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Adaptive bias correction for satellite data in a numerical
weather prediction system
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ABSTRACT: Adaptive bias corrections for satellite radiances need to separate the observation bias from the systematic
errors in the background in order to prevent the analysis from drifting towards its own climate. The variational bias
correction scheme (VarBC) is a particular adaptive scheme that is embedded inside the assimilation system.

VarBC is compared with an offline adaptive and a static bias correction scheme. In simulation, the three schemes
are exposed to artificial shifts in the observations and the background. The VarBC scheme can be considered as a
good compromise between the static and the offline adaptive schemes. It shows some skill in distinguishing between
the background-error and the observation biases when other unbiased observations are available to anchor the system.
Tests of VarBC in a real numerical weather prediction (NWP) environment show a significant reduction in the misfit with
radiosonde observations (especially in the stratosphere) due to NWP model error. The scheme adapts to an instrument error
with only minimal disruption to the analysis.

In VarBC, the bias is constrained by the fit to observations – such as radiosondes – that are not bias-corrected to the
NWP model. In parts of the atmosphere where no radiosonde observations are available, the radiosonde network still
imposes an indirect constraint on the system, which can be enhanced by applying a mask to VarBC. Copyright  2007
Royal Meteorological Society
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1. Introduction

Satellite instruments, like any other measurement sys-
tem, are imperfect and prone to error. While errors that
are purely random – such as noise at the radiation detec-
tor – are undesirable, their adverse effects can be signif-
icantly reduced within a data assimilation scheme by a
combination of spectral, spatial and temporal filtering.
However, errors that are systematic (i.e. biases) cannot
be handled in this way. Observation bias can systemati-
cally damage the data assimilation scheme, and ultimately
the quality of the forecasting system. Biases in satel-
lite observations are of particular concern, as they have
the potential, if uncorrected, to damage the NWP system
globally in a very short period of time.

The bias in a particular satellite observation can only
be determined by comparison with some unbiased ref-
erence. Special measurement campaigns involving sur-
face or aircraft-mounted radiometers and balloon-borne
sensors launched to coincide with the satellite overpass
provide a highly accurate reference, but are inevitably
limited to certain locations and times. Therefore NWP
centres often monitor and diagnose satellite biases using
the NWP assimilation system itself. The obvious advan-
tage of this approach is the in-house real-time availability
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of what is arguably (in the case of the NWP analysis
or short-range forecast) the best estimate of the global
atmospheric state. However, this approach has the disad-
vantage that it does not provide a completely unbiased
reference. Indeed, for some atmospheric variables and
regions of the atmosphere, the biases in the NWP system
can be comparable to the biases that one is attempting to
diagnose in the satellite information. Despite these con-
cerns, the overwhelming benefits of monitoring satellite
biases against the NWP system have led to its widespread
adoption.

In general, the observed biases when satellite data
are monitored against the NWP model are not fixed
offsets. Rather, they can vary with time (e.g. diurnally
or seasonally), with geographical location, including
changes in the air mass and in the underlying surface
(e.g. land, sea or ice), and even with the scan position of
the satellite instrument.

Biases between the data and the model arise because of
systematic errors in any one (but usually a combination)
of the following sources: the satellite instrument itself
(e.g. poor calibration or characterization, or adverse envi-
ronmental effects); the radiative transfer model (RTM)
linking the atmospheric state to the radiation measured by
the satellite (e.g. errors in the physics or spectroscopy, or
from non-modelled atmospheric processes); and system-
atic errors in the background atmospheric state provided
by the NWP model used for monitoring. In principle,

Copyright  2007 Royal Meteorological Society



632 T. AULIGNÉ ET AL.

we do not wish to correct the observations for the lat-
ter, because such correction could reinforce the system-
atic model errors. Ideally, biases in the NWP should be
handled explicitly by the system. Otherwise, they can
produce biased analyses and hinder attempts to diagnose
and correct observation bias. Such explicit treatment is
under way in various NWP centres (Trémolet, 2007), but
is beyond the scope of this paper. Here we will only con-
sider how NWP model error alters the observation bias
correction scheme, and demonstrate that some approaches
are more robust than others. Given the complexities of the
various sources of systematic error (and of how they may
combine), it is not surprising that a considerable amount
of effort has been directed towards bias correction.

