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Summary The objective of this paper is to investigate whether resampling of the output from
a regional climate model (RCM) can provide realistic long-duration sequences of precipitation
and temperature for the simulation of extreme river flows. This is important to assess the
impact of climate change on river flooding. Daily streamflows of the river Meuse in western Eur-
ope are considered. Resampling is performed with a nearest-neighbour technique that was
already successfully applied to the observed daily precipitation and temperature in the river
basin. Streamflows are simulated with the semi-distributed HBV rainfall–runoff model. Two
simulations of the KNMI regional climate model RACMO are considered. One of these simula-
tions is driven by the global atmospheric model HadAM3H of the UK Meteorological Office for
the period 1961–1990 and the other by ERA40 re-analysis data. Much attention is given to
the bias correction of RACMO precipitation. It was found that a relatively simple nonlinear cor-
rection adjusting both the biases in the mean and variability led to a better reproduction of
observed extreme daily and multi-day precipitation amounts than the commonly used linear
scaling correction. This also resulted in more realistic discharge extremes, suggesting that a
correct representation of the variability of precipitation is important for the simulation of
extreme flood quantiles. For the Meuse basin it is further shown that it is advantageous to cor-
rect for the variability of the 10-day precipitation amounts rather than that of the daily
amounts. Despite the remaining biases in the RCM data, the simulated extreme flood quantiles
correspond quite well with those obtained using observed precipitation and temperature.
ª 2006 Elsevier B.V. All rights reserved.
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Introduction

General Circulation Models (GCMs) are considered to be the
most advanced tools currently available for simulating the
response of the global climate system to changing atmo-
spheric composition (Mearns et al., 2001). There is a great
interest in the impact of the climate changes projected by
these models on river flooding (e.g., Prudhomme et al.,
.
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Figure 1 Locations of the 15 RACMO grid boxes used in this
study, relative to the Meuse subbasins (thick grey contours) and
the river Meuse with tributaries. State boundaries (dashed) and
the location of the gauging station Borgharen are also shown.

488 R. Leander, T.A. Buishand
2002). It is well known that the magnitude of the climate
change impact depends partly on the characteristics of
the river basin (e.g., Arnell and Reynard, 1996; Nijssen
et al., 2001). Hydrological simulations are therefore needed
to assess this impact. However, the precipitation produced
by GCMs is generally not suitable to feed into hydrological
models, partly because of the coarse spatial resolution of
GCMs. A downscaling procedure is therefore needed to pro-
vide the required input. One approach is to use a high reso-
lution Regional Climate Model (RCM), driven by lateral
boundary conditions from the GCM of interest. The popular-
ity of this approach is growing, due to increased computer
resources and the enhanced performance of RCMs and pro-
cessing. Recent applications are presented by Kay et al.
(2006), who used a high resolution RCM to assess changes
in flood frequency for 15 catchments in the UK, and Lender-
ink et al. (in press), who investigated future discharges of
the river Rhine.

A problem with the use of RCMs for hydrological purposes
is that the simulated precipitation differs systematically
from the observed precipitation (e.g., Frei et al., 2003).
Lenderink et al. (in press) corrected for this bias by applying
a (seasonally and spatially varying) correction factor, while
Hay et al. (2002) made use of the gamma distribution to
match the distribution of the modelled daily precipitation
with that of observed daily precipitation. Arnell et al.
(2003), on the other hand, did not use any bias correction.

Apart from the bias in the simulated precipitation, the
estimation of flood quantiles suffers from the limited length
of the RCM simulations (usually no longer than 30 years for
present-day models). A strong extrapolation of the distribu-
tion of the simulated discharges is then needed to estimate
the extreme flood quantiles if the hydrological model is run
directly with the (bias-corrected) RCM output.

