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A B S T R A C T
This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent
biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data
assimilation procedure. We illustrate our approach by applying it to a particular ensemble scheme—the local ensemble
transform Kalman filter (LETKF)—to assimilate simulated biased atmospheric infrared sounder brightness temperature
observations from 15 channels on the simplified parameterizations, primitive-equation dynamics (SPEEDY) model.
The scheme we present successfully reduces both the observation bias and analysis error in perfect-model simulations.

1. Introduction

Satellite observations provide information essential to numer-
ical weather prediction, particularly in traditionally data poor
regions like the Southern Hemisphere (e.g. Kalnay, 2003). How-
ever, satellite radiance observations are subject to relatively large
biases (e.g. Eyre, 1992), which have to be accounted for in the
analysis process to realize the potential of the radiance observa-
tions to improve the analyses. When assimilating radiance ob-
servations directly, many data assimilation schemes rely on non-
adaptive corrections of these radiance observations (Eyre, 1992;
Harris and Kelly, 2001). Non-adaptive bias correction schemes,
however, have some important limitations. For example, manual
intervention is required to recalibrate the bias parameters and to
account for new instruments, new forward operators and biases
that evolve as the instrument ages (Dee, 2005). Therefore, some
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variational data assimilation schemes correct for radiance ob-
servation biases adaptively as part of the assimilation procedure
(e.g. Eyre, 1992; Derber and Wu, 1998; Harris and Kelly, 2001;
Dee, 2005; Auligne et al., 2007). Typically the uncertainty in the
observations is assumed to be uncorrelated to the uncertainty of
the forecast model state, suggesting that adaptive bias correc-
tion should be independent of the assimilation system. However,
bias also results from an amalgamation of errors in mapping the
forecast state into observation space via the forward operator.
As such, many adaptive schemes use ‘state space augmenta-
tion’ (Friedland, 1969), which appends bias parameters to the
model state vector and update these parameters as part of the
data assimilation process. In this paper, we develop an adap-
tive bias-correction scheme using state–space augmentation for
ensemble-based data assimilation.

Although ensemble schemes have been found to assimilate
certain radiance observations with some success (Houtekamer
et al., 2005; Houtekamer and Mitchell, 2006), their ability to
adaptively account for radiance biases has not been demon-
strated. Baek et al. (2006), Keppenne et al. (2005) and Zupanski
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and Zupanski (2006) apply state–space augmentation to estimate
low dimensional biases due to model errors with an ensemble
Kalman filter. The approaches of Baek et al. (2006) and Zupanski
and Zupanski (2006) also take into account the correlation be-
tween uncertainties in the model bias and uncertainties in the
forecast. The observation bias correction scheme that we de-
velop for ensemble-based schemes also incorporates correla-
tions between uncertainties in the observation bias and forecast.
We expect such correlations to be particularly relevant for cor-
recting satellite observations, which are related to atmospheric
dynamics by a complex non-linear relationship that extends over
broad layers of the atmosphere (e.g. Liou, 2002).

In this paper, we use state–space augmentation for ensemble-
based assimilation schemes to estimate radiance observation
biases online. We apply this set-up to assimilate simulated un-
biased rawinsonde observations and simulated biased radiances
from the atmospheric infrared sounder (AIRS), employing, as
an example, a specific ensemble Kalman filter data assimila-
tion scheme and a specific atmospheric model. In particular,
as our data assimilation scheme, we employ the local ensem-
ble transform Kalman filter (LETKF) of Hunt et al. (2007),
which is based on the localization scheme of Ott et al. (2004),
whereas for our forecast model, we use the ‘simplified param-
eterizations, primitive-equation dynamics’ (SPEEDY) model of
Molteni (2003). To represent the fact that the true dependence
of the satellite radiance bias on the model state is unknown in
reality, we generate simulated AIRS radiance observations as-
suming one particular ‘true’ functional dependence of the bias
on the state and estimate the parameters of another function,
often used in the operational practice, to correct the bias during
the assimilation. In both cases, we use the prototype Commu-
nity Radiative Transfer Model (pCRTM Han et al., 2005) as the
observation operator for the AIRS radiances. We simulate bi-
ased AIRS radiances by modifying the pCRTM in a non-linear
manner as suggested in Watts and McNally (2004), whereas our
online bias correction estimates coefficients of a linear combi-
nation of predictive quantities proposed by Cameron (2003) and
Harris et al. (2004). We will demonstrate that this bias correc-
tion scheme can significantly reduce the observation bias and
the analysis root mean square (rms) error associated with the
simulated AIRS observations.

In Section 2, we describe the typical forms of the bias assumed
for satellite radiances, and how they are usually corrected. We
also describe the LETKF data assimilation scheme and our ap-
proach to state–space augmentation bias correction with LETKF.
In Section 3, we present the design of our perfect model experi-
ments with the SPEEDY model. The results of these experiments
are given in Section 4, and conclusions are provided in Section 5.

2. Satellite radiance biases

Satellite radiance biases arise from sources including measure-
ment biases, observation pre-processing, representation errors

and errors in the radiative transfer model, h, which transforms
model states into radiance space. Therefore, a radiance observa-
tion, y, is modelled to be of the form

y = h̃
(
xt ,β

) + η. (1)

Here, xt is the true state of the atmosphere, η is the mean zero,
random component of the radiance error and h̃ is a radiative
transfer operator, modified to incorporate bias parameters β.
Because it includes the bias parameters, h̃ will ideally correct
for the biases associated with errors in the satellite calibration or
the unmodified radiative transfer model, h. The bias parameters,
β, differ for each channel of each instrument (Eyre, 1992; Derber
and Wu, 1998; Harris and Kelly, 2001).

Typically, the radiance bias is assumed to have two sources,
scan-angle bias and air-mass bias. As the name suggests, the
scan angle bias depends on the magnitude of the scan angle,
whereas the air mass bias depends on the atmospheric state.
These radiance biases may also have latitudinal dependence. We
only consider the air-mass bias in this paper, but note that the
techniques described in this paper could be applied to estimate
the scan-angle bias as well.

Several operational centres, including the National Centers for
Environmental Prediction (NCEP) and the European Centre for
Medium-Range Weather Forecasts (ECMWF), assume that the
air-mass bias is a linear combination of a small set of variables
derived from the model, called ‘predictors’. That is,

h̃ (x, β) = h (x) +
N∑

i=1

βipi (x) , (2)

where x is the model state and the radiative transfer model
h(x) is derived from physical principles and each pi is one of
N predictors (Eyre, 1992; Derber and Wu, 1998; Harris and
Kelly, 2001). These bias correction schemes compute instrument
dependent coefficients βi that are global constants to ensure that
the predictors alone account for spatial variations in the bias for
each satellite instrument and channel. This formulation assumes
that the bias for a given instrument and channel is the same for
the same atmospheric conditions, but it allows for rapid changes
of the bias when the atmospheric conditions change rapidly.
We note that it is important to limit the number of parameters
βi for a given channel to avoid overfitting the parameters to
the observations. The issue of overfitting is of general concern
in many settings, for example, in control theory it is called
‘observability’ and is addressed in standard textbooks (see, for
example, Ogata, 1990).