The very first attempts to assimilate satellite data at
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) assumed fixed constant offsets applied
to each channel, but these were quickly exposed as inad-
equate (Kelly and Flobert, 1988): a more sophisticated
correction was needed. A scheme that aimed to apply
a geographically-varying bias correction (depending on
air mass) was proposed by Eyre (1992). The air-mass
dependence of the bias was parametrized by a number of
predictors based on the radiance observations themselves.
The coefficients of the predictors were then generated
by linear regression, trained on a representative sam-
ple of observed-minus-background radiance departures.
A modification of this scheme, where the observation-
based predictors were replaced by predictors based on an
NWP model, was proposed by Harris and Kelly (2001).
In both of these schemes, the aim was to correct the radi-
ance data completely towards the NWP model. The bias
correction was given many predictors and the regression
coefficients were updated frequently to capture any pos-
sible drift of the bias in time. More recently, as satellite
instruments and RTMs have improved, there has been a
slow evolution towards a simpler and more constrained
bias correction of the satellite radiances, which aims to
correct only biases in the observations and RTM, and
not to remove NWP model error (Watts and McNally,
2004). However, to this day any constraint placed upon
the bias correction has always been rather subjective and
ad hoc. It has ultimately depended on which predictors
have been selected for the bias correction scheme and
how frequently the bias coefficients have been updated.

Three different approaches for the bias correction
are proposed in Section 2 below: a static scheme, an
adaptive offline scheme, and an adaptive variational
bias correction scheme (hereafter referred as ‘Static’,
‘Offline’ and ‘VarBC’ respectively). In Section 3 we
study results from simulations using artificial perturba-
tions in a real assimilation system. The performance
of VarBC in an NWP system is examined in Section
4. Section 5 examines the constraint imposed by the
radiosonde data on the bias correction, and shows that
it can apply remotely. Conclusions are presented in Sec-
tion 6.

2. Three approaches to bias correction

The radiance departures are defined as

y − H(x),

where y is the observation vector, x is the NWP model
state vector, and H(x) is the observation operator.

Following Harris and Kelly (2001), the parametric
form used here to represent the observation bias is a linear
regression based on N state-dependent predictors pi(x),
with associated coefficients βi . Since the bias correction
is applied to the radiance departures, this is equivalent to
using the modified definition of the observation operator:

H̃ (x, β) = H(x) +
N∑

i=0

βipi(x). (1)

The training of the bias correction consists in finding
the vector β that allows the best fit between the NWP
fields x and the observations. This is obtained by mini-
mizing the following cost function:

J (β) = 1

2
[y − H̃ (x, β)]T[y − H̃ (x, β)]. (2)

The three bias correction schemes studied here are
essentially defined by their choice of x. The Static scheme
calculates the optimal vector β for a set of observations
supposed to be representative of the actual bias. In this
implementation, x is usually taken to be the background
fields xb from a control assimilation over a period of
the order of one month. The coefficients are then fixed
and applied in all subsequent analyses. This scheme does
not account for changes in the nature of the bias (e.g.
instrument problems or contamination). Therefore it is
interesting to consider an adaptive bias correction that
updates β regularly (but not the choice of predictors).
In the Offline scheme, the bias coefficients are updated
at each new analysis (e.g. every 12 hours), using a
background βb issued from the former analysis cycle.
The bias is calculated from the same dataset as the
one used for the analysis. But the update is performed
independently (or ‘offline’), and in this case prior to the
analysis, by minimizing the cost function

J (β) = 1

2
[y − H̃ (xb,β)]TR−1[y − H̃ (xb, β)]

+ 1

2
(β − βb)

TB−1
β (β − βb), (3)

where R represents the observation error covariance
matrix and Bβ the bias parameter background error
covariance matrix. The second term in Equation (3)
controls the adaptivity of the bias parameters (the ‘inertia
constraint’).

VarBC has been implemented at ECMWF (Dee, 2004,
2005), and has been operational since 12 September 2006.
Like the Offline scheme, it updates the coefficients of the
satellite bias correction every analysis cycle. It is based
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on ideas developed at NCEP and used in the operational
system there (Derber and Wu, 1998). It updates the
bias inside the assimilation system by finding corrections
that minimize the systematic radiance departures while
simultaneously preserving (or improving) the fit to other
observed data inside the analysis. This is achieved by
including the regression coefficients in the control vector
of the variational analysis, so that they are adjusted
together with other analysis variables, taking all available
information into account. The adjustment is optimal in
that it respects the uncertainty of the observations and any
background or inertia constraints we wish to impose on
changes to the satellite bias estimation. The cost function,
to be minimized with respect to the bias parameters β and
the model state x, is:

J (x, β) = 1

2
[y − H̃ (x, β)]TR−1[y − H̃ (x, β)]

+ 1

2
(β − βb)

TB−1
β (β − βb)

+ 1

2
(x − xb)

TB−1(x − xb), (4)

where B represents the model background error covari-
ance matrix.

