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ABSTRACT

Daily precipitation and maximum and minimum temperature time series from a regional climate model
(RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately)
spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha
River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; east
fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For com-
parison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature
were developed from measured data for each basin. These datasets included precipitation and temperature data
for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded
station data used to calibrate the hydrologic model.

Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation
and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little
skill on a daily basis [Nash–Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and 20.08 to 0.65 for
All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data
(Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically
for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-
Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS
value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from 20.08 to 0.72).

These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate
for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output,
even when bias corrected, does not contain the day-to-day variability present in the All-Sta dataset that is
necessary for basin-scale modeling. Future work is warranted to identify the causes for systematic biases in
RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily vari-
ability in local climate.

1. Introduction

In recognition of the economic significance of water
resources in the United States, many studies have sought
to examine the effects of climate change on components
of the hydrologic budget. The most common approach
has been to combine basin-scale hydrologic models with
climate change scenarios derived from general circu-
lation model (GCM) output (see Watson et al. 1996).
Due to their coarse resolution, GCMs overlook numer-
ous climatological details necessary for accurate runoff
estimation at the basin scale. The advent of higher-res-
olution GCMs may improve the situation; however, hy-
drologic modeling at the basin scale requires climato-
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logical information on scales that are generally far
smaller than the typical grid size of even the highest-
resolution GCMs commonly used for climate simula-
tions (e.g., Phillips 1995).

In order to translate (‘‘downscale’’) information from
the coarse-resolution GCMs to the basin scale for hy-
drologic modeling, methods are needed that resolve sub-
grid-scale information in the simulated fields. One way
to achieve this is by statistical downscaling (Wilks 1995;
Wilby et al. 1999). In this approach, empirical relations
are developed between features reliably simulated by a
GCM at grid-box scales (e.g., 500-hPa geopotential
height) and surface predictands at subgrid scales (e.g.,
precipitation occurrence and amounts). An alternative
approach is through dynamical downscaling, in which
a regional climate model (RCM) uses GCM output as
initial and lateral boundary conditions for much more
spatially detailed climatological simulations over a re-
gion of interest. RCMs capture geographical details
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TABLE 1. Study basins.

Study basin:

Animas River
at Durango

East fork of the Carson
River near Gardnerville

Cle Elum River
near Roslyn

Alapaha River
at Statenville

State Colorado California/Nevada Washington Georgia
Gauging station ID 09361500 10309000 12479000 02317500
Drainage area (km2) 1792 922 526 3626
Elevation range (m) 2000–3700 1600–3000 680–1800 40–125
Number of HRUs 121 96 124 180
Number of stations in All-Sta dataset

Precipitation 38 37 27 20
Temperature 30 21 14 14

Number of RegCM2 grid points 8 7 5 12
Best three-stations sets (Best-Sta)

Precipitation Durango
Cascade
Lizard Head Pass

Twin Lakes
Hagan’s Meadow
Lobdell

Fish Lakes
Stampede
Stevens Pass

Moultrie
Fitzgerald
Tifton

Temperature Durango
Vallecito Dam
Rico

Tahoe Valley
Twin Lakes
Blue Lakes

Baring
Cle Elum
Stampede

Quitman
Cordele
Ashburn

Snowfall bias (%) 30 0 10 0
% days with precipitation (# sta-
tions)

71% (15 stations) 23% (1 station) 64% (4 stations) 57% (11 stations)

more precisely than the coarse-resolution GCM. Al-
though the computational requirements of such an ap-
proach are demanding, rapid advances in computer pow-
er over the past decade have allowed RCMs to become
a major tool in climatological studies allowing for lon-
ger runs as well as finer resolution.

Wilby et al. (2000) examined the hydrological re-
sponse in the Animas River basin of Colorado to dy-
namically and statistically downscaled output from the
National Centers for Environmental Prediction–Nation-
al Center for Atmospheric Research (NCEP–NCAR) re-
analysis (Kalnay et al. 1996). They found that in terms
of modeling hydrology, both statistical and dynamical
downscaling provided greater skill than the coarse-res-
olution data used to drive the downscaling. The output
from the RCM used in the dynamical downscaling was
simulated by RegCM2 (Giorgi et al. 1996), using the
continental United States domain and a grid spacing of
52 km. Despite the higher level of sophistication and
physical realism associated with dynamical downscal-
ing, hydrographs simulated using dynamically down-
scaled precipitation and temperature were not generally
as realistic as those simulated using statistically down-
scaled precipitation and temperature.

Statistical downscaling (SDS), however, is ultimately
limited by the assumption of stationarity in the empirical
relations (i.e., skillful SDS results for the present climate
do not necessarily translate to skillful forecasts of future
climate). The nonstationarity in empirical climate re-
lations is well documented (e.g., Ramage 1983). Dy-
namical downscaling does not suffer from such short-
comings. Though some parameterization in an RCM
may have an empirical basis, RCM simulations of local
climate are more physically based than SDS and thus
are more acceptably transferable from current to future

climates. However, RCM simulations of current climate
have not been extensively tested (Takle et al. 1999).
There is a strong need for a systematic assessment of
current RCM output in order to evaluate the skill of
(and confidence in) RCM simulations, especially as
drivers for impacts assessment models, and to identify
areas for model improvement. This paper will evaluate
an RCM-surface climate, by using the RegCM2 (Giorgi
et al. 1996) simulated precipitation and temperature as
input to a hydrologic model.

Four basins were chosen for this analysis: 1) Animas
River at Durango, Colorado (Animas); 2) east fork of
the Carson River near Gardnerville, Nevada (Carson);
3) Cle Elum River near Roslyn, Washington (Cle Elum);
and 4) Alapaha River at Statenville, Georgia (Alapaha).
The surface hydrology of the first three basins (Animas,
Carson, and Cle Elum) is dominated by snowmelt. The
Carson and Cle Elum basins are also characterized by
frequent rain-on-snow events in the winter months. The
Alapaha basin is a low-elevation rainfall-dominated ba-
sin. Tables 1 and 2 list some of the defining features of
each basin, and Fig. 1 shows the location of each. In
this study, for each of the four basins, daily precipitation
and temperature were derived from RegCM2 and used
as inputs to a hydrologic model. Since the hydrological
response of the basin is an integration of the regional
climate (in time and space), the results presented here
will provide insights into the overall realism of the
RegCM2 precipitation and temperature time series for
four basins in the United States. This study examines
the limits of what one can do with RegCM2 output that
has been configured using the continental United States
as a domain and run on a 52-km (approximately) spatial
resolution, and what the implications are for a RegCM2
to be able to handle details of climate at those limits.
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TABLE 2. Elevation ranges.

