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Preface

Geostatistics refers to the sub-branch of spatial statistics in which the data
consist of a finite sample of measured values relating to an underlying spa-
tially continuous phenomenon. Examples include: heights above sea-level in a
topographical survey; pollution measurements from a finite network of mon-
itoring stations; determinations of soil properties from core samples; insect
counts from traps at selected locations. The subject has an interesting his-
tory. Originally, the term geostatistics was coined by Georges Matheron and
colleagues at Fontainebleau, France, to describe their work addressing prob-
lems of spatial prediction arising in the mining industry. See, for example,
(Matheron, 1963; Matheron, 1971b). The ideas of the Fontainebleau school
were developed largely independently of the mainstream of spatial statistics,
with a distinctive terminology and style which tended to conceal the strong
connections with parallel developments in spatial statistics. These parallel de-
velopments included work by Kolmogorov (1941), Matérn (1960, reprinted as
Matérn, 1986), Whittle (1954, 1962, 1963), Bartlett (1964, 1967) and others.
For example, the core geostatistical method known as simple kriging is equiva-
lent to minimum mean square error prediction under a linear Gaussian model
with known parameter values. Papers by Watson (1971, 1972) and the book
by Ripley (1981) made this connection explicit. Cressie (1993) considered geo-
statistics to be one of three main branches of spatial statistics, the others being
discrete spatial variation (covering distributions on lattices and Markov ran-
dom fields) and spatial point processes. Geostatistical methods are now used in
many areas of application, far beyond the mining context in which they were
originally developed.
Despite this apparent integration with spatial statistics, much geostatistical

practice still reflects its independent origins, and from a mainstream statisti-



vi

cal perspective this has some undesirable consequences. In particular, explicit
stochastic models are not always declared and ad hoc methods of inference are
often used, rather than the likelihood-based methods of inference which are
central to modern statistics. The potential advantages of using likelihood-based
methods of inference are twofold: they generally lead to more efficient estima-
tion of unknown model parameters; and they allow for the proper assessment
of the uncertainty in spatial predictions, including an allowance for the effects
of uncertainty in the estimation of model parameters.
Diggle, Tawn and Moyeed (1998) coined the phrase model-based geostatistics

to describe an approach to geostatistical problems based on the application of
formal statistical methods under an explicitly assumed stochastic model. This
book takes the same point of view.
We aim to produce an applied statistical counterpart to Stein (1999), who

gives a rigorous mathematical theory of kriging. Our intended readership in-
cludes postgraduate statistics students and scientific researchers whose work
involves the analysis of geostatistical data. The necessary statistical background
is summarised in an Appendix, and we give suggestions of further background
reading for readers meeting this material for the first time.
Throughout the book, we illustrate the statistical methods by applying

them in the analysis of real data-sets. Most of the data-sets which we
use are publically available and can be obtained from the book’s website,
http://www.maths.lancs.ac.uk/∼diggle/mbg .
Most of the book’s chapters end with a section on computation, in which we

show how the R software (R Development Core Team, 2005) and contributed
packages geoR and geoRglm can be used to implement the geostatistical meth-
ods described in the corresponding chapters. This software is freely available
from the R Project website (http://www.r-project.org).
The first two chapters of the book provide an introduction and overview.

Chapters 3 and 4 then describe geostatistical models, whilst Chapters 5 to 8
cover associated methods of inference. The material is mostly presented for
univariate problems i. e., those for which the measured response at any
location consists of a single value but Chapter 3 includes a discussion of
some multivariate extensions to geostatistical models and associated statistical
methods.
The connections between classical and model-based gostatistics are closest

when, in our terms, the assumed model is the linear Gaussian model. Readers
who wish to confine their attention to this class of models on a first reading
may skip Sections 3.11, 3.12, Chapter 4, Sections 5.5, 7.5, 7.6 and Chapter 8.
Many friends and colleagues have helped us in various ways: by improving

our understanding of geostatistical theory and methods; by working with us on
a range of collaborative projects; by allowing us to use their data-sets; and by
offering constructive criticism of early drafts. We particularly wish to thank Ole
Christensen, with whom we have enjoyed many helpful discussions. Ole is also
the lead author of the geoRglm package.

Peter J. Diggle, Paulo J. Ribeiro Jr., March 2006
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1
Introduction

1.1 Motivating examples

The term spatial statistics is used to describe a wide range of statistical mod-
els and methods intended for the analysis of spatially referenced data. Cressie
(1993) provides a general overview. Within spatial statistics, the term geostatis-
tics refers to models and methods for data with the following characteristics.
Firstly, values Yi : i = 1, . . . , n are observed at a discrete set of sampling lo-
cations xi within some spatial region A. Secondly, each observed value Yi is
either a direct measurement of, or is statistically related to, the value of an un-
derlying continuous spatial phenomenon, S(x), at the corresponding sampling
location xi. This rather abstract formulation can be translated to a variety of
more tangible scientific settings, as the following examples demonstrate.

Example 1.1. Surface elevations

The data for this example are taken from Davis (1972). They give the measured
surface elevations yi at each of 52 locations xi within a square, A, with side-
length 6.7 units. The unit of distance is 50 feet (≈15.24 meters), whereas one
unit in y represents 10 feet (≈3.05 meters) of elevation.
Figure 1.1 is a circle plot of the data. Each datum (xi, yi) is represented by a

circle with centre at xi and radius proportional to yi. The observed elevations
range between 690 and 960 units. For the plot, we have subtracted 600 from
each observed elevation, to heighten the visual contrast between low and high
values. Note in particular the cluster of low values near the top-centre of the
plot.
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Figure 1.1. Circle plot of the surface elevation data. For the coordinates, the unit
of distance is 50 feet. The observed elevations range from 690 to 960 units, where
1 unit represents 10 feet of elevation. Circles are plotted with centres at the sampling
locations and radii determined by a linear transformation of the observed elevations
(see Section 1.6).

The objective in analysing these data is to construct a continuous elevation
map for the whole of the square region A. Let S(x) denote the true elevation at
an arbitrary location x. Since surface elevation can be measured with negligible
error, in this example each yi is approximately equal to S(xi). Hence, a rea-
sonable requirement would be that the map resulting from the analysis should
interpolate the data. Our notation, distinguishing between a measurement pro-
cess Y and an underlying true surface S, is intended to emphasise that this is
not always the case.

Example 1.2. Residual contamination from nuclear weapons testing

The data for this example were collected from Rongelap Island, the principal
island of Rongelap Atoll in the South Pacific, which forms part of the Marshall
Islands. The data were previously analysed in Diggle et al. (1998) and have the
format (xi, yi, ti) : i = 1, . . . , 157, where xi identifies a spatial location, yi is a
photon emission count attributable to radioactive caesium, and ti is the time
(in seconds) over which yi was accumulated.
These data were collected as part of a more wide-ranging, multidisciplinary

investigation into the extent of residual contamination from the U.S. nuclear
weapons testing programme, which generated heavy fallout over the island in
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the 1950s. Rongelap island has been uninhabited since 1985, when the in-
habitants left on their own initiative after years of mounting concern about
the possible adverse health effects of the residual contamination. Each ratio
yi/ti gives a crude estimate of the residual contamination at the corresponding
location xi but, in contrast to Example 1.1, these estimates are subject to non-
negligible statistical error. For further discussion of the practical background to
these data, see Diggle, Harper and Simon (1997).
Figure 1.2 gives a circle plot of the data, using as response variable at each

sampling location xi the observed emission count per unit time, yi/ti. Spatial
coordinates are in metres, hence the east-west extent of the island is approxi-
mately 6.5 kilometres. The sampling design consists of a primary grid covering
the island at a spacing of approximately 200 metres together with four sec-
ondary 5 by 5 sub-grids at a spacing of 50 metres. The role of the secondary
sub-grids is to provide information about short-range spatial effects, which have
an important bearing on the detailed specification and performance of spatial
prediction methods.
The clustered nature of the sampling design makes it difficult to construct

a circle plot of the complete data-set which is easily interpretable on the scale
of the printed page. The inset to Figure 1.2 therefore gives an enlarged circle
plot for the western extremity of the island. Note that the variability in the
emission counts per unit time within each sub-grid is somewhat less than the
overall variability across the whole island, which is as we would expect if the
underlying variation in the levels of contamination is spatially structured.
In devising a statistical model for the data, we need to distinguish between

two sources of variation: spatial variation in the underlying true contamination
surface, T (x) say; and statistical variation in the observed photon emission
counts, yi, given the surface T (x). In particular, the physics of photon emissions
suggests that a Poisson distribution would provide a reasonable model for the
conditional distribution of each yi given the corresponding value T (xi). The
gamma camera which records the photon emissions integrates information over
a circular area whose effective diameter is substantially smaller than the smallest
distance (50 metres) between any two locations xi. It is therefore reasonable
to assume that the yi are conditionally independent given the whole of the
underlying surface T (x). In contrast, there is no scientific theory to justify any
specific model for T (x), which represents the long-term cumulative effect of
variation in the initial deposition, soil properties, human activity and a variety
of natural environmental processes. We return to this point in Section 1.2.
One scientific objective in analysing the Rongelap data is to obtain an esti-

mated map of residual contamination. However, in contrast to Example 1.1, we
would argue that in this example the map should not interpolate the observed
ratios yi/ti because each such ratio is a noisy estimate of the corresponding
value of T (xi). Also, because of the health implications of the pattern of con-
tamination across the island, particular properties of the map are of specific
interest, for example the location and value of the maximum of T (x), or areas
within which T (x) exceeds a prescribed threshold.
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Figure 1.2. Circle plot for data from Rongelap island. Circles are plotted with centres
at the sampling locations and radii proportional to observed emission counts per unit
time. The unit of distance is 1 metre. The inset shows an enlargement of the western
extremity of the island.

Example 1.3. Childhood malaria in The Gambia

These data are derived from a field survey into the prevalence of malaria para-
sites in blood samples taken from children living in village communities in The
Gambia, West Africa. For practical reasons, the sampled villages were concen-
trated into five regions rather than being sampled uniformly across the whole
country. Figure 1.3 is a map of The Gambia showing the locations of the sampled
villages. The clustered nature of the sampling design is clear.
Within each village, a random sample of children was selected. For each child,

a binary response was then obtained, indicating the presence or absence of
malaria parasites in a blood sample. Covariate information on each child in-
cluded their age, sex, an indication of whether they regularly slept under a
mosquito net and, if so, whether or not the net was treated with insecticide.
Information provided for each village, in addition to its geographical location,
included a measure of the greenness of the surrounding vegetation derived from
satellite data, and an indication of whether or not the village belonged to the
primary health care structure of The Gambia Ministry for Health.
The data format for this example is therefore (xi, yij , di, dij) where the

subscripts i and j identify villages, and individual children within villages, re-
spectively, whilst di and dij similarly represent explanatory variables recorded
at the village level, and at the individual level, as described below. Note that if
only village-level explanatory variables are used in the analysis, we might choose
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Figure 1.3. Sampling locations for The Gambia childhood malaria survey. The inset
plots are enlarged maps of the western, central and eastern regions of The Gambia.

to analyse the data only at the village level, in which case the data format could
be reduced to (xi, ni, yi, di) where ni is the number of children sampled in the
ith village, and yi =

∑ni

j=1 yij the number who test positive.
Figure 1.4 is a scatterplot of the observed prevalences, yi/ni, against the

corresponding greenness values, ui. This shows a weak positive correlation.
The primary objective in analysing these data is to develop a predictive model

for variation in malarial prevalence as a function of the available explanatory
variables. A natural starting point is therefore to fit a logistic regression model to
the binary responses yij . However, in so doing we should take account of possi-
ble unexplained variation within or between villages. In particular, unexplained
spatial variation between villages may give clues about as-yet unmeasured
environmental risk factors for malarial infection.

Example 1.4. Soil data

These data have the format (xi, yi1, yi2, di1, di2), where xi identifies the location
of a soil sample, the two y-variables give the calcium and magnesium content
whilst the two d-covariates give the elevation and sub-area code of each sample.
The soil samples were taken from the 0-20 cm depth layer at each of 178

locations. Calcium and magnesium content were measured in mmolc/dm
3 and

the elevation in metres. The study region was divided into three sub-regions
which have experienced different soil management regimes. The first, in the
upper-left corner, is typically flooded during each rainy season and is no longer
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Figure 1.4. Observed prevalences against greenness for villages in The Gambia child-
hood malaria survey.

used as an experimental area because of its varying elevation. The calcium
and magnesium levels in this region therefore represent the pattern of natural
spatial variation in background content. The second, corresponding to the lower
half of the study region, and the third, in the upper-right corner, have received
fertilisers in the past: the second is typically occupied by rice fields, whilst the
third is frequently used as an experimental area. Also, the second sub-region
was the most recent of the three to which calcium was added to neutralise the
effect of aluminium in the soil, which partially explains the generally higher
measured calcium values within this sub-region.
The sampling design is an incomplete regular lattice at a spacing of approxi-

mately 50 metres. The data were collected by researchers from PESAGRO and
EMBRAPA-Solos, Rio de Janeiro, Brasil (Capeche, 1997).
The two panels of Figure 1.5 show circle plots of the calcium (left panel) and

magnesium (right panel) data separately, whilst Figure 1.6 shows a scatterplot
of calcium against magnesium, ignoring the spatial dimension. This shows a
moderate positive correlation between the two variables; the value of the sample
correlation between the 178 values of calcium and magnesium content is r =
0.33.

Figure 1.7 shows the relationship between the potential covariates and the
calcium content. There is a clear trend in the north-south direction, with gener-
ally higher values to the south. The relationships between calcium content and
either east-west location or elevation are less clear. However, we have included
on each of the three scatterplots a lowess smooth curve (Cleveland, 1981) which,
in the case of elevation, suggests that there may be a relationship with calcium
beyond an elevation threshold. Finally, the boxplots in the bottom right panel
of Figure 1.7 suggest that the means of the distributions of calcium content are
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Figure 1.5. Circle plots of calcium (left panel) and magnesium (right panel) content
with dashed lines delimiting sub-regions with different soil management practices.

Figure 1.6. Scatterplot of calcium content against magnesium content in the 0-20 cm
soil layer.

different in the different sub-regions. In any formal modelling of these data, it
would also be sensible to examine covariate effects after allowing for a differ-
ent mean response in each of the three sub-regions, in view of their different
management histories.
One objective for these data is to construct maps of the spatial variation in

calcium or magnesium content. Because these characteristics are determined
from small soil cores, and repeated sampling at effectively the same location
would yield different measurements, the constructed maps should not necessar-
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Figure 1.7. Scatterplots of calcium content against: (a) E −W coordinate, (b) N − S
coordinate, (c) elevation. Lines are lowess curves. (d) Box-plots of calcium content in
each of the three sub-regions.

ily interpolate the data. Another goal is to investigate relationships between
calcium or magnesium content and the two covariates. The full data-set also in-
cludes the values of the calcium and magnesium content in the 20-40 cm depth
layer.

We shall introduce additional examples in due course. However, these four
are sufficient to motivate some basic terminology and notation, and to indicate
the kinds of problems which geostatistical methods are intended to address.



1.2. Terminology and notation 9

1.2 Terminology and notation

The basic format for univariate geostatistical data is

(xi, yi) : i = 1, . . . , n,

where xi identifies a spatial location (typically in two-dimensional space, al-
though one-dimensional and three-dimensional examples also occur) and yi is a
scalar value associated with the location xi. We call y the measurement variable
or response. A defining characteristic of geostatistics is that the measurement
variable is, at least in principle, defined throughout a continuous study region,
A say. Furthermore, we shall assume that the sampling design for the loca-
tions xi is either deterministic (for example, the xi may form a grid over the
study region), or stochastically independent of the process which generates the
measurements yi. Each yi is a realisation of a random variable Yi whose distri-
bution is dependent on the value at the location xi of an underlying spatially
continuous stochastic process S(x) which is not directly observable. In par-
ticular cases, such as in our Example 1.1, we might reasonably assume that
Yi = S(xi), but in general it is important to preserve a distinction between the
observable quantities Yi and the unobservable, or latent process S(x).
The basic form of a geostatistical model therefore incorporates at least two

elements: a real-valued stochastic process {S(x) : x ∈ A}, which is typically
considered to be a partial realisation of a stochastic process {S(x) : x ∈ IR2} on
the whole plane; and a multivariate distribution for the random variable Y =
(Y1, . . . , Yn) conditional on S(·). We call S(x) the signal and Yi the response.
Often, Yi can be thought of as a noisy version of S(xi) and the Yi can be
assumed to be conditionally independent given S(·).

1.2.1 Support

Examples 1.2 and 1.4 illustrate a general issue with geostatistical data concern-
ing the support of each measured response. Formally, we associate each yi with
a point location xi. However, in many cases yi derives from a finite area for
which xi is a convenient reference point. In Example 1.4, the support is clearly
identifiable as the circular cross-section of the soil core used to obtain each
sample, and xi denotes the centre of the cross-section. In Example 1.2, defi-
nition of the support is more difficult. The gamma camera integrates positron
emissions over a circular neighbourhood of each sample location xi, but rather
than a sharp cut-off at a known distance, the camera traps a smaller proportion
of the actual emissions with increasing distance from the centre of the circle.
This implies that the modelled signal, S(x), should strictly be interpreted as
a weighted integral of an underlying spatially continuous signal, S∗(x) say, so
that

S(x) =

∫
w(r)S∗(x− r)dr.

Under this formulation, S(x) is still a real-valued, spatially continuous process
i.e., it is well-defined for all x ∈ IR2. Its genesis as an integral does, however, have
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implications for what covariance structure we can strictly assume for the process
S(·), since any smoothness in the behaviour of the weighting function w(·)
constrains the allowable form of covariance structure for S(·). In this particular
example we do not need to model the effect of the weighting function explicitly,
because its effective range is much smaller than the minimum distance of 50
metres between any two points in the design.
The idea that geostatistical measurements have finite, rather than infinites-

imal, support is to be contrasted with problems in which measurements are
derived from a partition of a spatial region into discrete spatial units i =
1, . . . , n, each of which yields a measurement yi. This is often the case, for exam-
ple, in spatial epidemiology, where data on disease prevalence may be recorded
as counts in administrative sub-regions, for example counties or census tracts. In
that context, the modelling options are either to deal explicitly with the effects
of the spatial integration of an underlying spatially continuous process S∗(x) or,
more pragmatically, to specify a model at the level of the discrete spatial units
i.e., a multivariate distribution for random variables Yi : i = 1, . . . , n. Models of
the second kind have an extensive literature and are widely used in practice to
analyse data arising as a result of spatial aggregation into discrete units. Less
commonly, the actual spatial units are genuinely discrete; an example would be
data on the yields of individual fruit trees in an orchard.
Evidently, a common feature of geostatistical models and discrete spatial

models is that they both specify the joint distribution of a spatially referenced,
n-dimensional random variable (Y1, . . . , Yn) . An important difference is that a
geostatistical model automatically embraces any n, and any associated set of
sampling locations, whereas a discrete spatial model is specific to a particular
set of locations. A classic early reference to the modelling and analysis of data
from discrete spatial units is Besag (1974). See also Cressie (1993, chapters 6
and 7).

1.2.2 Multivariate responses and explanatory variables

As our motivating examples llustrate, in many applications the basic (xi, yi)
format of geostatistical data will be extended in either or both of two ways.
There may be more than one measurement variable, so defining multivariate re-
sponse, yi = {yi1, ..., yid}, or the data may include spatial explanatory variables,
{dk(x) : x ∈ A}, sometimes also called covariates.
The distinction between the two is not always clear-cut. From a modelling

point of view, the difference is that a model for a multivariate response requires
the specification of a vector-valued stochastic process over the study region A,
whereas spatial explanatory variables are treated as deterministic quantities
with no associated stochastic model. One consequence of this is that a spatial
explanatory variable must, at least in principle, be available at any location
within A if it is to be used to predict responses at unsampled locations x. An
example would be the greenness index in Example 1.3. The index is calculated
on a 1 km pixel grid and can therefore be used to predict malaria prevalence
without making any assumptions about its spatial variation. Even then, in our
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experience the distinction between a stochastic signal S(x) and a spatial ex-
planatory variable d(x) is largely a reflection of our scientific goals. Again using
Example 1.3 to illustrate the point, the goal in this example is to understand
how environmental factors affect malaria prevalence. Elevation is one of sev-
eral factors which determine the suitability of a particular location to support
breeding mosquitos, and is a candidate for inclusion as an explanatory vari-
able in a stochastic model for prevalence. In contrast, in Example 1.1 the goal
is to interpolate or smooth a spatially sparse set of measured elevations so as
to obtain a spatially continuous elevation map, hence elevation is treated as a
stochastic response.
In most geostatistical work, the adoption of a stochastic model for S(x)

reflects its unknown, unobserved quality rather than a literal belief that the
underlying spatial surface of interest is generated by the laws of probability. In-
deed, in many applications the role of the signal process S(x) is as a surrogate
for unmeasured explanatory variables which influence the response variable. In
modelling S(x) as a stochastic process we are using stochasticity at least in part
as a metaphor for ignorance.
For this reason, when relevant explanatory variables are only available at

the data locations xi and we wish to use their observed values for spatial
prediction at an unsampled location x, a pragmatic strategy is to treat such
variables as additional responses, and accordingly to formulate a multivariate
model. Example 1.4 illustrates both situations: the calcium and magnesium
contents form a bivariate spatial stochastic process, whereas region and, to a
good approximation, elevation, available at any location, are not of scientific
interest in themselves, and can therefore be treated as explanatory variables.
In this example, both components of the bivariate response are measured at
each data location. More generally, measurements on different components of a
multivariate response need not necessarily be made at a common set of locations.
Note that the locations xi potentially play a dual role in geostatistical analy-

sis. Firstly, spatial location is material to the model for the signal process S(x) in
that the stochastic dependence between S(x) and S(x′) is typically modelled as
a function of the locations in question, x and x′. Secondly, each location defines
the values of a pair of explanatory variables corresponding to the two spatial
coordinates. The convention in geostatistics is to use the term trend surface, to
mean a spatially varying expectation of the response variable which is specified
as a function of the coordinates of the xi, whereas the term external trend refers
to a spatially varying expectation specified as a function of other explanatory
variables d(x). For example, the elevation data as presented in Example 1.1 do
not include any explanatory variables which could be used in an external trend
model, but as we shall see in Chapter 2 a low-order polynomial trend surface
can explain a substantial proportion of the observed spatial variation in the
data.
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1.2.3 Sampling design

The locations xi at which measurements are made are collectively called the
sampling design for the data. A design is non-uniform if the sampling intensity
varies systematically over the study region, in the sense that before the actual
sampling points are chosen, some parts of the study region are deliberately
sampled more intensively than others. This is as distinct from the sampling
intensity varying by chance; for example, if sample points are located as an
independent random sample from a uniform distribution over the study region,
it may (indeed, will) happen that some parts of the study region are more
intensively sampled than others, but we would still describe this as a uniform
design because of its method of construction.
A design is non-preferential if it is deterministic, or if it is stochastically inde-

pendent of S(·). Conventional geostatistical methods assume, if only implicitly,
that the sampling design is non-preferential, in which case we can legitimately
analyse the data conditional on the design. Provided that the sampling process
is non-preferential, the choice of design does not impact on the assumed model
for the data, but does affect the precision of inferences which can be made from
the data. Furthermore, different designs are efficient for different kinds of in-
ference. For example, closely spaced pairs of sample locations are very useful
for estimating model parameters, but would be wasteful for spatial prediction
using a known model.

1.3 Scientific objectives

In most applications, the scientific objectives of a geostatistical analysis are
broadly of two kinds: estimation and prediction.
Estimation refers to inference about the parameters of a stochastic model for

the data. These may include parameters of direct scientific interest, for example
those defining a regression relationship between a response and an explanatory
variable, and parameters of indirect interest, for example those defining the
covariance structure of a model for S(x).
Prediction refers to inference about the realisation of the unobserved signal

process S(x). In applications, specific prediction objectives might include pre-
diction of the realised value of S(x) at an arbitrary location x within a region
of interest, A, typically presented as a map of the predicted values of S(x),
or prediction of some property of the complete realisation of S(x) which is of
particular relevance to the problem in hand. For example, in the mining appli-
cations for which geostatistical methods were originally developed, the average
value of S(x) over an area potentially to be mined would be of direct economic
interest, whereas in the Rongelap island example an identification of those parts
of the island where S(x) exceeds some critical value would be more useful than
the average as an indicator of whether the island is fit for rehabitation. Geosta-
tistical models and methods are particularly suited to scientific problems whose
objectives include prediction, in the sense defined here.
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A third kind of inferential problem, namely hypothesis testing, can also arise in
geostatistical problems, although often only in a secondary sense, for example
in deciding whether or not to include a particular explanatory variable in a
regression model. For the most part, in this book we will tacitly assume that
testing is secondary in importance to estimation and prediction.

1.4 Generalised linear geostatistical models

Classical generalised linear models, introduced by Nelder and Wedderburn
(1972), provide a unifying framework for the analysis of many superficially
different kinds of independently replicated data. Several different ways to ex-
tend the generalised linear model class to dependent data have been proposed,
amongst which perhaps the most widely used are marginal models (Liang and
Zeger, 1986) and mixed models (Breslow and Clayton, 1993). What we shall call
a generalised linear geostatistical model is a generalised linear mixed model of
a form specifically oriented to geostatistical data.
The first ingredient in this class of models is a stationary Gaussian process

S(x). A stochastic process S(x) is a Gaussian model if the joint distribution of
S(x1), . . . , S(xn) is multivariate Gaussian for any integer n and set of locations
xi. The process is stationary if the expectation of S(x) is the same for all x, the
variance of S(x) is the same for all x and the correlation between S(x) and S(x′)
depends only on u = ||x − x′||, the Euclidean distance between x and x′. We
shall use the class of stationary Gaussian processes as a flexible, empirical model
for an irregularly fluctuating, real-valued spatial surface. Typically, the nature
of this surface, which we call the signal , is of scientific interest but the surface
itself cannot be measured directly. The range of applicability of the model can
be extended by the use of mathematical transformations. For example, in the
suggested model for the Rongelap island photon emission data, the Gaussian
process S(x) is the logarithm of the underlying contamination surface T (x). We
discuss the Gaussian model, including non-stationary versions, in more detail
in Chapter 3.
The second ingredient in the generalised linear geostatistical model is a sta-

tistical description of the data generating mechanism conditional on the signal.
This part of the model follows a classical generalized linear model as described
by McCullagh and Nelder (1989), with S(x) as an offset in the linear predic-
tor. Explicitly, conditional on S(·) the responses Yi : i = 1, . . . , n at locations
xi : i = 1, . . . , n are mutually independent random variables whose conditional
expectations, µi = E[Yi|S(·)], are determined as

h(µi) = S(xi) +

p∑
k=1

βkdk(xi), (1.1)

where h(·) is a known function, called the link function, the dk(·) are observed
spatial explanatory variables and the βk are unknown spatial regression param-
eters. The terms on the right-hand side of (1.1) are collectively called the linear
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predictor of the model. The conditional distribution of each Yi given S(·) is
called the error distribution.

For each of our introductory examples, there is a natural candidate model
within the generalized linear family.
For Example 1.1, in which the response is real-valued, we might adopt a linear

Gaussian model, in which the link function h(·) is the identity and the error
distribution is Gaussian with variance τ2. Hence, the true surface elevation at
a location x is given by S(x) and, conditional on the realisation of S(x) at
all locations the measured elevations yi are mutually independent, normally
distributed with conditional means S(xi) and common conditional variance τ2.
A possible extension of this model would be to include spatial explanatory
variables to account for a possible non-stationarity of S(·). For example, the
circle plot of the data (Figure 1.1) suggests that elevations tend to decrease
as we move from south to north. We might therefore consider including the
north-south coordinate of the location as an explanatory variable, d1(·) say, so
defining a non-constant plane over the area. The conditional mean of each yi
given S(x) would then be modelled as d1(xi)β + S(xi).
For Example 1.2, in which the response is a photon emission count, the under-

lying physics motivates the Poisson distribution as a suitable error distribution,
whilst the log-linear formulation suggested earlier is an empirical device which
constrains the expected count to be non-negative, as required. The photon
emission counts Yi can then be modelled as conditionally independent Poisson-
distributed random variables, given an underlying surface T (·) of true levels of
contamination. Also, the expectation of Yi is directly proportional both to the
value of T (xi) and to the time, ti, over which the observed count is accumu-
lated. Hence, the conditional distribution of Yi should be Poisson with mean
tiT (xi). In the absence of additional scientific information a pragmatic model
for T (x), recognising that it necessarily takes non-negative values, might be
that log T (x) = S(x) is a Gaussian stochastic process with mean µ, variance
σ2 and correlation function ρ(x, x′) = Corr{S(x), S(x′)}. Like any statistical
model, this is an idealisation. A possible refinement to the Poisson assumption
for the emission counts conditional on the signal S(x) would be to recognise
that each yi is a so-called nett count, calculated by subtracting from the raw
count an estimate of that part of the count which is attributable to broad-band
background radiation. With regard to the model for S(x), the assumed constant
mean could be replaced by a spatially varying mean if there were evidence of
systematic variation in contamination across the island.
For Example 1.3, the sampling mechanism leads naturally to a binomial error

distribution at the village level or, at the child level, a Bernoulli distribution
with the conditional mean µij representing the probability of a positive re-
sponse from the jth child sampled within the ith village. A logit-linear model,
h(µij) = log{µij/(1− µij)}, constrains the µij to lie between 0 and 1 as re-
quired, and is one of several standard choices. Others include the probit link,
h(µ) = Φ−1(µ) where Φ(·) denotes the standard Gaussian distribution func-
tion, or the complementary-log-log, h(µ) = log{− log(µ)}. In practice, the logit
and probit links are hard to distinguish, both corresponding to a symmetric
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S-shaped curve for µ as a function of the linear predictor with the point of
symmetry at µ = 0.5, whereas the complementary-log-log has a qualitatively
different, asymmetric form.
Example 1.4 features a bivariate response, and therefore falls outside the

scope of the (univariate) generalized linear geostatistical model as described
here. However, a separate linear Gaussian model could be used for each of
the two responses, possibly after appropriate transformation, and dependence
between the two response variables could then be introduced by extending the
unobserved Gaussian process S(x) to a bivariate Gaussian process, S(x) =
{S1(x), S2(x)}. This example also includes explanatory variables as shown in
Figure 1.7. These could be added to the model as indicated in equation (1.1),
using the identity link function.

1.5 What is in this book?

This books aims to describe and explain statistical methods for analysing geo-
statistical data. The approach taken is model-based, by which we mean that the
statistical methods are derived by applying general principles of statistical in-
ference based on an explicitly declared stochastic model of the data generating
mechanism.
In principle, we place no further restriction on the kind of stochastic model

to be specified. Our view is that a model for each particular application should
ideally be constructed by collaboration between statistician and subject-matter
scientist with the aim that the model should incorporate relevant contextual
knowledge whilst simultaneously avoiding unnecessary over-elaboration and
providing an acceptable fit to the observed data. In practice, a very useful
and flexible model class is the generalized linear geostatistical model, which we
described briefly in Section 1.4. Chapters 3 and 4 develop linear and generalized
linear geostatistical models in more detail. We also include in Chapter 4 some
cautionary examples of spatial modelling problems for which the generalized
linear model is inadequate.
We shall develop both classical and Bayesian approaches to parameter esti-

mation. The important common feature of the two approaches is that they are
based on the likelihood function. However, we also describe simpler, more ad
hoc approaches and indicate why they are sometimes useful.
For problems involving prediction, we shall argue that a Bayesian approach

is natural and convenient because it provides a ready means of allowing un-
certainty in model parameters to be reflected in the widths of our prediction
intervals.
Within the Bayesian paradigm, there is no formal distinction between an un-

observed spatial stochastic process S(x) and an unknown parameter θ. Both are
modelled as random variables. Nevertheless, although we use Bayesian meth-
ods extensively, we think that maintaining the distinction between prediction
of S(x) and estimation of θ is important in practice. As noted in Section 1.3
above, prediction is concerned with learning about the particular realisation of
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the stochastic process S(x) which is assumed to have generated the observed
data yi, whereas estimation is concerned with properties of the process S(·)
which apply to all realisations. Section 2.4 discusses some of the inferential im-
plications of this distinction in the context of a specific, albeit hypothetical,
example.

1.5.1 Organisation of the book

Chapters 3 and 4 of the book discuss geostatistical models, whilst Chapters 5
to 8 discuss associated methods for the analysis of geostatistical data. Embedded
within these chapters is a model-based counterpart to classical, linear geostatis-
tics, in which we assume that the linear Gaussian model is applicable, perhaps
after transformation of the response variable. We do not necessarily believe that
the Gaussian is a correct model, only that it provides a reasonable approxima-
tion. Operationally, its significance is that it gives a theoretical justification for
using linear prediction methods, which under the Gaussian assumption have
the property that they minimise mean squared prediction errors. In Chapter 8
we give a model-based perspective on design issues for geostatistical studies.
Our aim has been to give a thorough description of core topics in model-based

geostatistics. However, in several places we have included shorter descriptions
of some additional topics, together with suggestions for further reading. These
additional topics are ones for which model-based geostatistical methods are,
at the time of writing, incompletely developed. They include constructions for
multivariate Gaussian models, preferential sampling and point process models.
Throughout the book, we intersperse methodological discussion with illustra-

tive examples using real or simulated data. Some of the data-sets which we use
are not freely available. Those which are can be downloaded from the book’s
website, http://www.maths.lancs.ac.uk/∼diggle/mbg .
Most chapters, including this one, end with a section on ”Computation.” In

each such section we give examples of R code to implement the geostatistical
methods described in the corresponding chapters, and illustrate some of the
optional input parameters for various functions within the contributed R pack-
ages geoR and geoRglm. These illustrations are intended to be less formal in
style than the help pages which form part of the package documentation. The
websites, http://www.est.ufpr.br/geoR and http://www.est.ufpr.br/geoRglm,
also include illustrative sessions using these two packages. Material from the
computation sections is also available from the book’s website.
The “Computation” sections assume that the reader is familiar with using

R for elementary statistics and graphics. For readers who are not so familiar,
a good introductory textbook is Dalgaard (2002), whilst general information
about the R project can be found in documentation available in the R-Project
website, http://www.r-project.org . These sections are also optional, in the sense
that they introduce no new statistical ideas, and the remainder of the book can
be read without reference to this material.
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1.5.2 Statistical pre-requisites

We assume that the reader has a general knowledge of the standard tools for
exploratory data analysis, regression modelling and statistical inference. With
regard to regression modelling, we use both linear and generalised linear mod-
els. One of many good introductions to linear models is Draper and Smith
(1981). The standard reference to generalised linear models is McCullagh and
Nelder (1989). We make extensive use of likelihood-based methods, for both non-
Bayesian and Bayesian inference. The Appendix gives a short summary of the
key ideas. A good treatment of likelihood-based methods in general is Pawitan
(2001), whilst O’Hagan (1994) specifically discusses the Bayesian method.
Readers will also need some knowledge of elementary probability and stochas-

tic process theory. Introductory books at a suitable level include Ross (1976)
for elementary probability and Cox and Miller (1965) for stochastic processes.
We shall also use a variety of computer-intensive methods, both for simu-

lating realisations of stochastic processes and more generally in Monte Carlo
methods of inference, including Markov chain Monte Carlo. A good general in-
troduction to simulation methods is Ripley (1987). Tanner (1996) presents a
range of computational algorithms for likelihood-based and Bayesian inference.
Gelman, Carlin, Stern and Rubin (2003) focus on Bayesian methods for a range
of statistical models. Gilks, Richardson and Spiegelhalter (1996) discuss both
theoretical and practical aspects of Markov chain Monte Carlo.