In this study, we use a subset of the predictors that was found
to correct AIRS biases efficiently by Cameron (2003) and Harris
et al. (2004). Specifically, we choose the following predictors:

(1) p1: Constant term (i.e. p1 = 1).
(2) p2: 200–50 hPa thickness.
(3) p3: 850–300 hPa thickness.
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(4) p4: Surface skin temperature (i.e. model surface temper-
ature).

(5) p5: The modelled radiance itself (i.e. p5 = h(x)).

Throughout the rest of this paper, we will refer to each predic-
tor by its index. In the numerical experiments with the SPEEDY
model presented in this paper, the thicknesses used for p2 and p3

are found by computing the difference between the geopotential
height at the appropriate levels. The SPEEDY model obtains
the surface skin temperature used for p4 from the sea surface
temperature over ocean and by modifying the land-surface tem-
perature over land to incorporate the forecasted surface pressure
(Molteni, 2003).

Based on earlier studies with the high-resolution infrared
sounder (Turner, 1994; Rizzi and Matricardi, 1998), Watts and
McNally (2004) propose an alternate form for to correct radi-
ance biases from AIRS. They choose a physical modification
of the radiative transfer model. Normally, the radiative transfer
model is given by

h(x) = τ (z0)κ(z0)B(T (z0)) +
∫ ∞

z0

B(T (z))
∂τ (z)

∂z
dz, (3)

where z is the physical height with z0 at the surface, κ(z0) is the
emissivity of the surface, T(z) is the temperature profile associ-
ated with the state x at the latitude and longitude of the satellite
observation and B(T(z)) is the Planck function. The term ∂τ/∂z
is called the ‘weighting function’ because it characterizes the
contribution to the radiance from a given height when combined
with the Planck function evaluated there. The function τ (z) rep-
resents transmittance from height z, that is, the portion of the
radiation from height z that reaches the top of the atmosphere.
This transmittance function is given by

τ (z) = exp

(
−

∫ ∞

z

κ(z∗)ρ(z∗) dz∗
)

. (4)

Here, κ(z) is the absorption coefficient from height z and ρ(z) is
the density at that height. To correct for state-dependent biases,
Watts and McNally (2004) incorporate a constant fractional error
γ in the specification of the absorption coefficient. That is, they
make the following replacement

κ → γ κ, (5)

so that

τ (z) → τ (z)γ . (6)

This γ term can account for biases arising from errors in the
absorption coefficient, in the density ρ(z) and in the weighting
function(Watts and McNally, 2004). To correct biases from other
sources, they add a global constant, δ, to the modified radiative
transfer model. Again, γ and δ are assumed to be global constants
which depend only on the satellite and the channel. For most
AIRS long-wave temperature channels, γ ≈ 1.05 (Watts and
McNally, 2004).

We use the bias form proposed by Watts and McNally (2004)
with γ = 1.05 and δ = 0 to simulate biased radiance observations
whose systematic errors are at a physically realistic order of
magnitude. We use the more standard bias correction form in
eqs. (1) and (2) to estimate these biases. The goal of the present
paper is not to address which functional form of the bias estimate
should be used to correct real radiance biases, rather to show that
we can efficiently estimate bias correction parameters with an
ensemble Kalman filter.

2.1. Online bias correction

Bias parameters for radiance observations can be estimated on-
line as part of the data assimilation by using state space augmen-
tation (e.g. Derber and Wu, 1998; Dee, 2005). In data assimi-
lation schemes using such an approach, the analysis updates an
augmented state vector,

z =
[

x
β

]
, (7)

based on the observed information, where x is the model state
and β is the vector of bias parameters for all satellite instruments
and channels. That is, the analysis seeks the augmented state
vector, z a , which best fits its background state (or ‘first-guess’,
z b) and the available observations, y.

Because the bias parameters are assumed to change much
more slowly than the atmosphere, the evolution of the bias vec-
tors is modelled by persistence, so that

βb
t = βa

t−1, (8)

where βa
t−1 is the updated bias vector at the previous analysis

time and βb
t is the background bias vector at the current analysis

time.
The state space augmentation approach also requires an es-

timate for the background error covariance of the augmented
state vector, z. For simplicity, many 3D-VAR and 4D-VAR im-
plementations assume that the error of each bias parameter is
uncorrelated with the errors of the other bias parameters, with
the errors of the bias parameters for other satellite channels and
instruments and with the errors of the model state (Derber and
Wu, 1998; Dee, 2005). We explore, in what follows, the effect
of including a background error covariance for the augmented
state vector learned through an ensemble-based Kalman filter
scheme that we will introduce in the next section.

2.2. Online bias correction with an ensemble
Kalman filter

As in Baek et al. (2006), our ensemble Kalman filter bias cor-
rection scheme uses an ensemble of augmented state vectors
to estimate a flow-dependent background error covariance, Pb.
Whereas Baek et al. (2006) use state space augmentation to
account for model biases in the data assimilation scheme, we
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apply this technique to update the observation operator to ac-
count for observation biases. Based on eq. (7), the modified
observation operator for the augmented state vector z is given
by h̃(x, β) = h̃(z). An ensemble of k forecasts of these aug-
mented state vectors are obtained from model runs starting from
a set of k initial conditions, where z b (i) represents the forecast
corresponding to the ith ensemble member (i = 1, . . . , k). Each
ensemble member for the model variables and bias parameters
is cycled in the data assimilation scheme. Here, forecasts of the
atmospheric state portion x of z are obtained by integrating the
atmospheric model, whereas forecasts of the bias vector por-
tion β of z are obtained from eq. (8). The background error
covariance can be obtained from the sample covariance of the
ensemble members,

P b = (k − 1)−1Zb
(
Zb

)�
. (9)

Here, � denotes the matrix transpose, and Zb is the matrix of
ensemble perturbations for the augmented state,

Zb =
[

zb(1) − zb zb(2) − zb . . . zb(k) − zb

]
, (10)

where the ‘background state’ z b is the ensemble mean,

zb = k−1
k∑

i=1

zb(i). (11)

Ensemble schemes generally use the Kalman filter equations
to seek the linear combination of the ensemble members that
best fits the available observations. Applying this methodology
to the ensemble of augmented state vectors, ensemble schemes
can simultaneously update the atmospheric state and the bias
parameters. In what follows, we formulate the resulting analysis
equations using LETKF (Hunt et al., 2007). We note, however,
that a similar formulation could be applied to any ensemble
Kalman filter scheme. We choose LETKF in this paper be-
cause, like its predecessor local ensemble Kalman filter (LEKF;
Ott et al., 2004), it has been found to be an accurate and effi-
cient data assimilation scheme for operational weather models
(Szunyogh et al., 2005, 2008; Liu et al., 2008; Whitaker et
al., 2008). Nonetheless, the bias correction scheme proposed
here could correct observation biases in other ensemble-based
data assimilation schemes (e.g. Houtekamer and Mitchell, 2001;
Whitaker and Hamill, 2002).

