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Abstract
General circulation models (GCMs), used to predict rainfall at a seasonal lead-time, tend to simulate too many rainfall events of too

low intensity relative to individual stations within a GCM grid cell. Even if bias in total rainfall is corrected relative to a target location,

this distortion of frequency and intensity is expected to adversely affect simulations of crop growth and yield. We present a procedure

that calibrates both the frequency and the intensity distribution of daily GCM rainfall relative to a target station, and demonstrate its

application to maize yield simulation at a location in semi-arid Kenya. If GCM rainfall frequency is greater than observed frequency for

a given month, averaged across years, GCM rainfall frequency is corrected by discarding rainfall events below a calibrated threshold.

To correct the intensity distribution, each GCM rainfall amount above the calibrated threshold is mapped from the GCM intensity

distribution onto the observed distribution. We used a gamma distribution for observed rainfall intensity, and considered both gamma

and empirical distributions for GCM rainfall intensity. At the study location, the proposed correction procedure corrected both the mean

and variance of monthly and seasonal GCM rainfall total, frequency and mean intensity. The empirical (GCM)-gamma (observed)

transformation overestimated mean intensity slightly. A simple multiplicative shift did a better job of correcting monthly and seasonal

rainfall totals, but left substantial frequency and intensity bias. All of the bias correction procedures improved maize yield simulations,

but resulted in substantial negative mean bias. This bias appears to be associated with a tendency for the GCM rainfall to be more

strongly autocorrelated than observed rainfall, resulting in unrealistically long dry spells during the growing season. Nonlinearity of

crop response to thevariability of water availability across GCM realizations may also contribute. Averaging simulated yields each year

across multiple GCM realizations improved yield predictions. The proposed correction procedure provides an option for using the daily

output of dynamic climate prediction models for impact studies in a manner that preserves any useful predictive information about the

timing of rainfall within the season. However, its practical utility for yield forecasting at a long lead-time may be limited by the ability of

GCMs to simulate rainfall with a realistic time structure.

# 2006 Elsevier B.V. All rights reserved.

Keywords: General circulation model (GCM); Crop simulation model; Precipitation; Corn (Zea mays); Seasonal climate prediction
1. Introduction

Seasonal climate prediction offers the potential to

anticipate variations in crop production early enough to
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adjust critical decisions. Operational seasonal forecasts

are typically expressed as seasonal (e.g., 3-month) mean

anomalies, averaged in space. Crop production is not a

simple function of seasonal mean climatic conditions,

but a function of dynamic, nonlinear interactions

between weather, soil water and nutrient dynamics,

and physiology and phenology of the crop. Weather-

sensitive, process-oriented crop simulation models

typically simulate these interactions on a daily time

step. Atmospheric general circulation models (GCMs)

used for seasonal forecasting simulate a full set of
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meteorological variables at a sub-daily time step.

However, imperfect model specification and spatial

averaging within GCM grid cells distorts day-to-day

variability. The distortion includes a tendency to

generate too many rainfall events, with intensities that

are too low relative to individual stations within the

GCM grid cell (Carter et al., 1994; Mearns et al., 1990,

1995; Goddard et al., 2001). Even if biases in total

rainfall are corrected relative to a target location, this

distortion of frequency and intensity is expected to

adversely affect simulations of crop growth and yield

(Mearns et al., 1996; Riha et al., 1996; Hansen and

Jones, 2000; Baron et al., 2005).

Statistical and dynamic downscaling methods are

available to correct GCM predictions relative to

climatology at a local, sub-grid scale (e.g., Wilby and

Wigley, 1997; Wilby et al., 1998; Wood et al., 2002).

Statistical downscaling approaches are generally

applied to aggregate rather than daily time scales.

When they are applied at a daily time scale, the perfect

prognosis assumption required makes them quite

susceptible to GCM biases. One approach to addressing

the problem of distortion of daily variability is to

aggregate GCM predictions into seasonal or sub-

seasonal (e.g., monthly) means, then use a stochastic

weather model to disaggregate in time to produce

synthetic daily weather that is conditioned on the

predictions (Wilks, 2002; Hansen and Ines, 2005;

Feddersen and Andersen, 2005).