1.6 Computation

The examples in this section, and in later chapters, use the freely available
software R and the contributed R packages geoR and geoRglm. Readers should
consult the R project website, http://www.r-project.org , for further information
on the software and instructions on its installation.
In the listing of the R code for the examples, the > sign is the R prompt

and the remainder of the line denotes the R command entered by the user in
response to the prompt. R commands are shown in slanted verbatim font

like this. When a single command is spread over two or more lines, the second
and subsequent lines of input are prompted by a + sign, rather than the > sign.
The R system is based on subroutines called functions, which in turn can take
arguments which control their behaviour. Function names are followed by paren-
theses, in the format function(), whereas arguments are written within the
parentheses. Any lines without the > prompt represent outputs from a function
which, by default, are passed back to the screen. They are shown in verbatim

font like this.

1.6.1 Elevation data

In our first example, we give the commands needed to load the geoR package,
and to produce the circle plot of the elevation data, as shown in Figure 1.1.
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The example assumes that the data are stored in a standard three-column text-
file elevation.dat located in the R working directory. The first two columns
on each line give the (x, y)-coordinates of a location, whilst the third column
gives the corresponding value of the measured elevation. The version of the data
which can be downloaded from the book website is already formatted in this
way.

> require(geoR)

> elevation <- read.geodata("elevation.dat")

> points(elevation, cex.min = 1, cex.max = 4)

The first command above uses the built-in R function require() to load the
geoR package. The second command reads the data and converts them to an
object of the class geodata using read.table() and as.geodata() internally.
The last command invokes a method for points() which is provided by the
package geoR. In this way, the generic R function points() is able to use the
geoR function points.geodata() to produce the required plot of the data. The
example includes optional settings for arguments which control the sizes of the
plotted circles. By default, the diameters of the plotted circles are defined by a
linear transformation of the measured elevations onto a scale ranging between
cex.min and cex.max times the default plotting character size.
The output returned when typing args(points.geodata) will show other

arguments which can be used to modify the resulting plot. For example,

> points(elevation, cex.min = 2, cex.max = 2, col = "gray")

will plot the locations as filled circles with grey shades proportional to the
measured elevation values, whereas

> points(elevation, cex.min = 2, cex.max = 2, pt.div = "quint")

will result in points filled with different colours according to the quintiles of the
empirical distribution of measured elevations.
Because the elevation data are also included in the geoR package, they can

be loaded from within R, once the package itself has been loaded, by using the
data() function, and explanatory documentation accessed using the help()

function, as follows.

> data(elevation)

> help(elevation)

There are several data-sets included in the package geoR which can be loaded
with data(). Typing the command data(package="geoR") will show a list of
the available data-sets with respective names and a short description. For each
of them there is a help file explaining the data contents and format.
Another, and often more convenient, way of running a sequence of R com-

mands is to use source(). To do so, we first type the required sequence of
commands, without the > at the beginning of each line, into a text file, say
elevation.R, although any other legal file name could be used. We then invoke
the whole sequence by responding to the R prompt with the single command



1.6. Computation 19

> source("elevation.R")

This option, or an equivalent mode of operation based on toggling between
an editor and an R command window, is usually more efficient than typing R
commands directly in response to the > prompt.
The next example shows the output generated by applying the summary()

function to the elevation data. The output includes the number of data points,
the minimum and maximum values of the x and y coordinates and of the
distances between pairs of points, together with summary statistics for the
measured elevations.

> summary(elevation)

Number of data points: 52

Coordinates summary

x y

min 0.2 0.0

max 6.3 6.2

Distance summary

min max

0.200000 8.275869

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

690.0 787.5 830.0 827.1 873.0 960.0

Another function which is useful for initial exploration of a set of data is the
method plot.geodata(), which is invoked by default when a geodata object is
supplied as an argument to the built-in plot() function. Its effect is to produce a
2 by 2 display showing the point locations, the measured values at each location
against each of the coordinates, and a histogram of the measured values. This
plot for the elevation data is shown in Figure 1.8, which is produced by the
command

> plot(elevation, lowess = T)

The optional argument lowess = T adds a smooth curve to the scatterplots
of the measured values against each of the spatial coordinates. The top-right
panel of Figure 1.8 has been rotated by 90 degrees from the conventional ori-
entation i.e., the measured values correspond to the horizontal rather than the
vertical axis so that the spatial coordinate axes have the same interpretation
throughout. These plots aim to investigate the behaviour of the data along the
coordinates, which can be helpful in deciding whether a trend surface should be
included in the model for the data. By default, the plot of the data locations
shown in the top-left panel of Figure 1.8 uses circles, triangles, and vertical and
diagonal crosses to correspond to the quartiles of the empirical distribution of
measured values. On a computer screen, these points would also appear in dif-
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Figure 1.8. Point locations (top left), data values against coordinates (top right and
bottom left) and histogram (bottom right) of the measured elevations.

ferent colours: blue, green, yellow and red, respectively. The use of four distinct
colours is the default for this function.

1.6.2 More on the geodata object

The functions read.geodata() and as.geodata() store a geostatistical data-
set in a particular format called a geodata object. A geodata object is a list
which has two obligatory components: a matrix with the two-dimensional coor-
dinates (coords) of the sampling design and a vector giving the corresponding
measured value at each of the locations in the design (data). Four additional,
optional components are: a matrix with coordinates defining the boundary of
the polygonal study area (borders); a vector or data-frame with covariates
(covariate); an offset variable (units.m); and a vector indexing the number
of the realisation of the process if more than one is available (realisation),
as for instance for data collected at different time points. These additional
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components, if present, are then used automatically by some of the geoR
functions.
The example below shows the components of some of the data-sets which are

included in the geoR package as geodata objects.

> names(elevation)

$coords

[1] "x" "y"

$data

[1] "data"

> data(parana)

> names(parana)

$coords

[1] "east" "north"

$data

[1] "data"

$other

[1] "borders" "loci.paper"

> data(ca20)

> names(ca20)

$coords

[1] "east" "north"

$data

[1] "data"

$covariate

[1] "altitude" "area"

$other

[1] "borders" "reg1" "reg2" "reg3"

> names(unclass(ca20))

[1] "coords" "data" "covariate" "borders" "reg1"

[6] "reg2" "reg3"

The slightly different results returned from the calls names(ca20) and
names(unclass(ca20)) illustrate that some special methods have been pro-
vided to modify the way that standard R functions handle geodata objects; in
this case the standard command names(ca20) recognises that ca20 is a geo-

data object, and invokes the non-standard method names.geodata(), whereas
the command unclass(ca20) gives the standard result of the names function
by removing the class geodata from the object ca20.
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Other, perhaps more useful methods to facilitate data manipulation are also
implemented such as as.data.frame.geodata() which converts a geodata ob-
ject to a data-frame and subset.geodata() which facilitates extracting subsets
of geodata objects. Below we illustrate the usage of subset.geodata() on the
ca20 data-set selecting data only within sub-area 3 in the first command and
selecting only data greater than 70 in the second.

> ca20.3 <- subset(ca20, area == 3)

> ca20.g70 <- subset(ca20, data > 70)

1.6.3 Rongelap data

Our next example produces a circle plot for the Rongelap data, together with
an enlarged inset of the western part of the island. The rongelap data-set is
included with the geoRglm package.

> require(geoRglm)

> data(rongelap)

The response to the command names(rongelap) reveals that the Rongelap
geodata object has four components: coords contains the spatial coordinates;
data contains the photon emission counts yi attributable to radioactive cae-
sium; units.m is an offset variable which gives the values of ti, the time (in
seconds) over which yi was accumulated; borders contains the coordinates of
a digitisation of the island’s coastline. The function summary() recognises and
summarises all four components.

> names(rongelap)

$coords

NULL

$data

[1] "data"

$units.m

[1] "units.m"

$other

[1] "borders"

> summary(rongelap)

Number of data points: 157

Coordinates summary

Coord.X Coord.Y

min -6050 -3430

max -50 0
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Distance summary

min max

40.000 6701.895

Borders summary

[,1] [,2]

min -6299.31201 -3582.2500

max 20.37916 103.5414

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

75 1975 2639 3011 3437 21390

Offset variable summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

200.0 300.0 300.0 401.9 400.0 1800.0

We can use points() to visualise the data on a map of the study area as
shown in Figure 1.2. For the enlargement of the western part of the island, we
have used subarea() to select a subset of the original data-set whose spatial
coordinates lie within a specified sub-area. The function subarea() accepts
arguments xlim and/or ylim defining a rectangular sub-area. If these arguments
are not provided the user is prompted to click on two points which then define
the opposite corners of the required rectangular area. To produce the figure, we
use the following sequence of commands.

> points(rongelap)

> rongwest <- subarea(rongelap, xlim = c(-6300, -4800))

> rongwest.z <- zoom.coords(rongwest, xzoom = 3.5, xoff = 2000,

+ yoff = 3000)

> points(rongwest.z, add = T)

> rect.coords(rongwest$sub, lty = 2, quiet = T)

> rect.coords(rongwest.z$sub, lty = 2, quiet = T)

> text(-4000, 1100, "western area", cex = 1.5)

The object rongwest is a geodata object which is generated by subarea(). It
has the same components as the original geodata object but is restricted to the
area whose x-coordinates are in the range −6300 to −4800; because the ylim

argument was not used, the y-coordinate range is unrestricted.
Note that, by default, if the element units.m is present in the data object,

as for this case, the size of the circle plotted at each location is determined by
the corresponding emission count per unit time, rather than by the emission
count itself. Setting data=rongelap$data the effect of the argument is that
the raw data on emission count would be plotted. If preferred, the argument
pt.div="equal" could be used to specify that all the points should have the
same size. The coastline is included in the plot by default because the element
borders is present in the geodata object. If this is unwanted the argument
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borders can be set to NULL. Alternatively, another object with the polygon
defining the region bondaries can be passed using this argument.

1.6.4 The Gambia malaria data

The Gambia malaria data shown in Example 1.3 are available as a data-frame

in the geoR package. The commands below load the data and display the first
three lines of the resulting data-frame, with variable names printed at the head
of each column of data.

> data(gambia)

> gambia[1:3, ]

x y pos age netuse treated green phc

1850 349631.3 1458055 1 1783 0 0 40.85 1

1851 349631.3 1458055 0 404 1 0 40.85 1

1852 349631.3 1458055 0 452 1 0 40.85 1

Each line corresponds to one child. The columns are the coordinates of the
village where the child lives (x and y), whether or not the child tested positive
for malaria (pos), their age in days (age), usage of bed-net(netuse), whether
the bed-net is treated with insecticide (treated), the vegetation index measured
at the village location (green) and the presence or absence of a health centre in
the village (phc).

To display the data as show in Figure 1.3 we use the gambia.map() function
which is also included in geoR.

> gambia.map()

1.6.5 The soil data

The soil data shown in Example 1.4 are included in geoR and can be loaded
with the commands data(ca20) and data(camg). The former loads only the
calcium data, stored as a geodata object, whereas the latter loads a data-frame
which includes both the calcium and the magnesium data. In order to produce
the right-hand panel in Figure 1.5 we use the sequence of commands below.

> data(camg)

> mg20 <- as.geodata(camg, data.col = 6)

> points(mg20, cex.min = 0.2, cex.max = 1.5, pch = 21)

> data(ca20)

> polygon(ca20$reg1, lty = 2)

> polygon(ca20$reg2, lty = 2)

> polygon(ca20$reg3, lty = 2)

The first command loads the combined data using data(), the second creates
a geodata object for plotting the magnesium data. Borders of the region and
sub-regions included in the plot use extra information provided in the calcium
data object ca20, which is included in the geoR package.
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We now inspect the ca20 object in more detail using the summary() function.
Remember that help(ca20) gives the documentation for this data-set.

> summary(ca20)

Number of data points: 178

Coordinates summary

east north

min 4957 4829

max 5961 5720

Distance summary

min max

43.01163 1138.11774

Borders summary

east north

min 4920 4800

max 5990 5800

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.00 43.00 50.50 50.68 58.00 78.00

Covariates summary

altitude area

Min. :3.300 1: 14

1st Qu.:5.200 2: 48

Median :5.650 3:116

Mean :5.524

3rd Qu.:6.000

Max. :6.600

Other elements in the geodata object

[1] "reg1" "reg2" "reg3"

The output above shows that the data contain 178 locations, with E-W co-
ordinates ranging from 4957 to 5961 and N-S coordinates ranging from 4829
to 5720. The minimum distance between any two locations is about 43 units
and the maximum 1138. The object also has a borders component which is
a two-column matrix with rows corresponding to a set of coordinates defining
the polygonal boundary of the study area. The function also shows summary
statistics for the response variable and for the covariates. For the covariate area
the summary indicates that 14, 48 and 116 locations lie within the sub-areas 1,
2 and 3, respectively.
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1.7 Exercises

1.1. Produce a plot of the Rongelap data in which a continuous colour scale
or grey scale is used to indicate the value of the emission count per unit
time at each location, and the two sub-areas with the 5 by 5 sub-grids at
50 metre spacing are shown as insets.

1.2. Construct a polygonal approximation to the boundary of The Gambia.
Construct plots of the malaria data which show the spatial variation in
the values of the observed prevalence in each village and of the greenness
covariate.

1.3. Consider the elevation data as a simple regression problem with elevation
as the response and north-south location as the explanatory variable. Fit
the standard linear regression model using ordinary least squares. Exam-
ine the residuals from the linear model, with a view to deciding whether
any more sophisticated treatment of the spatial variation in elevation
might be necessary.

1.4. Find a geostatistical data-set which interests you.

(a) What scientific questions are the data intended to address? Do these
concern estimation, prediction, or testing?

(b) Identify the study region, the design, the response and the covariates,
if any.

(c) What is the support of each response?
(d) What is the underlying signal?
(e) If you wished to predict the signal throughout the study region,

would you choose to interpolate the response data?

1.5. Load the Paraná data-set using the command data(parana) and inspect
its documentation using help(parana). For these data, consider the same
questions as were raised in Exercise 1.4.
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2
An overview of model-based geostatistics

The aim of this chapter is to provide a short overview of model-based geostatis-
tics, using the elevation data of Example 1.1 to motivate the various stages in
the analysis. Although this example is very limited from a scientific point of
view, its simplicity makes it well suited to the task in hand. Note, however,
that Handcock and Stein (1993) show how to construct a useful explanatory
variable for these data using a map of streams which run through the study
region.

2.1 Design

Statistical design is concerned with deciding what data to collect in order to
address a question, or questions, of scientific interest. In this chapter, we shall
assume that the scientific objective is to produce a map of surface elevation
within a square study region whose side length is 6.7 units, or 335 feet (≈ 102
meters); we presume that this study region has been chosen for good reason,
either because it is of interest in its own right, or because it is representative of
some wider spatial region.
In this simple setting, there are essentially only two design questions: at how

many locations should we measure the elevation and where should we place
these locations within the study region?
In practice, the answer to the first question is usually dictated by limits on the

investigator’s time or any additional cost in converting each field sample into
a measured value. For example, some kinds of measurements involve expensive
off-site laboratory assays, whereas others, such as surface elevation, can be
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measured directly in the field. For whatever reason, the answer in this example
is 52.
For the second question, two obvious candidate designs are a completely ran-

dom design or a completely regular design. In the former, the locations xi form
an independent random sample from the uniform distribution over the study
area, that is a homogeneous planar Poisson process (Diggle 2003, chapter 1). In
the latter, the xi form a regular lattice pattern over the study region. Classical
sampling theory (Cochran, 1977) tends to emphasise the virtue of some form of
random sampling to ensure unbiased estimation of underlying population char-
acteristics, whereas spatial sampling theory (Matérn, 1960) shows that under
typical modelling assumptions spatial properties are more efficiently estimated
by a regular design. A compromise, which the originators of the surface eleva-
tion data appear to have adopted, is to use a design which is more regular than
the completely random design but not as regular as a lattice.
Lattice designs are widely used in applications. The convenience of lat-

tice designs for fieldwork is obvious, and provided there is no danger that
the spacing of the lattice will match an underlying periodicity in the spatial
phenomenon being studied, lattice designs are generally efficient for spatial pre-
diction (Matérn, 1960). In practice, the rigidity and simplicity of a lattice design
also provide some protection against sub-conscious bias in the placing of the xi.
Note in this context that, strictly, a regular lattice design should mean a lattice
whose origin is located at random, to guard against any subjective bias. The
soil data of Example 1.4 provide an example of a regular lattice design.
Even more common in some areas of application is the opportunistic design,

whereby geostatistical data are collected and analysed using an existing network
of locations xi which may have been established for quite different purposes.
Designs of this kind often arise in connection with environmental monitoring. In
this context, individual recording stations may be set up to monitor pollution
levels from particular industrial sources or in environmentally sensitive loca-
tions, without any thought initially that the resulting data might be combined
in a single, spatial analysis. This immediately raises the possibility that the de-
sign may be preferential, in the sense discussed in Section 1.2.3. Whether they
arise by intent or by accident, preferential designs run the risk that a standard
geostatistical analysis may produce misleading inferences about the underlying
continuous spatial variation.

2.2 Model formulation

We now consider model formulation — unusually before, rather than after,
exploratory data analysis. In practice, clean separation of these two stages is
rare. However, in our experience it is useful to give some consideration to the
kind of model which, in principle, will address the questions of interest before
refining the model through the usual iterative process of data analysis followed
by reformulation of the model as appropriate.
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For the surface elevation data, the scientific question is a simple one — how
can we use the measured elevations to construct our best guess (or, in more
formal language, to predict) the underlying elevation surface throughout the
study region? Hence, our model needs to include a real-valued, spatially con-
tinuous stochastic process, S(x) say, to represent the surface elevation as a
function of location, x. Depending on the nature of the terrain, we may want
S(x) to be continuous, differentiable or many-times differentiable. Depending
on the nature of the measuring device, or the skill of its operator, we may also
want to allow for some discrepancy between the true surface elevation S(xi)
and the measured value Yi at the design location xi. The simplest statistical
model which meets these requirements is a stationary Gaussian model, which
we define below. Later, we will discuss some of the many possible extensions of
this model which increase its flexibility.
We denote a set of geostatistical data in its simplest form i.e., in the absence

of any explanatory variables, by (xi, yi) : i = 1, . . . , n where the xi are spatial
locations and yi is the measured value associated with the location xi. The
assumptions underlying the stationary Gaussian model are:

1. {S(x) : x ∈ IR2} is a Gaussian process with mean µ, variance σ2 =
Var{S(x)} and correlation function ρ(u) = Corr{S(x), S(x′)}, where u =
||x− x′|| and || · || denotes distance;

2. conditional on {S(x) : x ∈ IR2}, the yi are realisations of mutually inde-
pendent random variables Yi, normally distributed with conditional means
E[Yi|S(·)] = S(xi) and conditional variances τ2.

The model can be defined equivalently as

Yi = S(xi) + Zi : i = 1, . . . , n

where {S(x) : x ∈ IR2} is defined by assumption 1 above and the Zi are mu-
tually independent N(0, τ2) random variables. We favour the superficially more
complicated conditional formulation for the joint distribution of the Yi given
the signal, because it identifies the model explicitly as a special case of the
generalized linear geostatistical model which we introduced in Section 1.4.
In order to define a legitimate model, the correlation function ρ(u) must be

positive-definite. This condition imposes non-obvious constraints so as to ensure
that, for any integer m, set of locations xi and real constants ai, the linear
combination

∑m
i=1 aiS(xi) will have non-negative variance. In practice, this is

usually ensured by working within one of several standard classes of parametric
model for ρ(u). We return to this question in Chapter 3. For the moment, we
note only that a flexible, two-parameter class of correlation functions due to
Matérn (1960) takes the form

ρ(u;ϕ, κ) = {2κ−1Γ(κ)}−1(u/ϕ)κKκ(u/ϕ) (2.1)

where Kκ(·) denotes the modified Bessel function of the second kind, of order
κ. The parameter ϕ > 0 determines the rate at which the correlation decays to
zero with increasing u. The parameter κ > 0 is called the order of the Matérn
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model, and determines the differentiability of the stochastic process S(x), in a
sense which we shall make precise in Chapter 3.
Our notation for ρ(u) presumes that u ≥ 0. However, the correlation function

of any stationary process must by symmetric in u, hence ρ(−u) = ρ(u).
The stochastic variation in a physical quantity is not always well described by

a Gaussian distribution. One of the simplest ways to extend the Gaussian model
is to assume that the model holds after applying a transformation to the original
data. For positive-valued response variables, a useful class of transformations is
the Box-Cox family (Box and Cox, 1964):

Y ∗ =

{
(Y λ − 1)/λ : λ ̸= 0

log Y : λ = 0
(2.2)

Another simple extension to the basic model is to allow a spatially varying
mean, for example by replacing the constant µ by a linear regression model for
the conditional expectation of Yi given S(xi), so defining a spatially varying
mean µ(x).
A third possibility is to allow S(x) to have non-stationary covariance struc-

ture. Arguably, most spatial phenomena exhibit some form of non-stationarity,
and the stationary Gaussian model should be seen only as a convenient ap-
proximation to be judged on its usefulness rather than on its strict scientific
provenance.

2.3 Exploratory data analysis

Exploratory data analysis is an integral part of modern statistical practice, and
geostatistics is no exception. In the geostatistical setting, exploratory analysis
is naturally oriented towards the preliminary investigation of spatial aspects of
the data which are relevant to checking whether the assumptions made by any
provisional model are approximately satisfied. However, non-spatial aspects can
and should also be investigated.

2.3.1 Non-spatial exploratory analysis

For the elevation data in Example 1.1 the 52 data values range from 690 to 960,
with mean 827.1, median 830 and standard deviation 62. A histogram of the
52 elevation values (Figure 2.1) indicates only mild asymmetry, and does not
suggest any obvious outliers. This adds some support to the use of a Gaussian
model as an approximation for these data. Also, because geostatistical data are,
at best, a correlated sample from a common underlying distribution, the shape
of their histogram will be less stable than that of an independent random sample
of the same size, and this limits the value of the histogram as a diagnostic for
non-normality.
In general, an important part of exploratory analysis is to examine the re-

lationship between the response and available covariates, as illustrated for the
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Figure 2.1. Histogram of the surface elevation data.

soil data in Figure 1.7. For the current example, the only available covariates
to consider are the spatial coordinates themselves.

2.3.2 Spatial exploratory analysis

The first stage in spatial exploratory data analysis is simply to plot the response
data in relation to their locations, for example using a circle plot as shown for
the surface elevation data in Figure 1.1. Careful inspection of this plot can
reveal spatial outliers i.e., responses which appear grossly discordant with their
spatial neighbours, or spatial trends which might suggest the need to include
a trend surface model for a spatially varying mean, or perhaps qualitatively
different behaviour in different sub-regions.
In our case, the most obvious feature of Figure 1.1 is the preponderance of

large response values towards the southern end of the study region. This sug-
gests that a trend surface term in the model might be appropriate. In some
applications, the particular context of the data might suggest that there is
something special about the north-south direction — for example, for applica-
tions on a large geographical scale, we might expect certain variables relating
to the physical environment to show a dependence on latitude. Otherwise, our
view would be that if a trend surface is to be included in the model at all, then
both of the spatial coordinates should contribute to it because the orientation
of the study region is essentially arbitrary.
Scatterplots of the response variable against each of the spatial coordinates

can sometimes reveal spatial trends more clearly. Figure 2.2 show the surface ele-
vations plotted against each of the coordinates, with lowess smooths (Cleveland,
1979, 1981) added to help visualisation. These plots confirm the north-south
trend whilst additionally suggesting a less pronounced, non-monotone east-west
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Figure 2.2. Elevation data against the coordinates.

trend, with higher responses concentrated towards the eastern and western
edges of the study region.
When interpreting plots of this kind it can be difficult, especially when

analysing small data-sets, to distinguish between a spatially varying mean
response and correlated spatial variation about a constant mean. Strictly speak-
ing, without independent replication the distinction between a deterministic
function µ(x) and the realisation of a stochastic process S(x) is arbitrary. Op-
erationally, we make the distinction by confining ourselves to “simple” functions
µ(x), for example low-order polynomial trend surfaces, using the correlation
structure of S(x) to account for more subtle patterns of spatial variation in the
response. In Chapter 5 we shall use formal, likelihood-based methods to guide
our choice of model for both mean and covariance structure. Less formally, we
interpret spatial effects which vary on a scale comparable to or greater than
the dimensions of the study region as variation in µ(x) and smaller-scale ef-
fects as variation in S(x). This is in part a pragmatic strategy, since covariance
functions which do not decay essentially to zero at distances shorter than the
dimensions of the study region will be poorly identified, and in practice indis-
tinguishable from spatial trends. Ideally, the model for the trend should also
have a natural physical interpretation; for example, in an investigation of the
dispersal of pollutants around a known source, it would be natural to model
µ(x) as a function of the distance, and possibly the orientation, of x relative to
the source.
To emphasise this point, the three panels of Figure 2.3 compare the original

Figure 1.1 with circle plots of residuals after fitting linear and quadratic trend
surface models by ordinary least squares. If we assume a constant spatial mean
for the surface elevations themselves, then the left-hand panel of Figure 2.3
indicates that the elevations must be very strongly spatially correlated, to the
extent that the correlation persists at distances beyond the scale of the study
region. As noted above, fitting a model of this kind to the data would result
in poor identification of parameters describing the correlation structure. If, in
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Figure 2.3. Circle plot of the surface elevation data. The left-hand panel shows the
original data. The centre and right-hand panels show the residuals from first-order
(linear) and second-order (quadratic) polynomial trend surfaces, respectively, using
empty and filled circles to represent negative and positive residuals and circle radii
proportional to the absolute values of the residuals.

contrast, we use a linear trend surface to describe a spatially varying mean,
then the central panel of Figure 2.3 still suggests spatial correlation because
positive and negative residuals tend to occur together, but the scale of the
spatial correlation is smaller. The right-hand panel of 2.3 has a qualitatively
similar appearance to the centre panel, but the range of the residuals has been
reduced, because some additional variation is taken up by the quadratic terms
in the fitted trend surface. The range of the residuals is from −61.1 to +110.7
in the centre panel, and from −63.3 to +97.8 in the right-hand panel.
Notwithstanding the above discussion, visual assessment of spatial correlation

from a circle plot is difficult. For a sharper assessment, a useful exploratory tool
is the empirical variogram. We discuss theoretical and empirical variograms
in more detail in Chapters 3 and 5, respectively. Here, we give only a brief
description.
For a set of geostatistical data (xi, yi) : i = 1, . . . , n, the empirical variogram

ordinates are the quantities vij =
1
2 (yi−yj)

2. For obvious reasons, some authors
refer to these as the semi-variogram ordinates. If the yi have spatially constant
mean and variance, then vij has expectation σ2{1 − ρ(xi, xj)} where σ2 is
the variance and ρ(xi, xj) denotes the correlation between yi and yj . If the yi
are generated by a stationary spatial process, then ρ(·) depends only on the
distance between xi and xj and typically approaches zero at large distances,
hence the expectation of the vij approaches a constant value, σ2, as the distance
uij between xi and xj increases. If the yi are uncorrelated, then all of the vij
have expectation σ2. These properties motivate the definition of the empirical
variogram as a plot of vij against the corresponding distance uij . A more easily
interpretable plot is obtained by averaging the vij within distance bands.

The left-hand panel of Figure 2.4 shows a variogram for the original surface
elevations, whilst the right-hand panel shows variograms for residuals from the
linear and quadratic trend surface models, indicated by solid and dashed lines,
respectively. In the left-hand panel, the variogram increases throughout the
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Figure 2.4. Empirical variograms for the original data (left panel) and for residuals
(right panel) from a linear (solid lines) or quadratic (dashed lines) trend surface. In all
three cases, empirical variogram ordinates have been averaged in bins of unit width.

plotted range, indicating that if these data were generated by a stationary
stochastic process, then the range of its spatial correlation must extend beyond
the scale of the study region. Pragmatically, including a spatially varying mean
is a better modelling strategy. The solid line on the right-hand panel shows
behaviour more typical of a stationary, spatially correlated process i.e., an initial
increase levelling off as the correlation decays to zero at larger distances. Finally,
the shape of the variogram in the dashed line on the right-hand panel is similar
to the solid one but its range is smaller by a factor of about 0.6. The range
of values in the ordinates of the empirical variogram is approximately equal to
the variance of the residuals, hence the reduction in range again indicates how
the introduction of progressively more elaborate models for the mean accounts
for correspondingly more of the empirical variation in the original data. Note
also that in both panels of Figure 2.4 the empirical variogram approaches zero
at small distances. This indicates that surface elevation is being measured with
negligible error, relative to either the spatial variation in the surface elevation
itself (left-hand panel), or the residual spatial variation about the linear or
quadratic trend surface (right-hand panel). This interpretation follows because
the expectation of vij corresponding to two independent measurements, yi and
yj , at the same location is simply the variance of the measurement error.
We emphasise that, for reasons explained in Chapter 5, we prefer to use the

empirical variogram only as an exploratory tool, rather than as the basis for
formal inference. With this proviso, Figure 2.4 gives a strong indication that a
stationary model is unsuitable for these data, whereas the choice between the
linear and quadratic trend surface models is less clear-cut.
When an empirical variogram appears to show little or no spatial correla-

tion, it can be useful to assess more formally whether the data are compatible
with an underlying model of the form yi = µ(xi) + zi where the zi are un-
correlated residuals about a spatially varying mean µ(x). A simple way to do
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Figure 2.5. Monte Carlo envelopes for the variogram of ordinary least squares resid-
uals of the surface elevation data after fitting linear (left-hand panel) or quadratic
(right-hand panel) trend surface models.

this is to compute residuals about a fitted mean µ̂(x) and to compare the
residual empirical variogram with the envelope of empirical variograms com-
puted from random permutations of the residuals, holding the corresponding
locations fixed. The left-hand panel of Figure 2.5 shows a variogram envelope
obtained from 99 independent random permutations of the residuals from a
linear trend surface fitted to the surface elevations by ordinary least squares.
This shows that the increasing trend in the empirical variogram is statistically
significant, confirming the presence of positive spatial correlation. The same
technique applied to the residuals from the quadratic trend surface produces
the diagram shown as the right-hand panel of Figure 2.5. This again indicates
significant spatial correlation, although the result is less clear-cut than before,
as the empirical variogram ordinates at distances 0.5 and 1.0 fall much closer
to the lower simulation envelope than they do in the left-hand panel.

2.4 The distinction between parameter estimation and
spatial prediction

Before continuing with our illustrative analysis of the surface elevation data, we
digress to expand on the distinction between estimation and prediction.
Suppose that S(x) represents the level of air pollution at the location x,

that we have observed (without error, in this hypothetical example) the values
Si = S(xi) at a set of locations xi : i = 1, . . . , n forming a regular lattice over a
spatial region of interest, A, and that we wish to learn about the average level
of pollution over the region A. An intuitively reasonable estimate is the sample
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mean,

S̄ = n−1
n∑
i=1

Si. (2.3)

What precision should we attach to this estimate?
Suppose that S(x) has a constant expectation, θ = E[S(x)] for any location

x in A. One possible interpretation of S̄ is as an estimate of θ, in which case an
appropriate measure of precision is the mean square error, E[(S̄ − θ)2]. This is
just the variance of S̄, which we can calculate as

n−2
n∑
i=1

n∑
j=1

Cov(Si, Sj). (2.4)

For a typical geostatistical model, the correlation between any two Si and Sj
will be either zero or positive, and (2.4) will therefore be larger than the naive
expression for the variance of a sample mean, σ2/n where σ2 = Var{S(x)}.
If we regard S̄ as a predictor of the spatial average,

SA = |A|−1

∫
A

S(x)dx,

where |A| is the area of A, then the mean square prediction error is E[(S̄−SA)2].
Noting that SA is a random variable, we write this as

E[(S̄ − SA)
2] = n−2

n∑
i=1

n∑
j=1

Cov(Si, Sj)

+ |A|−2

∫
A

∫
A

Cov{S(x), S(x′)}dxdx′

− 2(n|A|)−1
n∑
i=1

∫
A

Cov{S(x), S(xi)}dx. (2.5)

In particular, the combined effect of the second and third terms on the right-
hand side of (2.5) can easily be to make the mean square prediction error smaller
than the naive variance formula. For example, if we increase the sample size n
by progressively decreasing the spacing of the lattice points xi, (2.5) approaches
zero, whereas (2.4) does not.

2.5 Parameter estimation

For the stationary Gaussian model, the parameters to be estimated are the
mean µ and any additional parameters which define the covariance structure
of the data. Typically, these include the signal variance σ2, the conditional or
measurement error variance τ2 and one or more correlation function parameters
ϕ.
In geostatistical practice, these parameters can be estimated in a number of

different ways which we shall discuss in detail in Chapter 5. Our preference
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here is to use the method of maximum likelihood within the declared Gaussian
model.
For the elevation data, if we assume a stationary Gaussian model with a

Matérn correlation function and a fixed value κ = 1.5, the maximum likelihood
estimates of the remaining parameters are µ̂ = 848.3, σ̂2 = 3510.1, τ̂2 = 48.2
and ϕ̂ = 1.2.
However, our exploratory analysis suggested a model with a non-constant

mean. Here, we assume a linear trend surface,

µ(x) = β0 + β1d1 + β2d2

where d1 and d2 are the north-south and east-west coordinates. In this case
the parameter estimates are β̂0 = 912.5, β̂1 = −5, β̂2 = −16.5, σ̂2 = 1693.1,
τ̂2 = 34.9 and ϕ̂ = 0.8. Note that because the trend surface accounts for some
of the spatial variation, the estimate of σ2 is considerably smaller than for the
stationary model, and similarly for the parameter ϕ which corresponds to the
range of the spatial correlation. As anticipated, for either model the estimate
of τ2 is much smaller than the estimate of σ2. The ratio of τ̂2 to σ̂2 is 0.014 for
the stationary model, and 0.021 for the linear trend surface model.