Deferring for the moment our discussion of localization (as
described in Section 2.3), the basic analysis equations of LETKF
derived in Hunt et al. (2007) for augmented state vectors are

za = zb + ZbP̃a
(
Yb

)�
R−1

(
y − h̃

(
zb(i)

))
, (12)

Pa = ZbP̃a
(
Zb

)�
, (13)

P̃a =
[
(k − 1) I + (

Yb
)�

R−1Yb
]−1

. (14)

The observation operator h̃ maps the background state into ob-
servation space for all the observations to be assimilated. The
jth row of the vector h̃(zb(i)) is the ensemble mean of the back-
ground ensemble in observation space for the jth observation.
If the jth observation is unbiased, the jth row of the operator h̃
maps the model state directly to observation space. Otherwise,
we modify the corresponding row of h̃ to incorporate the model
state and bias parameters. This operator is also used to define
the matrix of ensemble perturbations in observation space, Yb.
Its ith column is given by

Yb
i = h̃

(
zb(i)

) − h̃
(
zb(i)

)
. (15)

The information provided by the analysis error covariance
matrix, Pa , is used to generate the analysis ensemble consistent
with the resulting analysis state. LETKF uses eq. (13) to deter-
mine the analysis of the augmented state for the ith ensemble
by

za(i) = za + Za
i , (16)

where Za
i is the ith column of Za = (k − 1)−1/2Zb(P̃a)1/2. We

note that LETKF, like many ensemble-based schemes, directly
solves the set of analysis equations to obtain the analysis, without
the ‘inner-loop’ iterations performed by variational schemes.

2.3. Local analysis and global bias estimation

Computational restrictions limit the number of ensemble mem-
bers that can be used to obtain the analysis in eqs. (12)–(16). In
practice, the resulting ensemble is not large enough to capture
the global dynamics. However, within local regions, a limited
number of ensemble members is presumed sufficient to capture
the dynamics (Patil et al., 2001; Ott et al., 2004; Oczkowski et al.,
2005; Szunyogh et al., 2005; Kalnay, 2006; Kuhl et al., 2007).
Therefore, many ensemble schemes, including LETKF, use lo-
calization (Anderson, 2001; Hamill et al., 2001; Houtekamer
and Mitchell, 2001; Whitaker and Hamill, 2002; Ott et al., 2004;
Hunt et al., 2007).

As in the LEKF (Ott et al., 2004), the analysis for each grid-
point in LETKF is obtained by solving eqs. (12)–(16) exactly,
using only those observations in a local region centred at that
gridpoint (Ott et al., 2004; Hunt et al., 2007). Here, these regions
contain 2l + 1 gridpoints in the two horizontal directions and
2v + 1 gridpoints in the vertical direction, for some choice of
l and v. This type of localization (Ott et al., 2004) allows fast
parallel implementation (Szunyogh et al., 2005, 2008). Because
satellite observations depend on deep layers of the atmosphere,
they cannot be selected for assimilation in the local regions this
way. Based on Fertig et al. (2007), we use a cut-off-based lo-
calization for the satellite observations. Specifically, we use a
satellite observation in the analysis at a gridpoint if its weight-
ing function is above a cut-off value, χ , somewhere within the
local region around that gridpoint.
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In what follows, we provide a more formal description of the
localization in LETKF. Let A be the operator that computes an
analysis ensemble {z a (i)} according to eqs. (12)–(16):{
za(i)

} = A
({

zb(i)
}
, y

)
. (17)

Next, let Ax and Aβ be the components of A that output the
model variables {xa (i)} and bias variables {βa(i)}, respectively.
We can then rewrite eq. (17) as{
xa(i)

} = Ax

({
zb(i)

}
, y

)
, (18)

{
βa(i)} = Aβ

({
zb(i)

}
, y

)
. (19)

In LETKF, the analysis is obtained independently for each grid-
point using only those observations that are thought to provide
useful information about the atmospheric state at the given grid-
point. For a given gridpoint j, let yj denote the local set of
observations chosen for that gridpoint’s analysis and let Axj

de-
note the component of Ax that outputs only the model variables
{xa(i)

j } at gridpoint j. Then, the LETKF analysis for those model
variables is{

xa(i)
j

}
= Axj

({
zb(i)

}
, yj

)
. (20)

Here, h̃ and R are truncated to match yj . It is important to note
that this truncation is only performed after the observation oper-
ator is applied to the global background state. Thus, while using
spatial localization, this scheme can nonetheless account for the
full atmospheric dynamics upon which the satellite observation
depends (Fertig et al., 2007).

Whereas the LETKF analysis for the model variables at each
gridpoint only depends on the observations near that gridpoint,
the estimate for the observation bias parameters should ideally
depend on the global set of observations y. Such global depen-
dence would reflect the fact that observation biases arise from
instrument-dependent errors, to which observations made at any
location would be subject. Ideally, the predictors account for any
local state dependence of these observation biases. Therefore,
we assume that the bias parameters are global constants that de-
pend on the instrument, channel, and ensemble member. For this
purpose, we could simply use the global analysis in eq. (19) to
produce the bias coordinates of the analysis ensemble. However,
a global analysis is much more computationally expensive than
a local analysis and is consequently typically infeasible.

In this paper, we propose two approaches that provide global
estimates of the observation bias parameters using the local
framework of the LETKF scheme. In the first, which we call the
‘one-step analysis scheme’, we estimate global observation bias
parameters in the local analysis at each gridpoint and then per-
form a suitable spatial average of these estimates to obtain a sin-
gle global estimate of each observation bias parameter. Although
this scheme can incorporate correlations between errors in the
model state and bias parameters, as we describe subsequently, it

may be subject to local overfitting by the bias parameters. We,
therefore, propose an alternative, ‘two-step analysis scheme’.
This scheme first estimates the global observation bias param-
eters using the one-step scheme and then updates the model
state variables directly with LETKF, replacing the observation
operator in the LETKF equations with an observation opera-
tor corrected by the ensemble mean of the previously estimated
global observation bias parameters. We note that we must se-
lect parameters whose values vary independently over the local
regions to avoid overfitting a particular parameter.

2.3.1. One-step analysis scheme In the one-step scheme, we
use an approximation to eq. (19). We start with the estimates of
the bias parameters produced by the local analyses{
β

a(i)
j

}
= Aβ

({
zb(i)

}
, yj

)
. (21)

Note that the bias parameters in the background ensemble are
global constants, but that each local region suggests a different
correction to the bias parameters. Then, to obtain each scalar
global bias parameter βa(i), we average the local estimates β

a(i)
j

over all gridpoints as follows,

βa(i) =
∑

j cos(φj )βa(i)
j σ−2

j∑
j cos(φj )σ−2

j

, (22)

Here φj is the latitude at the central gridpoint of local region j,
which we incorporate to represent the surface area covered in
each local region. We also account for the relative accuracy of
the parameter estimated in each local region by incorporating
in eq. (22) the local variance σ 2

j of the analysis bias, where σ 2
j

represents this variance in the jth local region and is given by

σ 2
j = (k − 1)−1

k∑
l=1

(
β

a(l)
j − βa

j

)2
, (23)

where βa
j is the ensemble mean of the bias analysis in the jth

local region.1

Specifically, we employ the following steps to estimate the
model state variables and observation bias parameters in the
one-step analysis scheme:

(1) For each ensemble member i, compute h̃(zb(i)) with the
global constant bias parameter for that ensemble member esti-
mated at the previous time step.

(2) For each gridpoint j, obtain local estimates of the model
state variables and bias parameters as follows:

(a)
{

xa(i)
j

}
= Axj

({
zb(i)

}
, yj

)
.

(b)
{
β

a(i)
j

}
= Aβ

({
zb(i)

}
, yj

)
.

(3) Apply eq. (22) to obtain a global estimate for the bias
parameters for each ensemble member, βa(i).