In this paper both problems are tackled for the basin of
the river Meuse upstream of Borgharen in the Netherlands
(drainage area approximately 21,000 km2). This part of the
basin is located in eastern Belgium and northeastern France.
In an earlier study, long-duration sequences of daily precip-
itation and temperature have been generated for the con-
sidered basin by resampling from observed data using a
nearest-neighbour technique (Leander et al. (2005), from
here on LBAW05). Here, this weather generator is applied
to RCM output instead of observed data. After bias correc-
tion the resampled data are used for streamflow simulations
using a semi-distributed hydrological model. The objective
of this study is to establish whether the use of RCM output
in a hydrological model can yield extreme discharges (up
to return periods in the order of 1000 years). Simulated ex-
treme discharges from bias-corrected RCM output are com-
pared with those based on observed meteorological data.

This paper is organized as follows: First the use of RCM
output and the applied bias corrections are discussed. Then
the resampling algorithm is briefly explained. The autocor-
relation of daily precipitation and the distribution of 10-
day winter maxima of basin-average precipitation from
long-duration resampled sequences are compared with
those from observed precipitation. Subsequently, the
hydrological simulations are described and results of ex-
treme discharges are shown. The paper closes with a sum-
mary and a short discussion on the usefulness of the
presented approach.
RCM output for the Meuse basin

The KNMI model RACMO

In this study the output of the KNMI regional climate model
RACMO (Regional Atmospheric Climate MOdel) was used
(Lenderink et al., 2003). This model has a resolution of
about 50 km. Its domain roughly stretches from 40 �W to
50 �E and from 30 �N to 70 �N. The Meuse basin is located
in the center of the domain and is almost covered by 15 grid
boxes, as shown in Fig. 1. For the hydrological simulations
the Meuse basin is subdivided into 15 subbasins. The mod-
elled area-average precipitation for each of the subbasins
was obtained as a weighted average over the grid boxes cov-
ering the subbasin. The weights were determined as the
fraction of the subbasin area falling within a specific grid
box, using a 2.5 km · 2.5 km grid. The nearest grid box
was assigned to those parts of the basin that were not cov-
ered by the 15 grid boxes.

Two multi-year RACMO runs were made available. In the
framework of the EU-funded project PRUDENCE (Prediction
of Regional scenarios and Uncertainties for Defining Euro-
peaN Climate change risks and Effects, see, e.g., Christen-
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sen and Christensen (in press), RACMO was driven by lateral
boundaries from the atmospheric model HadAM3H (short for
Hadley Centre Atmospheric Model 3, High resolution) of the
Hadley Centre of the UK Meteorological Office. HadAM3H
works at a resolution of 1.25� in latitude and 1.875� in lon-
gitude, corresponding to a resolution of about 150 km near
the RACMO domain. It uses the observed sea-surface tem-
perature and sea ice for the reference period 1961–1990
(Jones et al., 2001). The second RACMO run was driven by
40 years of re-analysis data (ERA40) of the European Centre
for Medium-Range Weather Forecasting (Uppala et al.,
2005). A re-analysis is an estimate of the state of the atmo-
sphere, based on observations and a numerical weather
forecast. Its circulation is therefore expected to be more
realistic than that of any GCM. Hence, the comparison be-
tween a GCM-driven RCM run and one driven by re-analysis
data provides insight into the influence of the driving GCM
on the considered RCM run. The forecast model used for
the re-analysis is operated at a resolution of about
125 km. RACMO uses data from either the driving GCM (Ha-
dAM3H) or the re-analysis to set the boundary conditions of
the horizontal velocity, heat and moisture (on all vertical
levels) and the sea-level pressure. Details on the RACMO
model can be found in Lenderink et al. (2003).

From the ERA40-driven RACMO run the data were ex-
tracted for the 30-year period 1969–1998 in order to have
two runs of the same length. The period 1969–1998 was
preferred to 1961–1990, because streamflow simulations
with observed data were available for that period
(LBAW05). With the simulation driven by ERA40 boundaries
it is possible to discriminate between the bias resulting from
the driving HadAM3H GCM and the bias introduced by
RACMO.