A few studies have used daily GCM outputs directly

for crop simulation studies. Mavromatis and Jones

(1999) used daily outputs from the HadCM2 GCM as

input to CERES-Wheat for studying potential impacts

of climate change on regional winter wheat production

in France. Yields simulated with GCM weather data

approximated mean yields simulated with observed

weather during the past century, and captured a yield

trend associated with the recent trend in observed

temperature. They concluded, however, that daily

GCM outputs were not useful for estimating future

agricultural risk because they did not represent year-to-

year variability adequately. Challinor et al. (2005) have

also explored the use of daily GCM outputs for

forecasting groundnut yields in western India. Because

of GCM biases, the crop model required calibration to

observed district yields in order to obtain good

predictions.

In this paper, we present a technique for correcting

the biases of both the frequency and the intensity

distribution of daily GCM rainfall relative to a target

station. The procedure involves mapping of distribu-

tions between the grid-based GCM data and observed
data at a given location. We demonstrate its application

to maize yield simulation at a location in semi-arid

Kenya. Although our approach is motivated by interest

in translating GCM-based seasonal climate forecasts

into forecasts of crop response, it may be relevant to

other applications of seasonal climate forecasts that

require daily meteorological variables.

2. Methods

2.1. Simultaneous frequency and intensity

correction

Mean rainfall X̄m(mm d�1) in calendar month m is

the product of mean intensity, mI (mm wd�1) (‘‘wd’’ is

wet day, with �0.1 mm rain) and relative frequency, p
(wd d�1). Therefore correcting any bias of the two

rainfall components will also correct the monthly total

rainfall itself. We propose a two-step bias correction

procedure that adjusts GCM rainfall to approximate the

long-term frequency and intensity distribution

observed at a given station. The correction involves

truncating the GCM rainfall distribution at a point that

approximately reproduces the long-term observed

relative frequency of rainfall, then mapping the

truncated GCM rainfall intensity distribution onto a

gamma distribution fitted to observed intensity

distribution. These methods for truncating distributions

and mapping one distribution onto another are well

established in probabilistic modeling (e.g., Law and

Kelton, 1982). The distribution mapping approach has

been used to correct bias of monthly GCM precipitation

(Wood et al., 2002) but, to the best of our knowledge,

has not been applied to correct daily GCM rainfall

relative to a given station. For convenience, and

consistency with the convention of updating GCM

forecasts monthly, we apply the calibration for each of

the 12 calendar months.

2.1.1. Correcting rainfall frequency

We correct the frequency of daily GCM rainfall by

fitting a threshold value x̃GCM to truncate the empirical

distribution of the raw daily GCM rainfall, such that the

mean frequency of rainfall above the threshold matches

the observed mean rainfall frequency. The threshold is

calculated from the empirical observed and GCM

cumulative rainfall distribution as,

x̃GCM ¼ F�1
GCMðFobsðx̃ÞÞ; (1)

where F(�) and F�1(�) denote a cumulative distribution

function (CDF) and its inverse, and subscripts indicate
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GCM or observed daily rainfall. In this case, the mini-

mum observed rainfall amount x̃ for a day to be

considered wet was 0.1 mm. The empirical CDF

F(xi), on day i, is obtained simply as the relative

position of xi within a sorted array of long-term daily

rainfall data for a given month.

2.1.2. Correcting rainfall intensity

We corrected the GCM intensity distribution

F I,GCM(x) (i.e., the CDF of daily rainfall amounts

above calibrated threshold x̃GCM) by mapping it onto the

observed intensity distribution F I,obs(x). We apply this

correction separately for each of the 12 calendar

months. Corrected GCM rainfall x0 on day i is calculated

as,

x0i ¼
F�1

I;obsðFI;GCMðxiÞÞ; xi� x̃
0 xi < x̃

�
(2)

The transformation in Eq. (1) is equivalent to trans-

forming an observation sampled from the GCM rain-

fall intensity distribution to a 0.1 uniform distribution

(the definition of a CDF), then transforming the

sampled uniform deviate into the observed rainfall

intensity distribution by taking the inverse of it’s CDF.