2.6 Spatial prediction

For prediction of the underlying, spatially continuous elevation surface we shall
here illustrate perhaps the simplest of all geostatistical methods: simple kriging.
In our terms, simple kriging is minimum mean square error prediction under the
stationary Gaussian model, but ignoring parameter uncertainty i.e., estimates
of all model parameters are plugged into the prediction equations as if they
were the true parameter values. As discussed earlier, we do not claim that this
is a good model for the surface elevation data.
The minimum mean square error predictor, Ŝ(x) say, of S(x) at an arbitrary

location x is the function of the data, y = (y1, . . . , yn), which minimises the
quantity E[{Ŝ(x)− S(x)}2]. A standard result, which we discuss in Chapter 6,
is that Ŝ(x) = E[S(x)|y]. For the stationary Gaussian process, this conditional
expectation is a linear function of the yi, namely

Ŝ(x) = µ+

n∑
i=1

wi(x)(yi − µ) (2.6)

where the wi(x) are explicit functions of the covariance parameters σ2, τ2 and
ϕ.
The top-left panel of Figure 2.6 gives the result of applying (2.6) to the

surface elevation data, using as values for the model parameters the maximum
likelihood estimates reported in Section 2.5, whilst the bottom-left panel shows
the corresponding prediction standard errors, SE(x) =

√
Var{S(x)|y}. The

predictions follow the general trend of the observed elevations whilst smoothing
out local irregularities. The prediction variances are generally small at locations
close to the sampling locations, because τ̂2 is relatively small; had we used the
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Figure 2.6. Simple kriging predictions for the surface elevation data. The top-left panel
shows the simple kriging predictor as a grey-scale image and contour plot; sampling
locations are plotted as circles with radii proportional to observed elevations. The
bottom-left panel shows the prediction standard deviations; sampling locations are
plotted as small crosses. The top-right and bottom-right panels give the same infor-
mation, but based on the model with a linear trend surface.

value τ2 = 0 the prediction standard error would have been exactly zero at each
sampling location and the predicted surface Ŝ(x) would have interpolated the
observed responses yi.
It is straightforward to adapt the simple kriging formula (2.6) to incorporate

a spatially varying mean. We simply replace the constant µ on the right-hand-
side of (2.6) by a spatial trend, µ(x). If we do this, using the linear trend surface
model and its associated maximum likelihood parameter estimates we obtain
the results summarised in the top-right and bottom-right panels of Figure 2.6.
The plots corresponding to the two different models are directly comparable
because they use a common grey scale within each pair. Note in particular
that in this simple example, the dubious assumption of stationarity has not
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prevented the simple kriging methodology from producing a predicted surface
which captures qualitatively the apparent spatial trend in the data, and which
is almost identical to the predictions obtained using the more reasonable linear
trend surface model. The two models produce somewhat different prediction
standard errors; these range between 0 and 25.5 for the stationary model, be-
tween 0 and 24.4 for the model with the linear trend surface and between 0 and
22.9 for the model with the quadratic trend surface. The differences amongst
the three models are rather small. They are influenced by several different as-
pects of the data and model, including the data configuration and the estimated
values of the model parameters. In other applications, the choice of model may
have a stronger impact on the predictive inferences we make from the data,
even when this choice does not materially affect the point predictions of the
underlying surface S(x). Note also that the plug-in standard errors quoted here
do not account for parameter uncertainty.

2.7 Definitions of distance

A fundamental stage in any geostatistical analysis is to define the metric for cal-
culating the distance between any two locations. By default, we use the standard
planar Euclidean distance i.e., the“straight-line distance”between two locations
in IR2. Non-Euclidean metrics may be more appropriate for some applications.
For example, Rathbun (1998) discusses the measurement of distance between
points in an estuarine environment where, arguably, two locations which are
close in the Euclidean metric but separated by dry land should not be consid-
ered as near neighbours. It is not difficult to think of other settings where natural
barriers to communication might lead the investigator to question whether it is
reasonable to model spatial correlation in terms of straight-line distance.
Even when straight-line distance is an appropriate metric, if the study region

is geographically extensive, distances computed between points on the earth’s
surface should strictly be great-circle distances, rather than straight-line dis-
tances on a map projection. Using (θ, ϕ) to denote a location in degrees of
longitude and latitude, and treating the earth as a sphere of radius r = 6378
kilometres, the great-circle distance between two locations is

r cos−1{sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(θ1 − θ2)}.

section 3.2 of Waller and Gotway (2004) gives a nice discussion of this issue
from a statistical perspective. Banerjee (2005) examines the effect of distance
computations on geostatistical analysis and concludes that the choice of metric
may influence the resulting inferences, both for parameter estimation and for
prediction. Note in particular that degrees of latitude and longitude represent
approximately equal distances only close to the equator.
Distance calculations are especially relevant to modelling spatial correlation,

hence parameters which define the correlation structure are particularly sensi-
tive to the choice of metric. Furthermore, the Euclidean metric plays an integral
part in determining valid classes of correlation functions using Bochner’s the-
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orem (Stein, 1999). Our geoR software implementation only calculates planar
Euclidean distances.

2.8 Computation

The non-spatial exploratory analysis of the surface elevation data reported in
this chapter uses only built-in R functions as follows.

> with(elevation, hist(data, main = "", xlab = "elevation"))

> with(elevation, plot(coords[, 1], data, xlab = "W-E",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(lowess(elevation$data ~ elevation$coords[, 1]))

> with(elevation, plot(coords[, 2], data, xlab = "S-N",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(with(elevation, lowess(data ~ coords[, 2])))

To produce circle plots of the residual data we use the geoR function
points.geodata(), which is invoked automatically when a geodata object is
passed as an argument to the built-in function points(), as indicated below.
The argument trend defines a linear model on the covariates from which the
residuals are extracted for plotting. The values "1st" and "2nd" passed to the
argument trend are aliases to indicate first-degree and second-degree polynomi-
als on the coordinates. More details and other options to specify the trend are
discussed later in this section and in the documentation for trend.spatial().
Setting abs=T instructs the function to draw the circles with radii proportional
to the absolute values of the residuals.

> points(elevation, cex.max = 2.5)

> points(elevation, trend = "1st", pt.div = 2, abs = T,

+ cex.max = 2.5)

> points(elevation, trend = "2nd", pt.div = 2, abs = T,

+ cex.max = 2.5)

To calculate and plot the empirical variograms shown in Figure 2.4 for the
original data and for the residuals, we use variog(). The argument uvec defines
the classes of distance used when computing the empirical variogram, whilst
plot() recognises that its argument is a variogram object, and automatically
invokes plot.variogram(). The argument trend is used to indicate that the
variogram should be calculated from the residuals about a fitted trend surface.

> plot(variog(elevation, uvec = seq(0, 5, by = 0.5)),

+ type = "b")

> res1.v <- variog(elevation, trend = "1st", uvec = seq(0,

+ 5, by = 0.5))

> plot(res1.v, type = "b")

> res2.v <- variog(elevation, trend = "2nd", uvec = seq(0,

+ 5, by = 0.5))

> lines(res2.v, type = "b", lty = 2)
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To obtain the residual variogram and simulation envelopes under random per-
mutation of the residuals, as shown in Figure 2.5, we proceed as in the following
example. By default, the function uses 99 simulations, but this can be changed
using the optional argument nsim.

> set.seed(231)

> mc1 <- variog.mc.env(elevation, obj = res1.v)

> plot(res1.v, env = mc1, xlab = "u")

> mc2 <- variog.mc.env(elevation, obj = res2.v)

> plot(res2.v, env = mc2, xlab = "u")

To obtain maximum likelihood estimates of the Gaussian model, with or without
a trend term, we use the geoR function likfit(). Because this function uses
a numerical maximisation procedure, the user needs to provide initial values
for the covariance parameters, using the argument ini. In this example we use
the default value 0 for the parameter τ2, in which case ini specifies initial
values for the parameters σ2 and ϕ. Initial values are not required for the mean
parameters.

> ml0 <- likfit(elevation, ini = c(3000, 2), cov.model = "matern",

+ kappa = 1.5)

> ml0

likfit: estimated model parameters:

beta tausq sigmasq phi

" 848.317" " 48.157" "3510.096" " 1.198"

likfit: maximised log-likelihood = -242.1

> ml1 <- likfit(elevation, trend = "1st", ini = c(1300,

+ 2), cov.model = "matern", kappa = 1.5)

> ml1

likfit: estimated model parameters:

beta0 beta1 beta2 tausq sigmasq

" 912.4865" " -4.9904" " -16.4640" " 34.8953" "1693.1329"

phi

" 0.8061"

likfit: maximised log-likelihood = -240.1

To carry out the spatial interpolation using simple kriging we first define, and
store in the object locs, a grid of locations at which predictions of the values
of the underlying surface are required. The function krige.control() then
defines the model to be used for the interpolation, which is carried out by
krige.conv(). In the example below, we first obtain predictions for the sta-
tionary model, and then for the model with a linear trend on the coordinates.
If required, the user can restrict the trend surface model, for example by spec-
ifying a linear trend is the north-south direction. However, as a general rule
we prefer our inferences to be invariant to the particular choice of coordinate
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axes, and would therefore fit both linear trend parameters or, more generally,
full polynomial trend surfaces.

> locs <- pred_grid(c(0, 6.3), c(0, 6.3), by = 0.1)

> KC <- krige.control(type = "sk", obj.mod = ml0)

> sk <- krige.conv(elevation, krige = KC, loc = locs)

> KCt <- krige.control(type = "sk", obj.mod = ml1, trend.d = "1st",

+ trend.l = "1st")

> skt <- krige.conv(elevation, krige = KCt, loc = locs)

Finally, we use a selection of built-in graphical functions to produce the maps
shown in Figure 2.6, using optional arguments to the graphical functions to
ensure that pairs of corresponding plots use the same grey scale.

> pred.lim <- range(c(sk$pred, skt$pred))

> sd.lim <- range(sqrt(c(sk$kr, skt$kr)))

> image(sk, col = gray(seq(1, 0.1, l = 51)), zlim = pred.lim)

> contour(sk, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(skt, col = gray(seq(1, 0.1, l = 51)), zlim = pred.lim)

> contour(skt, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(sk, value = sqrt(sk$krige.var), col = gray(seq(1,

+ 0.1, l = 51)), zlim = sd.lim)

> contour(sk, value = sqrt(sk$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

> image(skt, value = sqrt(skt$krige.var), col = gray(seq(1,

+ 0.1, l = 51)), zlim = sd.lim)

> contour(skt, value = sqrt(skt$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

In geoR, covariates which define a linear model for the mean response can be
specified by passing additional arguments to plotting or model-fitting functions.
In the examples above, we used trend="1st" or trend="2nd" to specify a lin-
ear or quadratic trend surface. However, these are simply short-hand aliases
to formulae which define the corresponding linear models, and are provided
for users’ convenience. For example, the model formula trend=~coords[,1] +

coords[,2] would produce the same result as trend="1st". The trend argu-
ment will also accept a matrix representing the design matrix of a general linear
model, or the output of the trend definition function, trend.spatial(). For
example, the call below to plot() can be used in order to inspect the data
after taking out the linear effect of the north-south coordinate. By setting the
argument trend=~coords[,2] the function fits a standard linear model on this
covariate and uses the residuals to produce the plots shown in Figure 2.7, rather
than plotting the original response data. Similarly, we could fit a quadratic func-
tion on the x-coordinate by setting trend=~coords[,2] + poly(coords[,1],

degree=2). We invite the reader to experiment with different options for the
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Figure 2.7. Output of plot.geodata() when setting the argument
trend=~coords[,2].

argument trend and trend.spatial(). The procedure of taking out the effect
of a covariate is sometimes called trend removal.

> plot(elevation, low = TRUE, trend = ~coords[, 2], qt.col = 1)

The trend argument can also be used to take account of covariates other than
functions of the coordinates. For example, the data-set ca20 included in geoR
stores the calcium content from soil samples, as discussed in Example 1.4, to-
gether with associated covariate information. Recall that in this example the
study region is divided in three sub-regions with different histories of soil man-
agement. The covariate area included in the data-set indicates for each datum
the sub-region in which it was collected. Figure 2.8 shows the exploratory plot
for the residuals after removing a separate mean for calcium content in each
sub-region. This diagram was produced using the following code.
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Figure 2.8. Exploratory plot for the ca20 data-set obtained when setting trend=~area.

> data(ca20)

> plot(ca20, trend = ~area, qt.col = 1)

The plotting functions in geoR also accept an optional argument lambda

which specifies the numerical value for the parameter of the Box-Cox family
of transformations, with default lambda=1 corresponding to no transformation.
For example, the command

> plot(ca20, lambda = 0)

sets the Box-Cox transformation parameter to λ = 0, which will then produce
plots using the logarithm of the original response variable.
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2.9 Exercises

2.1. Investigate the R packages splancs or spatstat, both of which provide
functions for the analysis of spatial point pattern data. Use either of these
packages to confirm (or not, as the case may be) that the design used
for the surface elevation data is more regular than a completely random
design.

2.2. Consider the following two models for a set of responses, Yi : i = 1, . . . , n
associated with a sequence of positions xi : i = 1, . . . , n along a one-
dimensional spatial axis x.

(a) Yi = α + βxi + Zi, where α and β are parameters and the Zi are
mutually independent with mean zero and variance σ2

Z .
(b) Yi = A+Bxi + Zi where the Zi are as in (a) but A and B are now

random variables, independent of each other and of the Zi, each with
mean zero and respective variances σ2

A and σ2
B .

For each of these models, find the mean and variance of Yi and the covari-
ance between Yi and Yj for any j ̸= i. Given a single realisation of either
model, would it be possible to distinguish between them?

2.3. Suppose that Y = (Y1, . . . , Yn) follows a multivariate Gaussian distribu-
tion with E[Yi] = µ and Var{Yi} = σ2 and that the covariance matrix of Y
can be expressed as V = σ2R(ϕ). Write down the log-likelihood function
for θ = (µ, σ2, ϕ) based on a single realisation of Y and obtain explicit
expressions for the maximum likelihood estimators of µ and σ2 when ϕ
is known. Discuss how you would use these expressions to find maximum
likelihood estimators numerically when ϕ is unknown.

2.4. Load the ca20 data-set with data(ca20). Check the data-set documen-
tation with help(ca20). Perform an exploratory analysis of these data.
Would you include a trend term in the model? Would you recommend a
data transformation? Is there evidence of spatial correlation?

2.5. Load the Paraná data with data(parana) and repeat Exercise 2.4.
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3
Gaussian models for geostatistical data

Gaussian stochastic processes are widely used in practice as models for geostatis-
tical data. These models rarely have any physical justification. Rather, they are
used as convenient empirical models which can capture a wide range of spatial
behaviour according to the specification of their correlation structure. Histori-
cally, one very good reason for concentrating on Gaussian models was that they
are uniquely tractable as models for dependent data. With the increasing use
of computationally intensive methods, and in particular of simulation-based
methods of inference, the analytic tractability of Gaussian models is becom-
ing a less compelling reason to use them. Nevertheless, it is still convenient to
work within a standard model class in routine applications. The scope of the
Gaussian model class can be extended by using a transformation of the origi-
nal response variable, and with this extra flexibility the model often provides
a good empirical fit to data. Also, within the specific context of geostatistics,
the Gaussian assumption is the model-based counterpart of some widely used
geostatistical prediction methods, including simple, ordinary and universal krig-
ing (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the
Gaussian model initially as a model in its own right for geostatistical data with
a continuously varying response, and later as an important component of a
hierarchically specified generalised linear model for geostatistical data with a
discrete response variable, as previously discussed in Section 1.4.

3.1 Covariance functions and the variogram

A Gaussian spatial process, {S(x) : x ∈ IR2}, is a stochastic process with the
property that for any collection of locations x1, . . . , xn with each xi ∈ IR2,
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the joint distribution of S = {S(x1), . . . , S(xn)} is multivariate Gaussian. Any
process of this kind is completely specified by itsmean function, µ(x) = E[S(x)],
and its covariance function, γ(x, x′) = Cov{S(x), S(x′)}.
In any such process, consider an arbitrary set of locations x1, . . . , xn, define

S = {S(x1), . . . , S(xn)}, write µS for the n-element vector with elements µ(xi)
and G for the n × n matrix with elements Gij = γ(xi, xj). Then, S follows a
multivariate Gaussian distribution with mean vector µS and covariance matrix
G. We write this as S ∼ MVN(µS , G).
Now, let T =

∑n
i=1 aiS(xi). Then T is univariate Gaussian with mean µT =∑n

i=1 aiµ(xi) and variance

σ2
T =

n∑
i=1

n∑
j=1

aiajGij = a′Ga,

where a = (a1, . . . , an). It must therefore be the case that a′Ga ≥ 0. This
condition, which must hold for all choices of n, (x1, . . . , xn) and (a1, . . . , an)
constrains G to be a positive definite matrix, and the corresponding γ(·) to be
a positive definite function. Conversely, any positive definite function γ(·) is a
legitimate covariance function for a spatial Gaussian process.
A spatial Gaussian process is stationary if µ(x) = µ, a constant for all x, and

γ(x, x′) = γ(u), where u = x− x′ i.e., the covariance depends only on the vec-
tor difference between x and x′. Additionally, a stationary process is isotropic
if γ(u) = γ(||u||), where || · || denotes Euclidean distance i.e., the covariance be-
tween values of S(x) at any two locations depends only on the distance between
them. Note that the variance of a stationary process is a constant, σ2 = γ(0).
We then define the correlation function to be ρ(u) = γ(u)/σ2. The correlation
function is symmetric in u i.e., ρ(−u) = ρ(u). This follows from the fact that for
any u, Corr{S(x), S(x−u)} = Corr{S(x−u), S(u)} = Corr{S(x), S(x+u)}, the
second equality following from the stationarity of S(x). Hence, ρ(u) = ρ(−u).
From now on, we will use u to mean either the vector x−x′ or the scalar ||x−x′||
according to context. We will also use the term stationary as a shorthand for
stationary and isotropic. A process for which S(x)−µ(x) is stationary is called
covariance stationary. Processes of this kind are very widely used in practice as
models for geostatistical data.
In Chapter 2, we introduced the empirical variogram as a tool for exploratory

data analysis. We now consider the theoretical variogram as an alternative
characterisation of the second-order dependence in a spatial stochastic process.
The variogram of a spatial stochastic process S(x) is the function

V (x, x′) =
1

2
Var{S(x)− S(x′)}. (3.1)

Note that V (x, x′) = 1
2 [Var{S(x)} + Var{S(x′)} − 2Cov{S(x), S(x′)}]. In the

stationary case, this simplifies to V (u) = σ2{1 − ρ(u)} which, incidentally,
explains why the factor of one-half is conventionally included in the definition of
the variogram. The variogram is also well defined as a function of u for a limited
class of non-stationary processes; a one-dimensional example is a simple random
walk, for which V (u) = αu. Processes which are non-stationary but for which
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V (u) is well-defined are called intrinsic random functions (Matheron, 1973).
We discuss these in more detail in Section 3.9.
In the stationary case the variogram is theoretically equivalent to the covari-

ance function, but it has a number of advantages as a tool for data analysis,
especially when the data locations form an irregular design. We discuss the
data analytic role of the variogram in Chapter 5. Conditions for the theoretical
validity of a specified class of variograms are usually discussed in terms of the
corresponding family of covariance functions. Gneiting, Sasvári and Schlather
(2001) present analogous results in terms of variograms.

3.2 Regularisation

In Section 1.2.1 we discussed briefly how the support of a geostatistical mea-
surement could affect our choice of a model for the data. When the support
for each measured value extends over an area, rather than being confined to a
single point, the modelled signal S(x) should strictly be represented as

S(x) =

∫
w(r)S∗(x− r)dr, (3.2)

where S∗(·) is an underlying, unobserved signal process and w(·) is a weighting
function. In this case, the form of w(·) constrains the allowable form for the
covariance function of S(·). Specifically, if γ(·) and γ∗(·) are the covariance
functions of S(·) and S∗(·), respectively, it follows from (3.2) that

γ(u) =

∫ ∫
w(r)w(s)γ∗(u+ r − s)drds. (3.3)

Now make a change of variable in (3.3) from s to t = r − s, and define

W (t) =

∫
w(r)w(t− r)dr.

Then (3.3) becomes

γ(u) =

∫
W (t)γ∗(u+ t)dt. (3.4)

Typical weighting functions w(r) would be radially symmetric, non-negative val-
ued and non-increasing functions of ||r||; this holds for the effect of the gamma
camera integration in Example 1.3, where w(r) is not known explicitly but is
smoothly decreasing in ||r||, and for the soil core data of Example 1.4, where
w(·) is the indicator corresponding to the circular cross section of each core. In
general, the effect of weighting functions of this kind is to make S(x) vary more
smoothly than S∗(x), with a similar effect on γ(u) by comparison with γ∗(u).

An analogous result holds for the relationship between the variograms of S(·)
and S∗(·). Using the relationship that V (u) = γ(0)− γ(u) it follows from (3.4)
that

V (u) =

∫
W (t){V ∗(t+ u)− V ∗(t)}dt. (3.5)
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If the form of the weighting function w(·) is known, it would be possible
to incorporate it into our model for the data. This would mean specifying a
model for the covariance function of S⋆(·) and evaluating (3.4) to derive the
corresponding covariance function of S(·). Note that this would enable data
with different supports to be combined naturally, for example soil core data
using different sizes of core. A more pragmatic strategy, and the only available
one if w(·) is unknown, is to specify directly an appropriately smooth model for
the covariance function of S(·).

The question of regularisation can also arise in connection with prediction,
rather than model formulation. The simplest geostatistical prediction problem
is to map the spatial signal S(x), but in some applications a more relevant
target for prediction might be a map of a regularised signal,

T (x) =

∫
S(u)du,

where the integral is over a disc with centre x i.e., T (x) is a spatial average over
the disc. We return to questions of this kind in Chapter 6.

3.3 Continuity and differentiability of stochastic
processes

The specification of the covariance structure of a spatial process S(x) directly
affects the smoothness of the surfaces which the process generates. Accepted
mathematical descriptors of the smoothness of a surface are its continuity and
differentiability. However, for stochastically generated surfaces S(x) we need to
distinguish two kinds of continuity or differentiability. In what follows, we shall
consider a one-dimensional space x, essentially for notational convenience.
We first consider mean-square properties, defined as follows. A stochastic

process S(x) is mean-square continuous if E[{S(x+h)−S(x)}2] → 0 as h→ 0.
Also, S(x) is mean-square differentiable, with mean-square derivative S′(x), if

E

[{
S(x+ h)− S(x)

h
− S′(x)

}2
]
→ 0

as h→ 0. Higher-order mean-square differentiability is then defined sequentially
in the obvious way; S(x) is twice mean-square differentiable if S′(x) is mean-
square differentiable, and so on.
An important result, described for example in Bartlett (1955), is the following.

Theorem 3.1. A stationary stochastic process with correlation function ρ(u)
is k times mean-square differentiable if and only if ρ(u) is 2k times differentiable
at u = 0.

To examine differentiability at the origin of any particular correlation function
ρ(u), we need to consider the extended form of ρ(u) in which u can take positive
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Figure 3.1. Realisation of a binary-values, mean-square continuous stochastic process
(see text for details).

or negative arguments with ρ(−u) = ρ(u). Hence, for example, the exponential
correlation function ρ(u) = exp(−u/ϕ) is continuous but not differentiable at
the origin. In contrast, the Gaussian correlation function, defined by ρ(u) =
exp{−(u/ϕ)2}, is infinitely differentiable.
A second version of continuity and differentiability properties concerns path

continuity and differentiability. A process S(x) is path-continuous, or more gen-
erally k times path-differentiable if its realisations are continuous or k times
differentiable functions, respectively.
In general, there need be no link between mean-square and path properties

of stochastic processes. As a simple example, we can consider a binary-valued
process S(x) in which the real line is partitioned into a sequence of random inter-
vals, whose lengths are independent realisations from a unit-mean exponential
distribution, the value of S(x) within each interval is zero with probability p,
one otherwise, and the values of S(x) on successive intervals are determined
independently. Figure 3.1 shows a realisation with p = 0.5. Clearly, this process
is not path-continuous. However, its correlation function is the exponential,
ρ(u) = exp(−u), which is continuous at u = 0, hence S(x) is mean-square
continuous.
Kent (1989) gives a rigorous theoretical discussion of path-continuity for sta-

tionary, not necessarily Gaussian processes. Write ρ(u) = pm(u)+rm(u), where
pm(u) is the polynomial of degree m given by the Taylor series expansion of
ρ(u) about u = 0. Then, a sufficient condition for the existence of a path-
continuous two-dimensional stationary process with correlation function ρ(·) is
that ρ(·) is twice continuously differentiable and |r2(u)| = O(u2/| log u|3+γ) as
u → 0, for some γ > 0. A slightly stronger condition which is easier to check
in practice is that |r2(u)| = O(u2+ϵ) for some ϵ > 0. For stationary Gaussian
processes in two dimensions, a sufficient condition for path-continuity is that
ρ(0)− ρ(u) = O(1/| log u|1+ϵ), which is only slightly stronger than the require-
ment for mean-square continuity, namely that ρ(·) is continuous at the origin.
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This justifies using mean-square differentiability as a convenient measure of the
smoothness of stationary Gaussian processes when considering their suitability
as empirical models for natural phenomena.

3.4 Families of covariance functions and their properties

Positive definiteness is the necessary and sufficient condition for a parametric
family of functions to define a legitimate class of covariance functions, but this
is not an easy condition to check directly. For this reason, it is useful to have
available a range of standard families which are known to be positive definite
but in other respects are sufficiently flexible to meet the needs of applications
to geostatistical data. In this section, we give the details of several such families
and outline their properties. Our concern here is with models for processes in
two spatial dimensions. All of the covariance families which we describe are
also valid in one or three dimensions. In general, a valid covariance family in
IRd does not necessarily remain valid in more than d spatial dimensions, but is
automatically valid in dimensions less than d.

3.4.1 The Matérn family

The most common form of empirical behaviour for stationary covariance struc-
ture is that the correlation between S(x) and S(x′) decreases as the distance
u = ||x − x′|| increases. It is therefore natural to look for models whose the-
oretical correlation structure behaves in this way. In addition, we can expect
that different applications may exhibit different degrees of smoothness in the
underlying spatial process S(x).

The Matérn family of correlation functions, named after Matérn (1960), meets
both of these requirements. It is a two-parameter family,

ρ(u) = {2κ−1Γ(κ)}−1(u/ϕ)κKκ(u/ϕ), (3.6)

in which Kκ(·) denotes a modified Bessel function of order κ, ϕ > 0 is a scale
parameter with the dimensions of distance, and κ > 0, called the order, is a
shape parameter which determines the analytic smoothness of the underlying
process S(x). Specifically, S(x) is ⌈κ−1 times mean-square differentiable, where
⌈κ denotes the smallest integer greater than or equal to κ
Figure 3.2 shows the Matérn correlation function for each of κ = 0.5, 1.5 and

2.5, corresponding to processes S(x) which are mean-square continuous, once
differentiable and twice differentiable, respectively. In the diagram, the values
of ϕ have been adjusted so as to give all three functions the same practical
range, which we define here as the distance u at which the correlation is 0.05.
For Figure 3.2 we used u = 0.75 as the value of the practical range. For κ = 0.5,
the Matérn correlation function reduces to the exponential, ρ(u) = exp(−u/ϕ),
whilst as κ → ∞, ρ(u) → exp{−(u/ϕ)2} which is also called the Gaussian
correlation function or, somewhat confusingly in the present context, the Gaus-
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Figure 3.2. Matérn correlation functions with, κ = 0.5 (solid line), κ = 1.5 (dashed
line) and κ = 2.5 (dotted line), and adjusted values of ϕ for equivalent practical ranges.

sian model. Whittle (1954) proposed the special case of the Matérn correlation
function with κ = 1.
Note that the parameters ϕ and κ in (3.6) are non-orthogonal, in the following

sense. If the true correlation structure is Matérn with parameters ϕ and κ, then
the best-fitting approximation with order κ∗ ̸= κ will also have ϕ∗ ̸= ϕ. In other
words, scale parameters corresponding to different orders of Matérn correlation
are not directly comparable. The relationship between the practical range and
the scale parameter ϕ therefore depends on the value of κ. For instance, the
practical range as defined above is approximately 3ϕ, 4.75ϕ and 5.92ϕ for the
Matérn functions with κ = 0.5, 1.5 and 2.5, respectively, and

√
3ϕ for the

Gaussian correlation function. For this reason, Handcock and Wallis (1994)
suggest a re-parametrisation of (3.6) from κ and ϕ to a more nearly orthogonal
pair κ and α = 2ϕ

√
κ. The re-parametrisation does not, of course, change the

model but is relevant to our discussion of parameter estimation in Chapters 5
and 7.
Figure 3.3 shows a one-dimensional trace through a simulated realisation of

a spatial Gaussian process with each of the Matérn correlation functions above,
using the same random seed for all three realisations. The increasing analytic
smoothness of the process as κ increases is reflected in the visual appearance
of the three realisations, but the more noticeable difference is between the non-
differentiable and the differentiable case i.e., between κ = 0.5 on the one hand
and κ = 1.5 or κ = 2.5 on the other.
Figure 3.4 shows simulated two-dimensional realisations of Gaussian processes

whose correlation functions are Matérn with κ = 0.5 and κ = 2.5, again using
the same random number seed to make the realisations directly comparable.
The difference in smoothness between the non-differentiable and differentiable
cases is again visually striking.

3.4.2 The powered exponential family

This family is defined by the correlation function

ρ(u) = exp{−(u/ϕ)κ}. (3.7)
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Figure 3.3. One-dimensional realisations of spatial Gaussian processes whose correla-
tion functions are Matérn with κ = 0.5 (solid line), κ = 1.5 (dashed line) and κ = 2.5
(dotted line).

Figure 3.4. Simulations of Gaussian processes with Matérn correlation functions with
κ = 0.5 and ϕ = 0.25 (left) and κ = 2.5 and ϕ = 0.13 (right).

Like the Matérn family, it has a scale parameter ϕ > 0, a shape parameter
κ, in this case bounded by 0 < κ ≤ 2, and generates correlation functions
which are monotone decreasing in u. Also like the Matérn family the relation
between the practical range and the parameter ϕ will depend on the value of
κ. However, the family is less flexible than the Matérn, in the sense that the
underlying Gaussian process S(x) is mean-square continuous and not mean-
square differentiable for all 0 < κ < 2 but infinitely mean square differentiable
when κ = 2, the maximum legitimate value. Figure 3.5 shows the powered
exponential correlation function for each of κ = 0.7, 1 and 2, and with values
of ϕ adjusted to provide the same practical range of 0.75. Figure 3.6 shows one-
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Figure 3.5. Powered exponential correlation functions with κ = 0.7 (dashed line),
κ = 1 (solid line) and κ = 2 (dotted line) and values of phi adjusted such that the
practical range is 0.75.

Figure 3.6. One-dimensional realisations of spatial Gaussian processes whose correla-
tion functions are powered exponential, κ = 0.7 (dashed line), κ = 1 (solid line) and
κ = 2 (dotted line).

dimensional realisations of the corresponding Gaussian processes S(x). We used
the same seed as for the earlier simulations of the Matérn model. The realisation
for the powered exponential model with κ = 1 is therefore the same as for the
Matérn model with κ = 0.5. Notice that the realisations for κ = 0.7 and κ =
1, both of which correspond to mean-square continuous but non-differentiable
processes, look rather similar in character.
The extreme case κ = 2, which is equivalent to the limiting case of a Matérn

correlation function as κ → ∞, can generate very ill-conditioned covariance
structure. A process S(x) with this correlation function has the theoretical
property that its realisation on an arbitrarily small, continuous interval deter-
mines the realisation on the whole real line. For most applications, this would
be considered unrealistic.
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Figure 3.7. Correlation functions, the spherical (left) with ϕ = 0.75 and wave (right)
with ϕ = 0.05.

3.4.3 Other families

In classical geostatistics, the spherical family is widely used. This has correlation
function

ρ(u) =

{
1− 3

2 (u/ϕ) +
1
2 (u/ϕ)

3 : 0 ≤ u ≤ ϕ
0 : u > ϕ

(3.8)

where ϕ > 0 is a single parameter with the dimensions of distance. One qual-
itative difference between this and the families described earlier is that it has
a finite range i.e., ρ(u) = 0 for sufficiently large u, namely u > ϕ. The spheri-
cal family lacks flexibility by comparison with the two-parameter Matérn class.
Also, ρ(u) is only once differentiable at u = ϕ, which causes technical diffi-
culties with maximum likelihood estimation (Warnes and Ripley, 1987; Mardia
and Watkins, 1989). The left-hand panel in Figure 3.7 shows the spherical cor-
relation function when ϕ = 0.75. The corresponding Gaussian process S(x) is
mean-square continuous but non-differentiable. The name and algebraic form
of the spherical family derives from the geometry of intersecting spheres; see
Exercise 3.3.
Non-monotone correlation functions are rare in practice. One example of a

valid non-monotone family is

ρ(u) = (u/ϕ)−1 sin(u/ϕ) (3.9)

where ϕ > 0 is a single parameter, again with the dimension of distance. The
right-hand panel of Figure 3.7 illustrates the characteristic damped oscillatory
behaviour of this correlation function, whilst Figure 3.8 shows a realisation
of the corresponding process S(x). Notice how the oscillatory nature of the
correlation function is reflected in the oscillatory behaviour of the simulated
realisation.
Other classes of correlation function, and criteria to check the validity of

candidate functions, are described in Schlather (1999), who in turn draws on
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Figure 3.8. One-dimensional realisation of a spatial Gaussian process whose correlation
function is ρ(u) = (u/0.05)−1 sin(u/0.05).

material in Gneiting (1997). However, for most geostatistical applications the
families described here should be sufficient, if only because more elaborate mod-
els are hard to identify unless the available data are abundant. In general, we
favour the Matérn family because of its flexibility, coupled with the tangible
interpretation of the shape parameter κ as a measure of the differentiability of
the underlying process S(x). Also, because of the difficulty of identifying all the
parameters of this model empirically, we would usually either fix the value of κ
according to the context of the application, or choose amongst a limited set of
values of κ, for example κ = 0.5, 1.5, 2.5 as illustrated in Figure 3.2.

3.5 The nugget effect

In geostatistical practice, the term“nugget effect”refers to a discontinuity at the
origin in the variogram. Within our model-based framework, its literal interpre-
tation is as the measurement error variance, τ2, or equivalently the conditional
variance of each measured value Yi given the underlying signal value S(xi).
Formally, this amounts to modelling the measurement process, Y (x) say, as
a Gaussian process whose correlation function is discontinuous at the origin,
hence

Corr{Y (x), Y (x′)} =

{
1 : x = x′

σ2ρ(||x− x′||)/(σ2 + τ2) : x ̸= x′

where ρ(·) is the (continuous) correlation function of S(x) and || · || denotes
distance.
In practice, when the sampling design specifies a single measurement at each

of n distinct locations, the nugget effect has a dual interpretation as either
measurement error or spatial variation on a scale smaller than the smallest
distance between any two points in the sample design, or any combination
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of these two effects. These two components of the nugget effect can only be
separately identified if the measurement error variance is either known, or can be
estimated directly using repeated measurements taken at coincident locations.