For each of the subbasins the interpolated area-average
precipitation was compared with the corresponding
subbasin precipitation for the historical reference period
1969–1998. For the Belgian subbasins, these averages were
calculated from daily station values (using Thiessen interpo-
lation) by the Royal Meteorological Institute of Belgium
(RMIB). For the French subbasins, the areal precipitation
was obtained from the data of 63 stations using squared in-
verse distance interpolation on a regular grid. The left panel
of Fig. 2 shows an area-weighted average of the relative bias
of the mean daily precipitation amount in each calendar
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Figure 2 Basin-average relative bias in the monthly precipitatio
(right). The HadAM3H-driven run for the period 1961–1990 and the
the observations for the period 1969–1998.
month. The largest biases are found in the winter half-year
(October–March), on average 26% in the HadAM3H-driven
run and 16% in the ERA40-driven run. Except for a few
months, the HadAM3H-driven run shows a larger bias than
the ERA40-driven run. The relative bias of the HadAM3H-dri-
ven run is comparable with that found for the regional cli-
mate models HadRM2 (Shabalova et al., 2003) and
HadRM3H (Lenderink et al., in press) of the Hadley Centre
for the adjacent Rhine basin. The wet bias is partly a result
of the fact that the observed precipitation amounts were
not corrected for the systematic undercatch inherent to
rain gauges. Frei et al. (2003) report a systematic under-
catch of about 8% for the lowland stations in the Alps (below
600 m). For the Meuse basin (almost entirely below 600 m),
the undercatch may differ somewhat from this value, due to
climatological differences and other types of rain gauges. It
is unlikely that all precipitation biases found here are due to
undercatch.

The right panel of Fig. 2 presents the basin-average tem-
perature bias. This bias refers to the difference between
the area-weighted average Tarea of the subbasin tempera-
tures obtained from RACMO and the Thiessen average
Tstations of 11 stations, serving as a reference temperature.
The bias in the HadAM3H-driven run is similar to that in
the ERA40-driven run, except for October, which is colder
and the period December–February, which is warmer than
in the ERA40-driven run.

van Ulden et al. (in press) analyzed the circulation bias of
HadAM3H for Europe. They report a positive bias in the
strength of the westerlies in winter, leading to a wetter
and milder climate. This is consistent with the relatively
large positive bias in precipitation and temperature in the
HadAM3H-driven run during winter.

Table 1 compares several characteristics of daily precip-
itation from both RACMO runs with those of the observed
precipitation. Results are presented for the winter half-year
as well as the summer half-year (April–September). The
coefficient of variation (CV) displayed in this table is defined
as the ratio between the sample standard deviation and the
sample mean. Both RACMO runs show a considerable under-
estimation of the CV of the daily precipitation amounts in
the winter half-year. The overestimation of the mean daily
precipitation in winter is accompanied by an overestimation
of the fraction of wet days in both the HadAM3H-driven and
-1
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ERA40-driven run for the period 1969–1998 are compared with



Table 1 Mean, coefficient of variation (CV) and lag 1 autocorrelation coefficient r1 of daily precipitation, fraction fwet of wet
days (with 0.3 mm or more), mean wet-day amount mwet and correlation rs between the daily precipitation amounts in different
subbasins for the observations and both RACMO runs

Winter half-year Summer half-year

Observed HadAM3H ERA40 Observed HadAM3H ERA40

Mean (mm/day) 2.78 3.49 3.20 2.40 2.64 2.59
CV 1.73 1.48 1.46 1.81 1.69 1.79
r1 0.37 0.35 0.34 0.27 0.25 0.24
fwet (%) 55.79 67.91 68.34 50.28 57.13 56.13
mwet (mm/day) 4.94 5.10 4.65 4.75 4.58 4.57
rs 0.85 0.90 0.90 0.73 0.81 0.82

With the exception of rs, all statistics are area-weighted averages over subbasins. The statistic rs is averaged over all pairs of subbasins.
Results are given for the winter half-year (October–March) as well as the summer half-year (April–September).
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ERA40-driven run, whereas the mean wet-day amount is
rather well preserved. There are also too many wet days
in the summer half-year in both RACMO simulations. In the
HadAM3H-driven run the lag 1 autocorrelation coefficient
r1 of daily precipitation is slightly underestimated in both
seasons. The bias in r1 is even somewhat larger in the
ERA40-driven run. This bias is mainly due to the inability
of RACMO to reproduce the relatively large values of r1 for
the French part of the basin (r1 = 0.40 in the winter half-
year, compared to r1 = 0.35 for the Belgian part in the win-
ter half-year). The correlation rs between the precipitation
amounts in different subbasins is higher than observed in
both runs, in the summer as well as the winter half-year.
The differences between the HadAM3H-driven and ERA40-
driven runs are small, suggesting that the bias is mainly an
artefact of RACMO.