1 In the numerical experiments in this paper, we do not observe a sig-
nificant difference in the analysis using simpler means of weighting the
average (e.g. by the number of observations in each local region, results
not shown).

Tellus 61A (2009), 2



OBSERVATION BIAS CORRECTION WITH AN ENSEMBLE KALMAN FILTER 215

The one-step analysis scheme can incorporate correlations
between model state variables and bias parameters by updating
their states simultaneously in the local analysis phase. However,
a potential concern is that by initially giving the bias parameters
freedom to adjust ‘locally’, we may degrade the analysis ob-
tained for the model state variables in the following sense. If the
background covariance of the bias parameters is not sufficiently
constrained by past analysis cycles, then the local observation
increments may be fit more than optimally by local adjustments
to the bias parameters and less than optimally by the model state
variables. Therefore, we propose an alternative two-step anal-
ysis scheme that first updates the bias parameters globally and
then computes local analyses for the model state variables with
the bias parameters fixed.

2.3.2. Two-step analysis scheme The two-step analysis
scheme updates the bias parameters using the methodology pro-
posed in the one-step analysis scheme, without updating the
model state variables. It then updates the model state variables
with the original formulation of LETKF, applying the global
and ensemble average of the bias parameters estimated in the
first step to correct the observation operator. Specifically, the
two-step analysis scheme follows the steps outlined below to
estimate the model state variables and bias parameters:

(1) For each ensemble member i, compute h̃(zb(i)) with the
global constant bias parameter for that ensemble member esti-
mated at the previous time step.

(2) For each gridpoint j, compute {βa(i)
j } =Aβ ({zb(i)}, yj ).

(3) Apply eq. (22) to obtain a global estimate for the bias
parameters for each ensemble member, βa(i).

(4) For each ensemble member i, incorporate the bias param-
eters estimated in the first step by:

(a) letting z̃b(i) represent the augmented state vector contain-

ing xb(i) and βa(i), where · represents the ensemble average and
(2) computing h̃(z̃b(i)) with the global constant bias parameter

averaged over all ensemble members.
(i) For each gridpoint j, compute {xa(i)

j } = Ax({z̃b(i)}, yj ).

Although the two-step analysis scheme disregards correla-
tions between the model state variables and bias parameters,
it provides independent estimates of the state and the bias,
thus eliminating the potential problem in the one-step analy-
sis scheme of local overfitting by the bias parameters.

Because both the one- and two-step analysis schemes estimate
only a few bias parameters that are global constants, the dimen-
sionality of the augmented system is not greatly increased by
including the bias parameters in either analysis scheme. There-
fore, regardless of the scheme that we employ, we do not require
many additional ensemble members to estimate the observation
biases. This is in contrast to Baek et al. (2006) which obtained
a ‘pointwise’ estimate of the model bias. Whereas our correc-
tion to the observation bias is global, this pointwise estimate of
model biases requires them to be treated locally like the model

state variables. Thus, in Baek et al. (2006), a relatively large
increase in the ensemble is required.

3. Experimental design

3.1. SPEEDY model

The numerical experiments in this paper are performed using the
SPEEDY model (Molteni, 2003), which is a global circulation
model based on the primitive equations. Due to its low resolution
(T30) and simplified parametrization schemes, the computation
cost of integrating the SPEEDY model is much lower than that of
an operational global circulation model. The simplified physics
includes the parametrization of the following processes: convec-
tion; large-scale condensation; cloud physics; radiation; surface
fluxes and vertical diffusion.

The SPEEDY model obtains its forecasts by solving the prim-
itive equations for vorticity, divergence, absolute temperature,
specific humidity and the logarithm of the surface pressure at
seven sigma levels (0.950, 0.835, 0.685, 0.510, 0.340, 0.200,
0.080). The resulting values are converted to output variables
of zonal wind, u, meridional wind, v, absolute temperature, T,
and specific humidity, q at 96 zonal gridpoints, 48 meridional
gridpoints and seven sigma levels or seven pressure levels (925,
850, 700, 500, 300, 200, 100 hPa). The surface pressure, ps is
available at the same horizontal resolution but for only a single
vertical level that represents the surface.

3.2. Community radiative transfer model

In this paper, we use the pCRTM (Han et al., 2005) to generate
the simulated satellite observations and for the corresponding
observation operator. This model was developed by the Joint
Center for Satellite Data Assimilation (JCSDA) to provide the
community with a unified code to simulate satellite radiances. As
part of this mission, the framework of the pCRTM and its more
advanced counterpart, the CRTM, are both general enough to be
easily adapted to simulate radiances from most satellite instru-
ments and from most atmospheric model states. Furthermore,
the more advanced CRTM is currently used by the operational
NCEP Global Forecast System (GFS) and the Gridpoint Statis-
tical Interpolation System (GSI) assimilation schemes. In this
paper, we use the pCRTM to simulate satellite radiance due to
the relative simplicity of its software structure and underlying
physics (Han et al., 2005).

The pCRTM determines the radiance and brightness tempera-
ture from an input profile of pressure, temperature, water vapour
and ozone. Here, the profile values for pressure, temperature
and water vapour are obtained from the SPEEDY model. For
simplicity, in this study we assume that the ozone profile has
a constant value of 0.06720 ppmv. Furthermore, the numerical
experiments in this paper are not concerned with scan angle
bias since we assume that the satellite observes the atmosphere
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directly below the location of the satellite. Moreover, the clear-
sky assumption made in the pCRTM (and relaxed in the CRTM)
is sufficient for this study.

The pCRTM determines the radiance by solving a discrete
form of eq. (3). This equation is given by

h(x) = Rsurface +
top∑
i=1

B(Ti)τi, (24)

where Rsurface is the contribution to the radiance from the surface
and Ti is the temperature at model level i. The values of τ at
each level of the profile are derived from information about the
spectral and transmittance coefficients for the desired satellite
observation. τi is the difference between the τ values at levels
i and i + 1 in the profile for all levels below the top of the profile.
In this study, we assume that there is no transmittance from the
surface to the top of the atmosphere. As a result, τ is deter-
mined at the top of the profile by enforcing

∑top
i=1 τi = 1. The

brightness temperature found by the pCRTM is the temperature
that a black body would have a radiance equivalent to the value
of the satellite radiance.

LETKF obtains the analysis independently for each gridpoint
by using only those observations that are thought to provide
potentially useful information about the atmospheric state at
the given grid point. In practice, observations are typically cho-
sen from a local volume centred at the given gridpoint (e.g.
Szunyogh et al., 2008). When using this localization, we found
that radiance observations enhance the accuracy of the analysis
most when we select those observations whose weighting func-
tion such observations are assimilated at all model levels where
the weighting function associated with them exceeds an empir-
ically determined cut-off value χ (Fertig et al., 2007). In the
discrete form of the radiative transfer model (eq. 24), τi indi-
cates the influence of the radiance from the ith layer of the profile.
Therefore, we use this value of τi to select observations us-
ing the cut-off based selection. We ran several experiments with
varying values of χ and found that selecting observations with
τi of at least

χ = 0.4 × (
max

i=1,...,top
τi

)
, (25)

somewhere within the local region provides the smallest analysis
rms error (results not shown). Accordingly, we use this value in
all the numerical experiments in this paper.