Elevations ranges (m) for each study basin

Animas River at Durango

Min Mean Max

East fork of the Carson
River near Gardnerville

Min Mean Max

Cle Elum River near
Roslyn

Min Mean Max

Alapaha River at
Statenville

Min Mean Max

HRUs 2011 3060 3728 1645 2300 2959 680 1337 1799 44 85 122
Best three-stations

Precipitation
Temperature

2010
2010

2609
2341

3109
2682

2438
1906

2560
2260

2804
2438

1027
235

1162
678

1241
1219

316
172

338
287

353
404

All stations
Precipitation
Temperature

1720
1720

2686
2328

3536
3536

718
718

1909
1104

2804
2804

52
52

813
328

1829
1640

112
112

227
197

455
455

RegCM2 grid nodes 1895 2579 2987 1586 1926 2166 279 802 1401 23 64 139

FIG. 1. Location of study basins.

2. Data

For each basin, two types of daily data were compiled
for the purpose of hydrologic modeling: 1) measured-
station data and 2) RegCM2 output.

a. Station data

Daily maximum and minimum temperatures and pre-
cipitation data from stations in and around each basin were
compiled from the National Weather Service (NWS) and
snow telemetry (SNOTEL) databases. The NWS data were
retrieved from the Utah Climate Center’s Weather Data
Online (available online at http://climate.usu.edu/Free/).
SNOTEL data were retrieved from the Natural Resources
Conservation Service (available online at ftp://
162.79.124.23/data/snow/snotel/snothist/). Figure 2 shows
the location of the NWS and SNOTEL stations used for
each basin study.

b. Regional climate model output

The RCM output was simulated by RegCM2 (Giorgi
et al. 1996), using the continental U.S. domain of the
Project to Intercompare Regional Climate Simulations
(PIRCS) experiments (see Fig. 1 in Takle et al. 1999).
Precipitation was simulated using the Grell (1993) con-
vection scheme and the simple warm-cloud explicit
moisture scheme of Hsie et al. (1984). The simulations
also used the CCM2 radiation package (Briegleb 1992),
the BATS version 1e surface package (Dickinson et al.
1992), and the nonlocal boundary layer turbulence
scheme of Holtslag et al. (1990).

A 10-yr run (1979–88) was conducted using 6-h out-
put from the NCEP–NCAR reanalysis to define initial
and boundary conditions. These were supplemented by
observations of water-surface temperature in the Gulf
of California and the Great Lakes, which are poorly
resolved in the reanalysis.
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FIG. 2. Station locations and RegCM2 grid points used in each basin.

The RegCM2 grid spacing is 52 km on a Lambert
conformal projection of the midlatitudes. Figure 2
shows the RegCM2 grid points chosen for analysis in
each of the four study basins. A buffer equal to that of
the RegCM2 grid spacing was generated around each
basin boundary, and all RegCM2 grid points that fell
within this buffered area were chosen for this analysis
(see Fig. 2). This provided 8 grid points for the Animas,
5 grid points for the Cle Elum, 7 grid points for the
Carson, and 12 grid points for the Alapaha (Table 1).
The area of a RegCM2 grid box is approximately 2500
km2, larger than the drainage area of three of the four
basins (Table 1). The four basins are comparable in size
to the smallest scales resolved by the RegCM2. Thus,
they represent a fairly stringent test of the limits of the
model’s downscaling capability.

3. Hydrologic model

The hydrologic model chosen for this study is the
U.S. Geological Survey’s (USGS) Precipitation Runoff
Modeling System (PRMS) (Leavesley et al. 1983; Leav-
esley and Stannard 1995). PRMS is a distributed-pa-

rameter, physically based watershed model. Distributed
parameter capabilities are provided by partitioning a wa-
tershed into hydrologic response units (HRUs). Basin
and HRU delineation, characterization, and parameter-
ization were done for each basin using a geographic
information system (GIS) interface. HRUs were delin-
eated identically for each basin by 1) subdividing the
basin into two flow planes for each channel, 2) subdi-
viding the basin using three equal area elevation bands,
and 3) intersecting the flow-plane map with the eleva-
tion-band map. The number of HRUs resulting from
this process for each basin are listed in Table 1. The
elevation ranges of the HRUs are listed in Table 2.

A conceptual diagram of PRMS is shown in Fig. 3
(Leavesley et al. 1983). PRMS uses daily inputs of the
climate variables precipitation, maximum temperature,
minimum temperature, and solar radiation. Precipita-
tion, maximum temperature, and minimum temperature
are available at most climate stations across the United
States. Solar radiation is generally not measured at the
climate stations used in this study, so shortwave and
longwave radiation were computed empirically using
algorithms in PRMS [see Leavesley et al. (1983) for
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FIG. 3. Conceptual diagram of PRMS (Leavesley et al. 1983).

more information]. PRMS is conceptualized as a series
of reservoirs (impervious zone, soil zone, subsurface,
and groundwater) whose outputs combine to produce
streamflow. For each HRU, a water balance is computed
daily and an energy balance is computed twice each
day. The sum of the water balances of each HRU,
weighted by unit area, produces the daily watershed
response.

Hydrologic model parameters describing topograph-
ic, vegetation, and soils characteristics were generated
for each HRU from four digital databases using a GIS:
1) USGS three-arc second digital elevation models; 2)
state soils geographic (STATSGO) 1-km gridded soils
data (U.S. Department of Agriculture 2000); 3) U.S.
Forest Service 1-km gridded vegetation type and density
data (U.S. Department of Agriculture 1992); and 4)
USGS 1-km gridded land use/land cover data (Anderson
et al. 1976). For cases in which an HRU contained more
than one soil or vegetation type, the dominant soil or
vegetation type was used. An objective parameter es-

timation and calibration procedure was used to prevent
biasing parameter estimates to any particular meteoro-
logical data set (Leavesley et al. 2002a). Using this pro-
cedure, no changes are made to GIS-generated spatial
parameters. Calibration focused on the water balance
parameters affecting potential evapotranspiration and
precipitation distribution, and on subsurface and
groundwater parameters affecting hydrograph shape and
timing (Leavesley et al. 2002a). Other model parameters
were based on parameter sets from model applications
to comparable basins in the same region (Leavesley et
al. 1992).

a. Spatial distribution of climate variables—The xyz
methodology

The hydrologic model PRMS needs reliable estimates
of daily precipitation, maximum temperature, and min-
imum temperature at each HRU. A method was devel-
oped whereby measured precipitation and maximum and
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minimum temperature data from a group of stations (or
RegCM2 grid points) could be spatially distributed from
one point (a single daily mean value) to each HRU in
a basin (Hay et al. 2000; Hay and Clark 2000). The
method allows for station data and RegCM2 grid points
to be distributed similarly, both starting as a single daily
mean value.