VarBC is fundamentally different from an offline
scheme, where the bias is estimated before each analysis,
assuming the NWP model fields to be correct (or after
the analysis, assuming that the observation bias does not
change abruptly). As the simple simulation in Appendix
A illustrates, offline adaptive systems cannot distinguish
observation bias from NWP model bias, and they gradu-
ally alter the radiances to fit the NWP model. VarBC, on
the other hand, uses extra observations, such as radioson-
des, to constrain the observation bias correction in order
to prevent the contamination of the observation bias esti-
mates by systematic NWP model errors. The simple sim-
ulation in Appendix B illustrates this ability of VarBC to
separate the sources of bias inside the departures and to
ignore most of the NWP model bias.

This approach also goes a long way towards automat-
ing the updating and management of satellite bias correc-
tions. With the current assimilation at ECMWF of about
30 satellite instruments providing radiance information in
more than 500 channels, automation constitutes a signif-
icant benefit. The need for an adaptive bias correction
system also became obvious during the production of
reanalyses such as ERA-40 (Uppala et al., 2005), which
had to be interrupted and restarted on many occasions for
manual retuning of the bias corrections.

3. The performance of VarBC with artificial
perturbations to the NWP system

The characteristics of the adaptive bias corrections are
explored in a hypothetical environment where model and
observation biases are simulated by artificial perturba-
tions. The bias correction is studied within the ECMWF

4D-Var assimilation system (Rabier et al., 2000; Mahfouf
and Rabier, 2000) at a reduced resolution (T159L60). The
predictors that are used for the bias correction are sum-
marized in Table I. On top of this parametric form, a
constant scan-dependent bias correction, consisting in an
adjustment for each field of view with respect to the cen-
tre of the swath, is also applied for the instruments aboard
polar orbiting satellites. Furthermore, a constant γ coeffi-
cient is applied to AMSUA and AIRS channels to adjust
the RTM to the observations (as explained in (Watts and
McNally, 2004)). Three assimilation experiments (Static,
Offline and VarBC) are run using three different bias
corrections. They all use the same bias predictors, but
differ in how the bias coefficients are updated. The Static
scheme uses regression coefficients pre-computed from a
representative sample of radiance departures and fixed for
the duration of the experiment. The Offline and VarBC
schemes use adaptive bias corrections that start from the
same coefficients as the Static scheme. In both these
experiments, the coefficients are updated every analysis
cycle, subject to an inertial damping. In the cost func-
tion, an inertia term applies a constraint which limits
the magnitude of changes for the coefficients within a
single update. In the Offline scheme, the update is per-
formed prior to the analysis; in VarBC, the coefficients
are updated within the analysis.

3.1. Response to an artificial instrument perturbation

An instrumental failure or contamination usually has
a signature in the observation bias that is either a
sudden shift or a slow drift (which can be considered
as a succession of small shifts). An artificial shift is
simulated for the NOAA-16 AMSU-A channel 6 (a
temperature sounding channel with a weighting function
peaking around 400 hPa) with a magnitude equal to the
assumed observation standard deviation (0.2 K) specified
for this channel. Figure 1 shows the analysis responses
(temperature increments) averaged over the entire globe
for the three experiments during the first cycle following
the observation shift.

The Static scheme has no information about the
changed observations, so that the perturbation leads
to erroneous analysis increments around 400 hPa. The
Offline scheme reacts to the perturbed observations by
updating the bias estimates; this significantly reduces the
impact of the perturbation on the analysis. However,

Table I. Predictors used in the bias parametric form for dif-
ferent satellite instruments. The pressure differences represent
thicknesses; TCWV is the total column water vapour; Vs is the

surface wind speed; and Ts is the skin temperature.