3.3. Truth and observations

We perform the numerical experiments in the perfect model
scenario with the SPEEDY model. Following Miyoshi (2005),
the ‘true’ state of the atmosphere is obtained by running the
SPEEDY model for a year from its default rest state on 1 Jan-
uary 1981. We then obtain the true atmospheric trajectory by
integrating the SPEEDY model from the resulting atmospheric
state at 1 January 1982 for 240 time steps (roughly two months).

The quality of the analyses is assessed by comparing the result-
ing analysis with this true state. Specifically, we compute the
global rms error between the true and analysis states in pressure
coordinates. The average rms error is the average of these errors
over the last month of the assimilation cycle.

We create two sets of simulated observations from the known
‘true’ state of the atmosphere: a set of rawinsonde observations
and a set of radiance observations. The simulated rawinsonde
observations are created by adding zero mean, Gaussian noise
to the true state of the atmosphere every 6 h at those points
of the SPEEDY model that are closest to the real rawinsonde
observations at the 12Z synoptic time (Miyoshi, 2005). We use
a standard deviation of 1 m s−1 for u and v, 1 K for T, 0.0001
kg kg−1 for q and 1 hPa for ps.

Similarly, we simulate 15 long-wave temperature radiance
channels from AIRS 281 subset (wavenumbers: 680.491,
691.391, 694.4, 696.052, 697.99, 699.102, 700.218, 701.618,
703.87, 706.991, 709.566, 712.739, 715.941, 723.029, 724.824
cm−1) at each horizontal model gridpoint. These channels repre-
sent the dynamics over model levels considered by the SPEEDY
model with some redundancy, to reflect the relative vertical
density of satellite observations on this coarsely resolved at-
mospheric model (see the values of their weighting function
in Table 1). The channels were selected from a subset of the
long-wave temperature in the 281 subset of AIRS channels for
numerical weather prediction (e.g. Le Marshall et al., 2006),
which represent the independent information measured all the
AIRS channels (Susskind et al., 2003). We chose only observa-
tions from temperature channels to avoid the complications that
arise in assimilating water vapour observations.

These radiance observations are generated by applying the
pCRTM to obtain brightness temperature observations from the
true atmospheric state. A zero mean, Gaussian noise with stan-
dard deviation 0.5 K is added to the resulting brightness tem-
perature observation. We selected this observation noise to be
smaller than that of the rawinsondes, but large enough to be sig-
nificant relative to the bias. The bias in the brightness tempera-
ture observations is simulated by modifying κ(z) in the pCRTM
as suggested by Watts and McNally (2004) and described in
Section 2. Throughout this paper, we refer to the pCRTM with
the modification proposed by Watts and McNally (2004) as the
modified pCRTM. Because the bias is presumed unknown by
the analysis scheme, the unmodified pCRTM is used for the
observation operator during the data assimilation.

However, for our simulated radiances, the true bias in the
observations can be calculated by applying both the modified
pCRTM and unmodified pCRTM to the true state. The differ-
ence between these two values of the brightness temperature
represents the true satellite bias. The extent to which the esti-
mated bias parameters reduce the true bias provides an addi-
tional means to verify the data assimilation scheme. Further-
more, the correlation between the true bias and the predictors
indicates which predictors can be expected to make the largest
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Table 1. The value of the weighting function and percent of maximum (in parentheses) on 06UTC 1 January 1982 at 180◦W, 35◦N and
each model level; though at a specific date and time, these values are representative of the general values of the weighting function.
Note that because the radiative transfer model numerically integrates over all model levels, the value of the weighting function is
available at the midpoint between each model layer defined by two consecutive model levels. Bolded values are above the cut-off value
of χ = 0.4 × (max i=1,... ,top τi )

Vertical level (hPa)
Channel wavenumber
(cm−1) 0.9500 0.7600 0.5975 0.4250 0.2700 0.1400

680.491 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.02) 0.58 (1.00) 0.40 (0.69)
691.391 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.06) 0.94 (1.00)
694.400 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.13 (0.15) 0.86 (1.00)
696.052 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.04) 0.17 (0.21) 0.80 (1.00)
697.990 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.13 (0.15) 0.86 (1.00)
699.102 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.05 (0.05) 0.93 (1.00)
700.218 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
701.618 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
703.870 0.00 (0.00) 0.00 (0.00) 0.02 (0.03) 0.09 (0.13) 0.19 (0.27) 0.70 (1.00)
706.991 0.00 (0.00) 0.01 (0.02) 0.05 (0.10) 0.17 (0.34) 0.24 (0.47) 0.52 (1.00)
709.566 0.00 (0.00) 0.02 (0.03) 0.06 (0.09) 0.12 (0.19) 0.14 (0.22) 0.65 (1.00)
712.739 0.04 (0.13) 0.09 (0.27) 0.15 (0.48) 0.20 (0.63) 0.16 (0.53) 0.31 (1.00)
715.941 0.08 (0.43) 0.13 (0.70) 0.18 (0.96) 0.19 (1.00) 0.13 (0.67) 0.13 (0.66)
723.029 0.09 (0.57) 0.12 (0.79) 0.14 (0.96) 0.15 (1.00) 0.11 (0.70) 0.13 (0.88)
724.824 0.09 (0.61) 0.13 (0.84) 0.15 (1.00) 0.14 (0.95) 0.09 (0.61) 0.10 (0.69)

correction of the bias and therefore provides an additional mea-
sure to assess the performance of the bias correction scheme.

3.4. LETKF and bias correction

We adapt the LETKF code developed. originally by Miyoshi
(2005) and Harlim and Hunt (2007) for the assimilation of raw-
insonde observations to assimilate the rawinsonde and biased
radiance observations on the SPEEDY model. In all these nu-
merical experiments, we use 40 ensemble members and perform
the data assimilation every 6 h. We find that local regions con-
taining a single vertical level and neighbourhoods of 7 × 7
horizontal gridpoints (l = 3) and one level deep (v = 0) provide
the best analysis for rawinsonde observations alone. We find
that smaller local regions of neighbourhoods containing 3 × 3
gridpoints (l = 1) and one level deep (v = 0) provide the best
analysis when we assimilate both the rawinsonde and the sim-
ulated satellite observations. These thin local regions provide
a more accurate analysis because of the coarse vertical resolu-
tion of the seven level SPEEDY model (Fertig et al., 2007). We
perform numerical experiments with both the one- and two-step
analysis schemes described in Section 2.3.

Ideally, the spread in the ensemble members for the forecast
state and bias parameters remains large enough to realistically
represent the uncertainty in the states and bias estimates (see
eqs. 12–16). To avoid a collapse of the ensemble spread, the nu-
merical experiments perform multiplicative variance inflation on
the background ensemble members (both for the model and the

bias variables e.g. Anderson, 2001). Furthermore, the inflation
serves as a forgetting factor so that the bias parameters can ac-
count for slowly evolving biases even though persistence (eq. 8)
is used for their forecast model (Hunt et al., 2007). We inflate the
background covariance matrices by a factor of ρ by scaling the
background perturbations by

√
1 + ρ. Each background ensem-

ble member is then replaced by the sum of the background mean
and the corresponding scaled perturbation from that mean. As
will be further described in Section 4.3, in the one-step analysis
scheme, the model variables are always inflated by ρ = 6%,
whereas the bias variables are inflated by either ρ = 6% or ρ =
12%. We use the same inflation factors for the first stage of the
two-step analysis scheme, but inflate the background model state
variables by ρ = 5% in the second stage of this implementation.