Significant geographic factors affecting the spatial
distribution of precipitation, maximum temperature, and
minimum temperature distributions within a river basin
are latitude (x), longitude (y), and elevation (z). To ac-
count for seasonal climate variations, the multiple linear
regression (MLR) equation (Eq. 1) was developed for
each basin and month for each dependent variable [the
climate variables (CVs): precipitation, maximum and
minimum temperature) using the independent variables
of x, y, and z from a set of climate stations that fell
within the buffered areas designated in Fig. 2:

CV 5 b x 1 b y 1 b z 1 b .1 2 3 0 (1)

The monthly MLR equations were computed to de-
termine the regression surface that described the spatial
relations between the monthly dependent CV and the
independent xyz variables. Equation (1) describes a
plane in three-dimensional space with ‘‘slopes’’ b1, b2,
and b3 intersecting the CV axis at b0. Note that for each
month the best MLR equation did not always include
all the independent variables.

To estimate the daily CVs for each HRU, the follow-
ing procedure was followed: 1) mean daily CVs and
corresponding mean x, y, and z values from a set of
stations or grid points were used with the slopes of the
monthly MLRs in Eq. (1) to estimate a unique y intercept
( ) for that day, and 2) equation 2 was then solvedestb 0

using b1, b2, and b3 from Eq. (1) and the x, y, and z
values of the HRUs:

estCV 5 b 1 b x 1 b y 1 b z . (2)(HRU) 0 1 (HRU) 2 (HRU) 3 (HRU)

The distribution technique is identical for station and
RegCM2 grid-node output: the same MLR equations
are used but the time series of mean daily CVs and their
corresponding mean x, y, and z values are obtained from
either station data or from the RegCM2 grid points to
estimate a unique for that day. Thus, for a givenestb 0

day the slope of the MLRs for the CVs remained con-
stant, but the y intercept changes based on the mean CV
and xyz values.

b. Exhaustive search analysis

The MLR-distribution methodology provides spatial
‘‘maps’’ of precipitation and temperature based on re-
gional relations between latitude, longitude and eleva-
tion, and local climate. However, these MLR equations
do not provide a perfect fit with observations; the re-
gional MLR equations often under estimate or overes-
timate the mean precipitation (or temperature) in the
smaller basins used for hydrologic simulations. Also,

difficulties in precipitation measurement (particularly
precipitation gage undercatch associated with snowfall
events) may lead to significant errors in hydrologic sim-
ulations.

To address these issues, an exhaustive search (ES)
analysis was used to 1) determine the ‘‘optimal’’ pre-
cipitation- and temperature-station sets to anchor the xyz
distribution methodology (Hay et al. 2000; Wilby et al.
1999); 2) provide an estimate of snowfall-measurement
bias associated with the above precipitation-station set
(Hay et al. 2000); and 3) define a separate precipitation-
station set to determine daily precipitation frequency.
The ES analysis was executed using water years 1989–
96. Climate stations were tested in the ES analysis if
they had less than 5% missing record for water years
1989–96 and the period of the RegCM2 data (1979–
88). This excluded many of the SNOTEL stations whose
records did not begin until the mid 1980s.

To start the ES search, each climate station was tested
individually for its ability to anchor the xyz methodol-
ogy. Precipitation and temperature stations were tested
separately since the best precipitation station choice
generally differed from the best choice for temperature
distribution in a basin. For every combination of these
precipitation and temperature xyz-station sets, a snowfall
bias error (described below) and a station set to indicate
precipitation frequency (described below) were tested.
Time series of precipitation, maximum temperature, and
minimum temperature for each of these combinations
were calculated and used as input into PRMS. Measured
and simulated runoff were compared by examining the
sum of the daily absolute errors between the two.

Previous work using this method of station selection
in the Animas River basin (Wilby et al. 2000) high-
lighted the problem of gauge undercatch, estimated to
be as much as 20–50% for snowfall in mountainous
terrain (Sevruk 1989). Milly and Dunne (2002) found
that a 10%–20% bias in precipitation was typical for
basins examined around the world. An attempt to correct
for these biases in snowfall was made by testing un-
dercatch amounts from 0%–50% during snowfall events
for each station combination tested in the ES analysis.
This bias correction in the ES analysis actually com-
pensates for the net effect of a number of biases related
to precipitation measurement, such as gauge undercatch,
gauge location, and/or lack of gauges at high elevation.
It may also correct for other problems in PRMS, such
as overestimation of ET.

Precipitation frequency was incorporated into PRMS
based on a set of precipitation stations separate from
the set selected for use in the xyz methodology. Prelim-
inary work with the precipitation-station set chosen to
anchor the xyz methodology indicated that the optimal
xyz-station set used to produce the volume of precipi-
tation for a day was not always the best set to determine
whether there actually was precipitation on that day.
Therefore, for each ES search, a separate precipitation-
station set was used to indicate a rain or no-rain day
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TABLE 3. Meteorological inputs to the hydrology model.

No. Abbreviation Description

1 Best-Sta Best three-station set determined through
ES analysis

2 RegCM2 RegCM2 grid nodes within buffered area
3 All-Sta All stations within buffered area excluding

‘‘Best-Sta’’ stations
4 Bias-RegCM2 ‘‘RegCM2’’ with a Bias correction applied
5 Bias-All ‘‘All-Sta’’ stations with a Bias correction

applied
6 Test1 ‘‘Best-Sta’’ precipitation, ‘‘Bias-RegCM2’’

max and min temperature
7 Test2 ‘‘Best-Sta’’ max temperature, ‘‘Bias-

RegCM2’’ min temperature and precipi-
tation

8 Test3 ‘‘Best-Sta’’ min temperature, ‘‘Bias-
RegCM2’’ max temperature and precipi-
tation

(i.e., if any of the stations in the chosen set had pre-
cipitation, then the xyz methodology was enacted to dis-
tribute precipitation on that day).

