al. 2007;
Hansen et al. 2006; Feddersen and Andersen 2005). The
errors in GCM daily precipitation afflict the entire intensity
spectrum: a low number of dry days, which are compen-
sated by too much drizzle, a bias in the mean, and the
inability to reproduce the observed high precipitation events
(Boberg et al. 2007; Leander and Buishand 2007). It is
customary for climate modelers to present future global or
regional temperature or precipitation projections in terms of
the relative changes in the statistics (Piani et al. 2007;
Gutowski et al. 2007). For these projections to be translated
into forcing fields for impact models, metadata with
realistic statistics and which incorporate the projected
statistical changes must be derived.

A realistic representation of precipitation fields in future
climate projections from climate models is crucial for
impact and vulnerability assessment (Semenov and
Doblas-Reyes 2007; Schneider et al. 2007; Wood et al.
2004). Hence, crop modelers use bias correction techniques
that correct all ranges of the intensity histogram (Biagorria
et al. 2007). Often, this involves some form of transfer
function derived from the observed and simulated cumula-
tive distribution functions (cdfs) (for example in Ines and
Hansen 2006). These methods are given a wide range of
names in the literature: statistical downscaling, quintile
mapping, and histogram equalizing, rank matching are
among these. In this study, we refer to our method as a
statistical bias correction. In applying a hindcast-derived
correction to simulations of projected climate, one must
assume that the correction still holds for the projected
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climate, which is not a trivial assumption (Trenberth et al.
2003). This assumption is more palatable if the transfer
function between raw and corrected GCM output is robust,
which is the case if it depends on fewer parameters to be
derived from the data. In this study, we develop a robust
and practical statistical bias correction method, which we
apply and validate using regional model output over Europe
from the ENSEMBLES project. In Section 2, we describe
the methodology, in Section 3 we present the results
followed by discussion and conclusions in Section 4.

2 Methodology

The statistical bias correction method validated in this study
is based on the initial assumption that both observed and
simulated intensity distributions are well approximated by
the gamma distribution:

pdf ðxÞ ¼ e �x
qð Þx k�1ð Þ

ΓðkÞqk ð1Þ

where x is normalized daily precipitation, where k and θ are
the form and scaling parameter, respectively.

This is a generally accepted practice for observed daily
precipitation where k>1(for example: Wilks 1995; Katz
1999). In the case of simulated precipitation, there may be a
case where k=1 (exponential distribution) or were the best
fit is achieved with k<1. These are the cases with a high
number of drizzle days and a rapid drop in occurrences for
higher precipitation values. Of course, we cannot define the
gamma distribution at x=0 when k<1 because it is
unbounded there; hence, we chose to restrict the fit to
x>ε>0 and add the number of dry days to the list of
parameters in the correction method. As an example, let us
assume that the pdf of simulated daily precipitation
(excluding dry days) over a certain grid point is well fitted
by the gamma distribution shown in Fig. 1a (solid line)
with k=1 and θ=0.8. Let us also assume that the dashed
line in Fig. 1a fits the pdf of observed daily precipitation
(excluding dry days) at the same grid point. This too is a
gamma distribution but with k=2 and θ=0.7. To construct a
transfer function y=f(x), where x and y are the simulated
and corrected values of daily precipitation, respectively, and
such that the distribution of y matches that of the
observations, we proceed by plotting the cdfs for the
simulated and observed variables, defined as:

cdf ðxÞ ¼
Zx

0

e �x
qð Þx0 k�1ð Þ

ΓðkÞqk dx0 þ cdf ð0Þ ð2Þ

where cdf(0) is the fraction of days with no precipitation and
shown in Fig. 1b. The desired transfer function y=f(x) obeys

the equation: cdfobs(f(x))=cdfsim(x) and can be derived
graphically as shown in Fig. 1b. The y=f(x) function itself
is shown in Fig. 1c. The degree to which f(x) deviates from
the y=x line (also shown in Fig. 1c) is a measure of the
difference between the observed and simulated pdfs.