Bias correction

Because the bias in precipitation and temperature was
found to vary spatially, bias corrections were carried out
for each subbasin individually. For precipitation a simple
linear correction using a scaling factor was compared with
a slightly more advanced nonlinear correction. To reduce
the effect of sampling variability, the scaling factor was
determined for every five-day period of the year as the ratio
between the average observed precipitation and that of the
RACMO run in a window including the 30 days before and
after the considered five-day period.

The linear correction adjusts the mean precipitation, but
leaves the CV unaffected, because both mean and standard
deviation are multiplied by the same factor. As an alterna-
tive, a power transformation was studied, which corrects
the CV as well as the mean. In this nonlinear correction each
daily precipitation amount P is transformed to a corrected
amount P* using

P� ¼ aPb ð1Þ

Shabalova et al. (2003) used this expression to modify ob-
served 10-day precipitation amounts in order to obtain a
scenario of a future climate with a changed mean and CV.
For the estimation of the parameters a and b they assumed
that these 10-day precipitation amounts have a Weibull dis-
tribution. For the daily precipitation amounts in the Meuse
basin this assumption is too restrictive. The parameters a
and b were therefore obtained with a distribution-free ap-
proach. As in the case of the linear scaling factor, these
parameters were estimated for each five-day period, using
the same 65-day window. First, the value of b was deter-
mined such that the CV of the corrected daily precipitation
matched that of the observed daily precipitation. This was
done iteratively, using a root-finding algorithm. The factor
a was then determined such that the mean of the trans-
formed daily values corresponded with the observed mean.
The resulting value of a depends on b. By contrast b depends
only on the CV and its determination is independent of the
value of a. The left panel of Fig. 3 displays the annual cycle
of the exponent b for both RACMO runs.

A value greater than unity indicates that the CV of the
precipitation is enhanced by the correction. In the
HadAM3H-driven run this is the case throughout the year.
In the ERA40-driven run the correction reduces the CV in
the months June, July and August. The correspondence be-
tween the two curves suggests that the bias in the CV orig-
inates from RACMO itself rather than the driving GCM.

As an alternative a and b can be chosen such that two dif-
ferent quantiles Qp1 and Qp2 of the corrected precipitation
match those of the observations. Since the transformation
in Eq. (1) is monotone, the quantiles of the transformed dai-
ly precipitation amounts are simply obtained by applying
the same transformation to the quantiles of the uncorrected
daily precipitation amounts from RACMO Qp1,R and Qp2,R.
From the requirement that

aQb
p1;R ¼ Q p1;O and aQb

p2;R ¼ Q p2;O ð2Þ

where Qp1,O and Qp2,O are the corresponding observed quan-
tiles, it follows by elimination of a and taking logarithms
that

b ¼
logðQ p2;O=Q p1;OÞ
logðQ p2;R=Q p1;RÞ

ð3Þ

For the HadAM3H-driven run the values of b obtained from
Eq. (3) with p1 = 65, p2 = 99 and p1 = 65, p2 = 95 were com-
pared with those fitted on the CV. The 65% quantile roughly
corresponds with the mean daily precipitation amount. The
results are shown in the right panel of Fig. 3. The curve
based on Q65 and Q99 closely follows that based on the CV,
except for small deviations in summer. Taking Q95, instead
of Q99, results in slightly larger values of b. In order to cope
with bias in the variability of multi-day amounts, the use of
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Figure 3 Annual cycle of the area-averaged exponent b in Eq. (1). On the left the exponents derived for the HadAM3H-driven run
and the ERA40-driven run are shown. On the right the values of b based on the CV and those based on two different pairs of
quantiles: Q65–Q99 and Q65–Q95 are given for the HadAM3H-driven run.
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the CV is preferred to determine the parameter b in Eq. (1)
of this paper.