Further ES searches using the above procedure were
run to test all possible combinations of two, three, and
four station groups comprising the xyz-station sets. For
each ES search, the best xyz-station set for temperature
and precipitation with an associated snowfall bias and pre-
cipitation frequency was determined by comparing the ab-
solute error in runoff. The ES analysis ended when the
absolute error associated with the above combination
showed no significant improvement from one group to the
next. Table 1 lists the ‘‘best’’ temperature and precipitation
station sets and Fig. 2 shows their locations. In addition,
Table 1 lists the snowfall bias associated with the precip-
itation-station set and percentage of days with precipitation
and associated number of stations used to designate the
precipitation frequency for each basin.

This ES procedure avoids the need for an exhaustive
calibration of hydrologic model parameters. Model cali-
bration is used quite often in hydrologic modeling to avoid
the reality of serious biases in precipitation (Milly and
Dunne 2002). The ES procedure is similar to many of the
model calibration procedures that are in widespread use
and will indirectly compensate for problems in other rou-
tines in the hydrologic model. However, the problems with
precipitation bias are corrected at their source, thus re-
ducing the need to directly calibrate any of the GIS-gen-
erated spatial parameters. In this study these estimates of
spatial parameters were not calibrated to avoid biasing
them to any specific meteorological time series.

c. Input datasets

The input datasets for the hydrologic model are de-
rived from two sources: 1) RegCM2 output and 2) mea-
sured-station data. In order to assess the performance
of the RegCM2-based simulations of runoff it became
necessary to develop an appropriate baseline. Our hy-
drologic modeling strategy consists of selecting the sta-
tion set that provides the best simulation of runoff (Best-
Sta from the ES analysis), and then tune a small select
group of model parameters to provide the best possible
simulation of runoff given the chosen station set time
series (Leavesley et al. 2002b). No such calibration is
performed on the RegCM2 model inputs. Thus, use of
the calibrated Best-Sta mean time series to assess
RegCM2 performance will lead to conclusions that are
favorable to the station-based simulations and unfavor-
able to RegCM2-based runoff simulations.

To provide a fair means of comparing the relative per-
formance of RegCM2- and station-based runoff simu-
lations, new input datasets consisting of regionally av-
eraged station measurements were developed. These da-
tasets (hereafter referred to as ‘‘All-Sta’’) include data
on precipitation and temperature for all stations that fell
within the RegCM2 buffers (Fig. 2), but excludes the
station set (Best-Sta) determined using the ES procedure

and used for model calibration. The Best-Sta set is only
used in this study to provide the best possible set of model
parameters, and this parameter set is used for both the
RegCM2- and All-Sta simulations. The ES analysis is
used to determine the Best-Sta datasets but is not used
in the RegCM2 or All-Sta datasets. RegCM2 and All-
Sta simulations are corrected for systematic bias (Bias-
RegCM2 and Bias-All, respectively) to distinguish errors
in hydrologic simulations associated with model biases
from errors in hydrologic simulations associated with
model problems in capturing daily climate variations. All
input datasets are summarized in Table 3.

4. Hydrologic model input data

The hydrologic model PRMS was forced with me-
teorological variables derived from two sources: 1)
RegCM2 output and 2) measured-station data. RegCM2
output for the United States was available from 1979
to 1988. In each basin, PRMS was initialized with sta-
tion data from 1 October 1977 to 31 December 1978 to
remove the bias from the state variables. Then, 10 years
(1979–88) of daily mean precipitation, maximum tem-
perature, and minimum temperature from climate sta-
tions and RegCM2 output (outlined in Table 3) were
distributed using the xyz methodology to the HRUs in
each basin to produce daily runoff.

a. Precipitation

The RegCM2 output has a significantly higher num-
ber of precipitation days than measured at individual
stations. Such differences occur partly because the
RegCM2 precipitation represents an area (grid cells ap-
proximately 52 km 3 52 km) not a point. To evaluate
these differences directly, Fig. 4 compares the percent-
age of precipitation days between the All-Sta data and
the RegCM2 output (see Table 3 for dataset description)
over successively larger areas, starting from the center
of each basin. In Fig. 4, each square (circle) represents
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FIG. 4. Percent precipitation days with increasing buffer size for station data and RegCM2
output.

the inclusion of an additional station (RegCM2 grid
point). The triangle in each plot indicates the percent
precipitation days associated with the Best-Sta dataset
(plotted vs basin area). As expected, increases in area
(and the number of stations) are accompanied by in-
creases in the percentage of precipitation days. However,
notice that in each basin the RegCM2 starts with a sig-
nificantly higher number of precipitation days at the
smallest area (Fig. 4). Part of these differences occur
because even a trace of RegCM2-generated precipitation
will show up as a precipitation day (vs the 0.01-inch
detection limit from the stations). When the station de-
tection limit of 0.01 inches is applied as a cutoff to the
RegCM2 output (open ovals in Fig. 4), there is close
concurrence with the station data (with the exception of

the Alapaha River basin); but due to the large area rep-
resented by a single RegCM2 grid box, there is still a
higher percentage of precipitation days than what was
determined from the exhaustive search analysis (Table
1 and triangle in Fig. 4).

Figures 5a–8a show the daily basin precipitation
mean by month for the Best-Sta, RegCM2, Bias-
RegCM2 (described later), All-Sta, and Bias-All (de-
scribed later) datasets for the four river basins. Com-
parison of the RegCM2 and All-Sta with the Best-Sta
precipitation dataset shows that both the RegCM2 and
All-Sta capture the gross aspects of the seasonal cycle
of precipitation in all four basins, although there are
some large discrepancies. In the Alapaha River basin
(Fig. 5a), RegCM2 values are significantly lower than
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FIG. 5. Alapaha River basin daily basin mean by month for (a) precipitation, (b) max
temperature, (c) min temperature, (d) actual evapotranspiration, (e) snowmelt, and (f ) runoff.