The CDFs can be either empirical (i.e., sorted arrays

of observations) or fitted to some theoretical distribu-

tion. The two-parameter gamma distribution is fre-

quently used to model the intensity distribution of

observed rainfall. Although it does not represent rain-

fall as well as the more flexible, three-parameter

hyper-exponential distribution, we selected the

gamma because it has a closed analytical form that

can be readily inverted. There is less experience with

the distribution of rainfall intensities produced by

dynamic climate models. Because of uncertainty

about the gamma distribution’s suitability for model-

ing GCM rainfall intensities, we considered both an

empirical and a gamma distribution to represent GCM

rainfall above the fitted threshold. We only considered

the gamma distribution to represent observed rainfall

intensities. This resulted in two variations of the

intensity distribution calibration Eq. (2): (a) a trans-

formation from a gamma fitted to the GCM intensities

to a gamma fitted to the observed intensities (denoted

GG), and (b) a transformation from the empirical

GCM intensity distribution to a gamma fitted to the

observed intensities (denoted EG).

For the GG transformation, first, we fitted the

truncated daily GCM rainfall and historical rainfall data

to a two-parameter gamma distribution Eq. (3); see Law

and Kelton, 1982), and then we mapped the CDF Eq. (4)
of the truncated daily GCM rainfall to the CDF of the

truncated historical data.

Fðx; a;bÞ ¼ 1

baG ðaÞ x
a�1 exp

�
� x

b

�
; x� x̃ (3)

Fðx; a;bÞ ¼
Z x

x̃

f ðtÞdt (4)

The shape, a, and scale parameters, b, for each gamma

distribution are determined using Maximum Likelihood

Estimation. The corrected GCM rainfall amount for that

day can be calculated by substituting the fitted gamma

CDFs into Eq. (2). For the EG transformation, the

procedure is the same as above; only, an empirical

distribution is assumed to describe the truncated daily

GCM rainfall.

2.2. Correcting monthly rainfall by a multiplicative

shift

For comparison, we included a simple multiplicative

shift to correct the bias of the mean monthly GCM

rainfall:

x0i ¼ xi
X̄obs

X̄GCM

; (5)

where xi and x0i again refer to raw and corrected GCM

rainfall on day i, and X̄GCM and X̄obs are long-term

monthly mean rainfall from the GCM and observations

for a given month. This procedure adjusts only rainfall

intensity to reproduce the long-term mean observed

monthly rainfall, and therefore does not correct any

systematic error in frequency or the intensity distribution.

2.3. Data

The analyses are based on data from the Katumani

Dryland Research Center (18350 S, 378140 E,

1601 a.m.s.l) in the Machakos District of semi-arid

eastern Kenya. Rainfall has a bimodal distribution. The

climate is marginal for maize in both seasons, yet

because of strong food preferences, maize remains the

dominant staple crop. The October–December ‘‘short

rains’’ is the more important maize growing season, and

is fairly predictable at a seasonal lead-time using

statistical (Indeje et al., 2000; Mutai et al., 1998) and

dynamic (Hansen and Indeje, 2004) forecast models.

Our study benefits from previous crop model-based

research at the Katumani site (Probert, 1992; Keating

et al., 1993).
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We used daily rainfall observations (1970–1995)

from the Katumani Dryland Research Station. Mea-

sured temperatures were available only since 1986, and

solar irradiance only for January 1986 to September

1988. Daily GCM rainfall data (1970–1995) are from

ECHAM v.4.5 (Roeckner et al., 1996), developed at the

Max–Plank Institute (Germany), run at a T42 (approxi-

mately 2.88) horizontal resolution, with 18 vertical

levels. The ECHAM data were from an ensemble of 24

GCM integrations, each run with different initial

atmospheric conditions sampled each year from global

observations on different days of the forecast month, but

the same observed sea surface temperature (SST)

boundary conditions. Although the output of ECHAM

simulated with concurrent observed SSTs served the

purpose of the present study, the results likely overstate

the predictability obtainable under operational condi-

tions where forecast SSTs must be used for any future

seasonal forecast period (Goddard and Mason, 2002).