For illustration purposes, the methodology was applied
to a synthetic random data set. In Fig. 1a, the area below
the solid pdf is populated by randomly distributed points
with a constant surface density. Hence, the distribution of
the x-coordinate of these points is well approximated by the
pdf itself. We refer to this as our X′ dataset. In Fig. 1d, we
replot both the solid (simulated) and dashed (observed)
pdfs. We then superimposed the histogram obtained from
the X′ dataset which, as expected, closely follows the
simulated pdf. The X′ dataset is then transformed according
to the defined methodology; that is, we derive a new dataset
given by Y′=f(X′). The histogram of Y′ points is super-
imposed on Fig. 1d, and as anticipated, it follows the
dashed (observed) pdf closely. We stress that this example
does not constitute a validation of the correction method-
ology. It simply illustrates how the method works. A proper
validation is carried out in the following section where the

Fig. 1 Statistical correction applied to a synthetic dataset. a Synthetic
pdf of simulated daily precipitation (solid line), synthetic pdf of
observed daily precipitation (dashed line). b cdfs obtained by
integrating the corresponding pdfs in a. c Transfer function obtained
graphically from b by solving: cdfobs(y)=cdfsim(x) (thick solid line). d
Histogram of synthetic dataset given by x-coordinate of points evenly
scatter under solid pdf in a superimposed onto the same pdf (thin solid
line), histogram of transformed dataset f(x) superimposed onto dashed
pdf from a (thin dashed line)
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transfer (or correction) function y=f(x) is inferred using
simulated and observed daily precipitation from a given
time period and then applied to simulated data from a
different time period and subsequently compared with
observations.

The methodology described above was applied to the
simulated daily precipitation data from the DMI regional
model over Europe interpolated onto the CRU (Jones et al.
1999) 25-×25-km grid. The DMI regional climate model
used for ENSEMBLES simulation is the HIRHAM model
version 5. This model combines a limited-area high-
resolution short-range weather forecasting module with a
general circulation model (Christensen et al. 2008). The
DMI model has undergone some improvements, mainly in
the glacier parameterization, since these simulations were
carried out (Christensen, personal communication). We
stress that subsequent improvements to the model do not
affect the results presented in this study, since we are
addressing model error correction techniques. Observations
were provided by the ENSEMBLES observational dataset
(Haylock et al. 2008), which is defined on the CRU 25-×
25-km grid as well. The transfer function y=f(x) defined
above was inferred using data from 1961 to 1970. Histo-
grams were calculated for every grid point for both the
DMI model and the observed daily precipitation. No
subdivision in seasons was done at this point. The bin size
was 0.4 mm/day, while the lower limit of the lowest bin
was set at 0.01 mm/day. This was done to remove dry days
from the statistics. For each grid point, the histograms of
both observed and simulated daily precipitation were fitted
with the two-parameter (k, θ) gamma distribution defined in
Eq. 1. The fitting was done minimizing the square error
(least squares), and a weighting equal to the value of
precipitation itself was applied. The effects of using
different weighting functions will be discussed in Section 4.
Hence, for each grid point, we identified six parameters: k,
θ and the number of dry days for both observed and
simulated data. These six parameters allowed us to
graphically derive the transfer function in the same way
as described in Fig. 1c.

The transfer function was not obtained for all grid points.
In some cases, missing observed data invalidated the
automated procedure. This does not imply that the
methodology failed or that it is not applicable. Rather, it
indicates that reduced time segments or different bin sizes
should be adopted specifically for those grid points. In this
study, however, we chose to leave these grid points blank
for clarity of evaluation. Clearly, no transfer function can be
obtained for grid points where all observations are missing
as in the case of sea points.

The transfer functions thus obtained were applied to the
DMI model daily precipitation data from 1991 to 2000. The
two decades furthest apart among those available to us were

chosen to validate this methodology to maximize the
exposure of possible weaknesses. In the light of climate
predictions, as they may be carried out by the same models
in scenario computations, the use of these two decades also
serves the purpose of testing how bias corrections obtained
on data for the ‘pre-climate shift’ period (before 1975)
perform in a ‘post-climate shift’ period (after 1977) (Trenberth
et al. 2007). For the same reason, only one transfer function
was derived for each grid point instead of separate ones for
each season.

3 Results

In Fig. 2, we show the mean daily precipitation for the
solstice seasons (DJF and JJA) for 1991 to 2000 inferred
from the observed ENSEMBLES dataset and alongside that
inferred from the corrected and raw DMI dataset. Again, we
stress that the observed data shown in Fig. 2a, d played no
role in inferring the data shown in Fig. 2b, e. This,
however, is not a surprising result; indeed, it would be a
poor bias correction if the mean of the corrected field
looked nothing like the observations. In particular, we
notice that, for both seasons, the biases over topography,
which characterize most climate models, is all but removed
(Norway, Alps and Pyrenees). This is also the case for
northeastern Spain and the eastern Adriatic coast in winter.
The variance of the corrected field (not shown) is also very
similar to the observed. This too could have been
anticipated, since mean and variance are statistical quanti-
ties that do not depend on the temporal statistics of the data
(for example on the autocorrelation spectrum).