Instrument Predictors

AIRS 1000–300 hPa 200–50 hPa 10–1 hPa 50–5 hPa
ATOVS 1000–300 hPa 200–50 hPa 10–1 hPa 50–5 hPa
GEOS 1000–300 hPa 200–50 hPa TCWV
SSMI Vs Ts TCWV
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Figure 1. Response to a simulated instrument contamination. Mean
analysis temperature response as a function of pressure, following a
0.2 K artificial perturbation for NOAA-16 AMSU-A channel 6. The
solid black, solid grey and dashed curves correspond to the Static,

VarBC and Offline bias correction schemes respectively.

the Offline scheme is not optimal, since it does not
immediately correct for the whole observation shift. This
is due to the inertia constraint imposed in the Offline
scheme, and also to the effect of the quality control
(based on the bias-corrected departures), which rejects
observations that would otherwise contribute to updating
the bias coefficients.

The VarBC scheme identifies, and partly corrects for,
the observation shift with a change to the bias coeffi-
cients. Compared with the Static scheme, it significantly
reduces the impact of the perturbation on the analysis.
However, it is slightly inferior to the Offline scheme,
which benefits from the a priori knowledge that the NWP
model is correct (and thus any departure signal goes
exclusively to changing the bias correction of the obser-
vations). It should be noted that in the Offline scheme
considered here, the adaptive system is run before the
meteorological analysis. If it had been run after the anal-
ysis, the perturbed (bad) data would indeed have damaged
the analysis.

3.2. Response to an artificial NWP model perturbation

When new versions of the NWP forecast model are
implemented, there can be significant changes in the
systematic errors. To simulate this scenario, a sudden shift
(of -1 K) is introduced in the NWP model temperature
for levels above 100 hPa. In this case the Static scheme
does exactly the right thing: it does not change the
bias correction of the observations, and the signal in the
radiance departures causes an adjustment of the analysis
(Figure 2). The Offline scheme does exactly the wrong
thing, by assuming that the NWP model is correct.
It accounts for most of the NWP model error with a
large change to the bias correction (again limited by the
inertia), seen in Figure 3. This results in only a small
correction to the analysis. Compared with the Offline
scheme, the VarBC scheme shows almost no adjustment
of the bias. Most of the NWP model error is (correctly)
adjusted through analysis increments (almost identical to

those of the Static scheme). The VarBC scheme benefits
from the presence of in situ temperature data (such as
radiosonde and aircraft data) that are not adaptively bias-
corrected, and thus identify the source of the perturbation
as an NWP model error.

4. The performance of VarBC in a real NWP
system

4.1. Response to a real instrument problem

From previous reanalyses (Uppala et al., 2005), there are
a number of well-documented cases where a satellite
instrument has suddenly degraded or been contaminated
by an extreme event (e.g. volcanic emissions). If the event
is unexpected, this can result in a serious contamination
of the analysis. Even if the event is expected, blacklisting
the affected channel can still disturb the time-consistency
of the analysis. VarBC has demonstrated an ability
to handle sudden systematic changes to the data and
minimize damage to the analysis. An example is shown
in Figure 4, for August 2006 when the Meteosat-5
calibration changed unexpectedly for both the IR and the
WV channels, resulting in changes greater than 1 K in
the observed temperatures.

In this example, most of the erroneous data are not
rejected by the quality control process. For the Static
scheme (top panel), this results in a significant modifica-
tion of the mean first-guess and analysis departures. The
VarBC scheme (bottom panel) automatically corrects the
shifted data. With very little disruption to the analysis
system, a completely new bias correction is established,
differing by nearly 2 K (the black line of Figure 4) from
the stable bias correction prior to the incident. Once
the calibration has returned to its nominal level (from 1
September), the bias correction quickly returns to a sta-
ble state which is slightly different from (0.2 K below)
its prior values.
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Figure 2. Response to an artificial uniform NWP model error. Mean
analysis temperature response as a function of pressure, following an
artificial −1 K NWP model perturbation above 100 hPa. The solid
black, solid grey and dashed curves correspond to the Static, VarBC

and Offline bias correction schemes respectively.
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Figure 3. Response to an artificial uniform NWP model error. Observation bias correction response to a −1 K NWP model perturbation above
100 hPa for the VarBC (black) and Offline (white) bias correction schemes.