While our objectives focus on rainfall, temperature

and solar irradiance also influence crop growth and

development, and can confound the effects of rainfall

prediction if they are not handled in a consistent manner

across scenarios. Yet the frequency of rainfall influences

daily temperatures and solar irradiance. For both the

observed and corrected GCM rainfall scenarios, we

replaced observed daily temperatures and solar irra-

diance with their long-term monthly mean values

conditioned on the occurrence of rainfall as daily input

to the crop simulations. We did this to minimize

confounding influences while preserving consistency

between rainfall frequency and mean temperature and

solar irradiance and of temperatures and solar irra-

diance. Although the procedure artificially reduces the

variability of daily temperature and solar irradiance, the

impact on simulated yields should be minor, as maize

yield response is only weakly nonlinear with respect to

temperatures in the broad optimum range, and with

respect to solar irradiance.

2.4. Crop simulations

We used CERES-Maize version 3.5 (Ritchie et al.,

1998) to simulate maize yield response to weather

inputs. Soil properties, characteristics of the short-

season cultivar, ‘Katumani composite B’ and repre-

sentative management assumptions were based on a

previous study at the same site (Keating et al., 1992).

The sandy clay loam soil (Chromic Luvisols by the

FAO/UNSCO classification) has plant-extractable

water-holding capacity of 234 mm over its 130 cm

depth. For each simulation year, the water balance was
initialized on 17 October with soil water at 20% of

capacity. Sowing was simulated the first time soil water

content exceeded 40% of capacity averaged over the top

15 cm depth, or on 1 November if the threshold soil

water content was not met. The simulations assumed a

stand density of 4.4 plants m�2, with a 50 cm inter-row

spacing, and 20 kg N ha�1 applied as ammonium

nitrate at planting.

CERES-Maize was run with observed daily rainfall;

and with daily rainfall from ECHAM without correc-

tion, with the simultaneous correction of frequency and

intensity using both a GG and EG transformation, and a

multiplicative shift to correct monthly mean rainfall.

Yields for individual years were averaged across the 24

available GCM realizations.

2.5. Analyses

Due to lack of availability of observed crop yield

time series, our evaluation focuses on the ability of the

crop model using corrected GCM rainfall to predict

yields simulated with observed daily weather, and not

on its ability to predict observed yields. We used

standard goodness-of-fit statistics on the bias-corrected

rainfall and predicted yields. According to Willmott

(1982), the mean squared error:

MSE ¼ 1

n

Xn

i¼1

ðŷi � yiÞ2; (6)

is decomposed into a random component not correct-

able by linear transformation,

MSER ¼
1

n

Xn

i¼1

ðŷi � yiÞ2; (7)

and a systematic component that can be corrected by

linear regression,

MSES ¼ MSE�MSER; (8)

where n is the number of years i, y and ŷ are yields

simulated with observed and corrected GCM rainfall, ŷ�

is ŷ calibrated by linear regression. We also used

correlation coefficient (R), mean bias error (MBE),

root-mean-squared error (RMSE) and index of agree-

ment d-statistics Eq. (9):

d ¼ 1�
Pn

i¼1ðŷ� yiÞ2Pn
i¼1ð
����ŷ� ȳ

����þ
����yi � ȳ

����Þ2
: (9)
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Willmott (1982) proposed the d statistic as a relatively

robust unitless measure of model agreement that

accounts for both systematic and random errors.