Fig. 4 shows the basin-averaged exponential probability
plots of daily precipitation for the winter half-year for both
RACMO runs. The plots clearly illustrate the effect of both
corrections. After applying the linear bias correction to
the RACMO precipitation, the intermediate quantiles
(exceedance probabilities > 0.1) agree better with the ob-
served quantiles, but the more extreme quantiles (excee-
dance probabilities < 0.1) are too low and actually worse
than those for the uncorrected data. This is consistent with
the underestimation of the CV. With the nonlinear correc-
tion it is possible to adjust both the intermediate and the
more extreme quantiles of the distribution, while keeping
the number of parameters in the correction formula at a
minimum. For the summer half-year, the effect of the non-
linear correction is smaller (not shown), because the bias in
the CV is smaller in this season, as shown in Table 1.

Though the distribution of the nonlinearly corrected
daily precipitation amounts resembles that of the observa-
tions quite satisfactorily, this is not necessarily true for
the distribution of the multi-day precipitation amounts.
Large multi-day events can be more important for the gen-
eration of floods than an extreme daily event. Extreme
flows in the lower part of the Meuse basin are often associ-
ated with large multi-day precipitation totals in winter over
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Figure 4 Exponential probability plots of the daily precipitation in
HadAM3H-driven run (left) and the ERA40-driven run (right). The
corrected precipitation are compared to the plot for the observed
periods of about 10 days, rather than extreme daily events
(Tu, 2006). Fig. 5 is similar to Fig. 4, but now for the
(non-overlapping) 10-day precipitation amounts. For the Ha-
dAM3H-driven run the nonlinear correction leads to a better
agreement with the observations than the linear correction.
The same is found for the ERA40-driven run, but the larger
quantiles of the distribution of the 10-day precipitation
amounts (exceedance probabilities < 0.1) are still somewhat
underestimated. This is partly due to an additional negative
bias in the autocorrelation of the daily values, resulting
from the nonlinear transformation of the data. The autocor-
relation generally decreases if a value of b > 1 is needed to
increase the CV, as is demonstrated in ‘‘Resampling of RCM
output’’. This decrease of the autocorrelation leads to a de-
crease of the standard deviation of the multi-day precipita-
tion amounts, resulting in an underestimation of the large
quantiles of these amounts. The most obvious and least
complicated solution to this problem is to ‘overcompen-
sate’, i.e., to use a larger value of b, such that the CV of
the n-day totals, CVn, of the transformed RACMO precipita-
tion equals that of the n-day totals of the observations for
some n > 1.

In Fig. 6 the observed values of CVn for n 6 15 are com-
pared to those of uncorrected and corrected RACMO data
for two different nonlinear corrections, one based on CV1
and one based on CV10. For the uncorrected RACMO data
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the winter half-year, averaged over individual subbasins for the
plots for the uncorrected, linearly corrected and nonlinearly
precipitation.
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Figure 5 Similar to Fig. 4, but now for the 10-day precipitation amounts (left HadAM3H, right ERA40).
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Figure 7 Exponential probability plots of the 10-day precip-
itation amounts in the winter half-year for the ERA40-driven
run, after a nonlinear correction of the daily precipitation
amounts with b fitted on CV1 and CV10, respectively.
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all CVn are underestimated. With a nonlinear correction
based on CV1, the multi-day CVs improve, but they are still
too low, in particular for the ERA40-driven run. With a non-
linear correction based on CV10 the underestimation of the
multi-day CVs disappears, at the cost of an overestimation
of CV1 and CV2.

Fig. 7 shows how the exponential probability plot of the
10-day precipitation amounts of the ERA40-driven run
changes due to fitting b on CV10 instead of CV1. The correc-
tion based on CV10 results in a better correspondence with
the observed 10-day precipitation amounts, due to a slightly
larger value of b in the correction.