3.6 Spatial trends

The simplest form of departure from stationarity is to allow the mean response,
µ(x), to depend on location. We call any such varying mean a spatial trend.
In applications, we may choose to model µ(x) directly as a function of x. In
practice, this is most often done through a polynomial regression model, using
powers and cross products of the Cartesian coordinates of x as explanatory vari-
ables. Models of this kind are called trend surface models. They rarely have any
scientific foundation. Our view is that linear or quadratic trend surfaces can pro-
vide useful empirical descriptions of simple, unexplained spatial trends, but that
higher-degree surfaces should be avoided because complicated trends are better
described through the stochastic component of the model. See, for example, our
illustrative analysis of the surface elevation data reported in Chapter 2.
A more interesting kind of spatial trend arises when the mean function can

be modelled using spatially referenced covariates, hence for example µ(x) =
α + d(x)β where d(x) is a scientifically relevant property of the location x.
In our opinion, models of this kind are more interesting than trend surface
models because they seek to explain, rather than merely to describe, the spatial
variation in the response variable. For example, in the Gambia malaria data
of Example 1.3 modelling the spatial variation in prevalence as a function of
greenness has a natural scientific interpretation because the greenness index is
a surrogate measure of the suitability of each location for mosquitos to breed.
If, hypothetically, greenness showed a smooth east-west trend, then modelling
malaria prevalence as a function of greenness or as a function of longitude
might give equally good empirical fits to the data, but modelling prevalence as
a function of greenness would offer the more satisfying explanation and would
be the more likely to translate to other study regions.
As discussed in Section 1.2.2, when values of a potential explanatory variable

d(x) are only recorded at the same locations as give rise to the basic geostatisti-
cal data (xi, yi), we need to consider whether we should treat d(x) as a second,
stochastic variable to be analysed jointly with the primary signal process, S(x),
rather than as a deterministic quantity.

3.7 Directional effects

Another form of non-stationarity is non-stationarity in the covariance structure.
One specific way to relax the stationarity assumption is to allow directional
effects so that, for example, the rate at which the correlation decays with in-
creasing distance is allowed to depend also on the relative orientation between
pairs of locations.
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Figure 3.9. Rotation of the data configuration by the anisotropy parameters. The
left-hand panel shows the original locations, the right-hand panel the transformed
locations in isotropic space when ψA = 2π/3 and ψR = 2.

The simplest form of directional effect on the covariance structure is called
geometrical anisotropy. This arises when a stationary covariance structure is
transformed by a differential stretching and rotation of the coordinate axes.
Hence, geometrical anisotropy is defined by two additional parameters. Al-
gebraically, a model with geometrical anisotropy in spatial coordinates x =
(x1, x2) can be converted to a stationary model in coordinates x′ = (x′1, x

′
2) by

the transformation

(x′1, x
′
2) = (x1, x2)

[
cos(ψA) − sin(ψA)
sin(ψA) cos(ψA)

] [
1 0
0 ψ−1

R

]
(3.10)

where ψA is called the anisotropy angle and ψR > 1 is called the anisotropy ratio.
The direction along which the correlation decays most slowly with increasing
distance is called the principal axis.
These operations are illustrated in Figure 3.9. The original locations are

shown in the left-hand panel. Suppose that the anisotropy angle is ψA = 2π/3,
and the anisotropy ratio is ψR = 2. Then, applying the coordinate transforma-
tion (3.10) we obtain the locations in the right-hand panel, which are now in an
isotropic space, and proceed to fit an isotropic model in this transformed space.
In practice, ψA and ψR are unknown, and the model fit would be optimised by
treating ψA and ψR as additional parameters to be estimated.
Figure 3.10 shows realisations of two Gaussian spatial process with geometri-

cal anisotropy. The directional effects are visually clear, with the principal axis
in each case running diagonally over the square region shown. For the left panel
the anisotropy angle is π/3 radians and the anisotropy ratio is 4. For the right
panel the anisotropy angle is 3π/4 radians and the anisotropy ratio is 2. The
two processes have common parameter values µ = 0, σ2 = 1 and exponential
correlation function with ϕ = 0.25, and the two realisations were generated
using the same random seed.
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Figure 3.10. A realisation of a geometrically anisotropic Gaussian spatial process whose
principal axis runs diagonally across the square region with anisotropy parameters
(π/3, 4) for the left-hand panel and (3π/4, 2) for the right-hand panel.

Note that geometric anisotropy cannot describe local directional features of
a spatial surface, only global ones. On the other hand, the presence of local
directional features in a realisation of a spatial process need not imply that the
underlying process is anisotropic. Consider, for example, a surface constructed
as the superposition of profiles f(·) translated by the points of a homogeneous
Poisson point process. Thus,

S(x) =

∞∑
i=1

f(x−Xi) (3.11)

where the Xi are the points of the Poisson process. Figure 3.11 compares real-
isations of two such processes in which the intensity of the Poisson process is
16 points per unit area and the profile function is the probability density of a
bivariate Gaussian distribution with zero mean, standard deviation 0.1 in each
coordinate direction and correlation 0.75. In the left-hand panel, the global di-
rectional feature along the diagonal direction is clear. In the right-hand panel,
each profile has been randomly rotated so that, whilst local directional effects
can still be seen, the resulting model is isotropic with no global directional ef-
fects. Higdon (1998, 2002) has proposed constructions similar to, but more
general than, (3.11) to define a general class of non-stationary, non-Gaussian
models.
Geometrical anisotropy deals with a particular form of non-stationarity by

transforming the space x using stretching and rotation, so that the under-
lying process is stationary in the transformed space. Sampson and Guttorp
(1992), Guttorp, Meiring and Sampson (1994) and Guttorp and Sampson
(1994) develop a more general version of this approach. Their method seeks
a smooth deformation of the x-space, equivalent to a transformation from x
to x∗ say, so that the covariance function depends only on distance in the
deformed space, hence for any two locations x and y in the original space,
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Figure 3.11. Realisations of two spatial processes with global (left-hand panel) and
local (right-hand panel) directional effects. See text for detailed explanation.

Cov{S(x), S(y)} = γ(||x∗ − y∗||). Perrin and Meiring (1999) discuss identifia-
bility issues for this class of models, whilst Schmidt and O’Hagan (2003) develop
a Bayesian version. Replicated observations are needed at each sampling loca-
tion in order to identify the required transformation. In practice, the approach
is feasible when a time series is collected at each location as this gives the
necessary, albeit dependent, replication.
Non-stationarity can also arise because Euclidean distance is not an appro-

priate measure of spatial separation. For example, Rathbun (1998) considers
non-Euclidean distances in modelling spatial variation in an estuary where,
amongst other considerations, the line segment joining two locations within the
estuary may cross a stretch of land.

3.8 Transformed Gaussian models

We now expand the discussion of Section 2.2, where we mentioned briefly that
the range of applicability of the Gaussian model can be extended by assuming
that the model holds after a marginal transformation of the response variable.
As in other areas of statistics, there are at least three different reasons for

using a transformation of the data. Firstly, a particular transformation might
be suggested by qualitative arguments, or even by convention. For example, if
effects are thought to be operating multiplicatively, then a log-transformation
converts the problem to a scale on which effects are, more conveniently, addi-
tive. Secondly, a transformation may be used as a variance-stabilising device
for a known, non-Gaussian sampling distribution. For example, square root
and arc-sine transformations approximately stabilise the sampling variance un-
der Poisson and binomial sampling, respectively. Note, however, that there is
no reason why a transformation which stabilises the variability in the measure-
ments conditional on the signal should also stabilise the variability in the signal,
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or vice versa. The transformation approach to variance instability used to be
widespread in regression modelling of non-Gaussian data, but has largely been
replaced by the use of generalized linear models (McCullagh and Nelder, 1989).
Section 1.4 and, in more detail, Chapter 4 describe an extension of classical
generalized linear models to accommodate non-Gaussian geostatistical data.
Finally, we can introduce a parametric family of transformations simply as an
empirical generalisation of the Gaussian model, in which case the choice of a
particular transformation corresponds to the estimation of an additional pa-
rameter. The most widely used example of this approach is the Box-Cox family
of transformations (Box and Cox, 1964),

Y ∗ =

{
(Y λ − 1)/λ : λ ̸= 0

log Y : λ = 0.
(3.12)

The log-transformation is perhaps the most widely used in practice, and ex-
plicit expressions can be derived for its mean and covariance structure. Suppose
that T (x) = exp{S(x)}, where S(x) is a stationary Gaussian process with mean
µ, variance σ2 and correlation function ρ(u). The moment generating function
of S(x) is

M(a) = E[exp{aS(x)}] = exp{aµ+
1

2
a2σ2}. (3.13)

It follows from (3.13), setting a = 1, that T (x) has expectation

µT = exp

(
µ+

1

2
σ2

)
. (3.14)

Similarly, setting a = 2 in (3.13) gives E[T (x)2], and hence the variance of T (x)
as

σ2
T = exp(2µ+ σ2){exp(σ2)− 1}. (3.15)

Finally, for any two locations x and x′, T (x)T (x′) = exp{S(x) + S(x′)}, and
S(x) + S(x′) is Gaussian with mean m = 2µ and variance v = 2σ2{1 + ρ(||x−
x′||)}. It follows that E[T (x)T (x′)] = exp(m+v/2), and straightforward algebra
gives the correlation function of T (x) as

ρT (u) = [exp{σ2ρ(u)} − 1]/[exp{σ2} − 1]. (3.16)

Note that the mean and variance of T (x) depend on both µ and σ2, whereas
the correlation function of T (x) does not depend on µ.
Log-Gaussian processes exhibit, to a greater or lesser extent depending on

the values of the model parameters, asymmetric behaviour with local patches
of values close to zero, interspersed with relatively sharp peaks. In particular,
we can write any Gaussian process S(x) as µ + σZ(x), and the correspond-
ing log-Gaussian process as T (x) = αT0(x)

σ, where α = exp(µ) and T0(x) =
exp{Z(x)}. Hence, for any given Z(x), the value of µ affects the scale of the sur-
face T (x), whilst σ affects its shape, with larger values of σ producing sharper
peaks and flatter troughs
The two panels of Figure 3.12 illustrate this affect. They show realisations

of two log-Gaussian processes of the form T (x) = exp{σZ(x)}, where Z(x) is
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Figure 3.12. Realisations of two log-Gaussian processes. See text for parameter speci-
fications.

a Gaussian process with zero mean, unit variance and Matérn correlation of
order κ = 1.5 and with range parameter ϕ = 0.2. Both panels use the same
realisation of Z(x) and differ only in that the left-hand panel has σ = 0.1 and
the right-hand panel σ = 0.7.
The two panels of Figure 3.13 compare a realisation of a log-Gaussian process

and a Gaussian process with the same mean and variance, and closely matched
correlation structure. The log-Gaussian process used for the left-hand panel
of Figure 3.13 has its correlation structure ρT (u) induced by an underlying
Matérn correlation function ρ0(u) with parameters κ = 1.5 and ϕ = 0.2, and
variance σ2 = 1. We then used a simple least squares criterion to obtain a
Matérn correlation function, ρA(u) say, which approximated ρT (u) as closely
as possible, resulting in the parameter values ϕa = 0.18 and κa = 1.32. To
obtain the right-hand panel of Figure 3.13 we then simulated a Gaussian process
using the correlation function ρA(u) in conjunction with a mean and variance
chosen so as to match those of the log-Gaussian process. As usual, we used the
same random number seed for the two realisations being compared. Figure 3.14
compares the correlation functions ρT (u), ρA(u) and ρ0(u). We see that the
correlation functions of the processes used to generate the two realisations shown
in Figure 3.13 are almost identical, yet the realisations themselves are very
different in character because of their different distributional properties.

3.9 Intrinsic models

In Section 3.6 we discussed a simple form of non-stationary model, namely the
sum of a deterministic spatial trend and a stochastic, spatially correlated resid-
ual. Similarly, in Section 3.7 we discussed a deterministic strategy for dealing
with non-stationarity, in this case a transformation of the spatial coordinate
system to deal with a global directional effect in the underlying process. An
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Figure 3.13. Realisations of a log-Gaussian process (left-hand panel) and a Gaussian
process with closely matched correlation structure (right-hand panel). See text for
parametric specifications.

Figure 3.14. Correlation functions ρT (u) (solid line) and ρA(u) (dashed line) for the
log-Gaussian and Gaussian processes whose realisations are compared in Figure 3.13.
The dotted line shows the Matérn correlation function ρ0(u). See text for parametric
specifications.

alternative strategy is to treat non-stationarity as an inherently stochastic
phenomenon.
As a simple, spatially discrete one-dimensional example of an intrinsic model

we consider a random walk, S(x), defined recursively by

S(x) = S(x− 1) + Z(x) : x = 0, 1, . . . (3.17)

where the Z(x) are mutually independent, normally distributed with mean 0
and variance 1. Conventionally, we add the initial condition that S(0) = 0, in
which case E[S(x)] = 0 for all x and Var{S(x)} = x. However, an alterna-
tive interpretation, which is perhaps more natural in the spatial setting where
any ordering along the coordinate axes is arbitrary, is that S(x) fluctuates
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Figure 3.15. Realisation of a one-dimensional random walk. See text for detailed ex-
planation

randomly about an arbitrary level i.e., the average is indeterminate and the
variation observed within a finite segment of space increases with the length of
the segment.
Figure 3.15 shows a simulated realisation of such a process. The process was

initialised at zero, allowed to run for 5000 steps, then observed and plotted
for an additional 1000 steps. By chance, the plotted values of S(x) vary over
the approximate range −60 to −10 although their theoretical expectation over
repeated realisations is zero. More interestingly, the initial and final portions of
Figure 3.15 appear on casual inspection to be approximately stationary whereas,
the portion between x = 300 and x = 450 suggests a decreasing, approximately
linear trend. One lesson which we take from this example is that when our data
consist of a single realisation of a correlated stochastic process, it is often the
case that qualitatively wrong models can give a reasonable empirical fit to the
data.
The random walk model (3.17) is an example of a general class of non-

stationary stochastic processes known as intrinsic random functions (Matheron,
1973). An intrinsic random function is a stochastic process S(x) with stationary
increments. This means that for any u ∈ IR2, the process Du(x) defined by

Du(x) = S(x)− S(x− u)

is stationary. Suppose that Var(Du) = σ2
u. Then,

1
2σ

2
u, regarded as a function

of u, is also the variogram of S(x). Hence, intrinsic random functions can be
thought of as processes for which the variogram, but not necessarily the co-
variance function, depends only on u. For the random walk process (3.17), the
variogram is V (u) = 1

2Var{S(x) − S(x − u)} = 1
2u, for u ≥ 0, whereas the

covariance function is γ(x, u) = Cov{S(x), S(x− u)} = |x− u|, which depends
on both u and x.
Examples of legitimate intrinsic variogram models include power law and

logarithmic forms. The power law model, V (u) = (u/ϕ)κ is valid for 0 < κ < 2.
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The most widely used special case is the linear variogram, V (u) = u/ϕ. The
logarithmic model,

V (u) = log(u/ϕ), (3.18)

occupies a special place in classical geostatistics because of its connection to
an empirical law discovered by De Wijs (1951, 1953). De Wijs observed that
when a sample of ore was broken into smaller pieces, the variability between
the grades of the pieces in relation to the average grade of the original sample
appeared to depend only on the ratio of the volume of the pieces to the volume of
the original, and not on the absolute volume of the original. Viewed as a model
for a variogram, (3.18) has the unattractive property that V (u) → −∞ as
u→ 0 which is incompatible with the definition of the variogram as a variance.
However, suppose that (3.18) holds for an unobserved process S∗(x), and that
we observe

S(x) =

∫
w(r)S∗(x− r)dr, (3.19)

where w(u) is a non-negative valued weighting function. As discussed in Sec-
tion 1.2.1 this corresponds to each observed measurement having a finite support
deriving from a finite spatial neighbourhood centred on the point x. Now, as in
the derivation of (3.5), write

W (t) =

∫
w(r)w(t− r)dr.

Combining (3.18) and (3.5) then gives the variogram of the regularised process
as

V (u) =

∫
W (t)[log{(t+ u)/ϕ} − log(t/ϕ)]dt

=

∫
W (t){log(t+ u)− log(t)}dt, (3.20)

which is non-negative valued for all u ≥ 0 and does not depend on ϕ. This rather
surprising result is the theoretical analogue of De Wijs’s empirical law. Besag
and Mondal (2005) establish a close theoretical link between the De Wijs pro-
cess and intrinsic autoregressive processes on a two-dimensional lattice and show
that, by making the lattice spacing sufficiently fine, the spatially discrete autore-
gressive process can give an excellent approximation to the spatially continuous
De Wijs process. The lattice formulation also brings substantial computational
benefits for large data-sets.
Intrinsic random functions embrace a wider class of models than do station-

ary random functions. With regard to spatial prediction, the main difference
between predictions obtained from intrinsic and from stationary models is that
if intrinsic models are used, the prediction at a point x is influenced by the
local behaviour of the data i.e., by the observed measurements at locations rel-
atively close to x, whereas predictions from stationary models are also affected
by global behaviour. One way to understand this is to remember that the mean
of an intrinsic process is indeterminate. As a consequence, predictions derived
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from an assumed intrinsic model tend to fluctuate around a local average. In
contrast, predictions derived from an assumed stationary model tend to revert
to the global mean of the assumed model in areas where the data are sparse.
Which of these two types of behaviour is the more natural depends on the
scientific context in which the models are being used.

3.10 Unconditional and conditional simulation

Simulation plays an important role in geostatistical practice, both in conducting
Monte Carlo experiments to gain insight into the properties of particular models
and associated statistical methods, and as a fundamental tool in conducting
geostatistical inference when the required analytical results are intractable.
The most basic simulation problem is to simulate a realisation, say Y =

(Y1, . . . , Yn), of a Gaussian model at a set of n locations xi ∈ IR2. Note firstly
that if the model for Y includes a nugget effect, with nugget variance τ2, we
can represent Y as Y = µ + S + τT where µ = E[Y ], T = (T1, .., Tn) is a set
of mutually independent N(0, 1) random variables, and the spatial signal S =
(S1, . . . , Sn) follows a zero-mean multivariate Gaussian distribution, namely
S ∼ MVN(0,Σ).

The standard method for simulating a realisation of S is to simulate an
independent random sample Z = (Z1, . . . , Zn) from the standard Gaussian
distribution, N(0, 1), and apply a linear transformation,

S = AZ, (3.21)

where A is any matrix such that AA′ = Σ. Two ways to construct A are through
Cholesky factorisation and singular value decomposition.
The Cholesky factorisation of Σ is Σ = LL′, where L is a lower-triangular ma-

trix. Hence in (3.21) we take A = L. Because A is lower triangular, this method
of simulating S can be interpreted as first simulating S1 from its marginal, uni-
variate Gaussian distribution, then successively simulating S2, . . . , Sn from the
conditional distributions of each Si given S1, . . . , Si−1, each of which is again
univariate Gaussian.
The singular value decomposition of Σ is Σ = UΛU ′, where Λ is a diago-

nal matrix whose diagonal elements λ = (λ1, . . . , λn) are the eigenvalues of Σ,
ordered from largest to smallest, whilst the columns of U contain the corre-
sponding eigenvectors, hence U ′U = I. Because Σ is positive definite, all of the
λi are positive. Hence, a second possible choice for A in (3.21) is A = UΛ

1
2 ,

where Λ
1
2 is the diagonal matrix with diagonal elements

√
λi.

Simulating realisations of the stationary Gaussian model by either of these
methods becomes difficult in practice when n is very large, because of the com-
putational burden associated with the necessary matrix operations. Typically,
to simulate a realisation of a process S(·) over a spatial region, A say, we would
approximate the spatially continuous surface S(x) by its values on a fine grid to
cover the region of interest. For this situation, Wood and Chan (1994) provide
an ingenious algorithm which uses circulant embedding in conjunction with fast
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Fourier transform methods to achieve very substantial reductions in both com-
puting time and storage requirements when the number of grid points is large;
for example, simulation on a grid of size 256 by 256 becomes computationally
straightforward.
A completely different approach is to use a Markov chain Monte Carlo method

known as Gibbs sampling (Gilks et al., 1996). Define the full conditional distri-
butions of S = (S1, . . . , Sn) as the n univariate Gaussian distributions of each Si
given all other Sj . Choose any initial set of values for S, say S0 = (S01, . . . , S0n).
Now, simulate a new set of values, S1 = (S11, . . . , S1n) successively from the
full conditionals of each Si given the new values S1j : j = 1, . . . , i − 1 and the
old values S0j : j = i+ 1, . . . , n, with the obvious interpretations for i = 1 and
i = n. This defines a single sweep of the Gibbs sampler. Re-set S0 to be the
newly simulated S1 and repeat. If we iterate this process over many sweeps,
the distribution of the resulting sequence of simulations S1 converges to the
required multivariate Gaussian.
For the models considered in this chapter, the Gibbs sampler is generally not

a sensible option because the evaluation of each full conditional distribution
requires the inversion of an (n − 1) × (n − 1) covariance matrix. However, the
method becomes very attractive if we define our models by the form of their full
conditionals, especially so if the full conditionals are sparse i.e., the full condi-
tional of each Si depends only on a small number of Sj , called the neighbours
of Si. Models of this kind are known as Gaussian Markov random fields and
are discussed in Rue and Held (2005). For general geostatistical applications,
Markov random field models have the unattractive feature that they are tied to a
specified set of locations rather than being defined in a spatially continuous way.
Hence, they cannot be used directly to make spatially continuous predictions.
However, Rue and Tjelmeland (2002) have shown how a spatially continuous
Gaussian process can be approximated by a Gaussian Markov random field on
a fine grid. Hence, a feasible strategy is to define a spatially continuous model
but use its approximating Markov random field for computation.
In the geostatistical literature, simulating a realisation of a spatial process

S(x) on a set of locations xi : i = 1, . . . , n is called unconditional simulation,
to distinguish it from conditional simulation. The latter refers to simulation of
a spatial process S(x) at locations x∗i : i = 1, . . . , N , conditional on observed
values S(xi) at locations xi : i = 1, . . . , n or, more generally, conditional on data
Y = (Y1, . . . , Yn) which are stochastically related to S(·). In the present context,
the underlying model for Y is that Yi = S(xi) + Zi, where the Zi are mutually
independent and normally distributed, Zi ∼ N(0, τ2). Conditional simulation
is used informally to investigate to what extent the observed data do or do
not identify the essential features of the underlying spatially continuous surface
S(x). It is also an essential tool in formal geostatistical inference, and as such
will arise naturally in later chapters. Here, we note only that for the Gaussian
model, the conditional distribution of the values of the process S(x) at any
set of locations, say S∗ = {S(x∗i ), .., S(x∗N )}, given the data Y , is multivariate
Gaussian with a variance matrix which does not depend on Y . Hence, both
unconditional and conditional simulation require computationally feasible ways
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of simulating from high-dimensional multivariate Gaussian distributions with
particular kinds of structured covariance matrices.

3.11 Low-rank models

A low-rank model (Hastie, 1996) for a random vector S is one whose distribu-
tional dimension is less than the dimension of S itself. To motivate this idea in
the context of geostatistical modelling, we briefly re-visit the singular value de-
composition method for simulating realisations of S when the underlying model
is a Gaussian process.
Recall that the singular value decomposition method simulates S as S = AZ

where Z is a vector of mutually independent N(0, 1) random variables and

A = UΛ
1
2 . Here, the diagonal matrix Λ contains the eigenvalues of the required

covariance matrix of S, whilst U contains the corresponding eigenvectors. If
the eigenvalues are ordered from largest to smallest, then we could obtain an
approximate simulation of S by using only the first m < n columns of A to give

S = AmZ (3.22)

where now Z consists of only m independent N(0, 1) variates (see Exercise 3.4).
The resulting S has a singular multivariate Gaussian distribution, which can be
regarded as a low-rank approximation to the target, non-singular distribution.
Because A is derived from the covariance matrix of S = {S(x1, . . . , S(xn)} its
elements are, implicitly, functions of the sampling locations xi and we could
therefore think of (3.22) as a specification of the form

S(xi) =

m∑
j=1

Zjfj(xi) : i = 1, . . . , n. (3.23)

This suggests that, rather than considering the low-rank approximation only as
a computational short-cut, we could also use it as a way of defining a model for
S(·). The general idea is to represent a spatially continuous stochastic process
S(x) as a linear combination of functions fj(x) and random coefficients Aj , so
that for any x ∈ IR2,

S(x) =

m∑
j=1

Ajfj(x). (3.24)

If the Aj follow a zero-mean multivariate Gaussian distribution with
Cov(Aj , Ak) = γjk, then S(·) is a zero-mean Gaussian process with covariance
structure given by

Cov{S(x), S(x′)} =

m∑
j=1

m∑
k=1

γjkfj(x)fk(x
′). (3.25)

In general, the covariance structure (3.25) is non-stationary. Whether or not it
has an intuitively appealing form depends on the choices made for the functions
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fj(·) and for the covariances amongst the Aj . The fk(·) would usually be chosen
to form an orthonormal basis, meaning that∫

fj(x)fk(x)dx = 1

if k = j and is zero otherwise. Typically, the coefficients Aj would then be
specified as mutually independent.
A familiar example of (3.24) in one dimension is the spectral representa-

tion of a time-series as a superposition of sine and cosine waves with mutually
independent random coefficients. For an exact representation of a time-series
S(x) : x = 1, .., n we define n functions fk(x) which correspond to n/2
sine-cosine pairs at frequencies 2πjx/n : j = 0, 1, . . . , [n/2]. The associated
coefficients are then assigned large or small variances corresponding to frequen-
cies which account for large or small proportions, respectively, of the overall
variation in the series. A low-rank approximation is obtained by setting some of
the coefficients to zero. Spectral representations can also be used in two spatial
dimensions and are discussed for example in Stein (1999).
Low-rank models for spatial processes can also be constructed using splines.

Splines (Wahba, 1990) are piece-wise polynomial functions. By choosing the
pieces to be cubics, constrained to be continuously differentiable at the joins, or
“knots” connecting successive pieces, we obtain a very flexible method for ap-
proximating any smooth function. In two spatial dimensions, the same idea can
be used to construct a flexible class of smooth surfaces by joining together lo-
cally polynomial pieces, known as thin-plate splines (Duchon, 1977). Thin-plate
spline models are discussed in Wood (2003). Kammann and Wand (2003) em-
phasise the connection between splines and linear random effect models which
is hinted at in (3.24) above. Laslett (1994) compares predictions obtained from
spline models and from more conventional geostatistical models of the kind dis-
cussed earlier in this chapter. Ruppert, Wand and Carroll (2003) discuss the
use of low-rank splines in semiparametric regression modelling.

3.12 Multivariate models

Multivariate geostatistical models are relevant when two or more different re-
sponse variables are measured at spatial locations within a continuous spatial
region. As discussed in Section 1.2.2 this situation can arise either because the
variables are all of equal scientific interest and we wish to describe their joint
spatial distribution, or because we wish to describe the conditional distribution
of a response variable of primary interest given one or more spatially referenced
covariates. When a covariate is only available at a finite set of sample locations
we may choose to treat it as a set of sampled values from an underlying stochas-
tic process. A third situation in which multivariate methods are useful is when
the variable of primary interest, Y say, is difficult or expensive to measure, but
it is easy to measure a second variable, Z, which is known to be correlated with
Y . In this situation, for efficient prediction of Y the most cost-effective design
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may be one in which a small number of measurements of Y are combined with
a large number of cheaper measurements of Z.

In the remainder of this section we describe some possible multivariate ex-
tensions to the univariate Gaussian models considered so far in this chapter.
All of the general ideas discussed for univariate processes carry over, but with
additional aspects introduced by the multivariate setting. We focus on the spec-
ification of valid models for stationary variation about a trend, including the
distinction between the observation process Y (x) and an unobserved signal
process S(x).

3.12.1 Cross-covariance, cross-correlation and cross-variogram

The covariance and correlation functions of a multivariate spatial process are
easily defined as follows. A d-dimensional spatial process is a collection of ran-
dom variables Y (x) = {Y1(x), . . . , Yd(x)}, where x ∈ IR2. Then, the covariance
function of Y (x) is a d×dmatrix-valued function Γ(x, x′), whose (j, k)th element
is

γjk(x, x
′) = Cov{Yj(x), Yk(x′)}. (3.26)

For each pair of locations (x, x′), the matrix Γ(x, x′) is symmetric i.e.,
γjk(x, x

′) = γkj(x, x
′).

When Y (x) is stationary, γjj(x, x) = Var{Yj(x)} = σ2
j does not depend on

x, and for j ̸= k, γjk(x, x
′) depends only on u = ||x − x′||. We then define the

correlation function of Y (x) as the matrix-valued function R(u) whose (j, k)th

element is ρjk(u) = γjk(u)/(σjσk). When k = j, the functions ρjj(u) are the
correlation functions of the univariate processes Yj(x) and are symmetric in
u i.e., ρjj(−u) = ρjj(u). When k ̸= j, the functions ρjk(u), called the cross-
correlation functions of Y (x), are not necessarily symmetric but must satisfy
the condition that ρjk(u) = ρkj(−u).
To define a cross-variogram for Y (x), there are at least two possibilities. The

first, and the more traditional, is

V ∗
jk(u) =

1

2
Cov[{Yj(x)− Yj(x− u)}{Yk(x)− Yk(x− u)}]. (3.27)

See, for example, Journel and Huijbregts (1978) or Chilès and Delfiner (1999).
Expanding the right-hand side of (9.2) we find that

V ∗
jk(u) = γjk(0)−

1

2
{γjk(u) + γjk(−u)}

= σjσk[1−
1

2
{ρjk(u) + ρjk(−u)}]. (3.28)

The similarity between (9.3) and the corresponding relationship between
univariate covariance, correlation and variogram functions, as discussed in
Section 3.4, is clear.
The second possibility, introduced by Cressie and Wikle (1998) and called by

them the variance-based cross-variogram, is

Vjk(u) =
1

2
Var{Yj(x)− Yk(x− u)}. (3.29)
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Expanding the right-hand side of (9.4) gives

Vjk(u) =
1

2
(σ2
j + σ2

k)− σjσkρjk(u). (3.30)

The expansion (9.5) highlights an apparent objection to (9.4), namely that it
mixes incompatible physical dimensions. However, we can overcome this by
working with standardised, and therefore dimensionless, variables. An advan-
tage of (9.4) over (9.2) is that it suggests a way of estimating the variogram
empirically which does not require the different variables to be measured at a
common set of sampling locations.
Using standardised variables reduces the two definitions of the cross-

variogram in (9.5) and (9.3) to

V ∗
jk(u) = 1− 1

2
{ρjk(u) + ρjk(−u)}

and

Vjk(u) = 1− ρjk(u),

respectively, hence

V ∗
jk(u) =

1

2
{Vjk(u) + Vjk(−u)}.

In particular, provided that we use standardised variables, we see that V ∗
jk(u) =

Vjk(u) whenever the cross-correlation function ρjk(u) is symmetric in u.

3.12.2 Bivariate signal and noise

To construct a stationary Gaussian model for bivariate data (Yij : i =
1, ..., nj , j = 1, 2) measured at locations xij we first specify a model for an unob-
served bivariate stationary Gaussian process {S(x) = (S1(x), S2(x)) : x ∈ IR2},
with bivariate mean zero, variances σ2

j = Var{Sj(x)} and correlation struc-
ture determined by three functions ρ11(u) = Corr{S1(x), S1(x − u)}, ρ22(u) =
Corr{S2(x), S2(x− u)} and ρ12(u) = Corr{S1(x), S2(x− u)}.
The simplest assumption we can make about the data Yij is that Yij = Sj(xij)

i.e., the signal at any location x can be observed without error. When the data
are subject to measurement error, the simplest assumption is that the Yij are
mutually independent given S(·) and normally distributed,

Yij ∼ N{µj(xij) + Sj(xij), τ
2
j } : i = 1, . . . , nj ; j = 1, 2. (3.31)

Under this model, each dimension of the response separately follows a univariate
Gaussian model, whilst dependence between the two response dimensions is
modelled indirectly through the structure of the unobserved process S(·). The
conditional independence assumption in (9.6) invites the interpretation that
the parameters τ2j represent the measurement error variances in each of the two
response dimensions. A less restrictive assumption than (9.6) would be to allow
the measurement errors associated with Y (x) = {Y1(x), Y2(x)} to be correlated.
This would only affect the model at locations where both of Y1(x) and Y2(x)
are measured; where only one of the Yj(x) is measured, (9.6) would still hold.
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Correlated measurement errors might be particularly appropriate if, as already
discussed in the univariate setting, we want the nugget effect to include spatial
variation on scales smaller than the smallest inter-point distance in the sampling
design.
In the case of spatially independent error terms, the mean and covariance

structure of the data, Yij , are given by

E[Yij ] = µj(xij),

Var{Yij} = τ2j + σ2
j

and, for (i, j) ̸= (i′, j′),

Cov{Yij , Yi′j′} = σjσj′ρjj′(||xij − xi′j′ ||).

Note in particular that non-zero error variances τ2j induce discontinuities at the
origin in the covariance structure of the measurement process.

3.12.3 Some simple constructions

In order to construct particular bivariate models, we need to specify explicit
forms for the two mean functions µj(x) and for the covariance structure of
S(·). With regard to the means, in practice the easiest models to handle are
those in which the means are linear functions of spatial explanatory variables,
as was also true in the univariate case. With regard to the covariance structure,
the univariate models discussed earlier are a natural starting point. However,
in extending these to the bivariate case, we need to be sure that the required
positive definiteness conditions are not violated. Note that these require that
arbitrary linear combinations of either or both of the response dimensions should
have non-negative variances. A simple way to ensure that this is the case is to
build a bivariate model explicitly from univariate components. The same holds,
with the obvious modifications, for multivariate processes of dimension d > 2.

A common-component model

One example of an explicit bivariate construction is the following. Suppose that
S∗
0 (·), S∗

1 (·) and S∗
2 (·) are independent univariate stationary Gaussian processes

with respective covariance functions γj(u) : j = 0, 1, 2. Define a bivariate process
S(·) = {S1(·), S2(·)} to have components

Sj(x) = S∗
0 (x) + S∗

j (x) : j = 1, 2.

Then, by construction, S(·) is a valid bivariate process with covariance structure

Cov{Sj(x), Sj′(x− u)} = γ0(u) + I(j = j′)γj(u)

where I(·) is the indicator function, equal to one if its logical argument is true,
zero otherwise. Note that if, as is typically the case, the covariance functions
γj(u) are non-negative valued, then this construction can only generate non-
negative cross-covariances between S1(·) and S2(·). In practice this is often the
case or, if the two variables are inversely related, can be made so by revers-
ing the sign of one of the components. The common-component construction
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extends to processes of dimension d > 2 in which all of the components Sj(x)
share an underlying common component S∗

0 (x). Note, however, that the sim-
ple device of applying a change of sign to S0(x) obviously cannot induce an
arbitrary mix of positive and negative cross-covariances. Also, as written the
construction implicitly assumes a common measurement scale for all of the com-
ponent processes. When this is not the case, the model requires an additional
d − 1 scaling parameters so that the common component S∗

0 (x) is replaced by
S∗
0j(x) = σ0jR(x) where R(x) has unit variance.

Linear combinations of independent components

Another simple construction is to begin with two, or more generally
d, independent univariate processes Uk(x) and define Sj(x) as a linear
combination,

Sj(x) =

d∑
j=1

akjUj(x),

or in vector-matrix notation,

S(x) = AU(x). (3.32)

Without loss of generality, we can assume that each process Uk(x) has unit
variance. If Uk(x) has correlation function ρk(·), it follows that the matrix-
valued covariance function of S(x) is

Γ(x, x′) = ARA′, (3.33)

where R is the diagonal matrix with diagonal entries Rkk = ρk(x− x′). In the
special case where ρk(u) = ρ(u), (9.8) reduces to Γ(x, x′) = Bρ(x− x′). This is
sometimes called the proportional covariance model (Chilès and Delfiner, 1999).
The assumption that all of the Uk(x) share a common correlation function
reduces the number of parameters in the model to manageable proportions, but
otherwise does not seem particularly natural.
Schmidt and Gelfand (2003) use a variant of (9.7) in which there is a natu-

ral ordering of the components of S(x) so that S1(x) depends on U1(x) only,
S2(x) depends on U1(x) and U2(x), and so on. Gelfand, Schmidt, Banerjee and
Sirmans (2004) extend this model to allow the non-zero elements of the Ai to
depend on location, x.