3. Results and discussion

3.1. Rainfall

The ECHAM climate model under-predicts the mean

monthly rainfall observed at Katumani during the wet

seasons and tends to overestimate rainfall during the dry

season (Fig. 1a). The negative mean bias, relative to

observations at Katumani, is particularly strong during

the October–December ‘‘short rains’’ season. It also

tends to under-predict year-to-year variability, particu-

larly during the wet seasons (not shown). As expected,

the GCM simulated too many rainfall events, with mean

intensity too low relative to observations at Katumani

(Fig. 1b,c).
Fig. 1. Mean monthly rainfall (a) cumulative amount, (b) intensity

and (c) frequency from GCM (ensemble mean and 24 individual

realizations) and observations for 25 years at Katumani, Kenya.
The simultaneous bias correction reduced biases of

both the first (Fig. 2a–c) and second moments (Fig. 2d–

f) of GCM rainfall relative to observations at Katumani.

However, calibration, using either combination of

distribution models, underestimated the observed rain-

fall frequencies slightly, particularly during the wet

months. This appears to be due to the presence of many

daily GCM rainfall amounts that equal the calibrated

threshold values within the 0.1 mm precision of the

records used in the calibration. When this is the case,

rejecting every xi;GCM � x̃GCM can retain a smaller

proportion of GCM rainfall data than the observed

rainfall frequency. Corrected rainfall intensity tended to

underestimate the historical values slightly (Fig. 2,

Table 1). The effect was more pronounced with the GG

transformation. The gamma distribution is known to

under-represent extreme rainfall events (Wilks, 1999).

Furthermore, bias of maximum likelihood estimates of

parameters of skewed distributions (e.g., Firth, 1993)

can contribute to biased estimates of moments of the

distribution. The simultaneous bias correction proce-

dure corrected mean bias (MBE) of GCM rainfall

during the October–December rainy season (Table 1).

The form of intensity transformation had little impact

on mean rainfall amount. Although the simultaneous

bias correction aims to correct only systematic error in

GCM rainfall, random error during the October–

December season was reduced slightly after the

corrections (Table 1).

The simpler multiplicative shift eliminated bias of

mean monthly GCM rainfall (Fig. 2a), but left

substantial biases of intensity (Fig. 2b) and frequency,

particularly for the dryer months (Fig. 2c). As expected,

the adjustment changed the mean intensity of GCM

rainfall (Fig. 2b). Since the shift modifies only the

amount on each day with non-zero rainfall, its impact on

rainfall frequency during the dry months (Fig. 2c) was

not anticipated. Since the GCM overestimates rainfall

during the dry season, the rescaling reduced a

substantial number of daily GCM rainfall amounts

below the 0.1 mm threshold for rainfall occurrence. The

multiplicative shift also failed to correct the year-to-

year variability of GCM rainfall totals and mean

intensity (Fig. 2d and e). The new simultaneous bias

correction is clearly desirable for applications of daily

GCM rainfall that are sensitive to frequency and

intensity of rainfall events, or to the interannual

variability of rainfall totals.

Because it is designed to correct mean rainfall bias,

the simple multiplicative rescaling procedure out-

performed the EG and GG transformation in correcting

October–December mean rainfall (Table 1). It did not
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Fig. 2. Interannual mean (a–c) and standard deviation (d–f) of monthly GCM rainfall (a, d) cumulative amount, (b, e) intensity, and (c, f) frequency

using the proposed GCM bias correction and multiplicative rescaling.
eliminate mean intensity bias. Yet it produced nearly the

same random error for mean intensity and total rainfall

as the two versions of the simultaneous bias correction.

