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1. INTRODUCTION 

 
Advancement of computing technology and 

the need for providing accurate ozone health 
advisories are making it possible to apply 
numerical models to produce regional air quality 
forecasts. Numerical simulations depend much 
on such components as computation schemes, 
initial and boundary conditions. Imperfect 
settings of simulation processes (assumptions, 
approximations, and incompleteness of 
simulated physical processes) introduce errors 
into the simulation results.  While limited in 
space and time, observations are the only way 
for us to know the real conditions of the 
environment, and, hence, simulation results 
should be evaluated against observations. Since 
numerical simulations are based on the solution 
of time differential equations, i.e, changes of 
quantities over time, a sound numerical 
simulation may not reproduce observations, but 
it should be able to simulate the changes from a 
given initial state reasonably well. If past and 
current observations exist, forecast accuracy 
may be improved by post-processing numerical 
simulation results with bias adjustment.  

The air quality forecast system (AQFS) (Otte 
et al., 2005), developed by the National Oceanic 
and Atmospheric Administration (NOAA) in 
partnership with the US Environmental 
Protection Agency (EPA), entails coupling the 
Eta meteorological model (Black 1994; Rogers 
et al., 1996) with the Community Multiscale Air 
Quality (CMAQ) (Byun and Schere, 2006) 
model. The modeling system has been used to 
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provide forecasts of ozone (O3) concentrations 
since 2004. Comparison of the Eta-CMAQ 
forecast output and observations over time for 
O3 revealed that the model has consistently 
over-predicted, but still simulates the day-to-day 
variability quite well. This suggests that the 
forecast results could be improved by combining 
observations with forecast biases. 

Model post-processing techniques were first 
used in weather forecast, especially for 
precipitation forecast (Glahn and Lowry 1972; 
http://www.nws.noaa.gov/mdl/synop/products.sh
tml). In this study, two bias adjustment 
techniques (post processing model forecasts) 
are applied to the Eta-CMAQ O3 and PM25 
forecasts during the period of July to September, 
2005.  

In this study, KF is applied to both O3 and 
PM25 forecast. The O3 forecast covers the whole 
continental US with more than 1000 
measurement sites and for the forecast period of 
1 July to 30 September 2005, while the PM25 
forecast covers the eastern US domain with over 
300 measurement sites for the 2005 annual 
forecast. 
 
2. THE ETA-CMAQ FORECAST SYSTEM 

 
The Eta model provides the meteorological 

fields for input to CMAQ (Otte et al., 2005). The 
processing of the emission data for various 
pollutant sources has been adapted from the 
Sparse Matrix Operator Kernel Emissions 
(SMOKE) modeling system (Houyoux et al., 
2000) using input from the U.S. EPA national 
emission inventory. The Carbon Bond chemical 
mechanism (version 4.2) is used to represent 
the photochemical reactions. Detailed 
information on transport and cloud processes in 
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the CMAQ is described in Byun and Schere 
(2006). For this application, O3 concentrations 
are forecast over the continental U.S. using 12-
km horizontal grid spacing on the Lambert 
Conformal map projection. There are 22 layers 
in the vertical, which are set on a sigma 
coordinate extending from the surface to 100 
hPa. The chemical fields for CMAQ are 
initialized using the previous forecast cycle. The 
primary Eta-CMAQ model forecast for next-day 
surface-layer O3 is based on the current day’s 
12 UTC cycle.  

Hourly, near real-time, O3 (ppb) and PM25 
data obtained from EPA’s AIRNow program are 
used in this study (http://www.epa.gov/airnow).  

 
3. BIAS ADJUSTMENT TECHNIQUES 
 

The first technique, namely, the Hybrid 
Forecast, is simply to combine the current 
observations with the difference between the 
forecasts made from current time step and the 
forecasts made from last time step.  

The second bias adjustment technique is 
called Kalman filter predictor (KFP) (Kalman, 
1960) which is a recursive, adaptive method that 
takes into account the time variation of forecast 
error at a specific location (Monache et al., 
2006). It has been mainly used in data 
assimilation schemes to improve the accuracy of 
the initial conditions for both numerical weather 
prediction (Houtekamer et al., 2005) and air 
quality forecasts (Segers et al., 2006). It has 
been used for model forecasts as a predictor 
bias adjustment method during post-processing 
of short-term weather forecasts (Roeger et al., 
2003) and Monache et al. (2006) extended the 
application to air quality forecast for O3 forecast 
at five measurement sites in Canada for a 7-day 
period of 9-15 August 2004. 
 