The bias correction of temperature is more straightfor-
ward than that of precipitation, involving shifting and scal-
ing to adjust the mean and variance, respectively. For each
subbasin, the corrected daily temperature T * was obtained
as

T� ¼ T þ rðTstationsÞ
rðTareaÞ

ðT � TÞ þ ðTstations � TareaÞ ð4Þ

where T is the uncorrected daily temperature from RACMO,
Tstations is the Thiessen average for the basin of observed
temperatures from 11 stations, and Tarea is the correspond-
ing basin-average temperature obtained from RACMO. In
this equation an overbar denotes the 30-year average and
r the standard deviation. Both statistics were determined
for each 5-day period of the year separately, using the same
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Figure 6 Basin-average coefficient of variation of n-day precipit
ERA40-driven run (right) for the winter half-year. The uncorrected ru
compared with the observations.
65-day window as for the bias correction of daily precipita-
tion. A similar transformation was used by Shabalova et al.
(2003) to perturb observed temperature with the changes of
the mean and standard deviation projected by an RCM sce-
nario run. Note that the temperature anomalies were scaled
by the same factor for all subbasins and the temperature
means were shifted by the same offset. The annual cycle
of the scaling factor is shown in Fig. 8. The deviation from
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unity is within 0.15 for the HadAM3H-driven run and nearly
always less than 0.05 for the ERA40-driven run. Roughly
the same factors were obtained for individual grid boxes
containing one or more temperature stations.

Resampling of RCM output

Nearest-neighbour resampling is a simulation method which
requires no assumptions concerning the underlying probabil-
ity distributions or dependencies between variables (Rajag-
opalan and Lall, 1999; Buishand and Brandsma, 2001). In this
study the algorithm described by LBAW05 was used to gen-
erate 3000-year sequences of daily precipitation and tem-
perature for the 15 subbasins of the Meuse by sampling
with replacement from the 30-year RACMO runs. In this
algorithm, sampling of new days is conditioned on the
area-weighted average of standardized subbasin precipita-
tion and temperature of the previous day, and the average
of standardized precipitation of a number of preceding
days, which act as a memory for the simulation. A moving
window is used to restrict the search for nearest neighbours
to the season of interest.

In LBAW05, resampling was based on station data. Here
resampling was driven by the uncorrected RACMO subbasin
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Figure 9 The basin-average autocorrelation coefficients of the ob
driven run (left) and the ERA40-driven run (right) for the winte
autocorrelation coefficients of the observations are represente
coefficients.
data. Furthermore, a five-day memory and a moving window
of 121 days were used, instead of a four-day memory and a
61-day moving window in order to improve the simulation of
extreme multi-day precipitation amounts. The bias correc-
tions described earlier were applied afterwards to the
resampled 3000-year sequences.

It was shown in LBAW05 that the resampling algorithm
described above preserves the autocorrelation of its base
material quite well. However, it was seen in Table 1 that
RACMO tends to underestimate the lag 1 autocorrelation
of daily precipitation and a nonlinear bias correction influ-
ences the autocorrelation. Fig. 9 compares the basin-aver-
age autocorrelation coefficients of corrected and
uncorrected resampled precipitation for both RACMO runs
with those observed for the winter half-year. For the obser-
vations also the standard errors se were calculated, using
the jackknife method of Buishand and Beersma (1993).
Apart from a significant negative bias in the lag 1 autocorre-
lation, the uncorrected resampled data from the HadAM3H-
driven run reproduce the autocorrelation coefficients quite
well. The transformation in Eq. (1), however, results in a
decrease of the autocorrelation coefficients, in particular
for shorter time lags in the winter half-year. The resampled
data from the ERA40-driven run show a larger bias in the
autocorrelation coefficients than those from the Ha-
dAM3H-driven run. Transformation based on CV10 leads to
a further decrease of the autocorrelation coefficients. The
effect of this decrease on the variability of the 10-day pre-
cipitation amounts is compensated by an overestimation of
CV1. The nonlinear correction also leads to a slight decrease
of the spatial correlation rs of the daily precipitation
amounts (not shown). The spatial correlation of the nonlin-
early corrected sequences remains, however, too high. This
bias has little effect on the simulated floods for the Meuse,
because these are more sensitive to the spatial correlation
of the 10-day precipitation amounts. The latter is better
reproduced by RACMO than rs.