The linear model of co-regionalisation

By construction, we can also obtain valid models by adding linear combinations
of p ≥ 2 models with independent components. Hence, we can define a model
for a d-dimensional process S(x) as

S(x) =

p∑
i=1

AiU
i(x), (3.34)

where now each U i(x) = {U i1(x), . . . , U id(x)} is a set of d independent univariate
processes and Ai is a d × d matrix. In practice, models of this kind would be
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very poorly identified without some restrictions being placed beforehand on the
processes U ik(x). In the linear model of co-regionalisation, these restrictions are
that each term on the right-hand side of (9.9) is a proportional covariance model.
This again raised the question of whether the resulting savings in the number
of unknown parameters has a natural scientific interpretation or is merely a
pragmatic device.

How useful are standard classes of multivariate model?

The question is worth asking because, as the examples above illustrate, even
very simple multivariate constructions quickly lead to models with either large
numbers of parameters and consequent problems of poor identifiability, or
potentially severe restrictions on the allowable form of cross-correlation struc-
ture. A better modelling strategy than an empirical search through a richly
parameterised standard model class may be to build multivariate models by
incorporating structural assumptions suggested by the context of each specific
application; see, for example, Knorr-Held and Best (2001a), who use the com-
mon component model in an epidemiological setting where it has a natural
interpretation.

3.13 Computation

We first show how to use geoR to compute and plot standard correlation func-
tions. The function cov.spatial() has an argument cov.model which allows
the user to choose from a set of correlation families. Options include the Matérn,
powered exponential, spherical and wave families discussed earlier in this chap-
ter; a complete list can be obtained by typing help(cov.spatial). Below, we
show the commands used to produce Figure 3.2. Similar commands were used
for Figure 3.5 and Figure 3.7.

> x <- seq(0, 1, l = 101)

> plot(x, cov.spatial(x, cov.model = "mat", kappa = 0.5,

+ cov.pars = c(1, 0.25)), type = "l", xlab = "u", ylab = expression(rho(u)),

+ ylim = c(0, 1))

> lines(x, cov.spatial(x, cov.model = "mat", kappa = 1.5,

+ cov.pars = c(1, 0.16)), lty = 2)

> lines(x, cov.spatial(x, cov.model = "mat", kappa = 2.5,

+ cov.pars = c(1, 0.13)), lty = 3)

We now illustrate the use of the geoR function grf() for generating sim-
ulations of two-dimensional Gaussian processes. We encourage the reader to
experiment with different input parameters so as to obtain an intuitive un-
derstanding of the different ways in which the model parameters affect the
appearance of the simulated realisations. The arguments to grf() specify the
model and the locations for which simulated values are required. The locations
can be specified to form a regular lattice, a completely random pattern, or a
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configuration supplied explicitly as a set of (x, y) coordinates. For example, to
produce Figure 3.4 we used the following commands.

> set.seed(159)

> image(grf(100^2, grid = "reg", cov.pars = c(1, 0.25)),

+ col = gray(seq(1, 0.1, l = 51)), xlab = "", ylab = "")

> set.seed(159)

> image(grf(100^2, grid = "reg", cov.pars = c(1, 0.13),

+ cov.model = "mat", kappa = 2.5), col = gray(seq(1,

+ 0.1, l = 51)), xlab = "", ylab = "")

Using the R function set.seed() ensures that simulations are generated with
the same random number seed, hence differences between the simulated real-
isations are due only to the different values of the model parameters. In the
example above, the realisation covers n = 1002 = 10, 000 locations, whilst the
argument grid="reg" instructs the function to generate the locations in a 100
by 100 regular square lattice.
For the simulations of the anisotropic model in Figure 3.10 we used the

argument aniso.pars to specify the anisotropy angle and ratio, as follows.

> set.seed(421)

> image(grf(201^2, grid = "reg", cov.pars = c(1, 0.25),

+ aniso.pars = c(pi/3, 4)), col = gray(seq(1, 0, l = 51)),

+ xlab = "", ylab = "")

> set.seed(421)

> image(grf(201^2, grid = "reg", cov.pars = c(1, 0.25),

+ aniso.pars = c(3 * pi/4, 2)), col = gray(seq(1, 0,

+ l = 51)), xlab = "", ylab = "")

The function grf() allows the user to select from several algorithms for gen-
erating the simulated realisations, including an automatic link to the function
GaussRF() within the R package RandomFields written by Martin Schlather.
To invoke this link, the user specifies the optional argument method="RF" in
the call to the function grf(). At the time of writing, the default in the latest
version of the geoR package is to use the Choleski factorisation for n ≤ 500, and
the link to GaussRF() for n > 500. The RandomFields package is also available
at the cran website, http://cran.r-project.org .

Note also that H̊avard Rue has written very efficient code, available for
download at http://www.math.ntnu.no/∼hrue/GMRFLib, for simulation of
Gaussian processes on very large numbers of locations using an approximat-
ing Markov random field, as described in Section 3.10. Rue and Held (2005)
provide details on the methods and on the use of the software.
Figure 3.16 shows two further examples of simulations generated by grf(),

using the commands below. The first call to the function produces the simulation
shown in the left-hand panel, a realisation of a stationary Gaussian model with
mean µ = 0, variance σ2 = 1 and Matérn correlation function with κ = 1.5
and ϕ = 0.15. The simulation generates 100 values at locations distributed
completely at random over the unit square. The right panel shows simulated
values at the 52 locations of the elevation data from Example 1.1. In this case,
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Figure 3.16. Realisations of two stationary Gaussian processes on irregularly dis-
tributed sets of locations. See text for detailed specifications.

we have used a stationary Gaussian model with mean µ = 850, nugget variance
τ2 = 100, signal variance σ2 = 3500 and Matérn correlation function with
κ = 2.5 and ϕ = 0.8.

> sim1 <- grf(100, cov.pars = c(1, 0.15), cov.model = "matern",

+ kappa = 1.5)

> points(sim1)

> data(elevation)

> sim2 <- grf(grid = elevation$coords, cov.pars = c(3500,

+ 0.8), nugget = 100)

> sim2$data <- sim2$data + 850

> points(sim2)

3.14 Exercises

3.1. Consider a one-dimensional spatial process S(x) : x ∈ IR with mean µ,
variance σ2 and correlation function ρ(u) = exp(−u/ϕ). Define a new
process R(x) : x ∈ IR by the equation

R(x) = (2θ)−1

∫ x+θ

x−θ
S(u)du.

Derive the mean, variance and correlation function of R(·). Comment
briefly.
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3.2. Is the following a legitimate correlation function for a one-dimensional
spatial process S(x) : x ∈ IR?

ρ(u) =

{
1− u : 0 ≤ u ≤ 1

0 : u > 1

Give either a proof or a counter-example.

3.3. Derive a formula for the volume of the intersection of two spheres of equal
radius, ϕ, whose centres are a distance u apart. Compare the result with
the formula (3.8) for the spherical variogram and comment.

3.4. Consider the following method of simulating a realisation of a one-
dimensional spatial process on S(x) : x ∈ IR, with mean zero, variance 1
and correlation function ρ(u). Choose a set of points xi ∈ IR : i = 1, . . . , n.
Let R denote the correlation matrix of S = {S(x1), . . . , S(xn)}. Obtain
the singular value decomposition of R as R = DΛD′ where λ is a diago-
nal matrix whose non-zero entries are the eigenvalues of R, in order from
largest to smallest. Let Y = {Y1, . . . , Yn} be an independent random sam-
ple from the standard Gaussian distribution, N(0, 1). Then the simulated
realisation is

S = DΛ
1
2Y. (3.35)

Write an R function to simulate realisations using the above method for
any specified set of points xi and a range of correlation functions of your
choice. Use your function to simulate a realisation of S on (a discrete
approximation to) the unit interval (0, 1).
Now investigate how the appearance of your realisation S changes if in
(3.35) you replace the diagonal matrix Λ by a truncated form in which
you replace the last k eigenvalues by zeros.

3.5. Consider a spatial process S(·) defined by

S(x) =

∫
w(u)S∗(x− u)du

where w(u) = (2π)−1 exp(−||u||2/2) and S∗(·) is another stationary Gaus-
sian process. Derive an expression for the correlation function, ρ(u) say,
of S(·) in terms of w(·) and the correlation function, ρ∗(u) say, of S∗(·).
Give explicit expressions for ρ(u) when ρ∗(u) is of the form:

(a) pure nugget, ρ∗(u) = 1 if u = 0, zero otherwise;
(b) spherical;
(c) Gaussian.
(d) In each case, comment on the mean square continuity and differen-

tiability properties of the process S(·) in relation to its corresponding
S∗(·).
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4
Generalized linear models for geostatistical
data

4.1 General formulation

In the classical setting of independently replicated data, the generalized linear
model (GLM) as introduced by Nelder and Wedderburn (1972) provides a uni-
fying framework for regression modelling of continuous or discrete data. The
original formulation has since been extended, in various ways, to accommodate
dependent data. In this chapter we enlarge on the brief discussion of Section 1.4
to consider extensions of the classical GLM which are suitable for geostatistical
applications.
The basic ingredients of a GLM are the following:

1. responses Yi : i = 1, . . . , n are mutually independent with expectations
µi;

2. the µi are specified by h(µi) = ηi, where h(·) is a known link function and
ηi is a linear predictor, ηi = d′iβ; in this last expression, di is a vector of
explanatory variables associated with the response Yi and β is a vector of
unknown parameters;

3. the Yi follow a common distributional family, indexed by their expec-
tations, µi, and possibly by additional parameters common to all n
responses.

Working within this framework, Nelder and Wedderburn (1972) showed how
a single algorithm could be used for likelihood-based inference. This enabled the
development of a single software package, GLIM, for fitting any model within
the GLM class. The fitting algorithm was subsequently incorporated into many
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general-purpose statistical packages, including the glm() function within R.
GLM’s occupy a central place in modern applied statistics.
One of a number of ways to extend the GLM to accommodate dependent

responses is to introduce unobservable random effects into the linear predictor.
Thus, in the second part of the model specification above, ηi is modified to

ηi = d′iβ + Si

where now S = (S1, . . . , Sn) follows a zero-mean multivariate distribution. The
Si are called random effects or latent variables. Models of this kind are called
generalized linear mixed models (GLMM’s). Breslow and Clayton (1993) give
further details and a range of applications. In practice, the most common spec-
ification for S is as a multivariate Gaussian random variable with a particular
covariance structure imposed according to the practical context.
In a GLMM, the simplest assumption we could make about the Si is that

they are mutually independent, in which case the model is sometimes said to
incorporate extra-variation, or over-dispersion, relative to the corresponding
classical GLM. For example, when a Poisson log-linear model is fitted to inde-
pendent count data, it is often found that in an otherwise well-fitting model
the variance is larger than the mean, whereas the Poisson assumption implies
that they should be equal. A GLMM with mutually independent Si is one of
several ways to account for this effect, which is often called extra-variation or
over-dispersion. To model dependent data using a GLMM, we need to specify
a suitable form of dependence amongst the Si. For example, in longitudinal
studies where the Yi arise as repeated measurements taken from many different
individuals, it is usual to assume that the Si are independent between individ-
uals but correlated within individuals. The statistical methods associated with
models of this kind can exploit the independent replication between individuals
in order to check directly any assumed form for the correlation structure within
subjects, or to develop methods of analysis which are in some respects robust
to mis-specification of the correlation structure. See, for example, Diggle, Hea-
gerty, Liang and Zeger (2002), in particular their discussion of marginal models
for longitudinal data.
For geostatistical applications, we usually cannot rely on any form of inde-

pendent replication. Instead, the observed responses y = (y1, . . . , yn) must be
considered as a single realisation of an n-dimensional random variable Y . In this
setting, we shall use GLMM’s in which S equates to S = {S(x1), . . . , S(xn)}, the
values of an underlying Gaussian signal process at each of the sample locations
xi. This very natural extension of GLMM’s was investigated systematically by
Diggle et al. (1998). We shall refer to a model of this kind as a generalized
linear geostatistical model, or GLGM. This is not the only way in which we
could adapt the classical GLM for use in geostatistical applications, but it is
the approach on which we shall focus most of our attention.
The generalized linear modelling strategy is most appealing when the dis-

tributional family for the responses Yi, conditional on the random effects S in
the case of a mixed model, follows naturally from the sampling mechanism.
For this reason, two of the most widely used GLM’s are the Poisson log-linear
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model for count responses, and the logistic-linear model for binary, or more
generally binomial, responses. For geostatistical applications, the same philos-
ophy applies. In particular, we advocate the use of GLGM’s only as a way of
incorporating explicit knowledge of the sampling mechanism which generates
the data. When the need is to address empirical departure from linear Gaussian
assumptions, for example when continuous-valued measurement data exhibit a
strongly skewed distribution, our preferred initial modelling framework would
be the transformed Gaussian model as discussed in Chapter 3.
In the remainder of this chapter, we first consider the form of the theoretical

variogram for a stationary GLGM. This gives some insight into the statisti-
cal properties of this class of models, but can also be helpful for exploratory
data analysis using the empirical variogram. We then describe the two most
widely used examples of GLGM’s, namely the Poisson log-linear and the bino-
mial logistic-linear, followed by a short discussion of spatial models for survival
data. We describe some of the connections between GLGM’s and spatial point
process models, including the log-Gaussian Cox Process (Møller, Syversveen
and Waagepetersen, 1998) and a possible approach to dealing with preferen-
tially sampled geostatistical data. We end the chapter with some examples of
spatially continuous models which fall outside the GLGM class.

4.2 The approximate covariance function and variogram

The variogram is based on second-order moments, and therefore gives a very
natural way to describe the dependence structure in a Gaussian model. In non-
Gaussian settings, the variogram is a less natural summary statistic but can
still be useful as a diagnostic tool. The approximate form of the variogram for
a non-Gaussian GLGM is therefore of some interest. Here, we consider only the
stationary form of the model, in which there are no spatial trends.
We suppose that S(x) is a stationary Gaussian process with mean zero and

variance σ2, and that the observations Yi, conditional on S(·), are mutually inde-
pendent with conditional expectations µi = g(α+Si) and conditional variances
vi = v(µi). Here, Si is shorthand notation for S(xi) and g(·) is the analytic in-
verse of the link function, h(·). Then, the Y -variogram is γY (u) = E[ 12 (Yi−Yj)

2],
where u = ||xi − xj ||. Using standard conditional expectation arguments, we
have that

γY (u) =
1

2
ES [EY [(Yi − Yj)

2|S(·)]]

=
1

2
ES [{g(α+ Si)− g(α+ Sj)}2 + v(g(α+ Si)) + v(g(α+ Sj))]

=
1

2

(
ES [{g(α+ Si)− g(α+ Sj)}2] + 2ES [v(g(α+ Si))]

)
, (4.1)

where the last equality follows because the marginal distribution of S(xi) is the
same for all locations xi. The second term on the right-hand side of (4.1) is a
constant, which we write as 2τ̄2. This choice of notation emphasises that τ̄2,
obtained by averaging a conditional variance over the distribution of S(·), is
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analogous to the nugget variance in the stationary Gaussian model. To approx-
imate the first term on the right-hand-side, we use a first-order Taylor series
approximation g(α+ S) ≈ g(α) + Sg′(α), to give the result

γY (u) ≈ g′(α)2γS(u) + τ̄2. (4.2)

In other words, the variogram on the Y -scale is approximately proportional to
the variogram of the latent Gaussian process S(·), plus an intercept which rep-
resents an average nugget effect induced by the variance of the error distribution
of the model.
Note that (4.2) relies on a linear approximation to the inverse link function,

g(·). Although this leads to a helpful interpretation in terms of the effective
nugget variance, τ̄2, it may be inadequate for diagnostic analysis since the
essence of the generalized linear model family is its explicit incorporation of
a non-linear relationship between Y and S(x). The exact variogram on the Y -
scale necessarily depends on higher moments of the latent process S(·). As we
shall see in later chapters, explicit results are available in special cases.

4.3 Examples of generalised linear geostatistical models

4.3.1 The Poisson log-linear model

The Poisson log-linear model, as its name implies, is a GLM in which the link
function is the logarithm and the conditional distribution of each Yi is Pois-
son. The model is a natural candidate for spatially referenced count data like
the Rongelap data of Example 1.2, where the local mean of a Poisson count
is determined by the value of an unobserved, real-valued stochastic process;
in the Rongelap example, the unobserved process represents a spatially vary-
ing level of residual contamination. In the simplest form of the model, the Yi
are conditionally independent Poisson counts with conditional expectations µi,
where

logµi = α+ S(xi) (4.3)

and S(·) is a stationary Gaussian process with mean zero, variance σ2 and
correlation function ρ(u).

Figure 4.1 shows a simulation in which the data are observed at 2500 loca-
tions in a 50 by 50 grid. In each of the two cases shown, the contours represent
the conditional expectation surface, exp{α + S(x)}, whilst the grey-scale cor-
responds to the Poisson count, Yi, associated with the location at the centre of
each grid-square. The realisation of S(·) is the same in the two cases, and is gen-
erated from a Gaussian process with zero mean, variance σ2 = 2 and Matérn
correlation function with parameters κ = 1.5 and ϕ = 0.18. In the left-hand
panel α = 0.5 whereas in the right-hand panel α = 5. When α is small, the
Poisson variation dominates the signal and the grey-scale piece-wise constant
surface based on the counts bears only a mild resemblance to the contour rep-
resentation of the underlying conditional expectation surface. In contrast, when
α is large the grey-scale and contour surfaces are in closer correspondence.
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Figure 4.1. Simulating from the Poisson model (4.3); grey-scale shading represents the
data values on a regular grid of sampling locations, whilst the contours represents the
conditional expectation surface, with α = 0.5 on the left panel and α = 5 on the right
panel.

Note that in the Poisson model, unlike the linear Gaussian model, the con-
ditional variance of Yi given S(xi) is not a free parameter, but is constrained
to be equal to the conditional expectation of Yi. In practice, we may well en-
counter evidence of additional variability in the data, often called extra-Poisson
variation, which is not spatially structured. In this case, a natural extension to
the model is to include a nugget effect within the linear predictor. The condi-
tional distribution of the Yi is then still modelled as Poisson with conditional
expectations µi, but (4.3) is extended to

logµi = α+ S(xi) + Zi (4.4)

where S(·) is as before and the Zi are mutually independent N(0, τ2). In prin-
ciple, this extension of the model allows us to disentangle two components of
the nugget variance which were generally indistinguishable in the linear Gaus-
sian model: the Poisson variation induced by the sampling scheme, analogous
to our earlier interpretation of the nugget effect as measurement error, and a
spatially uncorrelated component analogous to the alternative interpretation of
the nugget effect as small-scale spatial variation.

4.3.2 The binomial logistic-linear model

In this model, the link function is the logit, and the responses Yi represent the
outcomes of conditionally independent Bernoulli trials with P{Yi = 1|S(·)} =
p(xi), where, in the stationary case,

log[p(xi)/{1− p(xi)}] = α+ S(xi).

The information content in data generated from this model is rather limited
unless the intensity of the sample locations is large relative to the variation
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Figure 4.2. Simulation of a binary-valued logistic-linear model. The solid line shows
the function p(x) = exp{S(x)}/[1 + exp{S(x)}], where S(·) is a stationary Gaus-
sian process. The open circles are the realised values of a binary sequence Yi with
P(Yi = 1) = p(xi) and xi equally spaced over the unit interval. The dashed line shows
predicted values using true model parameters, whilst the dotted lines show the corre-
sponding pointwise 95% prediction intervals.

in the signal process S(·). For example, Figure 4.2 shows a one-dimensional
simulation with binary responses Yi obtained at 51 locations equally spaced
along the unit interval. The intercept parameter in the linear predictor is α = 0,
and S(x) is a Gaussian process with mean zero, variance σ2 = 5 and Matérn
correlation function with κ = 1.5 and ϕ = 0.1.

In this example, we cannot expect to obtain a useful prediction of the con-
tinuous trace of S(x) using only the observed values of the binary sequence Yi.
This is confirmed by the information displayed in Figure 4.2. The minimum
mean square error predictor of p(x), indicated in Figure 4.2 by a dashed line,
shows only modest deviations from the a priori mean of p(x) relative to the
width of the pointwise 95% prediction intervals.
In practice, in a geostatistical setting the binomial model is much more useful

when the binary Yi are replaced by conditionally binomial counts with large
denominators ni. An example of this is provided by the Gambia malaria data
of Example 1.3.
As with the Poisson log-linear model, we can also extend the model to incor-

porate a spatially uncorrelated extra-binomial variance component by adding a
term Zi to the linear predictor for Yi such that the Zi are mutually independent
N(0, τ2).

4.3.3 Spatial survival analysis

Survival analysis is a very well established area of statistical methodology in
its own right. As the name implies, it is widely used in medical applications to
model the survival prognosis of patients with a potentially fatal medical condi-
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tion. The core problem of survival analysis is to build and fit regression models
for time-to-event outcomes in the presence of censoring. The most common form
of censoring is right-censoring, when some time-to-event outcomes are not ob-
served, but are known only to be greater than an observed censoring time. For
example, survival studies will usually end before all of the patients have died.
Typically, survival analysis models are specified through their hazard function,
h(t), whose intuitive interpretation is that h(t)δt is the conditional probability
that a patient will die in the interval (t, t + δt), given that they have survived
until time t. More formally, h(t) = f(t)/{1− F (t)} where f(·) and F (·) denote
the probability density and cumulative distribution function of survival time.
By far the most widely used approach to modelling h(t), at least in medical

applications, is to use a semi-parametric formulation introduced by Cox (1972).
In this approach, the hazard for the ith patient is modelled as

hi(t) = λ0(t) exp(z
′
iβ) (4.5)

where zi is a vector of explanatory variables for patient i and λ0(t) is an unspec-
ified baseline hazard function. This is known as a proportional hazards model,
because for any two patients i and j, hi(t)/hj(t) does not change over time.
Fully parametric models have also been suggested, in which case families

of distributions which could be used to model the survival time include the
gamma, Weibull and log-Gaussian. Note that (4.5) reduces to an exponential
distribution i.e., a special case of the gamma, if λ0(t) = λ, a constant.
Another key idea in survival analysis is frailty. This corresponds exactly to the

more widely used term random effects, whereby the variation in survival times
between individual patients with identical values for the explanatory variables
is greater than can be explained by the assumed distributional model. From the
perspective of generalized linear modelling, the most obvious way to incorpo-
rate frailty would be to introduce an unobserved random variable within the
exponential in (4.5), so defining a conditional hazard model,

hi(t) = λ0(t) exp(z
′
iβ + Ui), (4.6)

where the random effects Ui are an independent random sample from a distri-
bution, for example the Gaussian. Within survival analysis, it is conventional
to express frailty as a multiplicative effect on the hazard, hence (4.6) would be
re-expressed as hi(t) = λ0(t)Wi exp(z

′
iβ), and the Wi are called the frailties for

the patients in the study. The Gaussian assumption for the Ui in (4.6) therefore
corresponds, in the terminology of survival analysis, to a log-Gaussian frailty
model. A more popular choice is a gamma frailty model, in which the Wi follow
a gamma distribution. It is hard to think of any compelling scientific reason for
preferring the gamma to the log-Gaussian, or vice versa. A pragmatic reason for
preferring the gamma is that it allows a closed form expression for the uncondi-
tional hazard function. Whatever distribution is assumed, frailties are scaled so
that their expectation is one. Book-length accounts of models for survival data
include Cox and Oakes (1984) and Hougaard (2000).
In the context of this chapter, the natural way to incorporate spatial ef-

fects into a hazard model is to replace the independent random sample
U1, . . . , Un in (4.6) by a sample from an unobserved Gaussian process, hence
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{S(x1), . . . , S(xn)}, where xi denotes the location of the ith patient. To pre-
serve the interpretation of exp{S(x)} as a frailty process, we require E[S(x)] =
−0.5Var{S(x)}. This is essentially the approach taken by Li and Ryan (2002)
and by Banerjee, Wall and Carlin (2003). Li and Ryan (2002) preserve the
semi-parametric setting of (4.6) and propose a “marginal rank likelihood” for
making inferences about the regression parameters β which do not depend on
the form of the baseline hazard. Banerjee et al. (2003) use a parametric model
for the baseline hazard, in conjunction with Bayesian inference. This approach
is closer in spirit to the general theme of this chapter, in which prediction of the
unobserved, spatially varying frailties is assumed to be at least as important as
inference about regression parameters. Both of these papers assume that the
spatial resolution of the data is limited to regional level, hence they observe
(possibly censored) survival time outcomes for a number of subjects in each of
a discrete set of spatial regions which partition the study area. Henderson, Shi-
makura and Gorst (2002) take a somewhat different approach. They consider
how the widely used gamma-frailty model for independent survival outcomes
can be modified to take account of spatial variation. In the case of regional-level
spatial resolution, their individual-level frailties are conditionally independent
and gamma-distributed within regions, given a set of regional mean frailties
which are drawn from a multivariate Gaussian distribution with a spatially
structured correlation matrix. They also suggest a way of generating spatially
structured, gamma-distributed frailties at the individual level, albeit with some
restrictions on the admissible parameters of the gamma marginal distributions,
using the following construction. They assume that Z1,. . . ,Zm are independent
and identically distributed multivariate Gaussian random variables with mean
zero, variance the identity matrix and spatially structured correlation matrix,
C = [ci,i′ ]. Then, writing each vector Zj as Zj = (Z1j , . . . , Znj) they define
Wi =

∑m
j=1 Z

2
ij . Then, the marginal distribution of each Wi is χ

2
m i.e., gamma

with shape and scale parameters m/2 and 1/2, and the correlation between
Wi and Wi′ is c2i,i′ . Finally, taking Wi/m to be the frailty for the ith patient
yields a set of spatially correlated, individual-level, gamma-distributed frailties
as required.

4.4 Point process models and geostatistics

Point process models are connected to geostatistics in two quite different ways.
Firstly, the measurement process itself may be replaced by a point process. Sec-
ondly, and as discussed in Chapter 1, in some applications the set of locations
at which measurements are made should strictly be treated as a point process.
This second aspect is usually ignored by making the analysis of the data con-
ditional on the observed locations, although the conditioning is seldom made
explicit. We now consider each of these two aspects in turn.
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4.4.1 Cox processes

The essence of geostatistics, as distinct from other branches of spatial statistics,
is that we wish to make inferences about a spatially continuous phenomenon,
S = {S(x) : x ∈ IR2}, which is not directly observable. Instead, we observe
spatially discrete data, Y , which is stochastically related to S. By formulating
a stochastic model for S and Y jointly and applying Bayes’ Theorem we can,
in principle, derive the conditional distribution of S given Y , and so use the
observed data, Y , to make inferences about the unobserved phenomenon of
scientific interest, S. Until now, in all of our models we have been able to
represent Y as a vector Y = (Y1, . . . , Yn) in which each Yi is associated with a
location xi, the Yi are conditionally independent given S, and the conditional
distribution of Yi given S only depends on S(xi).

A Cox process (Cox, 1955) is a point process in which there is an unobserved,
non-negative-valued stochastic process S = {S(x) : x ∈ IR2} such that, condi-
tional on S, the observed point process is an inhomogeneous Poisson process
with spatially varying intensity S(x). Models of this kind fit into the general
geostatistical framework whereby the model specifies the distributions of an un-
observed spatial process S and of an observed set of data Y conditional on S,
except that now the conditional distribution of Y given S is that of a Poisson
process generating a random set of points xi ∈ IR2, rather than of a finite set
of measurements Yi at pre-specified locations xi. The analogy is strengthened
by the fact that the conditional Poisson process of Y given S is the point pro-
cess analogue of mutually independent Yi given S when each Yi is a measured
variable. Indeed, the Cox process can be derived as the limiting form of a geo-
statistical model of the following kind. Counts Yi are observed at lattice points
xi with lattice-spacing δ. The Yi are mutually independent Poisson-distributed
random variables conditional on a real-valued, unobserved process S, with con-
ditional expectations µi =

∫
S(x)dx, where the integral is over the square of

side δ centred on xi. The limiting form of this model as δ → 0 is a Cox process.
One of the more tractable forms of Cox process is the log-Gaussian Cox

process, in which logS is a Gaussian process (Møller et al., 1998). Brix and
Diggle (2001) developed predictive inference for a spatio-temporal version of a
log-Gaussian Cox process. Their motivation was to analyse data corresponding
to the locations and times of individual cases of an acute disease, when the goal
was to monitor temporal changes in the spatial variation of disease risk.
Diggle, Rowlingson and Su (2005) describe a specific application of this model

in a spatio-temporal setting. They develop a real-time surveillance methodology
in which the data consist of the locations and dates of all reported cases of non-
specific gastroenteric illness in the county of Hampshire, UK. In this application,
the spatio-temporal conditional intensity of the Cox process is modelled as

λ(x, t) = λ0(x)µ0(t) exp{S(x, t)}

where λ0(x) and µ0(t) are deterministic functions which describe the long-
term patterns of spatial and temporal variation in incidence, whilst S(x, t) is
a stationary Gaussian process which models spatially and temporally localised
deviations from the long-term pattern. In a surveillance context, deviations of
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this kind potentially represent early warnings of “anomalies” in the data which
may require further investigation. Hence, the statistical problem discussed in
Diggle et al. (2005) is to predict S(x, t) given the data on prevalent and inci-
dent cases, and in particular to identify places and times for which exp{S(x, t)}
exceeds a pre-declared intervention threshold.
Brix and Møller (2001) and Benes, Bodlak, Møller and Waagepetersen (2001)

also describe extensions of the log-Gaussian Cox process to spatio-temporal
settings. In Brix and Møller (2001), the model is used to describe the invasion
of a planted crop by weeds. In Benes et al. (2001), the application is to the
mapping of spatial variations in disease risk when the locations of individual
cases of the disease are known, a context very similar to the disease surveillance
setting of Diggle et al. (2005).
Inference for the log-Gaussian Cox process generally requires computationally

intensive Monte Carlo methods, whose implementation involves careful tuning.
This applies in particular to likelihood-based parameter estimation (Møller and
Waagepetersen, 2004) and to prediction of functionals of S(·) (Brix and Dig-
gle, 2001). However, the following moment-based method provides an analogue
of the variogram, which can be used for exploratory analysis and preliminary
estimation of model parameters.
We assume that S(·) is stationary, and denote by µ and γ(·) its mean and

covariance function. Then, the mean and covariance function of the intensity
surface, Λ(x) = exp{S(x)}, are λ = exp{µ + 0.5γ(0)}, which also represents
the expected number of points per unit area in the Cox process, and ϕ(u) =
exp{γ(u)}−1. Now, define the reduced second moment measure of a stationary
point process to be K(s), where λK(s) is the expected number of further points
within distance s of an arbitrary point of the process (Ripley, 1977). For the
log-Gaussian Cox process the function K(s) takes the form

K(s) = πs2 + 2πλ−2

∫ s

0

ϕ(u)udu. (4.7)

A non-parametric estimator for K(s), based on data consisting of n points xi
within a region A, is

K̂(s) =
|A|

n(n− 1)

n∑
i=1

∑
j ̸=i

w−1
ij I(uij ≤ s), (4.8)

where uij is the distance between xi and xj , I(·) is the indicator function, |A|
is the area of A and wij is the proportion of the circumference of the circle with
centre xi and radius uij which lies within A (Ripley, 1977). The estimator (4.8)
essentially uses observed averages of counts within discs centred on each data-
point xi to estimate the corresponding theoretical expected count but with an
edge-correction, represented by the wij , to adjust for the expected numbers
of unobserved events at locations outside A. Preliminary estimates of model
parameters can then be obtained by minimising a measure of the discrepancy
between theoretical and empirical K-functions.
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The K-function is widely used in the analysis of spatial point pattern data.
For book-length discussions, see Diggle (2003) or Møller and Waagepetersen
(2004).

4.4.2 Preferential sampling

A typical geostatistical data-set consists of a finite number of locations xi and
associated measurements Yi. If, in this setting, we acknowledge that both the
measurements and the locations are stochastic in nature, then a model for the
data is a joint distribution for measurements and locations, which we represent
formally as [X,Y ].
As discussed briefly in Section 1.2.3, we usually assume that sampling is non-

preferential i.e., sampling and measurement processes are independent and the
joint distribution of X and Y factorises as [X,Y ] = [X][Y ]. It follows that
a conventional geostatistical analysis, by which we mean an analysis which
conditions on X, is correctly targeted at the unconditional distribution of Y ,
and hence at the unconditional distribution of the underlying signal.
If, in contrast, sampling is preferential, then one of two possible factorisations

of the joint distribution of X and Y is as [X,Y ] = [X][Y |X]. Hence, the implicit
inferential target of a conventional geostatistical analysis, which analyses only
the data Y , is the conditional distribution [Y |X], whereas the intended target
is usually the unconditional distribution [Y ], and there is no reason in general
to suppose that the two are equal.
It does not follow from the above argument that inferences which ignore

preferential sampling will necessarily be badly misleading, but it does follow that
we should be wary of accepting them uncritically. Provided that the model for
S(x) is known, standard kriging may still give reasonable results. Suppose, for
example, that the stationary Gaussian model holds and that sampling favours
locations x for which S(x), and hence Yi = S(xi) + Zi, is atypically large.
The kriging predictor will then down-weight the individual influence of the
large values of Yi which would tend to occur in spatial concentrations within
the over-sampled regions, and up-weight the influence of small, but spatially
isolated, values of Yi.
When, as is invariably the case in practice, model parameters are unknown,

the consequences of ignoring preferential sampling are potentially more serious
because standard methods of estimation will tend to produce biased estimates,
which in turn will adversely affect the accuracy of predictive inferences concern-
ing the signal. Again assuming that relatively large values are over-sampled, this
would result in a positively biased estimate of the mean, and hence a tendency
for predictions to be too large on average.
A model-based response to the preferential sampling problem is to formulate

a suitable joint model for the response data Y and the locations X. The most
natural way to do this is through their mutual dependence on the underlying
signal process, S = {S(x) : x ∈ IR2}. For example, we might first assume
that, conditional on S, the measured values Yi at locations xi are mutually
independent, Yi ∼ N(S(xi), τ

2), as in the standard Gaussian linear model. A
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simple, if somewhat idealised, model for the preferential sampling mechanism
might then be that, conditional on S, the sampled locations X = (x1, . . . , xn)
are generated by a Poisson process with intensity λ(x) = exp{α + βS(x)}.
Positive or negative β would correspond to over-sampling of large or small
values of S(x), respectively. To complete the model specification, the simplest
assumption would be that S is a stationary Gaussian process. To emphasise
that the locations at which we observe Y are determined by the point process
X, we partition S as S = {S(X), S(X̄)} where X̄ denotes all locations which
are not points of X. Then, the joint distribution of S, X and Y can be factorised
as

[S, Y,X] = [S][X|S][Y |S(X)]. (4.9)

In most geostatistical problems, the target for inference is [S]. The predictive
distribution of S is [S|Y,X] = [S, Y,X]/[Y,X], where [Y,X] follows in principle
from (4.9) by integration,

[Y,X] =

∫
[S, Y,X]dS,

although the integral may be difficult to evaluate in practice. Note that the con-
ditional distribution [Y |S(X)] in (4.9) is not of the standard form whereby the
Yi are mutually independent, Yi ∼ N(S(xi), τ

2), because of the inter-dependence
between S and X. We contrast (4.9) with the superficially similar model

[S, Y,X] = [S][X|S][Y |S] (4.10)

where now [Y |S] is a set of independent univariate Gaussian distributions. The
model (4.10) would be appropriate if we observed a point process X and a set
of measured values Yi at pre-specified locations xi, rather than at the points of
X. This second situation is not without interest in its own right. It would arise,
for example, if X represented a set of events whose spatial distribution is of
scientific interest and were thought to depend on a spatially varying covariate
S(x) which is not directly observable everywhere but can be measured, possibly
with error, at a set of pre-specified sample locations xi : i = 1, . . . , n. A specific
example is considered by Rathbun (1996) in a study of the association between
a point process of tree locations in a forest and an incomplete set of measured
elevations.
Simulation results in Menezes (2005) confirm that when geostatistical data

are generated from the model (4.9), standard geostatistical inferences which
ignore the preferential sampling mechanism can be very misleading. Here, we
give a single example to illustrate.
We simulated the signal process on a discrete grid of 100 by 100 points in a

unit square, using a stationary Gaussian process with zero mean, unit variance,
and Matérn correlation function with parameters κ = 1.5 and ϕ = 0.2. Holding
the signal process fixed, we then took three samples of values, denoted by Y1,
Y2 and Y3, which we refer to as random, preferential and clustered, respectively.
Each sample consists of the values of the signal at a set of 100 sampling loca-
tions from the 100 by 100 grid, as follows. For Y1, the sampling locations are
an independent random sample of size 100 i.e., each of the 10,000 points in the
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Figure 4.3. Sample locations and underlying realisations of the signal process for the
example to illustrate the effects of preferential sampling. The left-hand panel shows
the random sample, the centre panel the preferential sample and the right-hand panel
the clustered sample. In each case, the grey-scale image represents the realisation of
the signal process, S(x), which was used to generate the associated measurement data.