4.2. Response to a systematic NWP model error

Figure 5 shows the mean fit to radiosonde temperature
data for two different assimilation systems. The grey lines
correspond to a system using the Static bias correction
scheme from ECMWF operations (version CY30R1).
The radiosonde temperature data suggest that there is a
cold bias in the assimilation (short-range forecast and
analysis) in the lower stratosphere. Similar statistics for
radiances from AMSU-A in channels sensitive to the
lower stratosphere show no such disagreement. However,
the radiances are only unbiased by virtue of their bias
correction towards the model. This situation has been
recognized for some time, and an obvious interpretation
is that the forecast model does have a cold bias in the
lower stratosphere, which is sustained in the analysis by
the assimilation of wrongly bias-corrected radiances. Past
attempts to manually resolve this problem – for example,
by completely removing bias corrections from some of
the upper AMSU-A channels – have failed to achieve

an appropriate balance between different overlapping
AMSU-A channels (Kelly, personal communication).

The same data fits after the VarBC scheme has been
allowed to adjust the satellite bias correction are shown
by the black lines of Figure 5. There is a striking
improvement in the radiosonde agreement, achieved
by VarBC adapting the bias correction applied to the
stratospheric AMSU-A channels. The time series for
AMSU-A channel 10 is shown in Figure 6, where the
bias correction (black line) has been adjusted from 0.22 K
to almost zero. By progressively reducing the amount of
bias correction applied to the radiance data, more of the
information from the AMSU-A forces mean increments
and warms the analysis accordingly (as seen in the time
series of the radiosonde fit in Figure 6(b)). Indeed, there
is a gradient in the analysis cost function, which indicates
that the observation bias can be reduced to improve the
overall fit of the system to all observations. However, the
successful removal of the cold bias has not been achieved
quickly. The VarBC scheme has taken several weeks of
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Figure 4. Standard deviation and bias of observed-minus-background (grey) and observed-minus-analysis fit (black) for the Meteosat-5
water-vapour channel in the Tropics. The bias (black dashed line) is estimated with (a) the Static bias correction scheme and (b) the VarBC

scheme (with initial offsets of 2.62 K and 4.69 K respectively, for better visualization).

assimilation to gradually reduce the original satellite bias
correction.

While an instrument failure or contamination is usu-
ally accounted for within a couple of days, in this case
the cold bias observed in the stratosphere requires sev-
eral weeks to be corrected. This cannot be explained by
the inertia term (as it is deliberately relaxed for strato-
spheric channels). The potential damping influence of the
quality control is similarly a small effect for stratospheric
channels. As yet the reason for the slow evolution is not
understood.

5. The indirect radiosonde constraint on the bias
correction

The last section showed that in situ data (such as
those from radiosondes), which themselves are not bias-
corrected adaptively, can help the VarBC scheme to
discriminate between NWP model error and satellite
observation bias. These uncorrected observations provide
an ‘anchoring network’ for the scheme. It is interesting to
investigate the performance of the VarBC scheme in parts
of the atmosphere not directly constrained by radiosondes
(such as the upper stratosphere).

Figure 7(a) shows mean radiance departures for
AMSU-A channel 14 from an assimilation that uses no
satellite observations. The data are averaged over 8 days
once the experiment has reached equilibrium (after about
three weeks). This channel is sensitive to temperatures
around 1 hPa. The large positive departures over the
southern winter pole reflect a known systematic NWP

model error that has been confirmed by a number of inde-
pendent studies, for MIPAS (Dethof, 2004), GPS (Healy
and Thépaut, 2006) and AIRS (McNally et al., 2006).

Figure 7(b) shows the bias correction in AMSU-A
channel 14 generated by the Offline adaptive bias correc-
tion scheme after three weeks of assimilation. The bias
correction has compensated almost exactly for the NWP
model error by generating a large correction to the obser-
vations. In contrast, the VarBC scheme generates a much
smaller correction to the observations (Figure 7(c)), and
uses more of the radiance signal to force analysis tem-
perature increments (not shown). This part of the strato-
sphere (around 1 hPa) is not directly constrained by any
radiosonde data, and yet VarBC and Offline show very
different behaviours. This suggests that channels that are
sensitive to layers where no radiosonde observations exist
are at least partially constrained by neighbouring chan-
nels (through overlapping weighting functions), which
are themselves constrained by radiosonde data below (in
the lower stratosphere).