In Fig. 10 the 10-day winter maxima of basin-average
precipitation from observations and those from the resam-
pled 3000-year sequences for both RACMO runs are shown.
Each plot displays the average ordered maxima of three
independent sequences of 3000 years. The plot for the
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Figure 10 Winter maxima of basin-average 10-day precipitation amounts from resampled RCM data (9000 years), either
uncorrected or after applying a linear correction or a nonlinear correction, compared with observed precipitation. The exponent b
of the nonlinear correction was based on CV1 for the HadAM3H-driven run in the left panel and on CV10 for the ERA40-driven run in
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nonlinearly corrected data corresponds quite well with that
of the observations. A linear correction appears to be worse
than no correction at all.
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Figure 11 Mean annual cycle of the 10-day average discharge
simulated by HBV with observed precipitation and temperature
(historical, squares) and with corrected and uncorrected data
from the HadAM3H-driven run.
Hydrological simulations

In this study the semi-distributed HBV model, developed at
the Swedish Meteorological and Hydrological Institute, was
used for rainfall–runoff modelling (Lindström et al.,
1997). This model describes hydrological processes on sub-
basin scales, such as soil moisture storage and fast and slow
runoff, in terms of water balances of reservoirs. A simplified
Muskingum algorithm was used to simulate flood routing
along the river (Booij, 2005). The schematization and
parameters were the same as in LBAW05. Basin-average
temperatures of the subbasins were used instead of station
data. Daily values of potential evapotranspiration (PET) for
the Belgian subbasins were made available by RMIB. Since
similar PET values for the French subbasins were not avail-
able, the average over the Belgian part of the basin was
used for these subbasins. In the hydrological simulations
with RACMO output, PET was derived for each of the subba-
sins from the daily temperature T using the relation:

PET ¼ ½1þ amðT � TmÞ�PETm ð5Þ

with Tm the mean observed temperature (�C) and PETm the
mean observed PET (mm day�1) for calendar month m in
the period 1967–1998. Tm was obtained from the average
of the four nearest stations to the subbasin of interest using
an altitude correction of �0.6 �C/100 m. In the simulation
with bias-corrected (resampled) RACMO output, the bias-
corrected (resampled) temperature T * was used for T in
Eq. (5). The proportionality constant am was determined
for each calendar month by means of a regression of the ob-
served values of PET for the Belgian part of the basin on the
observed daily temperatures. The values of am range from
approximately 0.08 �C�1 in the summer half-year to
0.13 �C�1 in the winter half-year. These values are consider-
ably lower than the value 0.17 �C�1 used by LBAW05.

Fig. 11 shows the mean annual cycle of the discharge as
simulated by HBV with observed precipitation and tempera-
ture and with corrected and uncorrected data from the
HadAM3H-driven run. Although the annual cycle of the mean
discharge from the RACMO data appears realistic, the mean
discharge during December–February is overestimated if no
bias correction is applied. This is a result of the bias in the
mean winter precipitation, shown in the left panel of Fig. 2.

Fig. 12 compares the Gumbel plots of the discharge win-
ter maxima as obtained from the bias-corrected 30-year
RACMO runs (using the nonlinear correction) with those sim-
ulated using observed data. There is a close correspondence
between the plots for the HBV simulation with bias-cor-
rected RACMO data and the plot for the HBV simulation with
observed data, except for the two highest maxima from the
HadAM3H-driven run. The two highest maxima in the simu-
lation with observed data correspond with two known flood
events in December 1993 and January 1995. In the ERA40-
driven run these two events are reproduced correctly, be-
cause they are related to large-scale weather features,
which influence RACMO through the boundary conditions.