Best-Sta in the winter months (Nov–Apr) but are much
closer to the Best-Sta values than the All-Sta. In the
Animas River basin (Fig. 6a), RegCM2 precipitation
values are lower than Best-Sta in the winter months
(Oct–Mar) and higher than Best-Sta precipitation in the
summer months (May–Sep). All-Sta precipitation values
are lower than the RegCM2 values in the winter months
and similar to Best-Sta in the summer. In the Carson
River basin (Fig. 7a), RegCM2 precipitation values are
higher than Best-Sta in the summer months (May–Sep).
All-Sta values are closer in value to Best-Sta in the
summer months than RegCM2 and higher than the Best-
Sta and RegCM2 values in the winter months. In the
Cle Elum River basin (Fig. 8a), RegCM2 and All-Sta
precipitation values are similar and significantly lower
than Best-Sta values in the winter months (Nov–Feb).

Based on these results, the raw RegCM2 and All-Sta
precipitation datasets were ‘‘corrected’’ for biases. The
bias corrections were made on a monthly basis using a

gamma transform that preserved the precipitation dis-
tribution. This procedure is similar to the transform
method suggested by Panofsky and Brier (1968). The
RegCM2 (and All-Sta) precipitation biases were cor-
rected using the following steps: 1) the RegCM2 pre-
cipitation values were forced to have the same number
of precipitation days as the Best-Sta dataset (Table 1).
Since the RegCM2 precipitation always had more pre-
cipitation days than the Best-Sta (Fig. 4), this was ac-
complished by (a) ranking the RegCM2 precipitation
output and (b) setting all values to zero with ranks equal
to or lower than the number of dry days in the Best-
Sta dataset. 2) Fit a gamma distribution was fitted to
the resultant Best-Sta and RegCM2 time series (restrict-
ed to precipitation days). 3) For each RegCM2 precip-
itation day (i.e., all RegCM2 values above the thresholds
identified in step 1b), compute the cumulative proba-
bility in the gamma distribution fitted to the RegCM2
output, and then replace the raw RegCM2 value with
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FIG. 6. Animas River basin daily basin mean by month for (a) precipitation, (b) max
temperature, (c) min temperature, (d) actual evapotranspiration, (e) snowmelt, and (f ) runoff.

the precipitation amount associated with the matched
cumulative probability in the gamma distribution fitted
to the Best-Sta data. An example of this approach is
given in Fig. 9, which shows the cumulative probability
of precipitation for RegCM2 output (Fig. 9a) and Best-
Sta data (Fig. 9b) for the Animas River basin in January.
Note from Fig. 6 that the RegCM2 model underpredicts
cold-season precipitation in the Animas. For a RegCM2
precipitation value of 10 mm, the cumulative probability
in the fitted gamma distribution is 0.83. In the gamma
fit to the measured data, a cumulative probability of 0.83
is associated with a precipitation value of 15 mm. For
this particular case, the bias correction increases the
RegCM2 prediction from 10 to 15 mm.

Precipitation-day frequency is corrected using a meth-
od identical to step 1, except the station set used is the
Best-Sta set determined from the exhaustive search anal-
ysis for precipitation frequency. Because there were
only 10 years of RegCM2 output available for this study,

an independent dataset was not used to produce the
RegCM2 precipitation bias corrections. From Figs. 5a–
8a, it is evident that monthly values of Bias-RegCM2
and Bias-All are similar to Best-Sta data.

The bias adjustments to the RegCM2 precipitation
may correct the monthly mean values (Figs. 5f–8f), but
daily values of Bias-RegCM2 precipitation do not con-
tain the day-to-day variability present in the Best-Sta or
All-Sta values for any of the basins. Figure 10a shows
for each basin the R-square values by month for pre-
cipitation calculated using 1) Bias-RegCM2 and Best-
Sta values and 2) Bias-All and Best-Sta values. The R-
square values using Bias-RegCM2 precipitation output
(Fig. 10a) are generally low for most months, especially
in the Alapaha River basin (remaining near 0.0 for a large
portion of the year). Relatively higher values occur in
the winter months and the lowest values occur in the
summer months. The R-square values using Bias-All pre-
cipitation output are much higher than those from Bias-
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FIG. 7. East fork of the Carson River basin daily basin mean by month for (a) precipitation, (b)
max temperature, (c) min temperature, (d) actual evapotranspiration, (e) snowmelt, and (f) runoff.

RegCM2, most notably in the Alapaha River basin. These
results indicate that the RegCM2 output does not contain
the day-to-day variability present on the All-Sta precip-
itation data compiled at the same spatial resolution.

b. Temperature

Figures 5b–8b and 5c–8c show the daily basin max-
imum and minimum temperature mean by month for the
Best-Sta, RegCM2, Bias-RegCM2 (described later),
All-Sta, and Bias-All (described later) datasets for the
four river basins. RegCM2 maximum temperature val-
ues are significantly lower than Best-Sta data (with ex-
ception of Cle Elum), sometimes by as much as 68C.
All-Sta maximum temperature values are similar to
Best-Sta values, with the exception of the Alapaha River
basin (Fig. 5b), where All-Sta values are significantly
higher than Best-Sta values. RegCM2 minimum tem-
perature values are similar to Best-Sta values in the

Alapaha (Fig. 5c) and Cle Elum (Fig. 8c) River basins,
and higher than Best-Sta values in the Carson River
basin (Fig. 7c). All-Sta minimum temperature values
are higher in the Alapaha (Fig. 5c) and the Carson River
basin (Fig. 7c).

A simple bias correction was performed on the raw
RegCM2 and All-Sta maximum and minimum temper-
ature datasets to produce the Bias-RegCM2 and Bias-
All temperature datasets, respectively. Biases were re-
moved in the RegCM2 (and All-Sta) datasets by 1) com-
puting a monthly climatology of the RegCM2 maximum
and minimum temperature for each day; 2) subtracting
the daily RegCM2 value of maximum and minimum
temperature from that climatology (to produce a daily
anomaly value); and 3) adding the daily maximum and
minimum temperature anomaly from the RegCM2 mod-
el to the corresponding Best-Sta monthly station cli-
matology of maximum and minimum temperature. Be-
cause there were only 10 years of RegCM2 output avail-
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FIG. 8. Cle Elum River basin daily basin mean by month for (a) precipitation, (b) max
temperature, (c) min temperature, (d) actual evapotranspiration, (e) snowmelt, and (f ) runoff.