Table 4.1. Sample statistics and parameter estimates for the three samples in the
example to illustrate the effects of preferential sampling.

Sampling statistics Model parameter estimates

Sample Mean Variance µ̂ σ̂2 ϕ̂

Random −0.13 0.42 0.2 0.86 0.21
Preferential 0.38 0.35 0.28 0.97 0.23
Clustered −0.13 0.51 0.17 0.98 0.22

grid is equally likely to be selected. For Y2, each grid-point xi has probability
of selection proportional to exp{S(xi)} where S(xi) is the value of the signal
at xi. Finally, for Y3 each point xi has probability of selection proportional to
exp{S∗(xi)} where S∗(xi) is the simulated value at xi of a second, independent
realisation of the signal process. The samples Y2 and Y3 are spatially clus-
tered to the same extent but Y3, unlike Y2, satisfies the standard geostatistical
assumption that X and Y are independent.
Figure 4.3 shows the three samples of locations xi together with the under-

lying realisation of the signal process. Note in particular that in the left-hand
and right-hand panels, the pattern of the sample locations is unrelated to the
spatial variation of the signal process.
For each of the three samples we obtained maximum likelihood estimates of

the model parameters µ, σ2 and ϕ, treating κ as known and, in the case of
Y2, ignoring the preferential nature of the sampling. Table 4.1 shows the maxi-
mum likelihood estimates together with the sample means and variances. The
preferential sampling has a pronounced effect on the sample mean, as would
be expected. In all three cases, the sample variance grossly under-estimates the
variance of the signal process. The maximum likelihood estimates give reason-
able results for all three model parameters except that, in the case of preferential
sampling, there is still some indication of the biasing effect on the estimation
of the mean.
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Table 4.2. Mean square prediction errors for the three samples in the example to
illustrate the effects of preferential sampling, using true and estimated parameter
values.

Random Preferential Clustered

True 0.0138 0.0325 0.0192
Estimated 0.0138 0.0326 0.0191

Figure 4.4. Predicted versus true values of the signal at 10,000 grid locations, using
preferentially sampled data in conjunction with true values for all model parameters.

We then used each of the three samples to predict the signal at the original
10,000 grid locations, using both true and estimated parameter values. Table 4.2
gives the resulting average squared prediction errors. The larger values for the
clustered than for the random sample illustrates that the former is a less ef-
ficient design for spatial prediction, whilst the preferential sample gives larger
values still. Note also that using true parameters does not necessarily give a
smaller averaged squared prediction error than using estimated values, because
the estimated values reflect the characteristics of the particular realisation of
the signal process. Finally, Figure 4.4 shows, for the preferential sample, a scat-
terplot of the 10,000 individual predictions against the true values of the signal,
using true values of the model parameters for the predicted values. The prefer-
ential sample does a very good job of predicting the larger values of the signal,
but is less reliable for smaller values, as a consequence of the under-sampling
of sub-regions where the signal takes relatively small values.
Models for preferential sampling can also be considered as models for marked

point processes. A marked point process is a point process, each of whose points
has an associated random variable called the mark of the point in question.
Marks may be qualitative or quantitative. In this context, it is not necessary
for the mark to exist at every point in space, only at each point of the process,
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for example the points could be the locations of individual trees in a forest and
the marks might denote the species (qualitative) or height (quantitative) of each
tree. However, the marks could also be the values, at each point, of an underlying
spatially continuous random field. In this case, the model in which the mark
process is independent of the point process is called the random field model.
The random field model for a marked point process is therefore the counterpart
of non-preferential sampling for a geostatistical model. Schlather, Ribeiro Jr
and Diggle (2004) consider methods for investigating the goodness-of-fit of the
random field model to marked point process data.

4.5 Some examples of other model constructions

We have emphasised the role of the generalised linear model because it is widely
useful in applications and is sufficiently general to introduce the main ideas of
model-based geostatistics. However, it is clearly not universally applicable. To
underline this, we give some simple examples of different model constructions,
with suggestions for further reading.

4.5.1 Scan processes

A long-established method for sampling point process data in situ is quadrat
sampling. This consists of counting the number of points of the process which
fall within a demarcated spatial sampling unit, traditionally a square. A com-
plete sample then consists of counts obtained from a series of quadrats placed
randomly or systematically over the study region (Greig-Smith, 1952). In their
original setting, quadrats would be placed at a discrete set of locations. Naus
(1965) introduced the idea of scanning a point process with a continuously
moving circular quadrat and using the maximum count as a way of testing
for clustering in the underlying point process. Let Y (x) denote the number of
points of the process which lie within a fixed distance, r say, of x. Cressie (1993;
chapter 5) called the process N(x) a scan process.
Suppose that the underlying point process is a Cox process with intensity

S(x). Then, conditional on S(·), the observed count Y (x) is Poisson-distributed
with conditional expectation

µ(x|S) =
∫
S(x− u)du,

where the integral is over a disc of radius u. This model is similar in some
respects to a Poisson generalised linear geostatisical model, but is also different
in at least one important respect, which is that observed counts cannot be
conditionally independent given S(·); in fact, any realisation of Y (x) will be
piece-wise constant. A secondary consideration is that S(x) cannot strictly be
Gaussian, as it must be non-negative valued. Also, if we take S(·) to be log-
Gaussian so as to meet the non-negative valued requirement, the log-Gaussian
distribution is not preserved when we integrate S(x) over a disc to obtain the
conditional expectation of Y (x).
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4.5.2 Random sets

A random set (Matheron, 1971a) is a partition of a spatial region A into two
sub-regions according to the presence or absence of a particular phenomenon,
so defining a binary-valued stochastic process S(x). A point process can be
considered as a countable random set, but the term is usually applied to spatially
continuous phenomena, for example a partition of a geographical area into land
and water. A widely used model is the Boolean model (Serra, 1980), in which the
random set is constructed as the union of a basic set, such as a disc, translated
to each of the points of a homogenous Poisson process.
Random sets have developed an extensive theory and methodology in their

own right. Matheron (1971a) is an early account of a theory of random sets.
Serra (1982) is a detailed account of theory and methods. A very extensive
body of work under the heading of stereology is concerned essentially with
the analysis of random sets in three spatial dimensions which are sampled using
two-dimensonal sections or one-dimensional probes (Baddeley and Vedel Jensen,
2005). For further discussion and references, see also Cressie (1993, chapter 9)
or Chilès and Delfiner (1999, section 7.8).

4.6 Computation

4.6.1 Simulating from the generalised linear model

Poisson model

Below, we give the sequence of commands for simulating from the Poisson log-
linear model as shown in Figure 4.5. We first define the object cp to contain the
coordinates of the required data locations. Next we use the function grf() to
simulate a realisation of the Gaussian process at these locations with µ = 0.5,
σ2 = 2 and Matérn correlation function with κ = 1.5, ϕ = 0.2. We then store the
Gaussian data in the object s; in Figure 4.5, these values are represented by the
grey-scale shading of the grid squares. Next, we exponentiate the realised values
of the Gaussian process to define the Poisson means. These are then passed to
the function rpois() to simulate the conditionally independent Poisson counts.
The simulated counts are indicated by the numbers shown in Figure 4.5. The
spatially discrete representation of the underlying signal S in Figure 4.5 gives an
alternative way of visualising the simulated data, instead of the superposition
of a contour plot and a grey-scale image as used in Figure 4.1.

> set.seed(371)

> cp <- expand.grid(seq(0, 1, l = 10), seq(0, 1, l = 10))

> s <- grf(grid = cp, cov.pars = c(2, 0.2), cov.model = "mat",

+ kappa = 1.5)

> image(s, col = gray(seq(1, 0.25, l = 21)))

> lambda <- exp(0.5 + s$data)

> y <- rpois(length(s$data), lambda = lambda)

> text(cp[, 1], cp[, 2], y, cex = 1.5, font = 2)
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Figure 4.5. A simulation of the Poisson log-linear model. The numbers are the Poisson
counts corresponding to locations at the centre of each grid square. The grey-scale
represents the value of the underlying Gaussian process at each location.

The simulation model can be extended in various ways. For example, to
include in the simulation non-spatial extra-Poisson variation of the kind dis-
cussed at the end of Section 4.3.1, we simply replace the command lambda <-

exp(s$data) above by

> lambda <- exp(s$data + tau * rnorm(length(s$data)))

The additional term within the exponential generates independent Gaussian
deviates with zero mean and variance τ2, which are added to the values of the
underlying Gaussian process. Similarly, to include a spatially varying mean, we
would add a regression term within the exponential.

Bernoulli model

Below, we give the code for the simulation shown in Figure 4.2. For better visu-
alisation the underlying Gaussian process is simulated at 401 locations equally
spaced in the unit interval and the logit transformation is applied at each lo-
cation to obtain the corresponding conditional probabilities. The object ind is
then used to select 51 equally spaced points, and the binary values at these
selected locations are generated using the rbinom() function.

> set.seed(34)

> locs <- seq(0, 1, l = 401)

> s <- grf(grid = cbind(locs, 1), cov.pars = c(5, 0.1),

+ cov.model = "matern", kappa = 1.5)

> p <- exp(s$data)/(1 + exp(s$data))

> ind <- seq(1, 401, by = 8)
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> y <- rbinom(p[ind], size = 1, prob = p)

> plot(locs[ind], y, xlab = "locations", ylab = "data")

> lines(locs, p)

Binomial model

The 60 numbers shown in Figure 4.6 are simulated from a model with [Y (x)|S] ∼
Bin{n, p(x)} with n = 5 and p(x) = exp{µ + S(x)}/[1 + exp{µ + S(x)}],
where S(x) is a Gaussian process with mean µ = 2 and Matérn correlation
function with κ = 1.5, ϕ = 0.15. The circles in Figure 4.6 are drawn with radii
proportional to the corresponding values of the underlying Gaussian process.
To generate this simulation we first simulate from the Gaussian model, then
logit-transform the simulated values to obtain the probabilities which we use
to simulate the binomial data. A method for the function points() plots the
Gaussian values. Finally, we use the standard R function text() to show the
simulated binomial data as numbers above each sampling location. Our purpose
in showing Figure 4.6 is not specifically to recommend this form of display, but
more to illustrate different possibilities for visualisation of spatial data. The
current example is one instance in which colour might be particularly effective,
for example by using the radius of each circle to represent the corresponding
realised value of the underlying Gaussian process and a discrete colour code for
the actual count.

> set.seed(23)

> s <- grf(60, cov.pars = c(5, 0.25))

> p <- exp(2 + s$data)/(1 + exp(2 + s$data))

> y <- rbinom(length(p), size = 5, prob = p)

> points(s)

> text(s$coords, label = y, pos = 3, offset = 0.3)

In all of these examples, it is instructive to repeat the simulations with dif-
ferent values of the model parameters so as to gain insight into how details
of the model specification do or do not affect the appearance of the simulated
realisations. Replicate simulations holding parameter values constant similarly
give useful insights into the behaviour of the models.

4.6.2 Preferential sampling

Next we show how to simulate random, preferential and clustered samples as
used in the example of Section 4.4.2. First, we simulate the signal S(x) in a grid
of 10,000 points using grf(). Next we obtain measurements Yi corresponding
to 50 points sampled at random using sample.geodata(), which are returned
as the geodata object yr. Note that there is no nugget term in this example,
hence the sampled measurements are Yi = S(xi), where xi is the ith sampled
location.
To simulate the preferential sample we make the probability that any point

k from the grid is sampled proportional to exp{bSk}, where b in the example
below is 1.2 and S$data is the simulated value of the signal at the kth grid-
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Figure 4.6. Simulated binomial data. Circles are drawn at the data locations, with
radii proportional to the corresponding values of the underlying Gaussian process.
Binomial counts are shown as numbers above the corresponding circles.

point. The sampled values Yi = S(xi) are now returned as the geodata object
yp.
Finally, to simulate a clustered sample we first generate a second, independent

realisation of the signal process, S2(x) say, and make the probability of sampling
point k from the grid proportional to exp{bS2k} with sampled measurements
in yc.

> set.seed(2391)

> S <- grf(10000, grid = "reg", cov.pars = c(1, 0.2))

> yr <- sample.geodata(S, size = 50)

> yp <- sample.geodata(S, size = 50, prob = exp(1.2 * S$data))

> S2 <- grf(10000, grid = "reg", cov.pars = c(1, 0.2))

> yc <- sample.geodata(S, size = 50, prob = exp(1.2 * S2$data))

4.7 Exercises

4.1. Investigate the consequence of using a quadratic, rather than a linear,
Taylor series approximation to the function g(·) in the derivation of an
approximate expression for the variogram of a GLGM.
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4.2. Obtain an expression for the variogram of a Poisson log-linear model in
which measurements Yi : i = 1, . . . , n at locations xi are conditionally
independent, Poisson-distributed with conditional expectations µi, where
logµi = α + S(xi) + Zi, S(·) is a mean-square continuous stationary
Gaussian process and Zi : i = 1, . . . , n are mutually independent N(0, τ2).
Compare your general result with the special case τ2 = 0 and comment.

4.3. Consider the non-spatial GLMM in which counts Yi : i = 1, . . . , n are
conditionally independent, Poisson-distributed with conditional expecta-
tions µi = exp(α+ Zi), where Zi : i = 1, . . . , n are mutually independent
N(0, τ2). Obtain the minimum mean square error predictors of the µi and
their associated prediction variances. Investigate how these quantities de-
pend on n, α and τ2. Comment on the implications for spatial prediction
using a Poisson log-linear GLGM.

4.4. Write code to simulate binomial geostatistical data with varying bino-
mial denominators at the different sample locations. Experiment with
alternative forms of visualisation for data of this kind.
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5
Classical parameter estimation

In this chapter, we discuss methods for formulating a suitable geostatistical
model and estimating its parameters. We use the description “classical” in two
different senses: firstly, as a reference to the variogram-based methods of es-
timation which are widely used in classical geostatistics as developed by the
Fontainebleau school; secondly, within mainstream statistical methodology as a
synonym for non-Bayesian. The chapter has a strong focus on the linear Gaus-
sian model. This is partly because the Gaussian model is, from our perspective,
implicit in much of classical geostatistical methodology, and partly because
model-based estimation methods are most easily implemented in the linear
Gaussian case. We discuss non-Bayesian estimation for generalized linear geosta-
tistical models in Section 5.5, indicating in particular why maximum likelihood
estimation is feasible in principle, but difficult to implement in practice.
As discussed in Chapter 2, formulating a model for a particular application

involves both spatial and non-spatial exploratory analysis. Our starting point
for the remainder of this chapter is that we have identified a candidate model
for data Yi : i = 1, . . . , n observed at spatial locations xi : i = 1, . . . , n, with a
mean structure E[Yi] = µi and whose covariance structure is to be determined.
Also, we assume that µi = µ(xi) where

µ(x) = β0 +

p∑
j=1

βjdj(x) (5.1)

and the dj(x) are spatial explanatory variables. From a model-based perspec-
tive, the mean and covariance structure together define a linear Gaussian model
for the data; from a classical geostatistical perspective the mean and covari-
ance structure define a model, but with no implication that the data follow a
Gaussian distribution.
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5.1 Trend estimation

For initial estimation of the mean parameters βj , we use an ordinary least

squares criterion, choosing estimates β̃j to minimise the quantity

RSS(β) =

n∑
i=1

(Yi − µi)
2. (5.2)

At this point, it is helpful to use standard matrix notation for the linear model.
Let Y = (Y1, . . . , Yn), β = (β1, . . . , βp) and write D for the n× (p+ 1) matrix
with an initial column of ones, and remaining columns containing the values
of the explanatory variables dj(xi) : i = 1, . . . , n. Then, the estimates β̃ which
minimise (5.2) are

β̃ = (D′D)−1D′Y. (5.3)

Assuming that the model for the mean has been correctly specified, the resulting
estimates are unbiased, irrespective of the covariance structure. If we knew the
covariance matrix of Y , say V , then a more efficient estimate would be the
generalized least squares estimate,

β̂ = (D′V −1D)−1D′V −1Y. (5.4)

The estimate β̂ is again unbiased, but also has the smallest variance amongst all
unbiased linear estimates, β∗ = AY . If we also assume that Y has a multivariate
Gaussian distribution, then β̂ is the maximum likelihood estimate.
Having obtained estimates β̃, we define the (ordinary least squares) residuals

Ri : i = 1, . . . , n as the elements of the vector

R = Y −Dβ̃. (5.5)

As discussed in Section 5.2 below, we use the residuals to identify a suitable
parametric model for the covariance structure and to obtain initial estimates of
covariance parameters. In later sections we then discuss how to refine our initial
parameter estimates for both the mean and covariance structure and to make
formal inferences.

5.2 Variograms

In Chapters 2 and 3, respectively, we introduced the empirical and theoretical
variogram. We now re-visit and extend the earlier discussion.

5.2.1 The theoretical variogram

Recall from Section 3.1, equation (3.1) that the theoretical variogram of a spatial
stochastic process is the function

V (x, x′) =
1

2
Var{S(x)− S(x′)}.
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For a stationary or intrinsic process, the variogram reduces to a function
of u = ||x − x′||. The second-moment properties of a stationary stochas-
tic process S(x) can therefore be described either by its covariance function,
γ(u) = Cov{S(x), S(x− u)}, or its variogram, V (u) = 1

2Var{S(x)− S(x− u)}.
Their equivalence is expressed by the relation V (u) = γ(0)−γ(u) = σ2{1−ρ(u)},
where σ2 = Var{S(x)} and ρ(u) = Corr{S(x), S(x− u)}.
Because the mean of a stationary process is constant, the variogram in the

stationary case can also be defined as V (u) = 1
2E[{S(x) − S(x − u)}2]. Now,

suppose that the data (xi, yi) : i = 1, . . . , n are generated by a stationary
process

Yi = S(xi) + Zi

where Zi are mutually independent, identically distributed with zero mean and
variance τ2. We define the variogram of the observation process, VY (u) say, by

VY (uij) =
1

2
E[(Yi − Yj)

2]

where uij = ||xi − xj ||. It follows that

VY (u) = τ2 + σ2{1− ρ(u)}. (5.6)

Typically, ρ(u) is a monotone decreasing function with ρ(0) = 1 and ρ(u) →
0 as u → ∞. In these circumstances, equation (5.6) neatly summarises the
essential qualities of a classical geostatistical model. The typical variogram is
a monotone increasing function with the following features. The intercept, τ2,
corresponds to the nugget variance. The asymptote, τ2 + σ2, corresponds to
the variance of the observation process Y , sometimes called the sill, which
in turn is the sum of the nugget variance and the signal variance, σ2. The
way in which the variogram increases from its intercept to its asymptote is
determined by the correlation function ρ(u), the most important features of
which are its behaviour near u = 0, which relates to the analytic smoothness
of the underlying signal process, and how quickly ρ(u) approaches zero with
increasing u, which reflects the physical extent of the spatial correlation in the
process. When ρ(u) = 0 for u greater than some finite value, this value is known
as the range of the variogram. When ρ(u) only approaches zero asymptotically
as u increases, the range is undefined. We then follow geostatistical convention
by defining the practical range as the distance u0 at which ρ(u0) = 0.05, hence
VY (u0) = τ2 + 0.95σ2. See Figure 5.1 for a schematic illustration.
The nugget variance, which in the current context equates to the intercept

of VY (u), is an important parameter for spatial prediction. As we will see in
Chapter 6, the value of τ2 affects the degree to which the predicted surface Ŝ(x)
will track the observed data Yi. In particular, setting τ2 = 0 will force spatial
predictions to interpolate the data. A decision on whether to set τ2 = 0, or to
estimate a positive value of τ2, is therefore an important one when choosing the
model family.
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Figure 5.1. Schematic representation of a typical variogram, with structural parame-
ters indicated.

5.2.2 The empirical variogram

From a data-analytic perspective, the second definition of the theoretical var-
iogram as an expectation, VY (u) = 1

2E[(Yi − Yj)
2], is important because

it implies that, under the stationarity assumption, the observed quantities
vij = 1

2 (Yi − Yj)
2 are unbiased estimates of the corresponding variogram or-

dinates, VY (uij). Note that some authors describe the variogram ordinates as
“semivariances.” The collection of pairs of distances and their corresponding
variogram ordinates (uij , vij) : j > i is called the empirical variogram of the
data (xi, Yi) : i = 1, . . . , n. The left-hand panel of Figure 5.2 shows the empiri-
cal variogram of the surface elevation data from Example 1.1 as a scatterplot.
A plot of this kind is also called a variogram cloud. The extensive scatter in
Figure 5.2 is typical, and severely limits the value of the empirical variogram as
a data-analytic tool. The theoretical explanation for this is twofold. Firstly, un-
der Gaussian modelling assumptions the marginal sampling distribution of each
variogram ordinate vij is proportional to chi-squared on 1 degree of freedom, a
highly skewed distribution with coefficient of variation

√
2 ≈ 1.4. Secondly, the

empirical variogram ordinates are necessarily correlated because the 1
2n(n− 1)

distinct ordinates vij are derived from only n observations Yi.

5.2.3 Smoothing the empirical variogram

To improve the behaviour of the empirical variogram as an estimator for the un-
derlying theoretical variogram VY (u), we need to apply some kind of smoothing.
The rationale for so doing is that VY (u) is expected to be a smoothly varying
function of u, hence averaging values of vij over suitably narrow ranges of
inter-point distances uij will reduce the variance without introducing material
amounts of bias.
When the sample design is a regular lattice, the smoothing can be achieved

without introducing any bias, simply by averaging all vij corresponding to each
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Figure 5.2. Variograms for the surface elevation data from Example 1.1: on the left the
empirical variogram, and on the right the sample variogram using bin width h = 0.5.

distinct uij . For an irregular design, we compromise between variance and bias
by averaging within declared ranges of uij . Hence, for bin width h we define
sample variogram ordinates Vk, for positive integer k, as the averages of all vij
for which the corresponding uij satisfy (k − 1)h < uij ≤ kh. Then, Vk is an
approximately unbiased estimate of VY (uk), where we adopt the convention that
uk = (k − 0.5)h, the mid-point of the corresponding interval. The exclusion of
zero from the smallest of the binned intervals is deliberate. If the sample design
includes duplicate measurements from coincident locations, the average of the
corresponding empirical variogram ordinates vij provides a direct estimate of
the nugget variance, τ2, which can then be distinguished from small-scale spatial
variation. In such cases, this estimate should be plotted as an additional point
on the sample variogram. Otherwise, the nugget variance can only be estimated
from the sample variogram by extrapolation.
The right-hand panel of Figure 5.2 shows the sample variogram of the surface

elevation data from Figure 1.1, using a bin width of h = 0.5, or 25 feet. The
first plotted ordinate, V̂ (0.5), is close to zero, suggesting that the nugget vari-
ance is small i.e., elevation is measured with negligible error. The rising curve
of sample variogram ordinates, levelling out at a distance of around u ≈ 5 (250
feet), corresponds to a positive spatial correlation decaying with distance. The
wild fluctuations in the sample variogram ordinates at large distances u are not
untypical. They arise primarily because the empirical variogram ordinates are
correlated, and the effects of this are more pronounced at relatively large dis-
tances. Also, as can be seen from the left-hand panel of Figure 5.2, the numbers
of pairs of sample locations which contribute to the sample variogram ordinates
diminish at very large distances. We therefore do not attach any particular sig-
nificance to the large drop in the sample variogram ordinates beyond u ≈ 6. For
this reason, it is sensible to limit the sample variogram calculations to distances
which are smaller than the maximum distance observed in the data. However,
we are unable to offer an objective rule for what range of distances should be
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included; anticipating the discussion below, this is one reason why we are wary
of using the sample variogram for formal inference.
More elaborate forms of smoothing of the empirical variogram are possible, for

example using kernel or spline smoothers. The superficial justification for this is
that estimating VY (u) from the empirical variogram (uij , vij) is a nonparamet-
ric regression problem. The literature on smoothing methods for nonparametric
regression is extensive. Accessible introductions include Bowman and Azzalini
(1997). Recall, however, that the 1

2n(n−1) empirical variogram ordinates are not
independent, nor do they have a common variance. For these reasons, conven-
tional guidelines for nonparametric regression methods are inappropriate. Our
view is that the sample variogram should be regarded primarily as a helpful
initial display to identify broad features of the underlying covariance structure
of the data, and also as a convenient way of obtaining initial estimates of model
parameters, but not as a formal method of parametric inference. Hence, we
would argue that subjective choice of band-width, in conjunction with a simple
smoothing method such as binning by distance intervals, is sufficient. From this
point of view, an important feature of the sample variogram of the elevation
data is that its practical range is of the same order of magnitude as the di-
mension (6.7 units or 330 feet) of the study region. This led us in Chapter 2 to
consider a non-stationary model for the data, incorporating a spatially varying
mean.

5.2.4 Exploring directional effects

If directional effects are suspected, the scalar inter-point distances uij in
the empirical variogram can be replaced by vector differences xi − xj and
the result displayed as a three-dimensional scatterplot; most modern software
environments, including R, have facilities for dynamic graphical display of three-
dimensional scatterplots. For the same reasons that the isotropic version of the
empirical variogram is an ineffective data-analytic tool, this three-dimensional
display is unlikely to reveal other than gross directional effects. However, we can
apply the same binning method as in the isotropic case, for example, partitioning
the space of vector differences into grid-cells and displaying the corresponding
average variogram ordinates as a grey-scale image or contour plot. In practice,
to achieve a useful level of detail in three-dimensional plots of this kind requires
more data than for their two-dimensional counterparts. In this connection we
again emphasise that we regard the sample variogram only as a helpful way of
displaying the data prior to formal inference.
We again use the elevation data to illustrate this method of estimation, al-

though these data are rather too sparse for a detailed exploration of directional
effects. Nevertheless, the directional sample variogram, shown in Figure 5.3 as
a contour plot, confirms that the spatial variation is substantially greater along
the north-south axis than along the east-west axis. A glance at Figure 1.1 should
convince the reader that this is a reasonable conclusion for these data. However,
attributing this effect to a directional covariance structure is only one of several
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Figure 5.3. The directional sample variogram of the surface elevation data. The contour
plot was constructed from the sample means of the empirical variogram ordinates in
square bins of unit side.

possible explanations. Another is that the underlying process has a spatially
varying mean, µ(x), as discussed in Chapter 2.

5.2.5 The interplay between trend and covariance structure

When the underlying mean function, µ(x), is not constant, empirical or sample
variograms based on the observations Yi are potentially very misleading. In this
situation, the empirical variogram wrongly attributes the variation induced by
the non-constant mean, µ(x), to large-scale covariance structure in the unob-
served process S(x). A solution is to estimate µ(x), typically by assuming either
a trend surface model or, if covariate information is available, a more general
regression model, and to convert the observations to residuals, Ri = Yi− µ̂(xi),
before calculating the empirical variogram. Of course, the properties of the
observed residuals Ri do not exactly match those of the theoretical but unob-
served residuals, Yi−µ(xi). However, their covariance structure should not differ
too much from that of the true residuals provided the number of parameters
estimated in µ̂(x) is small relative to n, the number of observations.

As an illustration, we consider a simulation in which the sample design mim-
ics that of the surface elevation data, but the simulated observations Yi are
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Figure 5.4. The sample variogram for a simulated data-set with a non-constant mean
function. The theoretical variogram is shown as a smooth curve. The dotted line is the
sample variogram based on uncorrected observations Yi. The solid line is the sample
variogram based on the true residuals, Yi−µi. The dashed line is the sample variogram
based on the estimated residuals Yi − µ̂i.

generated by a model Yi = µ(xi) + S(xi) in which µ(x) is a quadratic surface
and S(x) is a stationary Gaussian process with mean zero, variance σ2 = 1
and exponential correlation function, ρ(u) = exp(−u). Figure 5.4 compares the
theoretical variogram with sample variograms based on the observed values Yi,
the observed residuals Ri = Yi − µ̂(xi) with mean parameters estimated by
ordinary least squares, and the true residuals R∗

i = Yi−µi. The positive bias in
the variogram based on the raw data Yi arises from the non-stationary variation
induced by the quadratic trend surface. Using either observed or true residuals
produces estimates which are closer to the theoretical variogram. Note, however,
that the sample variogram based on observed residuals lies below that based
on true residuals. Because the observed residuals are defined so as to minimise
the variation about the estimated mean, we might generally expect the sample
variogram of observed residuals to exhibit negative bias. The discrepancy be-
tween observed and true residuals would be less marked in a larger data-set, and
the negative bias in the sample variogram consequently smaller. This example
illustrates how a decision on the data analyst’s part to ascribe part of the spa-
tial variation in a real data-set to a deterministic trend model can materially
affect the results obtained in any subsequent estimation of spatial correlation
structure.
When analysing real data, we have to make a subjective judgment as to

whether we should remove an empirically estimated trend before estimating
spatial correlation structure. Figure 5.5 illustrates the point using the surface
elevation data. It shows the sample variogram of observed residuals after fitting
a quadratic trend surface to the observed elevation values using ordinary least
squares. If we compare this with the sample variogram of the unadjusted data,
shown as the right-hand panel of Figure 5.2, we see a number of qualitative sim-
ilarities: an intercept close to zero, a smooth rising trend approaching a plateau
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Figure 5.5. The sample variogram of observed residuals, after fitting a quadratic trend
surface to the elevation data.

and erratic behaviour at large distances. However, the major differences are
that the plateau is reached at smaller distances than before, u ≈ 2 rather than
u ≈ 5, and its height is approximately 1000, whereas in Figure 5.2 the height of
the plateau was approximately 6000. This shows that the fitted quadratic trend
surface has accounted for approximately five-sixths of the total variation in the
unadjusted elevation values, resulting in a weaker estimated spatial correlation
structure for the residual variation than for the unadjusted elevations. For the
time being, we regard these as alternative empirical descriptions of the pattern
of spatial variation in the elevation data and make no attempt to say which, if
either, is the better model in any scientific sense.

5.3 Curve-fitting methods for estimating covariance
structure

In classical geostatistics, the variogram is used not only for exploratory pur-
poses, but also for formal parameter estimation. In general we do not favour
this approach, for reasons which we now discuss.
A possible rationale for using the variogram as the basis for parameter esti-

mation is that the empirical variogram ordinates, vij , are unbiased estimates of
the corresponding theoretical variogram ordinates, V (uij ; θ), hence estimation
of θ can be considered as an exercise in curve-fitting. In early work, the curve-
fitting was often done “by eye,” in other words by trying different values for
the model parameters and visually inspecting the fit to the sample variogram.
Although we do not advocate this as a method for parameter estimation, it can
be a good way to find reasonable initial values for estimation methods involving
numerical optimisation, which we discuss in the following sections. As discussed
in Section 5.2.2, visual inspection of the empirical variogram is rarely helpful,
and for curve-fitting by eye it is preferable to use the sample variogram.
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More objective curve-fitting methods include the use of non-linear regression
analysis, treating the empirical or sample variogram ordinate as the response
variable and inter-point distance as the corresponding explanatory variable. In
the following discussion of this more objective approach, we use the notation
(uk, vk, nk) : k = 1, . . . ,m to denote a sample variogram. In this notation,
vk represents the averaged empirical variogram ordinates over the distance-bin
with mid-point uk, and nk denotes the number of empirical variogram ordinates
which contribute to vk. The unsmoothed empirical variogram is the special case
in which all nk = 1. Rather than using the mid-point of the distance bin, a vari-
ation is to define uk as the average of the inter-point distances which fall within
the kth bin. As pointed out by a reviewer, this may be particularly appro-
priate when the empirical distribution of the inter-point distances is strongly
multi-modal.

5.3.1 Ordinary least squares

The best-known objective curve-fitting algorithm is ordinary least squares. This
estimates θ to minimise the criterion

S0(θ) =

m∑
k=1

{vk − V (uk; θ)}2. (5.7)

An improvement, which recognises the effect of the varying nk, is n-weighted
least squares. The estimation criterion is now

Sn(θ) =

m∑
k=1

nk{vk − V (uk; θ)}2. (5.8)

Note in particular that n-weighted least squares is almost equivalent to ordinary
least squares applied to the empirical variogram; the two would be exactly
equivalent if all of the uk were exact distances between sampling locations as
can be achieved, for example, with a lattice design. In practice, the efficiency
of either (5.7) or (5.8) as a method of estimation depends on the choices of m
and of the uk.

5.3.2 Weighted least squares

Further refinements of the least squares method have been proposed, in re-
sponse to the fact that the sampling variance of vk depends on the corresponding
value of the theoretical variogram, V (uk; θ), as well as on nk. Under Gaussian
modelling assumptions, each empirical variogram ordinate vij has expecta-
tion V (uij ; θ) and variance 2V (uij ; θ)

2. This observation led Cressie (1985) to
propose a V -weighted least squares estimation criterion,

SV (θ) =

m∑
k=1

nk[{vk − V (uk; θ)}/V (uk; θ)]
2. (5.9)

As shown in unpublished work by Barry, Crowder and Diggle (1997), this cor-
responds to the use of a biased estimating equation, essentially because the
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unknown parameter, θ, contributes to the weighting. To see this, we differentiate
SV (θ) with respect to each element of θ. This gives, for each j,

∂

∂θj
SV (θ) =

m∑
k=1

2nk

{
vk − V (uk; θ)

V (uk; θ)
×
(

−vk
V (uk; θ)2

)
× ∂

∂θj
V (uk; θ)

}

=

m∑
k=1

2nk

{
−v2k + vkV (uk; θ)

V (uk; θ)3
∂

∂θj
V (uk; θ)

}
.