In Fig. 3, we show a meteorological drought index
averaged over the same seasons and years as in Fig. 2. This
drought index is solely based on precipitation (hence, the
adjective meteorological) and consists of the average
number of consecutive dry days (days with no precipita-
tion) immediately preceding each day. We should point out
that, for the purpose of calculating this index, a precipita-
tion threshold was defined within the model below which a
day was considered dry. This is because, without the
threshold, the model index would be identically zero since
simulated precipitation was always greater than zero. The
threshold chosen was 0.01 mm/day for consistency with
Section 2. The results are encouraging, given that such a
drought index is highly dependent on the autocorrelation of
the precipitation time series while the transfer function is
not. The correction is particularly effective around the
Mediterranean where it effectively reestablishes the ob-
served gradients in the summer and the observed maxima
over the Alps and southeastern Spain in the winter. There is
a positive correction over northern Europe as well, but it is
not as marked.
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Fig. 3 Same as Fig. 2 but for seasonal mean drought index

Fig. 2 Validation of methodology: seasonal mean daily precipitation.
Application of bias correction, derived from simulated and observed
data from 1961 to 1970, to model data from 1991 to 2000. a Mean

observed daily precipitation for winter (DJF) 1991 to 2000, b same as
a but for corrected simulated data, c same as a but for uncorrected
simulated data. d–f Same as a–c but for summer (JJA)
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In Fig. 4, we show a heavy precipitation index averaged
over the same seasons and years as in Figs. 2 and 3. This
index was calculated as follows. For each day, the number of
immediately preceding consecutive days with heavy precip-
itation is considered. Heavy precipitation is defined different-
ly for each grid point as twice the grid point decadal mean.
Subsequently, daily precipitation is integrated over this range
of days leading to the total precipitation for the entire “heavy
precipitation event” preceding each day. As for the former,
this index too is significantly affected by the temporal
structure of the precipitation data. In this case, there is the
added factor of the dimensionality of precipitation. We chose
to validate with the actual measure of total precipitation, as
opposed to the simple count of heavy precipitation days,
because this would be the relevant quantity for hydrological
purposes. The validation is positive though arguably not as
good as in the case of the drought index. The bias over
Norwegian topography is removed in both seasons. Central
Europe is greatly improved in both seasons; most of the
simulated local maxima are removed, though some of the
unobserved maxima over the Transylvanian Alps remain.
The winter distribution in Spain is also significantly improved.

4 Discussion and conclusions

It is important to note that the same corrected precipitation
field was used to produce panels b and e in Figs. 2, 3, and 4.

This implies that the field can be used directly as input to
hydrological models. This is crucially not the case when
simple additive or multiplicative bias corrections are used.
Arguably, the methodology presented in this study could be
tailored a posteriori to give better results when applied to
these particular model simulations; for example, histogram
bin size and the fitting algorithm could be changed to
minimize the validation error. Of course a posteriori
optimizations would require further validation possibly
involving simulations with other models. This is part of a
planned work schedule including sensitivity studies to
algorithm parameter settings. One experiment was done to
recalculate the heavy precipitation index using a non-
weighted least-square fitting algorithm for the pdfs. As
expected, because this decreases the weight on the tail of
the distributions were absolute errors translate into large
relative errors, the corrected data showed little or no
improvement in the high precipitation index. Results would
also improve if seasons were corrected separately. With the
present dataset, this may have made sense, but one of the
aims of this study was to show that the method has potential
even when the corrections are calculated without seasonal
distinction. This will have to be the adopted procedure when
limited observational datasets are available. A further
experiment will be to evaluate the improvement of the
hydrological model simulation with and without the bias-
corrected precipitation field (Leander and Buishand 2007;
van der Linden and Christensen 2003).

Fig. 4 Same as Fig. 2 but for seasonal mean heavy precipitation events
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In conclusion, our results show that spatial distributions
of time-based statistics of daily precipitation from climate
models are significantly and consistently improved by a
solely intensity-based statistical bias correction method.
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