The radiosonde constraint can be further enhanced by
calculating the bias only from the radiances in the vicinity
of the radiosonde locations. We introduce a slightly
different version of VarBC, called ‘VarBC-Mask’, which
uses a mask to focus on data in the vicinity of radiosonde
locations. This mask is fixed, and it includes land and sea
locations within 1° of a predefined radiosonde location
(see Figure 8). The sensitivity of the bias parameters to
observations outside the mask is set to zero. Apart from
this difference, VarBC-Mask is identical to VarBC, and
in particular all observations are bias-corrected. Since
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Figure 5. Standard deviation and bias of observed-minus-background (solid) and observed-minus-analysis fit (dashed) for radiosonde temperatures
over the Northern Hemisphere (upper panels) and the Southern Hemisphere (lower panels). The statistics are calculated from 11 to 19 October

2005 for experiments using the Static bias correction scheme (grey lines) and the VarBC scheme (black lines) after 6 months of evolution.

VarBC-Mask focuses its update on the data that will
most influence the fit to the radiosondes, it is expected
to have a slightly better ability to discriminate between
the sources of bias (NWP model error or observation
error), and to be less contaminated by NWP model error.
In addition, the bias calculation in the masked system
is less exposed to NWP model error (especially over
the southern oceans). The bias estimate from VarBC-
Mask for AMSU-A channel 14 is shown in Figure 7(d).
The corrections are generally comparable to those of the
(unmasked) VarBC scheme, but with smaller values over
the southern oceans and Antarctica.

6. Discussion and conclusions

A variational bias correction scheme has been studied,
and the differences with an offline adaptive and a
static bias correction scheme have been highlighted. In
simulation, the three schemes have been exposed to
artificial instrument and NWP model shifts.

The Static scheme equally forbids adaptation to instru-
ment drifts and evolution in the NWP model error. While
it rightly forces analysis increments to correct the NWP
model (with no change to the bias), it is unable to adapt
to the instrument problem, leading to significant damage
to the analysis.

The Offline scheme benefits from the a priori assump-
tion that the NWP model is correct, adapting appro-
priately to the instrument shift with very little damage
to the analysis. (Note that this would not be the case
if the bias were computed after the analysis.) How-
ever, an error in the NWP model is wrongly corrected
by a change in the bias, resulting in limited analysis
increments.

The VarBC scheme is better than the Static scheme
in the case of an artificial instrument shift, where it
limits damage to the analysis by partially adapting
to the shift. This is confirmed by experiment with a
real instrument error. A shift of more than 1 K for
MSU channel 3 on NOAA-9 resulted in only minimal
disruption to the analysis. VarBC is also better than
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Figure 6. Standard deviation and bias of observed-minus-background (grey) and observed-minus-analysis fit (black) for (a) NOAA-16 AMSU-A
channel 10 temperatures and (b) 50 hPa radiosonde temperatures in the Northern Hemisphere. The bias correction is represented by the black

dashed line (with an initial offset of 0.22 K for better visualization).

Offline for an artificial error in the NWP model. Most
of the signal in the radiance departures is correctly
attributed to the NWP model (and not the observation
bias), resulting in analysis increments to correct the
NWP model. Extensive tests of VarBC in a real NWP
environment show a significant reduction in the misfit to
radiosonde observations (especially in the stratosphere)
due to NWP model error. The VarBC scheme can
therefore be considered as a useful compromise between
the Static and Offline schemes.

VarBC has shown some skill in distinguishing between
NWP model error and observation bias. It implicitly
uses the redundancy of information between various
observations to decide upon the likely source of the
bias. Indeed, the data that are not VarBC-related (e.g.
radiosonde, aircraft or surface data) still contribute to the
cost function, and act as a constraint on the update of the
control variable, and especially the VarBC parameters.
Adjustments to the bias parameters that would imply a
strong degradation in the fit to these extra data become
prohibited. If a model error is measured by radiances and
also by data not corrected with VarBC, it is likely that
the optimal solution will modify the meteorological part
of the control variable rather than the VarBC parameters.
VarBC is believed to produce a better analysis at ECMWF
in terms of fit to the radiosondes, but it must be noted
that no significant improvement in forecast quality has
been observed. Results have been shown for a particular
assimilation system (the ECMWF 4D-Var system), and
would not necessarily be the same in a system using
different tuning parameters (for example, the background
error covariances).