The V -weighted least squares estimates satisfy the estimating equations
Dj(θ) = 0 for all j, where

Dj(θ) =
∂

∂θj
SV (θ).

Since vk is approximately unbiased for V (uk; θ), it follows that

E[Dj(θ)] ≈
m∑
k=1

2nk

[
− Var(vk)

V (uk; θ)3
∂

∂θj
V (uk; θ)

]
̸= 0, (5.10)

hence the estimating equations are biased. An intuitive explanation is that min-
imisation of (5.9) is equivalent to maximisation of a Gaussian likelihood but
ignoring the determinant of the variance matrix. However, Var(vk) is of order
n−1
k and for a given sample size n, the number of bins m is of order n̄−1

k where
n̄k is the average of the nk. Hence, (5.10) also suggests that in practice the
amount of bias will decrease as the nk increase. This result provides a theoreti-
cal justification for the practical guidelines given in applied geostatistics texts.
See, for example, the recommendations in Journel and Huijbreghts (1978, pp.
193–194). Theoretical calculations of the effects of increasing the nk can be
made under either of two different conditions. The first, called in-fill asymp-
totics, envisages an increasing number of sample locations within a fixed spatial
region. In contrast, increasing domain asymptotics envisages a constant density
of sample locations in a region of increasing size. Note that under in-fill asymp-
totics, we can never achieve consistent parameter estimation because in general,
observing a noise-free process S(x) throughout a continuous spatial region does
not determine its parameter values exactly. Under increasing domain asymp-
totics, we can hold a chosen set of distance-bins fixed, leading to increases in all
of the nk as the study region grows in size and consistency becomes achievable.
Nevertheless, for a given data-set, we can only increase the nk by increasing the
bin width, and this introduces a second kind of bias, which we call smoothing
bias, because the theoretical variogram varies non-linearly over the ranges of
distances included within individual bins. Miüller (1999) considered the special
case of the empirical variogram, for which the bias in the implicit estimating
equations is most pronounced, and showed that in this case the estimand when
using (5.9) is 3V (u; θ) rather than V (u; θ) itself.
An unbiased set of estimating equations could be obtained from an itera-

tively weighted least squares algorithm, as used in generalized linear modelling
(McCullagh and Nelder, 1989). The resulting set of estimating equations, also
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given in Barry et al. (1997), solves D∗
j (θ) = 0 for all j, where now

D∗
j (θ) =

m∑
i=1

nk

{
vk − V (uk; θ)

V (uk; θ)

∂

∂θj
V (uk; θ)

}
(5.11)

and E[D∗
j (θ)] ≈ 0, as required. Similar ideas have been suggested by several au-

thors, including Cressie (1985), McBratney and Webster (1986), Fedorov (1989)
and Zimmerman and Zimmerman (1991), but appear not to have been widely
used in practice.
Our first conclusion from the above discussion is that n-weighted least squares

applied to the sample variogram gives a simple and convenient method for ob-
taining initial estimates of variogram parameters. Our second conclusion is that
the more elaborately weighted criterion (5.9) is theoretically flawed, and we
cannot therefore recommend it. The use of iteratively weighted least squares
overcomes the specific theoretical objection to (5.9) by using an unbiased esti-
mating equation but, as discussed in Section 5.3.3 below, our wider conclusion
is that the variogram should be used as a graphical method of exploratory data
analysis, rather than as a vehicle for formal parameter estimation.

5.3.3 Comments on curve-fitting methods

Other curve-fitting methods have been proposed. For example, Cressie and
Hawkins (1980) suggest a criterion based on absolute differences between vk
and V (uk; θ), which is less susceptible than are least squares criteria to outly-
ing observations. Note in this context that for a sample design of n points, a
single outlier amongst the yi potentially contaminates n−1 empirical variogram
ordinates.
In our opinion, the analogy between curve-fitting methods for variogram pa-

rameter estimation and non-linear regression modelling is a poor one, because
of the inherent correlations amongst empirical variogram ordinates. One con-
sequence of this correlation is that sample variograms often appear smooth,
suggesting more precise estimation of the underlying theoretical variogram than
is in fact the case. As an illustration of this effect, Figure 5.6 shows three sample
variograms, generated from independent realisations of a Gaussian process with
theoretical variogram V (u) = 1 − exp(−u/0.25) and n = 100 sample locations
randomly distributed over a unit square region. Each of the three sample var-
iograms presents a smooth curve, but their inherent imprecision as estimates
of V (u) is clearly shown by the wide divergence amongst the three realisations.
The introduction of a more-or-less arbitrary bin width parameter, and of an up-
per limit for the range of distances to be included, are also unattractive features
of what should be an objective procedure when formal parameter estimation,
as opposed to informal exploratory analysis, is the goal.
Unless the sample design includes duplicate measurements at the same

location, estimation of the intercept from the sample variogram involves ex-
trapolation, which is always a dangerous exercise. To emphasise this, Figure 5.7
shows a sample variogram with two fitted theoretical variograms, each of which
fits the sample variogram equally well, but with very different extrapolations
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Figure 5.6. Sample variograms estimated from three independent realisations of the
same stationary Gaussian process. The theoretical variogram model is shown as a
smooth bold line.

Figure 5.7. A sample variogram (small circles) and two theoretical variograms (solid
and dashed lines) which appear to fit the data equally well.

to zero. This gives one reason for including τ2 in the model routinely. Another
is that in practice the nugget arises through a combination of measurement
error and spatial variation on scales smaller than the smallest distance between
non-coincident locations in the sample design. When fitting a parametric model
we may therefore choose to compromise between the fit at u = 0 and the fit at
small, positive values of u. But duplicate design points are still extremely help-
ful, and are necessary if we do want to preserve a formal distinction between
pure measurement error and small-scale spatial variation.
Within the model-based paradigm, variogram-based parameter estimation is

also inherently inefficient. Rather than estimate parameters directly from the
variogram, which is only one of a number of possible summaries of the data, we
prefer to declare an explicit model for the original data, (xi, yi) : i = 1, . . . , n,
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and to apply generally accepted principles of statistical estimation. This leads
us to favour estimation methods based on the likelihood function. A legitimate
concern with using likelihood-based methods is that they require additional
distributional assumptions to be made about the data generating process. In
particular, for continuous measurement data our approach will require us to
assume that a Gaussian model is appropriate, either for the original data or after
transformation. This places an increased emphasis on the need for diagnostic
checking.

5.4 Maximum likelihood estimation

5.4.1 General ideas

Maximum likelihood estimation is a widely accepted statistical method, with
well-known optimality properties in large samples. Under mild regularity
conditions (Cox and Hinkley, 1974), the maximum likelihood estimator is
asymptotically normally distributed, unbiased and fully efficient. Within the
geostatistical context, implementation of maximum likelihood estimation is only
straightforward when the data are generated by a Gaussian model. However,
and with the added flexibility provided by marginal transformations of the re-
sponse variable Y , this model is useful for many geostatistical applications in
which Y is a continuous-valued quantity. Furthermore, we emphasise that the
obstacles to implementation of maximum likelihood estimation in non-Gaussian
models are only computational ones. The large-sample optimality properties of
maximum likelihood estimation hold much more generally than in the Gaussian
setting.
For general discussions of likelihood-based methods of statistical inference,

including derivations of the results quoted above, we refer the reader to Cox
and Hinkley (1974), Azzalini (1996) or Pawitan (2001).

5.4.2 Gaussian models

We shall consider the Gaussian model with a linear specification for the spatial
trend, µ(x). This allows for the inclusion of a polynomial trend surface or, more
generally, spatially referenced covariates. Hence for µ(x) = Dβ,

Y ∼ N(Dβ, σ2R(ϕ) + τ2I) (5.12)

where D is an n × p matrix of covariates, β is the corresponding vector of
regression parameters, and R depends on a scalar or vector-valued parameter
ϕ. The log-likelihood function is

L(β, τ2, σ2, ϕ) = −0.5{n log(2π) + log{|(σ2R(ϕ) + τ2I)|} (5.13)

+(y −Dβ)T(σ2R(ϕ) + τ2I)−1(y −Dβ)},

maximisation of which yields the maximum likelihood estimates of the model
parameters.
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An algorithm for maximisation of the log-likelihood proceeds as follows.
Firstly, we parameterise to ν2 = τ2/σ2 and write V = R(ϕ) + ν2I. Given
V , the log-likelihood function is maximised at

β̂(V ) = (DTV −1D)−1DTV −1y (5.14)

and

σ̂2(V ) = n−1{y −Dβ̂(V )}TV −1{y −Dβ̂(V )}. (5.15)

Note that β̂(V ) reduces to the generalized least squares estimate (5.4) if V is
known, rather than being a function of unknown parameters.
By substituting the above expressions for β̂(V ) and σ̂2(V ) into the

log-likelihood function, we obtain a concentrated log-likelihood

L0(ν
2, ϕ) = −0.5{n log(2π) + n log σ̂2(V ) + log |V |+ n}. (5.16)

This must then be optimised numerically with respect to ϕ and ν, followed by
back substitution to obtain σ̂2 and β̂.
The practical details of the optimisation may depend on the particular family

under consideration. For example, when using the Matérn correlation function,
our experience has been that the shape parameter κ is often poorly identified.
Our preference is therefore to choose the value of κ from a discrete set, for
example {0.5, 1.5, 2.5}, to cover different degrees of mean-square differentiability
of the underlying signal process, rather than attempting to optimise over all
positive values of κ.

Note also that different parameterisations of V may affect the convergence of
the numerical optimisation. In particular, as discussed in Chapter 3 our stan-
dard parameterisation of the Matérn and powered exponential families leads to
a natural interpretation as a scale parameter ϕ and a shape parameter κ, but
the two parameters are not orthogonal in their effects on the induced covariance
structure. As a consequence, neither are they orthogonal in the statistical sense;
the maximum likelihood estimators for ϕ and κ tend to be strongly correlated.
As discussed above, one response to this is to consider only a small number
of candidate values for κ, corresponding to qualitatively different smoothness
properties of the signal process. Another is to use the re-parameterisation sug-
gested by Handcock and Wallis (1994), in which ϕ is replaced by α = 2κ0.5ϕ.
Zhang (2004) investigates the re-parameterisation question in detail, and shows
that difficulties can also arise with respect to the signal variance, σ2. Zhang’s
results demonstrate that, in a Matérn model with parameters σ2, ϕ and known
κ = 0.5, the ratio σ2/ϕ is much more stably estimated than either σ2 or ϕ
themselves.
Re-parameterisation affects not only the performance of numerical optimisa-

tion algorithms, but also the adequacy of standard asymptotic approximations
to the sampling distributions of maximum likelihood estimates. In personal
communication, Zhang has suggested that better agreement between the finite-
sample properties of maximum likelihood estimators and their asymptotic
approximations is obtained by using a re-parameterisation to θ1 = log(σ2/ϕ2κ)
and θ2 = log(ϕ2κ), again treating κ as known. Our general experience has been
that quadratic approximations to the log-likelihood surface are often poor, and
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standard errors derived by inverting a numerically estimated Hessian matrix
can be unreliable. Also, we have found that, for example, estimating all three
parameters in the Matérn model is very difficult because the parameters are
poorly identified, leading to ridges or plateaus in the log-likelihood surface.
Warnes and Ripley (1987) show an example of this phenomenon; see also the
discussion in Stein (1999, pp. 172–173). For these reasons, we prefer to examine
the behaviour of the log-likelihood surface by profiling, as we now describe.

5.4.3 Profile likelihood

In principle, the variability of maximum likelihood estimates can be investigated
by inspection of the log-likelihood surface. However, the typical dimension of
this surface does not allow direct inspection.
Another generic likelihood-based idea which is useful in this situation is that

of profile likelihood. Suppose, in general, that we have a model with parameters
(α,ψ) and denote its likelihood by L(α,ψ). We define the profile log-likelihood
for α by

Lp(α) = L(α, ψ̂(α)) = max
ψ

(L(α,ψ)).

In other words, we consider how the likelihood varies with respect to α when,
for each value of α, we assign to ψ the value which maximises the log-likelihood
with α held fixed. The profile log-likelihood allows us to inspect a likelihood
surface for α, which is of lower dimension than the full likelihood surface. It
can also be used to calculate approximate confidence intervals for individual
parameters, exactly as in the case of the ordinary log-likelihood for a single
parameter model (Cox and Hinkley, 1974). Note that the concentrated log-
likelihood (5.16), which we introduced as a computational device for maximum
likelihood estimation, can now be seen to be the profile log-likelihood surface
for (ν2, ϕ) in the model (5.12).

5.4.4 Application to the surface elevation data

We now apply the method of maximum likelihood to the surface elevation data.
We adopt the Matérn family of correlation functions, and consider candidate
values κ = 0.5, 1.5 and 2.5 for the shape parameter. We place no constraint on
τ2, although the context in which these data arise suggests that τ2 should be
relatively small.
We first fit the model under the assumption that the mean is constant. The

left-hand panel of Figure 5.8 shows the resulting fitted variograms for each of
κ = 0.5, 1.5 and 2.5, whilst the upper half of Table 5.1 gives the corresponding
parameter estimates and maximised log-likelihoods. Visual inspection of Fig-
ure 5.8 and comparison of the maximised log-likelihoods suggest that κ = 0.5
gives a poor fit, whereas the fits for κ = 1.5 and 2.5 are comparable. Note in
particular that the likelihood criterion leads to an estimated theoretical vari-
ogram which gives a good visual fit to the sample variogram at small distances
u, but a less good fit at large distances. This illustrates how the likelihood cri-
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Table 5.1. Parameter estimates for the surface elevation data for models with constant
mean and a linear trend on the coordinates.

Model with constant mean

Model µ̂ σ̂2 ϕ̂ τ̂2 logL

κ = 0.5 863.71 4087.6 6.12 0 −244.6
κ = 1.5 848.32 3510.1 1.2 48.16 −242.1
κ = 2.5 844.63 3206.9 0.74 70.82 −242.33

Model with linear trend

Model β̂0 β̂1 β̂2 σ̂2 ϕ̂ τ̂2 logL
κ = 0.5 919.1 −5.58 −15.52 1731.8 2.49 0 −242.71
κ = 1.5 912.49 −4.99 −16.46 1693.1 0.81 34.9 −240.08
κ = 2.5 912.14 −4.81 −17.11 1595.1 0.54 54.72 −239.75

Figure 5.8. Comparison between the sample variogram of the elevation data and
Matérn models fitted by maximum likelihood. The solid line corresponds to fits using
κ = 2.5, the dashed line to κ = 1.5 and the dotted line to κ = 0.5. Circles correspond
to the sample variogram. The left-hand panel shows fits for the model with constant
mean, the right-hand panel for the model including a linear trend surface.

terion automatically takes account of the fact that sample variogram ordinates
become less precise as u increases, and discounts their influence accordingly.
With κ = 1.5, the maximum likelihood estimates of the remaining covariance
parameters are τ̂2 = 48.16, σ̂2 = 3510.1, and ϕ̂ = 1.2 whilst the maximum
likelihood estimate of the constant mean is µ̂ = 848.32. Note that τ̂2 is very
much smaller than σ̂2, consistent with our intuition that surface elevations can
be measured with relatively small error, whilst the value of ϕ̂ indicates that the
practical range is approximately u = 5.7, and that the spatial correlation has
decayed essentially to zero at distances greater than about 8 units. The exact
value of the fitted correlation at u = 8 is 0.01.
We now re-fit the model, but including a linear trend surface to describe a

spatially varying mean, µ(x). The lower half of Table 5.1 gives the parameter
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estimates and maximised log-likelihoods. The right-hand panel of Figure 5.8
compares the three fitted variograms with the sample variogram of the residuals
from the fitted trend surface; note that the sample variogram shown here differs
somewhat from the sample variogram shown previously as Figure 5.5, which was
based on ordinary least squares residuals from a quadratic trend surface.
Both inspection of the fitted variograms and comparison of maximised log-

likelihoods again lead to the conclusion that the fits for κ = 1.5 and 2.5 are
similar to each other, and qualitatively better than the fit obtained with κ = 0.5.
We choose κ = 1.5 to enable a direct comparison with the results obtained under
the assumption of a constant mean, although the likelihood criterion marginally
favours κ = 2.5. Maximum likelihood estimates of the covariance parameters
when κ = 1.5 are τ̂2 =34.9, σ̂2 =1693.13, and ϕ̂ =0.81. The most striking
difference between these results and those obtained under the assumption of
a constant mean is the large reduction in the estimate of σ2. This arises be-
cause the trend surface is able to explain a substantial proportion of the spatial
variation in observed elevations.
The estimated nugget variance, τ̂2, is again very small by comparison with σ̂2.

Finally, the estimate ϕ̂ indicates that the practical range is now approximately
3.8 and the spatial correlation has decayed essentially to zero by a distance
of approximately 5 units (the exact value of the fitted correlation at u = 5 is
0.015), somewhat less than for the analysis under the assumption of a constant
mean, and again reflecting the fact that the trend surface now accounts for a
substantial proportion of the spatial variation in the data.

5.4.5 Restricted maximum likelihood estimation for the Gaussian
linear model

A popular variant of maximum likelihood estimation is restricted maximum
likelihood estimation, or REML. This method of estimation was introduced by
Patterson and Thompson (1971) in the context of variance components estima-
tion in designed experiments, for example in animal breeding experiments where
the goal is to partition the total variation in a quantitative trait of interest into
its genetic and environmental components. In this setting, the small-sample bias
of maximum likelihood estimation can be substantial.
Under the assumed model for E[Y ] = Dβ, we can transform the data linearly

to Y ∗ = AY such that the distribution of Y ∗ does not depend on β. Then, the
REML principle is to estimate the parameters θ = (ν2, σ2, ϕ), which determine
the covariance structure of the data, by maximum likelihood applied to the
transformed data Y ∗. We can always find a suitable matrix A without knowing
the true values of β or θ. For example, the projection to ordinary least squares
residuals,

A = I −D(DTD)−1DT,

has the required property.
Because Y ∗ is a linear transformation of Y , it retains a multivariate Gaus-

sian distribution. However, the constraint imposed by the requirement that the
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distribution of Y ∗ must not depend on β reduces the effective dimensionality
of Y ∗ from n to n− p, where p is the number of elements of β.
The REML estimator for θ is computed by maximising the profile likelihood

for θ based on the transformed data Y ∗. In fact, this can be written in terms
of the original data Y as

L∗(θ) = −0.5{n log(2π) + log |σ2V |+ log |DT{σ2V }−1D|
+(y −Dβ̃)T {σ2V }−1(y −Dβ̃)},

where σ2V is the variance matrix of Y and β̃ = β̂(V ) denotes the maximum
likelihood estimator for β for a given value of θ, as given by (5.14). Note that
the expression for L∗(θ) includes an extra determinant term by comparison
with the ordinary log-likelihood given by (5.13), and that the matrix A does
not appear explicitly i.e., the REML estimate does not depend on the choice of
A. The explanation for this is that the condition on A requires it to define a
projection of y onto the sub-space of dimension n−p orthogonal to the sub-space
of dimension p spanned by the assumed model for the mean response. Different
choices of A then correspond to different coordinate systems within the same
sub-space, and maximum likelihood estimation is invariant with respect to the
choice of coordinates.
Some early references to REML estimation in the geostatistical context are

Kitanidis (1983) and Zimmerman (1989). In general, REML leads to less biased
estimators for variance parameters in small samples. For example, the elemen-
tary unbiased sample variance, s2 = (n − 1)−1

∑n
i=1(yi − ȳ)2, is the REML

estimator for the variance in a model with constant mean and independent
residuals. Note that L∗(θ) depends on D, and therefore on a correct specifica-
tion of the model for µ(x). For designed experiments, the specification of the
mean µ(x) is usually not problematic. However, in the geostatistical setting the
specification of the mean µ(x) is often a pragmatic choice. Although REML is
widely recommended for geostatistical models, our experience has been that it
is more sensitive than ML to the chosen model for µ(x).
Harville (1974) showed that REML estimation can also be given a Bayesian

interpretation, in the sense that projection of the data onto the residual space
is equivalent to ignoring prior information about the mean parameters, β, when
making inferences about the covariance parameters, θ.

5.4.6 Trans-Gaussian models

We now consider the transformed Gaussian model in which the transforma-
tion is chosen within the Box-Cox family (3.12). We use the word “chosen”
rather than “estimated” because of the special role played by the transfor-
mation parameter, and the fact that in practice we do not necessarily use
formal inferential methods to select a particular transformation. In this sec-
tion, we denote by Y = (Y1, . . . , Yn) the original response vector, and by
Y ∗ = (Y ∗

1 , ..., Y
∗
n ) the transformed response. The expectation of Y ∗ is speci-

fied by a linear model, µ = Dβ, whilst the variance matrix of Y ∗ is written as



5.4. Maximum likelihood estimation 117

σ2V (ϕ, ν2) = σ2{R(ϕ) + ν2I}, where ν2 = τ2/σ2 is the noise-to-signal variance
ratio. The log-likelihood including the transformation parameter is

L(β, σ2, ϕ, ν2, λ) = (λ− 1)

n∑
i=1

log yi − 0.5{n log(2π) + log |σ2V (ϕ, ν2)|

+(y∗ −Dβ)T{σ2V (ϕ, ν2)}−1(y∗ −Dβ)}, (5.17)

in which the first term arises from the Jacobian of the transformation. Note
that (5.17) breaks down if any of the yi are less than or equal to zero. If zeros
occur only because small positive values are rounded down, a simple solution
is to impute non-zero values within the rounding range. If genuine zeros are a
feature of the data, in the sense that the distribution of Y has a probability
mass at zero, the model is strictly inappropriate.
As described in Section 5.4.2, we can obtain explicit estimators for β and σ2

given ϕ, ν2 and λ. Full maximum likelihood estimation then requires numerical
maximisation with respect to ϕ, ν2 and λ jointly. Our preferred method of im-
plementation is first to examine the profile log-likelihood for λ, maximising with
respect to all remaining model parameters, and to choose an estimate λ̃ from
amongst a small number of readily interpretable values. These would usually
include λ = 1 (no transformation), λ = 0.5 (square-root), λ = 0 (logarithm) and
λ = −1 (reciprocal), but might extend to other rational fractions. If the sole aim
of the analysis is empirical prediction of an underlying continuous spatial sur-
face, we might allow any real value of λ. However, our experience is that in most
applications, this can be a serious impediment to the scientific interpretation,
and hence acceptability, of the statistical analysis. Note also that the profile
likelihood can be used to construct an approximate confidence interval for λ,
by collecting all values of λ whose associated log-profile-likelihoods lie within
one-half the corresponding critical value of the χ2

1 distribution. Our experience
has been that only rarely will the resulting interval unequivocally exclude all of
our “readily interpretable” values of λ.
Constructing the profile likelihood for λ is computationally demanding for

large data-sets. However, most of the information about λ derives from the
marginal distribution of the response variable. Because of this, a simple and
effective strategy if we require only a point estimate of λ is to maximise the
likelihood under the (false) assumption that the Yi are mutually independent,

L0(β, σ
2, λ) = (λ− 1)

n∑
i=1

log yi − 0.5{n log(2π) + n log |σ2| −
n∑
i=1

(y∗i − β)2/σ2}.

5.4.7 Analysis of Swiss rainfall data

Figure 5.9 shows 467 locations in Switzerland where daily rainfall measurements
are taken on 8 May 1986. The resulting data-set of rainfall measurements for
8 May 1986 was used in the project Spatial Interpolation Comparison 97; see
Dubois (1998) for a detailed description of the data and project. Observed
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Figure 5.9. Swiss rainfall data. Sampling locations are shown as circles, with the
radius of each circle proportional to the corresponding measured rainfall on 8 May
1986. Distances are in kilometres.

rainfall values yi are recorded as integers, where the unit of measurement is
1/10 mm. There are five locations where the observed value is equal to zero.
A physically natural model for rainfall would need to take account of known,

large-scale meteorological effects, and to include a binary process to model
whether or not there is rain, together with a positive-valued process to model the
level of rain conditional on it being non-zero. Our purpose here is primarily to
illustrate the implementation of the transformed Gaussian model using a well-
known data-set. For this reason, we adopt the pragmatic strategy of replacing
each zero by the value 0.5. Because only 5 out of 467 responses are affected,
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Figure 5.10. Swiss rainfall data. Profile likelihoods for λ, holding the Matérn shape
parameter κ fixed. The left panel has κ = 0.5, the middle panel κ = 1, the right
panel κ = 2. The two horizontal lines on each plot define approximate 90% and
95% confidence intervals for λ, based on the asymptotic 1

2
χ2(1)-distribution of the

log-likelihood ratio.

the practical effect of this is small, and using other imputed values smaller
than 1 had a negligible impact on the results. We therefore assume that the
observed rainfall levels, y = (y1, . . . , y467), form a realisation of the transformed
Gaussian model with Matérn correlation function, transformation parameter λ
to be chosen within the Box-Cox class (3.12), and a constant mean response, µ.
As described above, we first focus on the estimation of the transformation

parameter λ. When the Matérn shape parameter κ is fixed at each of the val-
ues κ = 0.5, 1 and 2, the maximum likelihood estimates of λ are λ̂ = 0.514,
0.508 and 0.508, respectively. The corresponding maximised values of the log-
likelihood are −2464.25, −2462.41 and −2464.16. As anticipated, λ̂ shows very
little change in response to changes in κ. For comparison, the estimate of λ
obtained by maximising the simpler criterion (5.18), in which we ignore the
spatial correlation structure of the model, is λ̃ = 0.537.
Figure 5.10 shows the profile log-likelihood for λ, holding κ fixed at each of

κ = 0.5, 1 and 2 and maximising with respect to the remaining model param-
eters, σ2, ϕ and ν2. In each case, neither the un-transformed (λ = 1) nor the
log-transformed (λ = 0) model fits the data well, whereas a square-root trans-
formation (λ = 0.5) almost maximises the likelihood, and lies well within a
likelihood-based 90% confidence interval for λ. We therefore perform maximum
likelihood estimation for the remaining model parameters with λ held fixed at
0.5. The resulting estimates are shown in Table 5.2, together with corresponding
values of the maximised log-likelihood.
The final column of Table 5.2 shows that κ = 1 gives a slightly better fit to

the data than either κ = 0.5 or κ = 2; the differences between log-likelihoods are
1.87 and 1.75 respectively, both of which lie between the 5% and 10% critical
values for a likelihood ratio test.
Table 5.2 also shows that τ̂2 increases with κ, because an increase in the

assumed smoothness of the Gaussian field (as measured by its mean-square
differentiability) is compensated by a corresponding increase in the estimated
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Table 5.2. Swiss rainfall data. Maximum likelihood estimates and maximised values
of the log-likelihood, holding the transformation parameter fixed at λ = 0.5 and the
Matérn shape parameter κ taking values κ = 0.5, 1.0 and 2.0.

κ µ̂ σ̂2 ϕ̂ τ̂2 log L̂

0.5 18.36 118.82 87.97 2.48 -2464.315
1 20.13 105.06 35.79 6.92 -2462.438
2 21.36 88.58 17.73 8.72 -2464.185

Figure 5.11. Swiss rainfall data. Profile log-likelihoods for covariance parameters σ2

(left panel), ϕ (middle panel) and τ2 (right panel), when κ = 1 and λ = 0.5. The
two horizontal lines on each plot define approximate 90% and 95% percent confidence
intervals for λ, based on the asymptotic 1

2
χ2(1)-distribution of the log-likelihood ratio.

nugget variance, τ̂2. Notice also the non-orthogonality between κ and ϕ; as κ
increases, ϕ̂ decreases. This again illustrates a general feature of the Matérn
model, namely that interpretation of ϕ cannot be made independently of κ.
Figure 5.11 shows the profile log-likelihoods for each of the parameters σ2, ϕ

and τ2 = σ2ν2 when κ = 1. The profiles indicate the considerable uncertainty
with which these parameters, but in particular σ2 and ϕ, are estimated despite
the relatively large size of the data-set. Note also that the profile log-likelihoods
for σ2 and ϕ are clearly asymmetric, suggesting that their sampling distributions
may be markedly non-Gaussian.
Figure 5.12 compares the sample semivariogram of the square-root trans-

formed data with the fitted theoretical variogram. The fit is good, at least for
small distances where the sample variogram has relatively high precision. This
again illustrates how the likelihood discounts the potentially wayward influence
of empirical variogram ordinates at large inter-point distances.

5.4.8 Analysis of soil calcium data

Consider now the calcium content variable in the soil data-set described in
Example 1.4. Contextual information on soil usage, together with exploratory
analysis of these data, suggests the need for a spatially varying model for the
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Figure 5.12. Swiss rainfall data. Sample variogram of square-root transformed data
(dot-dashed line), compared with fitted theoretical variogram (solid line).

Table 5.3. Number of parameters and maximised log-likelihoods for the models fitted
to the Calcium data-set.

Model Parameters 2 logL

M1 4 -1265.36
M2 6 -1258.65
M3 7 -1258.12
M4 8 -1255.56
M5 9 -1255.46

mean, which we now investigate further. The potential covariates are: the soil
type (as delineated by the three sub-areas within the study region); elevation;
and the spatial coordinates themselves. We codify different model-specifications
for the mean as follows:

M1: constant

M2: soil type

M3: soil type and elevation

M4: soil type and a linear trend on the coordinates

M5: soil type, elevation and a linear trend on the coordinates

We assume a Matérn model with κ = 0.5 (exponential) for the correlation
function. Models with κ = 1.5 or 2.5 did not improve the fit of the model to the
data. Table 5.3 gives the maximised log-likelihoods of the five candidate models
for the mean response, which have 3 covariance parameters (σ2, τ2, ϕ) and 1, 3,
4, 5 and 6 mean parameters, respectively.
We first included soil type in the model because previous managements

practices are expected to have a direct effect on the calcium content.
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Figure 5.13. Diagnostic for the soil data with the sample variogram and envelopes
obtained by simulating from the fitted model.

For model choice we can use the log-likelihood-ratio criterion to compare
nested models. For these data, in accordance with the results of our exploratory
analysis, the log-likelihood-ratio criterion favours a model with different means
for the three sub-areas. Neither elevation nor a linear trend surface gave
significant improvements in the maximised log-likelihood.
For the chosen model, the estimates of the mean parameters are β̂ =

(39.71, 47.75, 53.52), corresponding to the estimated mean values in each of the
three sub-areas. The estimates of the three covariance parameters are σ̂2 = 98.7,
ϕ̂ = 72.61 and τ̂2 = 3.26.

Figure 5.13 illustrates a variogram-based diagnostic for the fitted model. It
shows the variogram obtained using the estimated stochastic components of the
fitted model i.e., Y − Dβ̂ where Y is the measured calcium, D is the matrix
whose columns consist of dummy variables identifying the three sub-areas and β̂,
as above, is the estimated mean for each of the three sub-areas. This variogram
is compared with simulation envelopes obtained by repeatedly simulating from
the fitted model at the data locations. Notice the asymmetry of the envelope
relative to the data-based variogram and, more particularly, the width of the
envelope. This example underlines the difficulty of discriminating empirically
between different members of the Matérn family for data-sets of this size.

5.5 Parameter estimation for generalized linear
geostatistical models

The application of likelihood-based methods to non-Gaussian generalized lin-
ear geostatistical models is hampered by computational difficulties, which
arise because of the high dimensionality of the unobserved random vector
S = {S(x1), . . . , S(xn)}.
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In a generalized linear mixed model, the likelihood function has a simple, ex-
plicit form conditional on the values of a vector of unobserved random variables,
S, which are usually called random effects. This simplicity is a consequence of
the key assumption that the responses, Y = (Y1, . . . , Yn), are conditionally in-
dependent given S. Let θ denote parameters which determine the conditional
distribution of Y given S, and write fi(yi;S, θ) for the conditional distribution
of Yi given S and θ. Then, the conditional likelihood for θ were S to be observed
is

L(θ|S) =
n∏
i=1

fi(yi|S, θ). (5.18)

Now, let g(S;ϕ) denote the joint distribution of S, with parameter ϕ. Then, from
a classical perspective the likelihood function based on the observed random
variables Y is obtained by marginalising with respect to the unobserved random
variables S, leading to the mixed-model likelihood,

L(θ, ϕ) =

∫
S

n∏
i=1

fi(yi|S, θ)g(s|ϕ)ds. (5.19)

If the Si are mutually independent, the multiple integral in (5.19) reduces to
a product of one-dimensional integrals, and numerical evaluation of the mixed-
model likelihood is relatively straightforward. The difficulty in applying (5.19)
in the geostatistical setting is that the Si = S(xi) are dependent, the integral
in (5.19) therefore has the same dimension as Y and conventional methods
of numerical integration fail. Breslow and Clayton (1993) used approximate
methods of integration. However, the accuracy of these approximate methods
in high-dimensional problems is unclear, and they are especially problematic
when, as is typical of geostatistical problems, the variability in the distribution
of S is large relative to the variability in the conditional distribution of Y given
S.

5.5.1 Monte Carlo maximum likelihood

Developments in Monte Carlo methods, including key contributions by Geyer
and Thompson (1992) and Geyer (1994), provide ways to construct better ap-
proximations to the log-likelihood function of generalised linear mixed models
(GLMM’s). Zhang (2002) develops a Monte Carlo version of the EM algorithm
for maximum likelihood estimation of parameters of generalised linear geosta-
tistical models (GLGM’s), using a Metropolis-Hastings algorithm to produce
samples of the random effects at the sample sites. Christensen (2004) describes
a more general approach, constructing Monte Carlo approximations to the like-
lihood or profile likelihood functions by means of an MCMC algorithm for
simulating from the conditional distribution of the random effects.
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The integral which defines the likelihood function (5.19) can be expressed as
an expectation with respect to the distribution of S, namely

L(θ, ϕ) = E

[
n∏
i=1

fi(yi|S, θ)

]
. (5.20)

Hence, in principle, for any set of values of (θ, ϕ) we can simulate repeatedly from
the corresponding multivariate Gaussian distribution of S and approximate the
expectation by a Monte Carlo average,

LMC(θ, ϕ) = K−1
K∑
k=1

[
n∏
i=1

fi(yi|Sk, θ)

]
, (5.21)

where Sk denotes the kth simulated realisation of the vector S. In practice,
using an independent random sample of Sk to evaluate (5.21) is likely to prove
hopelessly inefficient, and some kind of variance reduction technique is needed.
Chapter 5 of Ripley (1987) gives a general discussion of variance reduction
techniques. Section 3.15.1 of Geyer (1994) shows how Markov chain Monte
Carlo can be used, treating S as missing data.
Despite these advances in Monte Carlo methods, there is still a place for com-

putationally simpler approaches which can be used routinely, especially when a
range of candidate models are under consideration. We therefore describe briefly
two alternative approaches which have been proposed for parameter estimation
within generalized linear mixed models.