It had no effect on rainfall frequency for the October–

December season, although it did during the preceding

June–September dry season (Fig. 2b).
Table 1

Performance of the proposed bias correction on seasonal rainfall statistics

Method R MBE (mm wd�1) d M

mI

EG 0.429 �0.318 0.643

GG 0.428 �1.089 0.536

Multiplicative 0.463 �2.992 �0.282 1

Uncorrected 0.411 �5.659 �4.925 3

Method R MBE (wd d�1) d

p

EG 0.733 �0.074 0.619

GG 0.736 �0.031 0.776

Multiplicative 0.689 0.223 �0.826

Uncorrected 0.689 0.223 �0.824

Method R MBE (mm d�1) d

X̄

EG 0.734 �0.282 0.828

GG 0.735 �0.257 0.831

Multiplicative 0.756 �0.0003 0.862

Uncorrected 0.699 �1.799 �0.596
For October–December mean intensity, the simulta-

neous correction using the EG transformation gave the

best overall fit with observations, based on MSE and d

(Table 1). By the same criteria, the GG transformation

performed best for correcting frequency, while the

simple rescaling procedure gave the best result for
(October–december)

SE (mm wd�1)2 MSER (mm wd�1)2 MSES (mm wd�1)2

4.279 3.649 0.629

5.226 3.656 1.570

2.547 3.515 9.032

5.893 3.719 32.174

MSE (wd d�1)2 MSER (wd d�1)2 MSES (wd d�1)2

0.011 0.006 0.006

0.007 0.006 0.001

0.056 0.007 0.050

0.056 0.007 0.050

MSE (mm d�1)2 MSER (mm d�1)2 MSES (mm d�1)2

0.862 0.746 0.116

0.850 0.744 0.106

0.773 0.694 0.079

4.245 0.827 3.418
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Fig. 3. Sensitivity of (a) root mean squared error (RMSE) and (b)

correlations of predicted yields to the number of GCM ensemble

members averaged.
seasonal mean rainfall. It is interesting to note that, for

the October–December rainy season, most of the error

in monthly statistics of the raw daily GCM rainfall is

systematic, and therefore readily corrected.

3.2. Simulated yields

All of the bias correction procedures clearly

improved maize yield simulations (Fig. 3, Table 2).

Yet despite substantial under-prediction of mean yields,

the correlation of yields simulated with observed and

with uncorrected daily GCM rainfall was fairly high,

and improved little following bias correction.
Table 2

Performance of the proposed GCM bias correction on yield prediction

Method R MBE (Mg ha�1) d M

EG 0.685 �0.933 0.548 1

GG 0.691 �1.015 0.510 1

Multiplicative 0.678 �1.095 0.433 2

Uncorrected 0.610 �2.346 �1.135 6
This suggests that at least the direction of CERES-

Maize response to variations in cumulative rainfall

amount was fairly insensitive to either mean bias or to

the day-to-day variability of rainfall. Although this is

consistent with the results of Mavromatis and Jones

(1999), we do not anticipate that this will hold true in all

contexts. In their analysis of the impact of stochastic

disaggregation of observed monthly rainfall, Hansen

and Ines (2005) found that maize simulations at two

sites in the southeastern USA were much more sensitive

to loss of information about daily variability than were

simulations at Katumani, Kenya. The prediction skill of

the climate model was high during the maize growing

season, particularly during November (Fig. 4).

The yields simulated using corrected daily output of

the 24 GCM ensemble members were sampled without

replacement, and averaged among groups of 1–4, 6, 8,

12 and 24 realizations of GCM rainfall. Predictability of

simulated yields improved as the number of ensemble

members used increased (Fig. 3). We expect that this

improvement would behave asymptotically with larger

numbers of GCM runs. Hansen and Ines (2005)

observed similar response to sample size when

averaging among realizations of stochastically disag-

gregated monthly rainfall observations or predictions.

The proposed simultaneous bias correction proce-

dure performed better than the uncorrected GCM

scenario based on all goodness-of-fit measures, and

outperformed simple rescaling in terms of total and

systematic error (Table 2, Fig. 5). The GG transforma-

tion performed slightly better in improving the random

error of yield simulations while EG transformation was

more effective at reduced systematic error. However,

random error was too similar to support any clear

ranking of the three bias correction methods.