It must be stressed that the constraint of the radioson-
des depends crucially on these observations not being

bias-corrected to the NWP model, and thus acting as an
‘anchoring network’ to the system. It has been shown
that the radiosondes can act remotely on VarBC. In
parts of the atmosphere where no radiosonde observa-
tions are available (such as the upper stratosphere), the
radiosonde network still imposes an indirect constraint
on the system. This constraint is enhanced by applying
a mask to the update of the bias in VarBC, consider-
ing only the radiances in the vicinity of the radiosonde
locations.

Long-term drift linked with the interaction with the
quality control is a potential concern when using an
adaptive bias correction. We have evidence of only a
small drift in the long-term experiments performed to
date, reflecting the fact that VarBC is (at least) partially
constrained either by the data that are not related to
the VarBC or by the chosen bias predictors. However,
significant effort is required to monitor the departures
precisely (to detect systematic errors) and to better
represent the characteristics of the observation biases (e.g.
with the choice of predictors).

In order to detect failing observations and remove
them prior to the analysis, the data have to pass a
quality control (QC). Most QC algorithms act upon
bias-corrected observed-minus-first-guess departures (so
called ‘first-guess checks’). Since the bias correction is
calculated over the active population, a different QC
results in a different bias correction, which will then
influence the QC in the following cycle. This fundamental
link (or ‘feedback’) between adaptive bias correction
and QC is investigated in (Auligné and McNally, 2007).
This study demonstrates that VarBC is usually more
robust than other adaptive schemes performed outside the
analysis. A new metric for the bias calculation, involving

Copyright  2007 Royal Meteorological Society Q. J. R. Meteorol. Soc. 133: 631–642 (2007)
DOI: 10.1002/qj



ADAPTIVE BIAS CORRECTION FOR SATELLITE DATA IN AN NWP SYSTEM 639

Mean:   −2.1380

60°S60°S

30°S 30°S

0°0°

30°N 30°N

60°N60°N

150°W

150°W 120°W

120°W 90°W

90°W 60°W

60°W 30°W

30°W 0°

0° 30°E

30°E 60°E

60°E 90°E

90°E 120°E

120°E 150°E

150°E
−14.37

−10.20

−6.022

−1.849

2.325

6.498

10.67

Min:   −14.368 Max:   10.671

60°S

30°S

0°

30°N

60°N

60°S

30°S

0°

30°N

60°N

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E
−7.419

−4.141

−0.8642

2.413

5.690

8.968

12.24

Min:   −7.4188 Max:   12.245 Mean:   −1.5424

60°S

30°S

0°

30°N

60°N

60°S

30°S

0°

30°N

60°N

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E

Max:   2.5626

−2.236

−1.436

−0.6365

0.1633

0.9631

1.763

2.563

Min:   −2.2361 Mean:   −0.217114

60°S

30°S

0°

30°N

60°N

60°S

30°S

0°

30°N

60°N

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E
−1.807

−1.140

−0.4742

0.1921

0.8584

1.525

2.191

Min:   −1.8067 Max:   2.1909 Mean:   −0.277436

Figure 7. Mean values over a three-week period for AMSU-A channel 14 aboard the AQUA satellite. First panel: first-guess departures for an
experiment where no satellite data is assimilated. Second, third and fourth panels: bias correction for experiments assimilating satellite data with

the Offline, VarBC and VarBC-Mask schemes, respectively. This figure is available in colour online at www.interscience.wiley.com/qj

the use of a weighted mean instead of a simple average,

is proposed in order to limit the influence of feedback on

NWP model drifts.

Acknowledgements

The authors wish to thank Lars Isaksen for developing
priceless diagnostic tools. Graeme Kelly is acknowledged

Copyright  2007 Royal Meteorological Society Q. J. R. Meteorol. Soc. 133: 631–642 (2007)
DOI: 10.1002/qj



640 T. AULIGNÉ ET AL.
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A. Appendix: Unconstrained adaptive bias
correction

A very simple simulation is used to demonstrate that
an NWP model bias will contaminate any adaptive bias
correction that does not constrain the values of the bias
estimates. We consider a temperature field represented
by an NWP model that has a fixed ‘climate’ (i.e. the
state the model would eventually reach in the absence
of observations) that is biased relative to the true state
by a constant offset M. For a given analysis cycle k,
the background bk is a short-term forecast issued from
the analysis of the previous cycle ak−1, which exhibits
the tendency of the NWP model to creep back to its own
climate M. This can be simply modelled by the following
formula:

bk = ak−1 + α(M − ak−1), (A.1)

where α is a decay coefficient representing the tendency
to the NWP model climate (arbitrarily set between 0 and
1).