FIG. 9. Cumulative probability of precipitation for (a) RegCM2 output and (b) Best-Sta
station data for the Animas River basin in Jan.
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FIG. 10. The R-square values by month for each basin calculated using 1) bias-corrected RegCM2
and best three-station values and 2) bias-corrected all stations and best three-station values for
(a) precipitation, (b) max temperature, and (c) min temperature.

able for this study, an independent dataset was not used
to produce the maximum and minimum temperature bias
corrections. Due to the nature of the temperature bias
correction, the monthly climatologies of Bias-RegCM2,
Bias-All, and Best-Sta are the same (see Figs. 5b–8b
and 5c–8c).

Bias adjustments to the RegCM2 temperature may
correct the monthly mean values (Figs. 5b, 5c–8b, and
8c), but similar to precipitation, daily values of Bias-
RegCM2 temperature do not contain the day-to-day var-
iability present in the Best-Sta or All-Sta values for any
of the basins. Figures 10b,c shows for each basin the
R-square values by month for maximum and minimum
temperature calculated using 1) Bias-RegCM2 and Best-
Sta values and 2) Bias-All and Best-Sta values. R-square
values by month using Bias-RegCM2 output for max-
imum and minimum temperature are generally low for
all months and are significantly less than the R-Square
values calculated using Bias-All data. Temperature sta-
tion data compiled at the scale of the RegCM2 output
still contains day-to-day variability present in the ‘‘Best-
Sta’’ dataset. The RegCM2 output may have identical
monthly means values, but does not contain the day-to-
day variability in temperature present in the measured
station data.

5. Hydrologic model output
Figure 11 shows the simulated mean annual water

balance components [evapotranspiration (ET) using Jen-

sen–Haise, precipitation, and simulated runoff] and the
measured runoff for each basin. Figures 5d–8d, 5e–8e,
and 5f–8f show the basin daily mean by month of actual
evapotranspiration, snowmelt, and runoff simulated by
PRMS using the Best-Sta, RegCM2, Bias-RegCM2, All-
Sta, and Bias-All datasets as input.

a. Actual evapotranspiration

By definition, the bias corrections to the precipitation
and temperature (Bias-RegCM2 and Bias-All) result in
similar actual evapotranspiration (AET) as that simulated
using Best-Sta. In the Alapaha River basin, the under-
estimate of RegCM2 AET reflects both the below-normal
precipitation (less available soil moisture) and the below-
normal temperatures (lower potential ET rates; Fig. 5d).
Similarly, the positive biases in precipitation and maxi-
mum temperature in the All-Sta simulation can explain
the higher rates of AET in the Alapaha. In the Animas,
although RegCM2 consistently underpredicts maximum
temperature throughout the year (lower potential ET
rates), the RegCM2 AET values are similar to the Best-
Sta values in the summer months (Fig. 6d). This most
likely occurs because RegCM2 overpredicts summertime
precipitation, possibly leading to higher available soil
moisture. Similar patterns are evident in the east fork of
the Carson (Fig. 7d).
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FIG. 11. Mean annual water balance components for the (a) Alapaha, (b) Animas, (c) east fork of the
Carson, and (d) Cle Elum.

b. Snowmelt

The snowmelt simulated by PRMS is summarized in
Figs. 5e–8e. Minimal snowmelt is simulated in the Ala-
paha River basin (Fig. 5e). Colder RegCM2 maximum
temperatures in the Animas and Carson River basin
(Figs. 6b, 7b) delay the snowmelt (Figs. 6e, 7e). The
lower All-Sta precipitation in the Animas and Cle Elum

River basins (Figs. 6a, 8a) lowers the amount of snow-
melt (Figs. 6e, 8e).

c. Runoff

Figures 5–8f show the daily basin mean runoff values
by month expressed as a depth (mm day21) and Fig. 11
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shows the mean annual water balance components for
each basin. In the Alapaha, the more frequent but small-
er-magnitude storms generated by the RegCM2 have a
mean monthly depth that is about 80% of the measured
mean monthly (Fig. 5a). The significant smaller average
monthly runoff simulated using the RegCM2 storms
(Fig. 5f) can be attributed to the smaller magnitude of
the individual storms present in the RegCM2 output.
Figure 4d indicates a 90% rainday occurrence in the
RegCM2 output, compared with 58 and 62 percent rain-
day occurrence in the Best-Sta and All-Sta datasets,
respectively. For direct-runoff computation at a 24-h
time step, the PRMS model uses a contributing area
concept similar to that used by many watershed models.
The area contributing runoff during rainfall, and the
magnitude of the runoff from this area are functions of
antecedent soil moisture content and the 24-h rainfall
amount. This relation is nonlinear with larger storms
and wetter soil conditions generating proportionally
larger amounts of runoff than that from drier soil con-
ditions and smaller storms. Thus, precipitation from
larger storms will reach river networks fairly quickly,
whereas precipitation from smaller storms will replenish
soil reservoirs and remain available for ET. Note that
almost all of the precipitation in the raw RegCM2 sim-
ulation is lost through ET (Fig. 11a), resulting in very
low runoff (Fig. 5f). The less frequent but larger-mag-
nitude storms in the Best-Sta data produce a simulated
runoff response that is much closer to the measured
basin runoff (Fig. 5f). The larger precipitation volumes
for the All-Sta produced excessively high runoff values.

In the Animas (Fig. 6), significantly lower RegCM2
maximum temperature values translates into delays in
spring runoff. Similar delays in spring runoff from lower
RegCM2 maximum temperature are seen in each of the
snowmelt basins (Figs. 6–8f). Lower All-Sta precipi-
tation in the Animas results in underestimation of runoff.
Similar but less extreme runoff responses are seen in
the Cle Elum (Fig. 8). In the east fork of the Carson
(Fig. 7), higher All-Sta and RegCM2 precipitation val-
ues translate into an overestimation of runoff.

6. Diagnosis of hydrologic modeling error

PRMS-simulated runoff using RegCM2 and All-Sta
input datasets did not reproduce realistic hydrographs
in any of the basins. Runoff simulated using the Bias-
corrected RegCM2 and All-Sta datasets are much closer
to measured mean monthly runoff than those simulated
using the raw data. But, comparisons of runoff values
on a mean monthly basis can be misleading. As shown
in Fig. 10, the bias correction, essentially a magnitude
correction to the raw climate datasets, does not correct
for errors in daily temporal variability. A comparison
of daily runoff is a more stringent test of the capabilities
of RegCM2 to simulate observed climate.