 3.1 Hybrid Forecast (HF) 
 
 

)1()( tttttt MMOHF −+= ∆+∆+  
 
Where Ot are observations at time t, Mt+∆t and Mt 
are ozone forecasts at time t+∆t and t, 
respectively. 
 
3.2 Kalman Filter Predictor Forecast (KF) 
 

A brief description of KF is given below. The 
detailed KF implementation was given by 
Monache et al. (2006).  

In the KF forecast, there are two steps. First, 
the filter estimates the systematic component of 
the forecast bias using the recent past forecast 
and observations. Kalman (1960) showed that 
the optimal recursive predictor of xt (derived by 
minimizing the expected mean square error) can 
be expressed as: 

  
)2()( |||| ttttttttttttt xyxx ∆−∆−∆−∆+ −+= β  

 
Where ∆t is a time lag, and t|t – ∆t means that 
the value of the variable at time t depends on 
values at time t – ∆t. β is the weighting factor, 
called Kalman gain, which is recursively 
computed using errors associated with forecast 
bias. Second, after bias xt+∆t is calculated, it is 
combined with the new model forecast to form 
the KF forecast as: 
 

)3(|ttttttt xyKF ∆+∆+∆+ −=  
 
Where yt+∆t is the model forecast for next time 
step. 

During this study, a uniform ratio (0.06) of 
white noise variance to random error variance is 
assumed for all the sites studied which may vary 
for location to location, even though this is the 
optimal value found by Homleid (1995). Further 
research is needed to apply KF bias adjustment 
to different locations to find an optimal ratio 
value for each location. 
 
 
4. BIAS ADJUSTMENT FOR O3 
FORECAST 
 

When KF is applied to the daily maximum 8-
hr O3 forecast, there are two ways to calculate 
the maximum 8-hr O3 concentrations. One way 
is to calculate maximum 8-hr O3 concentrations 
using the original model forecast time series, 
then apply KF to the maximum 8-hr O3. In this 
case, there is only one value at each site per 
day. The other way is to apply KF to the hourly 
O3 time series to get a KF adjusted hourly O3 
time series, then compute the daily maximum 8-
hr O3 from the adjusted hourly time series to do 
analysis. As shown in Figure 1, there is no 
significant difference between these two 
calculation schemes. So, the former scheme is 
adopted to apply KF filter. 
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Fig.1. Maximum 8-h O3 calculated from two ways of 
applying KF adjustment to the model forecasts.  

 
 
4.1 Monthly Mean Errors 

 
Figure 2 displays the monthly boxplots of 

root mean square error (RMSE) for the forecast 
model, HF, KF, and persistence forecast. 
Persistence is used as a reference in that 
current observed concentrations are used as 
future forecast at next time step, in this case, it 
is next day.  

 

 
Fig. 2.  Boxplots of monthly maximum 8-h O3 of all the 
sites within the continental US domain: the boxplots 
show 25 (bottom) and 75 (top) percentiles and the 
median (cross line). 
 
 As shown in Figure 2, KF displays the 
smallest RMSE followed by HF implying that KF 
has the largest improvement followed by HF in 

the forecast results. The original model forecasts 
present the largest RMSE values, while 
persistence seems to have some improvement 
over model forecast, especially in July. But 
remember that this is the average value and 
persistence forecasts usually compensate over 
prediction with under-prediction. Persistence 
forecast can not respond to dramatic weather 
changes which often cause big fluctuations in O3 
concentrations, while the other forecasts 
including the original model forecast have a 
better skill.  
 