We verify the results of the LETKF analysis by computing
the rms distance between the analysis and truth (rms error).
Similarly, we verify the bias correction parameters by apply-
ing the ensemble mean of the estimated bias parameters to the
true values of the predictors to correct the set of biased satellite
observations with no noise. We refer to the rms error of these
corrected satellite observations relative to the unbiased satellite
observations as the observation rms error. The time averaged
results are shown for the last month of the assimilation experi-
ments (February 1982) to exclude the spin-up period.

In this study, we subtract the mean over time and space from
each of the non-constant predictors before using them for the
online bias correction. Thus, the bias estimated from the con-
stant predictor (p1) describes the overall mean bias and the bias
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estimated from the other predictors represents variations from
that mean. We create the initial bias ensemble by randomly sam-
pling from a Gaussian distribution with mean zero and a standard
deviation based on the desired initial spread of the ensemble. We
find that the analysis and estimated bias parameters can be sen-
sitive to the initial spread in the bias parameters. Specifically,
we find that the bias parameters took longer to converge when
their initial spread was large. The convergence is slower for ex-
periments using three or more predictors (results not shown).
However, the spread must start out large enough for the ensem-
ble to capture the bias uncertainty. We therefore tune the initial
spread in the bias parameters to minimize the analysis errors and
rms of the observation error over the entire two-month period.
Based on this tuning, we choose the initial standard deviation of
the bias parameters to be 1 K for β 1, standard deviation 0.02 K
m−1 for β 2 and β 3, and standard deviation 0.004 K K−1 for β 4

and β 5. We expect that if a reasonable initial spread is used, the
initial choice of the bias parameters has a negligible impact on
the later estimates of the bias parameters.

4. Results

To verify that the magnitude of the satellite observation bias
created in the form of Watts and McNally (2004) is not neg-
ligible compared with the observational error, we plot the true
bias (as defined in Section 3.3) of the simulated observations
at the first analysis time (06UTC 1 January 1982) in Fig. 1 for
the channel corresponding to 696.052 cm −1 (panel a) and the
channel corresponding to 723.029 cm −1 (panel b). We observe
that the magnitude of the bias is reasonably large and location-
dependent. In particular, the bias has the smallest magnitude
near the poles and its magnitude increases near the tropics to
almost 1 K. Though Fig. 1 shows the bias for a particular time
and particular channels, it qualitatively represents the typical
structure of the simulated bias at all times and for many of the
simulated channels.

The true satellite bias can be used to infer which predictors
we can expect to correct for the bias most efficiently. Though the
correlations between the predictors and the true bias cannot be
computed in reality, they enable us to further evaluate the per-
formance of the bias correction scheme. We plot the correlation
between each of the predictors described in Section 2 and the true
bias of the simulated satellite observations in Fig. 2. We observe
that the true bias is most strongly correlated to predictors p2

and p3 for all satellite channels at a wavenumber below 712.739
cm−1. On the other hand, predictors p4 and p5 are more strongly
correlated to the bias for wavenumbers above 715.941 cm −1.
However, none of the predictors are well correlated to the bias
for channels at wavenumbers 700.218 and 701.618 cm −1. This
poor correlation is observed because the bias of these channels
is substantially smaller than the others (a fact which we will
explore later in this section). Overall, predictors p3 and p4 show
the strongest correlations to the true bias. We also find these

Fig 1. The true bias for two representative channels. Channel
696.052 cm −1 is in panel (a) whereas channel 723.029 cm −1 is in
panel (b). The values indicated on the plot are in Kelvin.

Fig 2. The correlation between the true bias and each of the predictors
for each satellite channel (p2 is dashed; p3 is solid; p4 is dash-dotted
and p5 is dotted).
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Fig 3. The 500 hPa temperature analysis rms
error for each of the analysis times. The
results for rawinsonde observations alone are
grey and dashed, for rawinsonde and biased
satellite observations using the unmodified
pCRTM are grey and solid; for rawinsonde
and biased satellite observations using the
modified pCRTM are black, for the one-step
analysis scheme are dashed, for the two-step
analysis scheme are dash-dotted. Here, both
analysis schemes use predictors p1, p3 and
p4 with 6% inflation for model variables and
12% inflation for bias parameters.

predictors to be more useful than p2 and p5 in reducing the anal-
ysis error in both analysis schemes. For completeness, we will
show results using all five predictors at the end of this section.
Here, we discuss results using only predictors p1 (constant), p3

(850–300 hPa thickness) and p4 (skin temperature).

4.1. One- and two-step analysis schemes

In Fig. 3, we show the 500 hPa temperature analysis rms error
versus time for the one- and two-step analysis schemes with the
optimal inflation factors (i.e. 6% for the model state variables and
12% for the bias variables). For reference, we plot the analysis
rms error obtained when assimilating rawinsonde observations
alone, rawinsonde and biased satellite observations using the un-
modified pCRTM (i.e. results from satellite assimilation without
bias correction) and rawinsonde and biased satellite observations
using the modified pCRTM (i.e. results from satellite assimila-
tion with the optimal observation operator). From these reference
runs, it is apparent that the biased satellite observations have a
significant negative impact on the analysis. Nonetheless, were
these observations unbiased, they could dramatically improve
the analysis over that obtained from assimilating the rawinsonde
observations alone.

Both the one- and two-step analysis schemes significantly
reduce the analysis rms error obtained from assimilating the
simulated biased satellite radiances. The rms error of the tem-
perature analysis at 500 hPa reaches comparable accuracy for
the two schemes, but the convergence for the two-step analy-
sis scheme is slower than that of the one-step analysis scheme
(Fig. 3). We note that we observe similar reductions in the analy-
sis rms error for the other model variables (e.g. surface pressure
and winds). However, we do not observe this more rapid conver-
gence for variables that are not directly related to the radiance
observation, for example, for the two components of the wind
(results not shown).

We also explore the impact of the bias correction on the
global, time averaged temperature analysis rms error for all

Fig 4. The global, February average of the temperature analysis rms
error at each model level. The line scheme for this plot is the same as
that described in Fig. 3.

seven SPEEDY model levels for both analysis schemes in
Fig. 4. Both analysis schemes improve the analysis state of model
state variables obtained from when assimilating the biased satel-
lite observations with LETKF. Below 500 hPa, the analysis error
from both schemes is almost as low as that obtained from as-
similating the satellite observations with the true observation
operator. However, the analysis error of the one-step analysis
scheme is slightly smaller than that obtained from the two-step
analysis scheme, reflecting its faster convergence rate.

Ideally, the bias parameters estimated by the data assimilation
reduce the analysis rms errors because they reduce the bias in the
observations. Figure 5 plots the global, time averaged observa-
tion rms error of all satellite channels for each analysis schemes.
As in Fig. 4, we observe that the one-step scheme yields obser-
vations with slightly lower rms errors than the two-step scheme.
Nonetheless, either analysis scheme significantly decreases the
bias in the satellite radiances for most satellite channels. Neither
bias correction scheme is able to correct the already small biases

Tellus 61A (2009), 2



220 E. FERTIG ET AL.

Fig 5. The global, February average of the observation rms error for
each satellite channel. The observation rms error obtained from
uncorrected observations without bias correction is solid; for the
one-step analysis scheme are dashed; and the two-step analysis scheme
are dash-dotted.

for channels at wave of 700.218 and 701.618 cm −1. Closer in-
spection reveals that the weighting function for these channels
is such that they rarely meet the localization criterion necessary
for them to be used in the analysis. Therefore, these observations
have little impact on the analysis of the atmospheric variables or
the bias parameters. Accordingly, the estimated bias parameters
do not improve the relatively small biases for these channels.