Fig. 12 further shows the Gumbel plots of the discharge
winter maxima resulting from the use of the resampled se-
quences from RACMO data. The plots are similar to those of
the corresponding 10-day precipitation maxima in Fig. 10.
There are marked differences between the plots for the
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Figure 12 Winter maxima of discharge as simulated by HBV with observed meteorological data (squares), nonlinearly corrected
RACMO data (crosses) and resampled RACMO data (9000 years), either uncorrected or with a linear or a nonlinear correction. The
exponent b of the nonlinear correction was based on CV1 for the HadAM3H-driven run in the left panel and on CV10 for the ERA40-
driven run in the right panel.
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HBV simulations with uncorrected resampled RACMO data
and those for the simulations with observed precipitation
and temperature. The differences are even larger if a linear
correction is applied to the precipitation input data. The
quantiles of the distribution of the winter discharge maxima
are then underestimated considerably as a result of the
underestimation of the CVs of the multi-day precipitation
amounts. For the nonlinearly corrected precipitation input
data, the resulting Gumbel plots are much closer to those
obtained with observed precipitation and temperature.
The correction of the variability of multi-day precipitation
is thus essential for a realistic simulation of the discharge
maxima. A matter of concern is that the simulated maxima
for December 1993 and January 1995 are clearly above the
plots for the resampled data for both the HadAM3H-driven
run and the ERA40-driven run. This also occurs with resam-
pling from the observed daily precipitation and temperature
(LBAW05). The December 1993 and January 1995 maxima
would have been plotted at a longer return period if longer
discharge simulations were available. The 95-year discharge
record at Borgharen contains only one other event (January
1926) that is comparable with the floods of December 1993
and January 1995.
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Figure 13 Discharge winter maxima from two 3000-year HBV
simulations based on the resampled ERA40-driven RACMO run.
Both simulations are based on the same resampled 3000-year
sequences, but with different values of the correction param-
eter b, based respectively on CV1 and CV10.
For the ERA40-driven run, Fig. 13 shows the effect of
using different CVs for fitting the exponent b in the nonlin-
ear correction on the simulated winter discharge maxima.
For return periods beyond five years the correction based
on CV1 results in rather low quantiles compared to those ob-
tained with observed precipitation. A better agreement is
achieved if b is fitted on CV10. For the HadAM3H-driven
run the differences are small (not shown). Nevertheless,
for the Meuse basin it is recommendable to base the value
of b on CV10 rather than CV1.

Conclusion and summary

In this study output of the KNMI regional climate model
RACMO was resampled with a nearest-neighbour technique
to produce long-duration sequences of daily precipitation
and temperature for the Belgian and French subbasins of
the river Meuse. Bias corrections were applied to synthetic
3000-year sequences of precipitation and temperature to
reproduce statistical properties of observed data. With
the bias-corrected resampled sequences the daily discharge
in Borgharen was simulated with the HBV rainfall–runoff
model.

It was found that the correction for the bias in the mean
precipitation by linear scaling of the daily precipitation
amounts leads to an underestimation of large quantiles of
their distribution. As a result, the occurrence of extreme
river flows is underestimated considerably. This problem
was encountered with both model runs in this study (either
driven by HadAM3H or ERA40). A marked improvement was
achieved with a nonlinear transformation, adjusting the
mean as well as the CV of daily precipitation. For the
ERA40-driven run even better results for extreme river flows
were obtained by fitting the exponent in the nonlinear cor-
rection on the CV of the 10-day precipitation amounts. De-
spite a slight overestimation of the daily variability and a
negative bias in the autocorrelation coefficients of the daily
precipitation amounts, the distribution of the 10-day pre-
cipitation maxima is reproduced adequately. In order to
reproduce the distribution of extreme discharges for a rela-
tively large river basin like that of the Meuse, it is generally
more appropriate to correct for biases in statistical



496 R. Leander, T.A. Buishand
properties of the multi-day precipitation totals instead of
daily precipitation.

The used correction does not adjust the frequency of wet
days. Biases in the wet-day frequency, or more general, the
left tail of the frequency distribution of daily precipitation
have usually little influence on the distribution of extreme
river flows. However, the CVs of both the daily and multi-
day precipitation amounts depend on the wet-day fre-
quency. As a result, the nonlinear transformation may do
less well for RCM simulations having a larger bias in the
wet-day frequency than the RACMO simulations considered
in this study. The bias in the autocorrelation (and the spatial
correlation) of the simulated daily precipitation amounts
may also restrict the use of this transformation.

The flood quantiles simulated with the bias-corrected
resampled RCM precipitation resemble those simulated with
observed precipitation quite well. The next question is
whether the presented approach can successfully be applied
to the output of RCM scenario runs. This question will be ad-
dressed in a subsequent study.
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