4.2 Time Series 

 
Figure 2 displays the time series of 

observed, model forecast, HF forecast, and KF 
forecast maximum 8-h O3 for the time period of 1 
July – 30 September 2005 at Bushy Fork 
monitoring site at Raleigh, NC.  The model (red 
dashed line) tends to overpredict almost all the 
days compared with observations (black solid 
line). The HF adjusted forecast (green dashed 
line) tends to bring the forecast closer to 
observation than the model forecasts, but 
sometimes it overreacted when dramatic 
changes occurred (the green dashed over 
shooting peaks and troughs).  The KF adjusted 
forecasts (blue solid line) are the best among 
the three forecasts to match observations, even 
though some over reactions with smaller 
magnitude still exist with HF if the model 
forecasts and the observations have dramatic 
changes over the previous days. Similar trends 
are found in other monitoring sites. 
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Fig. 3. Time series of observation, model forecast, HF 
adjusted, and KF adjusted forecast at Busy Fork 
monitoring site at Raleigh, NC. 
 
4.3 Impact on Exceedence Events 
 
Figure 4, which displays the Hit rate (H) and 
False alarm ratio (FAR) of the model forecast 
and adjusted forecasts (KF and HF) for the 
study period within the continental US domain 
(Kang et al., 2006), indicates that for the 
continental US domain, both KF and HF show 
larger hit rate values than those of the original 
model forecasts; HF is better than KF to capture 
the exceedences. FAR values are largest in the 
original model forecast and smallest in the KF 
forecasts. However, the trends may vary from 
region to region if we examine the categorical 
metrics for sub regions. Generally speaking, the 
improvement of bias adjusted forecasts over 
original model forecasts for exceedence events 
is not as significant as overall performance when 
evaluated by the discrete metrics. 
 

 
Contiental US

0
10
20
30
40
50
60
70
80
90

KF HF MD

R
at

io
 (%

)

FAR
H

 
 
Fig. 4. Hit rate (H) and False alarm Ratio (FAR) of the 
model, Kalman Filter (KF), Hybrid Forecasts (HF), 
and model forecasts (MD) for the period of 1 July to 
30 September 2005 within the continental US forecast 
domain.  

 
 

5. BIAS ADJUSTMENT FOR PM25 
FORECAST 
 

KF and HF bias adjustment are also applied 
to PM25 forecasts. PM25 forecast data from the 
Eta-CMAQ AQF system are available for 
eastern US domain during the whole year of 
2005.   
 
5.1 Monthly Mean Errors 
 

 As the boxplots (Fig. 5) indicates, throughout 
the year, KF forecast always has the smallest 
RMSE values except in December when 
persistence has the smallest value. The 
improvement is more significant during summer 
months when the model over-predicted PM25 
concentrations. The original model forecasts or 
the persistence forecasts have the largest 
RMSE for majority of the months. Hybrid (HF) 
forecasts also show improvement over model 
forecasts for majority of the months, but less 
significant than the KF forecasts. 
 
5.2 Time Series 
 
Figure 6 displays the time series of the observed 
(black solid line), model forecast (red dotted 
line), HF (green dotted line), and KF (blue solid 
line) forecast daily mean PM25 concentrations 
during the year 2005 at Bryson, NC. The original 
model under-predicted PM25 concentrations at 
this site for almost all the times with only a few 
exceptions during the summer. The forecast 
accuracy was significantly improved with HF and 
KF bias adjustment. Again, the HF bias adjusted 
forecasts have more over shooting of the peaks 
and troughs than the KF adjusted forecasts 
when dramatic changes occurred over the 
preceding days.  

  
Fig. 5. Monthly RMSE boxplots for PM25 for the year 
2005 over the eastern US Domain: the boxplots show 
25 (bottom) and 75 (top) percentiles and the mean 
(cross line).
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6. SUMMARY 
 

The bias adjustment techniques (Kalman 
filter predictor and Hybrid forecast) have 
demonstrated their ability to improve forecast 
accuracy for both O3 and PM25 by significantly 
reducing the root mean square errors. Kalman 
filter predictor bias adjustment is more powerful 
than Hybrid forecast, but Hybrid forecast is 
simpler and easier to implement. The bias 
adjustment techniques have also displayed 
some improvement over extreme (exceedence) 
event forecast for O3, but it varies from region to 
region.  
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Fig. 6. Time series of observed, model forecast, HF, and KF forecast daily mean PM25 concentrations during the year 
2005 at Bryson, NC.  

 