The NWP model is confronted with satellite observa-
tions, which, for the sake of simplicity, directly measure
the temperature with a constant offset O. In each cycle,
an analysis updates the model background according to
the bias-corrected observation departures:

ak = bk + β(O − bk − ck−1), (A.2)

where β is a coefficient set between 0 and 1, and ck−1

represents the bias correction calculated after the analysis
for the cycle k − 1. We suppose that no constraint is
applied to the bias correction, which is simply calculated
as the mean of the analysis departures:

ck−1 = O − ak−1. (A.3)

Rearranging Equations (5), (6) and (7), we obtain:

ak = bk − αβ(M − ak−1). (A.4)

Replacing bk by its expression from Equation (5), and
applying Equation (8) to k and k + 1, we get:

ak+1 − ak = α(1 − β)(M − ak). (A.5)

Since the coefficients α and β are set between 0 and 1,
it is easy to show that the sequence ak is monotonic and
bounded by M and that it converges towards M:

lim
k→∞ ak = M,

and as a result,
lim

k→∞ bk = M,

and
lim

k→∞ ck = O − M.

Figure 9 shows the evolution of the model and obser-
vation values as the scheme is iterated. The information
that pulled the NWP model away from its own climate
is gradually removed from the observations by the bias
correction as it gets contaminated by the model bias. The
system converges when the model has reached its own
climate. A bias correction with respect to the model back-
ground instead of the analysis would converge even faster
to the same estimates, as this is implicitly equivalent to
the assumption that the background is unbiased.

B. Appendix: Constrained adaptive bias correction

A different simulation is performed to illustrate the
influence of a constraint on the bias correction. Focusing
on a given analysis cycle, the model is assumed to
have a systematic error that varies as the cosine of
latitude. The bias correction scheme is defined as a linear
regression, with two parameters β0 and β1, corresponding
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respectively to a constant offset and a predictor defined
for each observation n as

P1(n) = cos λ(n).

The bias estimate is thus of the following form:

B(n) = β0 + β1P1(n). (B.1)

For the sake of simplicity, the N satellite observations
Xsat and the corresponding NWP model values Xm are

collocated temperatures (i.e. all observation operators
are equal to the identity), and the N observations are
distributed through the whole latitude range. The satellite
observations are assumed to be uniformly biased relative
to the true state. With the predictors defined in the
parametric form, the bias correction has the potential to
explain both the observation bias and the model error.

An offline adaptive bias correction scheme to the
background, as described above, is equivalent for the
given analysis cycle to the minimization of the following
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objective function:

Joffline(β0, β1) =
N∑

n=1

(Xsat(n) − Xm(n) − B(n))2 ,

(B.2)
where Xm is fixed, since the bias correction is performed
independently of the analysis (i.e. offline).

Collocated radiosonde temperature observations XRS

are introduced with a Gaussian observation error. A bias
correction performed inside the analysis (i.e. a variational
bias correction) can be formulated for the given analysis
cycle by the minimization of an objective function JVarBC.
To keep the formulation as simple as possible, the same
weights are assigned to the satellite and the radiosonde
observations. The number of observations is assumed
to be large enough that one can neglect the effect
of any prior knowledge (or ‘background’) on the bias
parameters:

JVarBC(Xm, β0, β1) =
N∑

n=1

(Xsat(n) − Xm(n) − B(n))2

+
N∑

n=1

(XRS(n) − Xm(n))2 . (B.3)

A simple gradient-descent algorithm is used to find
the values that minimize the objective functions for the
offline and variational formulations. The robustness of the
solution has been assessed through several experiments
using a varying Gaussian noise for the radiosonde obser-
vations. The results are shown in Figure 10. The offline
scheme calculates a bias correction accounting for the
full first-guess departures: a combination of the satellite
observation bias and the systematic NWP model error.
If the analysis of the temperature were performed after
the bias correction calculation, the increments would be
close to zero, since most of the signal from the departures
would be removed by the bias correction. The variational
scheme, constrained by the radiosondes, shows significant
skill in distinguishing between the sources of bias. The
bias correction is much closer to the actual satellite bias
than that from the offline scheme.
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