Figure 12 shows plots of measured versus simulated
daily runoff and the corresponding Nash–Sutcliffe (NS)

coefficient of efficiency statistic (Nash and Sutcliffe
1970). Figures 12a–d show the measured versus sim-
ulated daily runoff using the Best-Sta data; Figs. 12e–
h show the measured versus simulated runoff using the
RegCM2 output; Figs. 12i–l show the measured versus
simulated runoff using the Bias-RegCM2 output; Figs.
12m–p show the measured versus simulated runoff us-
ing the All-Sta data; and Figs. 12q–t show the measured
versus simulated runoff using the Bias-All data as input
to PRMS for the four basins. For PRMS outputs sim-
ulated using the Best-Sta data (Fig. 12a–d), the NS val-
ues are all above 0.7, indicating a good fit even with
minimal calibration of the PRMS model parameters. In
contrast, for PRMS outputs simulated using RegCM2
and All-Sta data (Figs. 12e–h, 12m–p), the resulting NS
values are much lower (less than 0.4 to near 0.0 for the
RegCM2 and less than 0.6 to near 0.0 for the All-Sta).
For PRMS outputs simulated using Bias-RegCM2 out-
put, model skill improves, but in all basins the NS values
are significantly lower than those simulated using the
Best-Sta. This is most apparent in the Alapaha River
basin, in which the NS value is only 0.09 (compared to
0.76 for PRMS outputs simulated using Best-Sta data).
For PRMS outputs simulated using Bias-All data, model
skill improves significantly in every basin. Most nota-
bly, the Alapaha River basin NS score increases to 0.72
(compared to 0.76 when using Best-Sta and 0.09 when
using Bias-RegCM2).

Figures 5–8 show that the Bias-RegCM2 and Bias-
All input datasets can be used to produce realistic sim-
ulations of mean monthly runoff, but, with the exception
of the Carson River basin, Bias-RegCM2 simulations
of daily runoff are rather poor and of less skill than
Bias-All (Fig. 12). The questions to be answered for
each basin are 1) the timescale at which the Bias-
RegCM2- and Bias-All-based simulations produce re-
alistic runoff and 2) which climate variables have the
greatest effect on runoff.

In an attempt to address question 1, the Bias-
RegCM2-, Bias-All-, and Best-Sta-runoff simulations
were summed over successively longer time intervals
(up to 120 days), and the NS goodness-of-fit score was
recomputed (Fig. 13). In order for runoff simulated us-
ing Bias-RegCM2 output to have NS values similar to
that simulated using Best-Sta data, Bias-RegCM2 output
would have to be summed on 108-, 44-, and 114-day
intervals for the Animas, Carson, and Cle Elum River
basins, respectively (see Fig. 13). For the Alapaha River
basin, even temporally averaged runoff simulations on
seasonal timescales (120 days) have NS values much
lower than daily simulations with Best-Sta data. In com-
parison, in order for runoff simulated using Bias-All
data to have NS values similar to that simulated using
Best-Sta data, Bias-All output would have to be summed
on 5-, 26-, 4-day intervals for the Alapaha, Carson, and
Cle Elum River basins, respectively (see Fig. 13). For
the Animas River basin, temporally averaged runoff
simulations produced using Bias-All output on seasonal
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FIG. 12. Measured vs simulated daily runoff and corresponding Nash–Sutcliffe goodness-of-fit statistic (NS) for the Alapaha, Animas,
Carson, and Cle Elum River basins. Simulated runoff produced using daily time series from best three-station data; raw RegCM2 output;
bias-corrected RegCM2 output, all stations; and bias-corrected all stations.

timescales (120 days) have NS values lower than daily
simulations with Best-Sta data.

To evaluate which of these climate variables has the
most effect on runoff, three tests were run. In each of
the four basins, the Bias-RegCM2 time series of pre-
cipitation, maximum temperature, and minimum tem-
perature were successively replaced with a time series
of Best-Sta data. These tests included 1) Test1, Best-

Sta precipitation with Bias-RegCM2 maximum and
minimum temperature; 2) Test2, Best-Sta maximum
temperature with Bias-RegCM2 precipitation and min-
imum temperature; 3) Test3, Best-Sta minimum tem-
perature with Bias-RegCM2 precipitation and maximum
temperature (see Table 3). Figure 14 shows the results
of these test runs in PRMS: scatterplots of measured
versus simulated daily runoff and corresponding NS val-
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FIG. 13. Nash–Sutcliffe goodness-of-fit (NS) values calculated for
the (a) Alapaha, (b) Animas, (c) Carson, and (d) Cle Elum River
basins. NS values were calculated between measured and simulated
runoff values summed on 1-, 5-, 15-, 30-, 60-, 90-, and 120-day
intervals.

ues. The highest NS values are highlighted on the plots.
What becomes evident from Fig. 14 is the importance
of temperature in the snowmelt basins (Test2 gives the
highest NS values) and precipitation in the rainfall-dom-
inated basin (Test1 gives the highest NS values).

7. Discussion

This study was initiated to examine possibilities for
using regional climate model output in hydrologic ap-
plications. Three initial daily datasets were composed
from 1) best precipitation and temperature station sets
for each basin determined through hydrologic model
calibration (Best-Sta); 2) RegCM2 output; and 3) all
stations (excluding Best-Sta sets) that fell within the
buffered area used to extract the RegCM2 output (All-
Sta). The Best-Sta datasets simulated realistic daily hy-
drographs in all four study basins. All-Sta datasets were
tested to determine if an area as large as that covered
by the RegCM2 grid points could produce realistic pre-
cipitation and temperature for basin-scale modeling.
Both the All-Sta data and RegCM2 output of precipi-
tation, maximum temperature, and minimum tempera-
ture produced unrealistic simulations of runoff in all
four study basins when used as input to the hydrologic
model. Bias corrections to the RegCM2 output and All-

Sta data produced the next two input datasets: 4) Bias-
RegCM2 and 5) Bias-All. Use of Bias-RegCM2 and
Bias-All in PRMS resulted in more realistic monthly
mean hydrographs, but comparison of daily values
showed that with the exception of one basin (Carson),
Bias-RegCM2 output was still not nearly as reliable in
simulating daily runoff as Bias-All. The final three input
datasets (Test1, Test2, and Test3) were produced to test
which climate variables had the most effect on runoff.
These tests clearly showed the significance of realistic
temperature data in the snowmelt basins and realistic
precipitation in the rainfall-dominated basins.