Because the one-step analysis scheme converges faster than
the two-step analysis scheme, we show results from experi-
ments with the one-step analysis scheme in the remainder of this
section. We note that we observed qualitatively similar results
when conducting similar experiments with the two-step analysis
scheme (results not shown).

Fig 6. The 500 hPa temperature analysis rms
error for each of the analysis times using the
one-step analysis scheme. The results for
rawinsonde observations alone are grey and
dashed, for rawinsonde and biased satellite
observations using the unmodified pCRTM
are grey, for rawinsonde and biased satellite
observations using the modified pCRTM are
black, for predictor p1 are dashed; for
predictors p1 and p3 are dotted and for
predictors p1 and p4 are dash-dotted and p1,
p3 and p4 are dash-double-dotted. Here, the
model variables are inflated by 6% and the
bias parameters by 12%.

4.2. Observation bias-correction performance with
individual bias predictors

Although the focus of this paper is not on the choice of the
predictors, examining the performance of the bias correction
scheme can reveal the effects of the predictors on performance
of the bias correction algorithm. In this section, we therefore
compare the impact of individual predictors using the one-step
analysis scheme with optimal inflation factors (6% for model
state variables and 12% for observation bias parameters). In
Fig. 6, we plot the corresponding global average of the 500 hPa
temperature analysis rms error over time, obtained when simul-
taneously estimating bias parameters for the following combi-
nation of predictors: p1 (dashed); p1 and p3 (dotted); p1 and
p4 (dash-dotted) and p1, p3, and p4 (dash-double dotted). All
these bias correction experiments reduce the analysis rms error
significantly. The skin temperature, p4, has the most significant
impact on the 500 hPa analysis. When using p1, p3, and p4, the
500 hPa temperature analysis rms error more slowly tends to the
value obtained from using p1 and p4 alone. The analysis rms er-
ror for the surface pressure is similar to the 500 hPa temperature
(results not shown). The bias correction clearly has an impact
on the 500 hPa zonal wind, meridional wind and humidity anal-
yses (results not shown). However, there appears to be a less
significant difference between the different predictors for these
variables.

We plot the global, time averaged temperature analysis rms
error for these one-step experiments at all seven SPEEDY model
levels in Fig. 7. In this figure, we see that the p4 reduces the anal-
ysis error most significantly for low levels, below 400 hPa. On
the other hand, p3 reduces the analysis error most significantly
above 300 hPa. The combination of predictors p1, p3 and p4 pro-
vides the analysis with the smallest error at almost all levels. We
further summarize the global, time-averaged temperature rms
error for all the predictors proposed in Section 2 in Table 2. This
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Fig 7. The global, February average of the temperature analysis rms
error at each model level using the one-step analysis scheme. The line
scheme for this plot is the same as that used in Fig. 6.

Table 2. The global, February average of the temperature analysis rms
error (K) at each model level for selected combinations of predictors.
Here, 6% variance inflation is applied to the model variables and 12%
variance inflation is applied to the bias parameters

Model level

Experiment 1 2 3 4 5 6 7

Modified pCRTM 0.25 0.25 0.25 0.31 0.25 0.32 0.19
(unbiased)
p1 0.38 0.41 0.44 0.53 0.31 0.77 0.75
p1, p2 0.37 0.40 0.44 0.51 0.34 0.60 0.33
p1, p3 0.33 0.34 0.37 0.42 0.32 0.57 0.28
p1, p4 0.27 0.28 0.29 0.36 0.31 0.71 0.49
p1, p5 0.29 0.30 0.32 0.38 0.32 0.77 0.60
p1, p3, p4 0.26 0.27 0.28 0.36 0.30 0.53 0.25
p1, p2, p3, p4, p5 0.26 0.27 0.28 0.39 0.33 0.56 0.34

table shows that using p2 or p5 also decreases the analysis rms
error but not as significantly as using p3 or p4. Also, including
p2 and p5 in the bias correction with p1, p3 and p4 does not
significantly reduce the analysis rms error.

Figure 8 plots the global, time averaged observation rms error
for each of the choices of predictors for each satellite channel.
We observe that p3 decreases the rms of the observation error
most for low wavenumbers, whereas p4 decreases the rms of the
observation error for higher wavenumbers. This result is consis-
tent with the structure of the correlation between the true obser-
vation bias and these predictors shown in Fig. 2. Furthermore,
using predictors p1, p3 and p4 together significantly reduces the
observation rms for most channels. The global, time averaged
observation rms error is summarized for selected channels using
all choices of predictors in Table 3. As for the analysis errors, we
see that none of the results using p2 or p5 improve significantly
compared with the results using p3 and/or p4. We also see that

Fig 8. The global, February average of the observation rms error for
each satellite channel using the one-step analysis scheme. The
observation rms error obtained when without bias correction is solid.
The results using bias correction with predictor p1 is dashed, p1 and p3

is dotted, for p1 and p4 is dash-dotted and p1, p3 and p4 is
dash-double-dotted.

Table 3. The global, February average of the observation rms error (K)
for representative channels when applying the bias correction
parameters estimated using 6% variance inflation for the model
variables and 12% for the bias parameters

Channel (cm −1)

Experiment 680.491 696.052 709.566 723.029

Unmodified pCRTM 0.35 0.50 0.96 0.83
(biased)
p1 0.37 0.51 0.32 0.23
p1, p2 0.20 0.21 0.16 0.21
p1, p3 0.21 0.20 0.12 0.14
p1, p4 0.32 0.38 0.20 0.05
p1, p5 0.37 0.47 0.27 0.09
p1, p3, p4 0.13 0.13 0.09 0.01
p1, p2, p3, p4, p5 0.19 0.12 0.14 0.02

for each of the channels, the predictors that are best correlated
with the true bias (see Fig. 2) yield the greatest improvement in
the observation rms error.

We observe in Fig. 8 that for the lower wavenumber channels,
using certain combinations of the predictors increases the rms
error of the observations above their value with no bias correc-
tion. However, the bias correction still significantly improves
the analysis rms error throughout the atmosphere (Fig. 7). For
example, whereas using p1 (constant) improves the analysis at
all model levels but the highest, this predictor only improves
the observation rms error for channels with wavenumbers above
701.618 cm −1 (Fig. 8). To explore the impact of the increased
observation rms error further, we tried using p1 to correct only
the bias for channels above 701.618 cm−1. We plot the resulting
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Fig 9. The results from using p1 to correct only channels above 701.618 cm −1 (dotted) compared eith using p1 at all levels (dashed). In panel (a)
showing the temperature analysis, we plot the results obtained from using the true modified observation operator (solid). In panel (b) showing the
rms error of the observations, the true bias is plotted (solid) for reference. All experiments here use the one-step analysis scheme.

observation and analysis rms errors in panels (a) and (b) of
Fig. 9, respectively. The observation rms error from using
p1 to correct the bias only for channels above wavenumber
701.618 cm −1 (dotted) mirrors that obtained from using p1 for
all channels (dashed) above 701.618 cm −1 and the true rms
of the observation error (solid in panel (a)) for the rest of the
channels. In spite of this apparent improvement in the overall
observation rms error, using p1 to correct the bias only for chan-
nels above 701.618 cm −1 degrades the temperature analysis rms
error for the six lower model levels.