3.3. Understanding yield under-prediction

In Fig. 5, the gap between the simulated yields using

uncorrected GCM rainfall and the three forms of bias

corrections is primarily a result of the GCM’s bias in

simulating monthly rainfall amounts. The reason for the

gap between the simulated yields using observed and
SE (Mg ha�1)2 MSER (Mg ha�1)2 MSES (Mg ha�1)2

.776 0.895 0.881

.923 0.881 1.043

.128 0.909 1.218

.595 1.058 5.537
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Fig. 6. Cumulative relative frequency of dry spell lengths observed

and from the first two members of GG-corrected GCM simulations, 15

November–31 December.

Fig. 4. Correlations between monthly (a) intensity, (b) frequency and

(c) amount observed at Katumani and simulated by the GCM. The

arrows show the maize growing season.
bias-corrected daily GCM rainfall is not as obvious.

Visual inspection of observed and corrected GCM time

series from 1992 and 1999 (not shown) suggests that the

GCM may simulate rainfall events with stronger time

dependency, or clustering, than observed at the

Katumani station. The correction procedure cannot

correct for any biases in autocorrelation of rainfall

occurrence or intensities. Fig. 6 shows the cumulative
Fig. 5. Simulated maize yields using observed daily rainfall, uncor-

rected GCM rainfall, the proposed bias corrections and multiplicative

rescaling.
frequency distribution of dry spell lengths, defined as

days with <1.0 mm of precipitation, for observations

and the first two members of GG-corrected GCM

rainfall, for 15 November–31 December, through the

entire 1970–1995 record. The average dry spell length

from the corrected GCM simulations (8, 18 days) is

roughly double the observed average (4.20 days). Dry

spells simulated by the GCM tend to be longer than

observed. Therefore, for a rainfall given frequency and

seasonal total, the corrected daily GCM produces more

dry spells that are sufficiently long to deplete stored soil

water, leading to water stress and reduced yield, than

observed. Interaction between the variability in simu-

lated water availability across the 24 GCM realizations,

and the nonlinear and generally concave yield response

of crops to water variability may also contribute to the

under-prediction of yields. Hansen and Ines (2005)

found that variability in seasonal total rainfall among

realizations of rainfall from a stochastic weather

generator resulted in similar negative mean bias of

simulated yields. In operational forecast mode, this

yield bias can be corrected by linear regression.

4. Summary and conclusions

We present a method that can be used to transform

daily rainfall simulated by a GCM to make it more

suitable for use with crop simulation models. Because

GCMs show substantial biases in total amount,

frequency and intensity of rainfall, we sought to correct

amount by correcting mean frequency and the intensity

distribution of GCM rainfall. Mean monthly frequency

is corrected by calibrating a threshold from the

empirical distribution of historical data, then truncating

the empirical distribution of daily GCM rainfall at that
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threshold. The truncated daily GCM rainfall is then

mapped onto a fitted distribution observed rainfall

intensities. Since rainfall amount is equal to the product

of rainfall intensity and frequency, correcting these two

rainfall components also corrects total rainfall amount.

The correction procedure improved the overall

predictability of yields. Most of the improvement from

correcting GCM rainfall was due to reducing mean bias.

Yet maize yields simulated with GCM rainfall corrected

using a simpler multiplicative shift performed almost as

well as results using the proposed frequency–intensity

correction. However, ECHAM model that we evaluated

appears to simulate daily rainfall with unrealistic time

structure at the study location. This distortion appeared

to contribute to substantial systematic under-prediction

of maize yields, and cannot be corrected readily.

The question of how much, if any, predictive

information GCMs provide about the higher-order

variability of ‘‘weather within climate’’ remains to be

answered. If GCMs do provide any advance information

about variability within the growing season that is

relevant to crop response but discarded when averaging

into forecast seasonal anomalies, the proposed bias

correction provides one potential avenue for incorpor-

ating that information into crop simulations. However,

its practical utility for yield forecasting at a long lead-

time may be limited by the ability of GCMs to simulate

rainfall with a realistic time structure.
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