A summary of NS results produced using the eight
input datasets in PRMS is shown in Fig. 15. Not sur-
prisingly, Best-Sta data outperformed any of the other
PRMS input datasets. In the Alapaha River basin, the
only other PRMS input datasets that simulated realistic
hydrographs were Test1 and Bias-All, highlighting the
significance of realistic precipitation in this southeastern
United States basin and the relative reduced significance
of maximum and minimum temperature. The fact that
Bias-All dramatically outperforms Bias-RegCM2 in this
rainfall-dominated basin also indicates that precipitation
averaged over a large area can have the daily variations
necessary for basin-scale modeling. On the other hand,
snowmelt-dominated basins are much more strongly
controlled by maximum temperature. In these basins,
daily variations in precipitation are less important, and
only the volume of precipitation over the accumulation
season (e.g., as represented in the 1 April snowpack)
needs to be correct.

These results are consistent with Wilby and Dettin-
ger’s (2000) study of snowmelt-dominated basins in the
Sierra Nevada. In their study they concluded that much
of the hydrological ‘‘skill’’ arises from the fact that the
snowpack acts as an integrator of the hydrologic pro-
cesses. In a sense, the Leung et al. (1996) study also
supports these results. Leung et al. (1996) drove a spa-
tially distributed hydrologic model of a snowmelt-dom-
inated basin in northwestern Montana using measured
and regional climate model (RCM) output and con-
cluded that runoff simulated using RCM output resulted
in comparable, if not better, agreement with measured
runoff than driving the model with measured data. In
their study, measured data from two stations was dis-
tributed by assuming a constant lapse rate with altitude.
The lapse rate for temperature was set at a constant 68C
km21. The RCM output was distributed using a subgrid
parametrization scheme. In our study we have shown
the importance of temperature in snowmelt dominated
basins. The constant lapse rate used by Leung et al.
(1996) to distribute the measured temperature data prob-
ably affected the runoff simulations. It is likely that their
subgrid parametrization scheme corrected the biases in
the RegCM2 temperature output, thus producing more
realistic hydrographs than that using measured-temper-
ature data.
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FIG. 14. Measured vs simulated runoff for the four basins (Animas, Carson, Cle Elum, and Alapaha) and
corresponding Nash–Sutcliffe goodness-of-fit statistic (NS). Simulated runoff produced using three test input
times series: (a)–(d) Test1, station precipitation with bias corrected RegCM2 max and min temperature; (e)–
(h) Test2, station max temperature with bias corrected RegCM2 precipitation and min temperature; (i)–(l)
Test3, station min temperature with bias corrected RegCM2 precipitation and max temperature.

FIG. 15. Nash–Sutcliffe goodness-of-fit statistic (NS) for the (a) Alapaha, (b) Animas, (c) Carson,
and (d) Cle Elum River basins. Simulated runoff produced using the following PRMS input
datasets: 1, Best-Sta; 2, RegCM2 t; 3, Bias-RegCM2; 4, All-Sta; 5, Bias-All; 6, Test1; 7, Test2;
and 8, Test3.
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8. Conclusions

Daily precipitation and maximum and minimum tem-
perature time series from a regional climate model
(RegCM2) were used as input to a distributed hydro-
logic model for three snowmelt-dominated basins (An-
imas River at Durango, Colorado; east fork of the
Carson River near Gardnerville, Nevada; and Cle Elum
River near Roslyn, Washington) and a rainfall-domi-
nated basin (Alapaha River at Statenville, Georgia). For
comparison purposes, daily datasets of precipitation and
maximum and minimum temperature were developed
using measured station data that fell within the area used
to extract the RegCM2 output (All-Sta). The All-Sta
datasets are comparable in scale to the RegCM2 model
resolution and provide an appropriate test to determine
if output at this scale can be used for simulation of basin-
scale hydrology.

Both the RegCM2 and All-Sta simulations capture
the gross aspects of the seasonal cycles of precipitation
and temperature. However, in all four basins large sys-
tematic biases in RegCM2 and All-Sta simulations of
temperature and precipitation are evident, which trans-
late into unrealistic simulations of mean-monthly hy-
drographs. In order to reproduce realistic mean-monthly
hydrographs in each of the four basins studied, the
RegCM2 and All-Sta output are corrected for biases
(Bias-RegCM2 and Bias-All, respectively).

Simulated runoff based on Bias-RegCM2 output and
Bias-All data were evaluated on a monthly and daily
basis. On a mean monthly basis, runoff simulated using
the Bias-RegCM2 and Bias-All sets are much closer to
measured runoff than those simulated using the raw
data. On a daily basis, with the exception of the Carson
River basin, Bias-RegCM2-based simulations are rather
poor and of less skill than Bias-All. Most notable are
the results in the rainfall-dominated basin: Bias-
RegCM2-based simulations show essentially no skill
whereas Bias-All-based simulations reproduce realistic
runoff. These results indicate that precipitation averaged
over a large area can have the daily variations necessary
for basin-scale modeling. In the snowmelt-dominated
basins, which are strongly controlled by maximum tem-
perature, capturing daily variations in precipitation was
found to be less important, and only the volume of
precipitation over the accumulation season needs to be
correct.

In conclusion, climate data of similar resolution to
that of the RegCM2 model can be made appropriate for
basin-scale modeling when a bias correction is applied.
This need for statistical correction (essentially a mag-
nitude correction) may be somewhat troubling, but in
the case of the large station dataset (All-Sta), the mag-
nitude correction did indeed correct for the change in
scale. This was not shown to be true for the bias-cor-
rected RegCM2 output. The RegCM2 output could be
corrected for magnitude but did not contain the day-to-
day variability needed for basin-scale modeling present

in the All-Sta dataset. The major advantage of using
regional climate model output to simulate runoff is their
physical realism. It is unknown if statistical corrections
to model output will be valid in a future climate. Future
work is warranted to identify the causes for (and re-
moval of ) systematic biases in RegCM2 simulations,
and to improve RegCM2 simulations of daily variability
in local climate.
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