4.3. Inflation of model state variables and bias
parameters

In the experiments presented in the previous sections, we have
used different inflation factors for the model state variables and
bias parameters. However, as formulated in Hunt et al. (2007),
LETKF applies a single inflation factor to all variables in the
ensemble. In this section, we illustrate the need for different in-
flation factors by comparing results from numerical experiments
using a 6% inflation factor for all variables to those described
above.

Table 4 shows the global, time averaged temperature anal-
ysis rms error at all model levels using 6% variance inflation.
We observe that the analysis rms errors obtained here are sim-
ilar in magnitude to those obtained by employing two different
inflation factors (summarized in Table 2). For the online bias
correction to continually update the bias estimate, the spread
(standard deviation) of the ensemble of bias parameters must
remain significantly larger than zero. Therefore, Fig. 10 plots
the background spread of each of the bias parameters for a rep-
resentative subset of the channels corrected in the run with p1,
p3 and p4 (panels a, b and c, respectively) over time. The spread
in the bias parameters for channel 723.029 cm −1 remains nearly

Table 4. As for Table 2. Here, 6% variance inflation is applied to both
the model variables and bias parameters

Model level

Experiment 1 2 3 4 5 6 7

Modified pCRTM 0.25 0.25 0.25 0.31 0.25 0.32 0.19
(unbiased)
p1 0.40 0.44 0.46 0.53 0.30 0.79 0.79
p1, p3 0.33 0.34 0.37 0.42 0.28 0.46 0.25
p1, p4 0.27 0.28 0.28 0.35 0.29 0.72 0.58
p1, p3, p4 0.29 0.29 0.31 0.38 0.30 0.50 0.28

constant after the spin-up time. However, for the majority of the
other channels the spread of the bias parameters decreases dra-
matically as the analysis cycle proceeds. A similar decrease in
the bias spread is observed for bias correction experiments with
all combinations of the predictors (results not shown). For chan-
nels like 723.029 cm −1, where the bias remains nearly constant,
we observe that the weighting function is above the cut-off value
for several model levels (see Table 1). Therefore, the analysis
of the bias parameters corresponding to these channels com-
bines information from more local regions, keeping the spread
relatively large.

A sufficiently large multiplicative variance inflation factor
can prevent the background ensemble from collapsing and also
serves as a forgetting factor of past observations and dynamics.
However, increasing the variance inflation of all background
variables to a level that prevents the ensemble of bias parameters
from collapsing degrades the quality of the analysis (results
not shown). Thus, we compensate for the decreasing spread
in the ensemble of bias parameters by inflating these variables
by 12% and retaining the 6% variance inflation for the other
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Fig 10. The spread in the background bias parameters β 1, β 2 and β 4 for the run with predictors p1, p3 and p4 for the one-step analysis scheme. The
spread of these parameters is in panels (a), (b) and (c), respectively. Each line represents a different satellite channel, where the solid line is for
channel 680.491 cm −1, the dotted line is for channel 696.052 cm −1, the dash-dotted line is for channel 709.566 cm −1 and the dashed line is for
channel 723.029 cm−1.

analysis variables. As described above, the analysis rms error
is similar when using a universal inflation factor or different
inflation factors. However, Fig. 11 shows that the spread of the
bias parameters for the run with p1, p3 and p4 (panels a, b and
(c), respectively) appears to level off toward a non-zero value
for most channels. The results are similar for the other bias
correction experiments (results not shown).

5. Conclusions

In this paper we have presented and tested two localized en-
semble Kalman filter based schemes designed to correct for
observational bias in satellite radiance data. We refer to these as
the ‘one-step analysis scheme’ and ‘two-step analysis scheme’.
In perfect model experiments with simulated rawinsonde and
biased satellite radiance observations, both schemes yield anal-
yses with substantially smaller errors than those obtained with-
out bias correction and those obtained from assimilating only
rawinsonde observations. Furthermore, even though the form of
the bias parametrization in our analysis differs from the form of
the simulated bias in our observations, after a relaxation period,
both schemes perform nearly as well as does the analysis ob-
tained from assimilating unbiased satellite observations. Even
though the analysis rms error always decreases, we sometimes

observe an increase in the observation rms errors due to the bias
correction. We speculate that this behaviour occurs because the
adaptive bias correction schemes presented in this paper seek
bias parameters that will minimize the analysis rms error.

Our two bias correction schemes differ in how they resolve
the conflict posed by the practical computational necessity of lo-
calization versus the fact that the instrument bias parameters are
global (i.e. not spatially dependent). In either case, this conflict
necessitates giving up something. In our one-step method, we
retain background correlations between the bias parameters and
the state variables but introduce the possibility of local overfitting
by the bias parameters. In our two-step method, we remove this
possibility but in doing so, also remove correlations between the
bias parameters and the atmospheric state variables in updates of
the atmospheric state variables. Our results show that both meth-
ods yield about the same accuracy after enough time is allowed
for relaxation, but the relaxation time for the one-step method is
substantially shorter. Since the two methods yield comparable
accuracy and are not much less accurate than the analysis with
unbiased observations, we speculate that local overfitting may
not be a significant problem in our application. We believe that
this is because the ensemble provides a strong constraint ensur-
ing that the local analyses only make a small change from the
globally constant forecasted bias parameter. Since the one-step
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Fig 11. As for Fig. 10. Here, the analysis variables are inflated by 6% whereas the bias parameters are inflated by 12%.

method relaxes to its good result more quickly, we speculate that
inclusion of correlations between the atmospheric state variables
and bias parameters speeds relaxation. The faster relaxation of
the one-step method should allow it to more readily adjust to
temporal drifts of the bias parameters.

The overall quite positive impact of our bias correction
schemes in the tests we have carried out suggests that these
methods may be useful in practice. An indication that this may
be the case is provided by our preliminary work presented in
Szunyogh et al. (2007). In that study, we used an implementa-
tion of the one-step analysis scheme with LETKF on the model
component of the NCEP GFS to assimilate advanced microwave
sounding unit instrument A (AMSU-A) radiance observations
from the satellite Aqua. Adding the AMSU-A radiance observa-
tions to the assimilated data set led to a major improvement of
the temperature and wind forecasts in the Southern Hemisphere.

In assimilations of observations of the real atmosphere, model
errors are necessarily combined with observation biases. The
preliminary results presented in Szunyogh et al. (2007) sug-
gest that the bias correction scheme presented here performs
well for real observations, although in practice, it cannot distin-
guish between these two sources of error. In theory, the one-step
scheme may overfit the model biases in local regions. However,
as discussed above, we expect that the strong constraint of the
background ensemble and global averaging would mitigate this
effect. Using the two-step analysis scheme would also reduce
the introduction of extra degrees of freedom. Furthermore, this
two-step analysis scheme could be modified to incorporate ad-

ditional past observations, as described in Auligne et al. (2007)
to reduce the introduction of model biases into the estimates of
observation bias parameters. We are continuing to explore this
mixture of model and observation biases in future studies with
observations of the real atmosphere.
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