5.5.2 Hierarchical likelihood

Lee and Nelder (1996) propose an unconventional definition of the likelihood
function for generalized linear mixed models which they call hierarchical like-
lihood. Using the same model and notation as in (5.19), their hierarchical
log-likelihood function is

L(θ, ϕ) =

n∑
i=1

log fi(yi|S, θ) + log g(s|ϕ). (5.22)

Point estimates of θ, ϕ and of the unobserved values of S, are then obtained by
maximisation of 5.22. This is equivalent to a form of penalised log-likelihood
in which different values of S are penalized according to the likelihood of their
occurrence under the assumed distribution for S. Maximisation of the hierar-
chical likelihood avoids the need to integrate with respect to the distribution of
S. Although the published discussion of Lee and Nelder (1996) raised doubts
about the properties of the associated inferences in the high-dimensional case
which always applies in the geostatistical setting, Lee and Nelder (2001) show
how the method can be used in conjunction with careful diagnostic checking to
identify and fit a wide range of models for spatially or temporally correlated
data.
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5.5.3 Generalized estimating equations

One way round the computational difficulties discussed above is to abandon
likelihood-based methods in favour of possibly less efficient but computation-
ally simpler methods. An example, originally proposed by Liang and Zeger
(1986) as a strategy for analysing correlated longitudinal data, is the method
of generalized estimating equations (GEE). This builds on the idea of quasi-
likelihood estimation for the classical generalized linear model, as proposed by
Wedderburn (1974). Recall from Section 4.1 that in the classical generalized
linear model responses Yi : i = 1, . . . , n are assumed to be independent with
expectations µi(β) specified as known functions of a set of regression param-
eters β, and the distribution of Yi is of a known form, but parameterised by
µi. In a quasi-likelihood model, the specification of the distribution of each Yi
is relaxed to a specification of its variance as a function of its mean, hence
Var(Yi) = v(µi), where v(·) is known up to a constant of proportionality. Wed-
derburn (1974) showed that β could then be estimated consistently by solving
the estimating equations

∂µ

∂β
V −1(Y − µ) = 0 (5.23)

where Y −µ is the vector with elements Yi−µi(β) and V is the diagonal matrix
with diagonal elements v(µi). The resulting estimates have similar properties
to maximum likelihood estimates in a fully specified probability model, indeed
they are the maximum likelihood estimates in an exponential family probabil-
ity model with the stated mean and variance structure. The “generalization”
of (5.23) which leads to GEE is to allow a non-diagonal V , so as to reflect
correlations amongst the Yi.
The GEE method was devised by Liang and Zeger to solve problems of the

following kind. The data consist of many independent replications of a low-
dimensional vector of responses, Y say, and the scientific objective concerns
inference about the unconditional mean response vector, E(Y ). A typical appli-
cation would be to longitudinal studies in public health, where the independent
replication arises from different subjects in the study, and the required inferences
concern the effect of a treatment intervention on the longitudinal population
mean response. Most geostatistical applications are not of this kind. Geostatis-
tical data typically consist of a single realisation of an n-dimensional response
Y , and the questions of scientific interest are often concerned more with spatial
prediction than with inference about E(Y ).
Nevertheless, Gotway and Stroup (1997) develop a version of GEE for the

geostatistical data. Their approach to model-fitting consists of first fitting a
classical generalized linear model to the data i.e., temporarily ignoring any
spatial dependence in the data, then using the empirical variogram of the stan-
dardised residuals from this preliminary fit to identify a model for the spatial
correlation. The model can then be re-fitted by solving the estimating equa-
tions 5.23, incorporating the identified model for the spatial correlation into
the specification of the variance matrix V . Note that, as in more traditional
applications of the GEE approach, the parameters β do not have the same
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meaning as they do in the generalized linear mixed model; see, for example, the
discussion in Chapter 7 of Diggle, Heagerty, Liang and Zeger (2002). With this
proviso, Gotway and Stroup’s approach is appealing when the scientific focus
is on the way in which explanatory variables affect the mean response. In these
circumstances, GEE gives a simple way of making the required inferences whilst
adjusting for spatial correlation. GEE is, in our opinion, less attractive when
the scientific focus is on estimation of spatial dependence, or on spatial pre-
diction, because of the somewhat ad hoc way in which the spatial dependence
parameters are estimated. In fact, the prediction equations proposed in Got-
way and Stroup (1997) are equivalent, in our terms, to plug-in prediction under
a Gaussian model, as set out in Section 2.6, but with a non-linear regression
model for the mean response.

5.6 Computation

5.6.1 Variogram calculations

We now give examples of variogram calculations, using the function variog()

in conjunction with both real and simulated data. We start by showing the
commands used to produce Figures 5.5 and 5.2.

> data(elevation)

> plot(variog(elevation, option = "cloud"), xlab = "u",

+ ylab = "V(u)")

> plot(variog(elevation, uvec = seq(0, 8, by = 0.5)),

+ xlab = "u", ylab = "V(u)")

> plot(variog(elevation, trend = "2nd", max.dist = 6.5),

+ xlab = "u", ylab = "V(u)")

By experimenting with different bin specifications for the sample variogram
of a single data-set, the reader can gain useful insight into the extent to which
the resulting variogram estimates are sensitive to this choice. To illustrate this
we use the simulated data-set s100, which is included in geoR and is accessed
by the following command.

> data(s100)

These data are simulated from a model with a constant mean equal to zero,
unit signal variance, zero nugget variance and exponential correlation function
with ϕ = 0.3. The commands below produce Figure 5.14 which shows sample
variograms obtained with different binning options.

> v1 <- variog(s100)

> plot(v1)

> v2 <- variog(s100, uvec = seq(0, 1, by = 0.1))

> plot(v2)

> v3 <- variog(s100, max.dist = 1)

> plot(v3)
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Figure 5.14. Variograms for the surface elevation data with different options for the
bin size.

Notice that the binning can be user-defined via the uvec argument, or by
the max.dist argument. By default, 13 bins are defined spanning the range of
distances from zero to the maximum distance between any two pairs of data
locations. As discussed earlier in this chapter, extending the variogram calcu-
lations over the full available range of inter-point distances is not necessarily
helpful, because the variogram estimates often become unstable at large dis-
tances. The midpoints of the bins obtained from the commands listed above
are:

> round(v1$u, dig = 2)

[1] 0.05 0.15 0.25 0.34 0.44 0.54 0.64 0.74 0.84 0.93 1.03 1.13

[13] 1.23

> round(v2$u, dig = 2)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> round(v3$u, dig = 2)

[1] 0.04 0.12 0.19 0.27 0.35 0.42 0.50 0.58 0.65 0.73 0.81 0.88

[13] 0.96

The three panels of Figure 5.14 show qualitatively similar patterns at small
distances but clear quantitative differences which would be reflected in the re-
sults of any variogram-based parameter estimation method. Note that we have
not attempted to impose common x and y axis scales on the three panels of
Figure 5.14, although this could be done using additional, optional arguments
to the variog() function.
The soil data of Example 1.4 include two response variables, calcium

and magnesium content, and two potential explanatory variables, area and
altitude, which identify the sub-area (or soil type) and elevation, respec-
tively, for each data location. An exploratory plot produced with plot(ca20,

trend= area+altitude, low=T) suggests a possible quadratic trend. Here, we
use the calcium content response to construct the four variograms shown in Fig-
ure 5.15. The upper-left panel shows a variogram calculated from the original
data, whilst the upper-right panel uses residuals from a linear model adjusting
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Figure 5.15. Sample variograms for the ca20 data. The upper-left panel uses the
unadjusted calcium response, the upper-right uses the residuals after adjusting for
sub-region, the lower-left panel uses residuals after adjusting for sub-region and eleva-
tion, the lower-right panel uses residuals after adjusting for sub-region, elevation and
a quadratic trend surface.

for sub-region as a factor on three levels. The lower-left panel uses residuals ad-
justing for both sub-region and elevation. Finally, the lower-right panel adjusts
for sub-region, elevation and a quadratic trend surface. The differences amongst
the resulting variograms again illustrate the inter-play between the specifica-
tion of a model for the mean response and the resulting estimated covariance
structure. The results in this case indicate that by incorporating sub-region into
a model for the calcium content we appear to achieve approximate stationarity
of the residuals, because the corresponding variogram reaches a plateau. On
the evidence of Figure 5.15 alone, it is less clear whether the trend surface is
needed; if it is included in the model, its effect is to reduce the effective range
of the spatial correlation. The code to produce Figure 5.15 is as follows.

> data(ca20)

> plot(variog(ca20, max.dist = 510))

> plot(variog(ca20, trend = ~area, max.dist = 510))

> plot(variog(ca20, trend = ~area + altitude, max.dist = 510))

> t.all <- trend.spatial(ca20, trend = ~area + altitude,

+ add = "2nd")

> plot(variog(ca20, trend = ~t.all, max.dist = 510))



5.6. Computation 129

Figure 5.16. Sample variograms for three simulations of a process with Matérn corre-
lation function. Parameter values are κ = 1.5, σ2 = 1, τ2 = 0 in both panels. In the
left-hand panel, ϕ = 0.05, in the right-hand panel ϕ = 0.2. The smooth curve in each
panel is the theoretical variogram.

Applying the variog() function to replicated simulations of a Gaussian pro-
cess can help to understand the typical pattern of variation which the sample
variogram exhibits relative to the underlying theoretical variogram. Each panel
of Figure 5.16 shows the true variogram as a smooth curve, together with sam-
ple variograms of three simulations of the process on 100 locations in a unit
square. To generate Figure 5.16 we simulated from the Gaussian model with
Matérn correlation function and parameters κ = 1.5, σ2 = 1, τ2 = 1 in both
cases. For the left-hand panel we set ϕ = 0.05, and for the right-hand panel
ϕ = 0.2. Note the substantial variation amongst the three sampled variograms
within each panel. The code follows.

> set.seed(83)

> sim1 <- grf(100, cov.pars = c(1, 0.05), cov.model = "mat",

+ kap = 1.5, nsim = 3)

> plot(variog(sim1, max.dist = 1), type = "l", lty = 1:3,

+ col = 1)

> lines.variomodel(seq(0, 1, l = 100), cov.model = "mat",

+ kap = 1.5, cov.pars = c(1, 0.05), nug = 0)

> set.seed(83)

> sim2 <- grf(100, cov.pars = c(1, 0.2), cov.model = "mat",

+ kap = 1.5, nsim = 3)

> plot(variog(sim2, max.dist = 1), type = "l", lty = 1:3,

+ col = 1)

> lines.variomodel(seq(0, 1, l = 100), cov.model = "mat",

+ kap = 1.5, cov.pars = c(1, 0.2), nug = 0)
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Figure 5.17. Empirical variogram for the s100 data-set (circles) and a line indicating
a model fitted by eye.

5.6.2 Parameter estimation

The next examples show how geoR can be used to estimate parameters in Gaus-
sian models, with a particular focus on parameters which define the covariance
structure of the model. We illustrate two different approaches, ad hoc curve-
fitting methods and maximum likelihood, again using the simulated data s100

included with the package.
Parameter estimation using a variogram-based method is done in two steps.

In the first step, we calculate and plot the sample variogram, and experiment
with “fitted by-eye” parameter values, as in the following code which produces
Figure 5.17. With geoR, this can be achieved either by passing model informa-
tion to the lines.variomodel() function, or by using the interactive function
eyefit().

> s100.v <- variog(s100, max.dist = 1)

> plot(s100.v)

> lines.variomodel(seq(0, 1, l = 100), cov.pars = c(0.9,

+ 0.2), cov.model = "mat", kap = 1.5, nug = 0.2)

In the second step, we use the function variofit() to implement a curve-
fitting method. The function takes as argument the sample variogram. Optional
arguments allow the user to specify different types of weights for the least-
squares criterion, with n-weighted least squares as the default. The function calls
a numerical minimisation algorithm and therefore also requires initial values for
the parameters. Here, we use the ones previously fitted by eye. The correlation
function of choice can also be specified, with the exponential model as the
default. Also by default, the κ parameter for the Matérn or powered exponential
family is held fixed and the estimation is restricted to the parameters σ2, τ2

and ϕ. The following code illustrates the process.
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> wls <- variofit(s100.v, ini = c(0.9, 0.2), cov.model = "mat",

+ kap = 1.5, nug = 0.2)

> wls

variofit: model parameters estimated by WLS (weighted least squares):

covariance model is: matern with fixed kappa = 1.5

parameter estimates:

tausq sigmasq phi

0.3036 0.9000 0.2942

variofit: minimised weighted sum of squares = 23.6572

Estimation by the maximum likelihood method is implemented in the func-
tion likfit(). The sample variogram is strictly not required for the maximum
likelihood method, but nevertheless provides a useful way to specify initial
values for the numerical minimisation algorithm.
The input to likfit() specifies the data object, the model choice and ini-

tial values. As with the variofit() function, the value of κ is held fixed by
default, although it can also be estimated by setting the optional argument
fix.kappa=FALSE. The nugget parameter is included in the estimation by de-
fault, but can be held fixed using the optional argument fix.nugget=TRUE.
The argument method allows for maximum likelihood or restricted maximum
likelihood. An example follows.

> ml <- likfit(s100, cov.model = "mat", kap = 1.5, ini = c(0.9,

+ 0.2), nug = 0.2)

> ml

likfit: estimated model parameters:

beta tausq sigmasq phi

"0.8964" "0.0000" "0.7197" "0.0476"

likfit: maximised log-likelihood = -85.26

> reml <- likfit(s100, cov.model = "mat", kap = 1.5,

+ ini = c(0.9, 0.2), nug = 0.2, met = "reml")

> reml

likfit: estimated model parameters:

beta tausq sigmasq phi

"0.8936" "0.0000" "0.7427" "0.0485"

likfit: maximised log-likelihood = -83.81

As our final example we show the commands used to fit the five alternative
models to the soil data example presented in Section 5.4.8. The covariates are
included by using the argument trend in the call to likfit().

> data(ca20)

> m1 <- likfit(ca20, ini = c(100, 200), nug = 50)

> m2 <- likfit(ca20, trend = ~area, ini = c(60, 100),
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+ nug = 40)

> m3 <- likfit(ca20, trend = ~area + altitude, ini = c(60,

+ 100), nug = 40)

> m4 <- likfit(ca20, trend = ~area + coords, ini = c(60,

+ 100), nug = 40)

> m5 <- likfit(ca20, trend = ~area + altitude + coords,

+ ini = c(60, 100), nug = 40)

5.7 Exercises

5.1. Fit a quadratic trend surface model to the elevation data, using both
maximum likelihood and REML to estimate the model parameters, and
compare the results.

5.2. Write a programme to simulate data from a stationary Gaussian model
with exponential covariance function, ρ(u) = σ2 exp(−u/ϕ). Apply
the method of maximum likelihood estimation to replicate simulations
of this model, and investigate the joint sampling distribution of σ̂2

and ϕ̂. Compare this with the joint sampling distribution for Zhang’s
re-parameterisation to θ1 = log(σ2/ϕ) and θ2 = log(ϕ).

5.3. Design and implement a study to compare the performance of ordinary
(n-weighted) least squares, weighted least squares and Gaussian maximum
likelihood estimation for the parameters of a stationary Gaussian model
with exponential covariance function.

5.4. Extend your simulation study from Exercise 5.3 to included a model
with t-distributed margins in place of the Gaussian. Note that if Z =
(Z1, . . . , Zn) is an independent random sample from any distribution with
zero mean and unit variance, then Y = HZ has zero mean and covariance
matrix HH ′, irrespective of the marginal distribution of the Zi.
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6
Spatial prediction

In this chapter, we consider the problem of using the available data to predict
aspects of the realised, but unobserved, signal S(·). More formally, our target
for prediction is the realised value of a random variable T = T (S), where S
denotes the complete set of realised values of S(x) as x varies over the spatial
region of interest, A. The simplest example of this general problem is to predict
the value of the signal, T = S(x), at an arbitrary location x, using observed
data Y = (Y1, . . . , Yn), where each Yi represents a possibly noisy version of
the corresponding S(xi). Other common targets T include the integral of S(x)
over a prescribed sub-region of A or, more challengingly, a non-linear functional
such as the maximum of S(x), or the set of locations for which S(x) exceeds
some prescribed value. In this chapter, we ignore the problem of parameter
estimation, in effect treating all model parameters as known quantities.

6.1 Minimum mean square error prediction

In very general terms, the prediction problem can be stated as follows. Let Y
denote a vector of random variables whose realised values are observed, and let
T denote any other random variable whose realised value we wish to predict
from the observed value of Y . A point predictor for T is any function of Y ,
which we denote by T̂ = t(Y ).
The mean square prediction error of T̂ is

MSE(T̂ ) = E[(T̂ − T )2], (6.1)

where the expectation is with respect to the joint distribution of T and T̂ or,
equivalently, the joint distribution of T and Y . The general form of the point
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predictor which minimises MSE(T̂ ) is then given by the following well-known
result.

Theorem 6.1. MSE(T̂ ) takes its minimum value when T̂ = E(T |Y ).
Proof
Write

E[(T − T̂ )2] = EY [ET [(T − T̂ )2|Y ]], (6.2)

where the subscripts on the two expectation operators indicate that the expec-
tations are with respect to Y and T , respectively. Write the inner expectation
in (6.2) as

ET [(T − T̂ )2|Y ] = VarT {(T − T̂ )|Y }+ {ET [(T − T̂ )|Y ]}2.

Conditional on Y , any function of Y is a constant, so VarT {(T − T̂ )|Y } =
VarT (T |Y ) and ET [T − T̂ |Y ] = ET [T |Y ]− T̂ . Hence,

ET [(T − T̂ )2|Y ] = VarT (T |Y ) + {ET (T |Y )− T̂}2. (6.3)

Now take the expectation of the expression on the right-hand side of (6.3) with
respect to Y . This gives

E[(T − T̂ )2] = EY [VarT (T |Y )] + EY {[ET (T |Y )− T̂ ]2}. (6.4)

The first term on the right-hand side of (6.4) does not depend on the choice of T̂ ,
whilst the second is non-negative, and equal to zero if and only if T̂ = E(T |Y ).
This completes the proof.

The statement of Theorem 6.1 is strikingly simple and makes intuitive sense.
However, it is worth emphasising that it follows from adopting mean square
error as the criterion to be optimised, which is not necessarily the most appropri-
ate measure of performance in any specific application. Note in particular that
the result is not transformation-invariant i.e., if T̂ is the minimum mean square
error predictor for T then in general g(T̂ ) is not the minimum mean square
error predictor for g(T ). A point prediction provides a convenient summary,
but a complete answer to the prediction problem is the conditional distribution
of T given Y , and the mean of this conditional distribution is simply one of a
number of summaries which we could have used.
It follows from (6.4) that the mean square error of T̂ is

E[(T − T̂ )2] = EY [Var(T |Y )]. (6.5)

We call Var(T |Y ) the prediction variance. The value of the prediction variance
at the observed value of Y estimates the achieved mean square error of T̂ .

Note also that E[(T−T̂ )2] ≤ Var(T ), with equality if T and Y are independent
random variables. This follows from the fact that Var(T ) = E[(T − E[T ])2] is
the mean square error of the trivial predictor T̃ = E[T ] which ignores the data
Y . Informally, the difference between the marginal variance Var(T ) and the
conditional variance Var(T |Y ) gives a summary measure of how useful the data
Y are for predicting T .



6.2. Minimummean square error prediction for the stationary Gaussian model 135

6.2 Minimum mean square error prediction for the
stationary Gaussian model

We now assume that our data Y = (Y1, . . . , Yn) are generated by the stationary
Gaussian model as defined in Section 2.2. We write S = (S(x1), . . . , S(xn)) for
the unobserved values of the signal at the sampling locations x1, . . . , xn. Then,
S is multivariate Gaussian with mean vector µ1, where 1 denotes a vector each
of whose elements is 1, and variance matrix σ2R, where R is the n by n matrix
with elements rij = ρ(||xi − xj ||). Similarly, Y is multivariate Gaussian with
mean vector µ1 and variance matrix

σ2V = σ2(R+ ν2I) = σ2R+ τ2I , (6.6)

where I is the identity matrix.

6.2.1 Prediction of the signal at a point

Suppose initially that our objective is to predict the value of the signal at an
arbitrary location, thus our target for prediction is T = S(x). Then, (T, Y )
is also multivariate Gaussian and we obtain the minimum mean square error
predictor T̂ by using the following standard result on the multivariate Gaussian
distribution.

Theorem 6.2. Let X = (X1, X2) be jointly multivariate Gaussian, with mean
vector µ = (µ1, µ2) and covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

i.e., X ∼ MVN(µ,Σ). Then, the conditional distribution of X1 given X2 is also
multivariate Gaussian, X1|X2 ∼ MVN(µ1|2,Σ1|2), where

µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2)

and

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

To apply Theorem 6.2 to our prediction problem, note that (T, Y ) is
multivariate Gaussian with mean vector µ1 and variance matrix[

σ2 σ2r′

σ2r σ2V

]
where r is a vector with elements ri = ρ(||x− xi||) : i = 1, . . . , n and V is given
by (6.6).
Then, Theorem 6.2 with X1 = T and X2 = Y gives the result that the

minimum mean square error predictor for T = S(x) is

T̂ = µ+ r′V −1(Y − µ1) (6.7)
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with prediction variance

Var(T |Y ) = σ2(1− r′V −1r). (6.8)

Note that in the special setting of the multivariate Gaussian distribution, the
conditional variance does not depend on Y , and the achieved mean square error
is therefore equal to the prediction variance.

6.2.2 Simple and ordinary kriging

In traditional geostatistical terminology, construction of the surface Ŝ(x), where
T̂ = Ŝ(x) is given by (6.7), is called simple kriging. The name acknowledges
the influence of D. G. Krige, who pioneered the use of statistical methods in
the South African mining industry (Krige, 1951). Because we are here treating
parameters as known, the predictor (6.7) is linear in the data. To use (6.7) in
practice, we need to plug-in estimated values for the model parameters.
A common practice in geostatistics is to use a modified kriging algorithm

called ordinary kriging. The distinction between simple and ordinary kriging
is that in the latter, the mean value is treated as unknown, whereas it is still
assumed that covariance parameters are known. This leads to a linear predic-
tor similar to (6.7) except that µ is replaced by its generalised least squares
estimator,

µ̂ = (1′V −11)−11′V −1Y ,

with V given by (6.6). The ordinary kriging predictor can be expressed as
a linear combination, Ŝ(x) =

∑
ai(x)Yi. The ai(x) are called the prediction

weights, or kriging weights, and have the property that
∑
ai(x) = 1 for any

target location x.
Some authors reserve the name simple kriging to mean (6.7) in conjunction

with the plug-in estimate µ̂ = ȳ, in which case we can again write Ŝ(x) as a
linear combination of the Yi, but the kriging weights are no longer constrained
to sum to one. We give specific examples in Section 6.4. From a model-based
perspective, there is no fundamental distinction between simple and ordinary
kriging. Both are examples of plug-in prediction; they differ only in respect of
which plug-in estimate of µ they use.

In our derivation of simple and ordinary kriging, we begin with a stochastic
model for the data, Y , and the signal process S(x), and derive the explicit form
of the minimum mean square error predictor for S(x). In this approach, the
fact that the predictor is linear in Y is a consequence of the Gaussian modelling
assumption. In classical geostatistics, the starting point is to restrict attention
to predictors which are linear in Y , and to look for the one which is optimal,
in a mean square error sense. The resulting expressions for simple and ordinary
kriging predictors can also be derived as examples of the much older statisti-
cal ideas of best linear, and best linear unbiased, prediction, respectively. See,
for example, chapter 1 of Stein (1999). Ordinary kriging also has a Bayesian
interpretation, which we discuss in Chapter 7. Briefly, if we consider all pa-
rameters in the stationary Gaussian model to be known except the mean, to
which we assign a Gaussian prior distribution, then the resulting posterior mean



6.2. Minimummean square error prediction for the stationary Gaussian model 137

predictor for S(x) reduces to the ordinary kriging predictor in the limit as the
posterior variance tends to infinity. See Kitanidis (1986), Omre (1987), Omre
and Halvorsen (1989) and Omre, Halvorsen and Berteig (1989).

6.2.3 Prediction of linear targets

Suppose now that we wish to predict a linear target T , by which we mean any
target of the form

T =

∫
A

w(x)S(x)dx

for some prescribed weighting function w(x). Because expectation is a linear
operator, it follows that whatever the model for Y ,

E[T |Y ] =

∫
A

w(x)E[S(x)|Y ]dx, (6.9)

or in other words,

T̂ =

∫
A

w(x)Ŝ(x)dx.

Furthermore, under the stationary Gaussian model, (T, Y ) is multivariate Gaus-
sian and the predictive distribution of T is univariate Gaussian with mean given
by (6.9) and variance

Var(T |Y ) =

∫
A

∫
A

w(x)w(x′)Cov{S(x), S(x′)}dxdx′.

In summary, to predict a linear target it is sufficient to predict the values of the
signal over the region A of interest and to evaluate the target directly from the
predicted surface, {Ŝ(x) : x ∈ A}. This does not apply to non-linear targets.
Using non-linear properties of Ŝ(x) as predictors of the corresponding properties
of the true surface S(x) can be a very poor strategy.

6.2.4 Prediction of non-linear targets

The predictive distribution of a non-linear property of the signal is generally
intractable, in which case we use a Monte Carlo method based on a conditional
simulation of the signal process S(·), given the data Y . In principle, this method
solves any non-linear prediction problem associated with the stationary Gaus-
sian model. However, the solution may or may not be computationally feasible
in large problems.
We first approximate the continuous region A by a discrete grid of predic-

tion points, x∗j : j = 1, . . . , N to cover A. We then simulate a realisation of
S∗ = {S(x∗j ) : j = 1, . . . , N} by sampling from the explicit multivariate Gaus-
sian conditional distribution of S∗ given Y , and compute the value, T1 say,
of the target T corresponding to the simulated realisation of S∗. Independent
replication of the simulation algorithm s times gives a sequence of realisations
of S∗ and corresponding values Tk. Then, T1, . . . , Ts is an independent random
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sample of size s from the predictive distribution of T and any property of the
empirical distribution of the Tk provides an estimate of the corresponding prop-
erty of the predictive distribution, with a precision determined by the value of
N .
The only non-routine aspect of this procedure is the definition of the pre-

diction grid, which has to be fine enough to give a good approximation to the
underlying continuous surface, but not so fine as to make the computations in-
feasible. Roughly speaking, the stronger the correlation between points a given
distance apart, the more coarse the prediction grid can be without serious loss
of accuracy, but it is difficult to give explicit rules for general use, because the
notion of “fine enough” depends on the character of both the true surface and
the required target. A pragmatic strategy is to verify empirically that the finer
of two candidate grids does not materially change the predictions of interest.
Note that if required, each simulated surface can be generated on a progressively
finer sequence of grids, using the result of Theorem 6.2 to fill-in progressively
from an initially coarse grid.

6.3 Prediction with a nugget effect

The examples in Section 6.4 below confirm the importance of the parameter
τ2 in determining the properties of the simple kriging predictor. The literal
interpretation of this parameter in the stationary Gaussian model is as the
conditional variance of an observation, Yi, given the value of the underlying
signal, S(xi). In practice, as discussed briefly in Section 3.5, τ2 plays a dual
role, accounting for both measurement error and short-range spatial variation
as follows. Consider the alternative form of the Gaussian model,

Yi = S(xi) + Zi : i = 1, . . . , n, (6.10)

where the Zi are mutually independent, N(0, τ2) random variables. Suppose, as
an alternative model, that

Yi = S(xi) + S∗(xi) : i = 1, . . . , n, (6.11)

where now S∗(x) is a second stationary Gaussian process, independent of S(x)
and with the property that its correlation function ρ∗(u) is zero for all u ≥ u0.
If no two locations in the sample design are less than distance u0 apart, then
the data will be unable to distinguish between the models (6.10) and (6.11).
However, the distinction matters in practice because, if we did believe that
model (6.11) was the correct one, we should interpolate the data whereas, under
the model (6.10) with τ2 > 0 we should not.
Traditional geostatistics takes a pragmatic view of this distinction, often fit-

ting model (6.10) but constraining its predictions to interpolate the data. This
leads to spikes in the predicted surface Ŝ(x), the so-called “nugget effect.” The
traditional name of “nugget variance” for the parameter τ2 refers indirectly to
this pragmatic interpretation, in which an isolated high value, apparently unre-
lated to values in its close proximity, corresponds to a “nugget” of exceptionally
high-grade ore.
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A model which includes both interpretations of the nugget effect is

Yi = S(xi) + S∗(xi) + Zi : i = 1, . . . , n. (6.12)

To make this model identifiable, we would need to include coincident locations
xi in the sampling design, as discussed in Section 5.2.3. Under model 6.12, when
xi = xj the expectation of 1

2 (Yi − Yj)
2 is equal to τ2, the variance of the Zi.

Strictly coincident xi can sometimes be achieved by sample-splitting prior to
measurement. Failing this, including near-coincident pairs of locations in the
sampling design is a pragmatic alternative, which we discuss in more detail in
Chapter 8.
A final comment is that there may be circumstances in which the target for

prediction is Y (x), the prospective measured value at an as-yet unsampled lo-
cation x, rather than the signal S(x). Under the linear Gaussian model, the
point predictions of Y (x) and S(x) would be identical, but prediction intervals
would be wider for Y (x) than for S(x) because the corresponding predic-
tion variance includes the nugget effect. Specifically, under the model (6.10),
Var[Y (x)|Y1, ..., Yn] = Var[S(x)|Y1, ..., Yn] + τ2.

6.4 What does kriging actually do to the data?

In this section, we give several simulated examples to show how the assumed
parameter values for the underlying model combine with the data to produce
the predicted surface Ŝ(x), under the assumption that the data are generated
by the stationary Gaussian model.
Without any essential loss of generality, we fix the mean and variance of the

signal to be µ = 0 and σ2 = 1. The nugget variance τ2 can then be interpreted
as a noise-to-signal variance ratio. To complete the specification of the assumed
model we need to select a correlation function ρ(u). We shall consider two
candidate families: the exponential correlation function, ρ(u) = exp(−u/ϕ),
and the Matérn correlation function defined by equation (2.1) with κ = 1.5.
These correspond to mean-square continuous and mean-square differentiable
processes, respectively. The minimum mean square error predictor for S(x) is
given by

Ŝ(x) = µ+ r′V −1(Y − µ1) (6.13)

where r is a vector with elements ri = ρ(||x − xi||) : i = 1, . . . , n. The matrix
V −1 = (τ2I +R)−1 is determined by the model and the data locations xi, but
does not depend on the target location x. It follows that

Ŝ(x) = µ+

n∑
i=1

ai(x)(Yi − µ)

= {1−
n∑
i=1

ai(x)}µ+

n∑
i=1

ai(x)Yi. (6.14)
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This shows that the predictor Ŝ(x) compromises between its unconditional mean
µ and the observed data Y , and that the nature of the compromise depends
on the target location x, the data locations xi and the values of the model
parameters. We call the ai(x) the prediction weights.
The prediction variance is

Var(S(x)|Y ) = 1− r′(τ2I +R)−1r. (6.15)

This depends on the target location x, the data locations xi and the values
of the model parameters, but does not depend on the observed values of the
measurements Yi.
Predictive performance is therefore affected both by the underlying model and

by the sampling design. Two basic designs are a regular design, using n locations
xi evenly spaced to form a two-dimensional lattice or, in one dimension, equal
subdivisions of an interval, and a random design using n locations independently
and uniformly distributed over the study region. For any given values of the
model parameters, the density of data-points per unit interval is more important
than their absolute number, but for these illustrative examples we have chosen
to confound the two by standardising the study region to the unit square or, in
one dimension, the unit interval.

6.4.1 The prediction weights

For our first example, we show the predictions weights for three sets of sample
locations in the unit square. The results are displayed in Figure 6.1.
Figure 6.1 illustrates a feature of both simple and ordinary kriging, namely

that distance from the prediction point is an important, but not the only, ingre-
dient in determining the prediction weight attached to a point in the sampling
design. For example, in the two left-hand panels of Figure 6.1 the uppermost of
the three points in the sampling design is closest to the target location, and is
given the largest weight.
The two central panels of Figure 6.1 illustrate a property of kriging known as

de-clustering, whereby the kriging algorithm gives reduced weight to individual
locations within a spatial cluster. This is a distinctive aspect of the kriging
predictor compared with other interpolation methods such as inverse squared
distance weighting. The down-weighting of individual points makes intuitive
sense in this context because one consequence of the assumed spatial correlation
structure of the data is that two closely spaced locations convey little more
information than does a single, isolated location; notice in particular that for
the sample design shown in the centre panels, the combined weight attached
to the pair of closely spaced locations is only slightly greater than the weight
attached to the corresponding single location in the left-hand panels.
Finally, the two right-hand panels show the masking effect when two sample

locations and the target location are collinear, or nearly so; the closer of the
two sample locations is given a large, positive weight whilst the more distant,
masked location is given a negative weight. In general, masked locations can be
given positive, zero or negative weights, depending on the assumed correlation
model.
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Figure 6.1. Prediction weights for Ŝ(0.5, 0.5) for three sets of data locations. Gaussian
model parameters are µ = 0, σ2 = 1, τ2 = 0, Matérn correlation of order κ = 1.5 with
scale parameter ϕ = 0.1. Upper panels show the prediction weights using simple kriging
with plug-in estimate µ̂ = ȳ, lower panels show prediction weights using ordinary
kriging.

Figure 6.2. Effect of the correlation function parameter ϕ on the kriging weights. Dots
indicates the values of the prediction weights for Ŝ(0.5) using simple kriging with a
regular design of 10 sample locations equally spaced on the unit interval. Gaussian
model parameters are µ = 0, σ2 = 1, τ2 = 0, Matérn correlation of order κ = 1.5 with
scale parameter ϕ = 0.1 (solid line), ϕ = 0.02 (dashed line), ϕ = 0.01 (dotted line).

For our next example, we consider 10 data locations equally spaced on the
unit interval, xi = 0.05 + 0.1i : i = 1, . . . , 10. Figure 6.2 shows the prediction
weights ai(x) when x = 0.5, mid-way between two data locations, using simple
kriging with µ treated as known. The model parameters are τ2 = 0 and Matérn
correlation of order κ = 1.5, with ϕ taking each of the values ϕ = 0.1, 0.02, 0.01.
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Figure 6.3. Effect of the nugget parameter on the kriging weights. Dots are values
of the prediction weights for Ŝ(0.45) using simple kriging with an equi-spaced design
of 10 sample locations on the unit interval. Gaussian model parameters are µ = 0,
σ2 = 1, τ2 = 0.1 (solid line), τ2 = 0.5 (dashed line), τ2 = 1 (dotted line), Matérn
correlation of order κ = 1.5 with scale parameter ϕ = 0.1.

In each case, the general pattern is that the largest weights are those associ-
ated with data locations xi immediately either side of the target location x, but
the detailed pattern varies with ϕ. Note also that as ϕ decreases, correspond-
ing to generally weaker correlations between S(x) and the Yi, the sum of the
weights decreases. As ϕ approaches zero, the weights also approach zero and
Ŝ(x) ≈ µ = 0, because S(x) and Y are then independent, hence the observed
values of Y are of no help in predicting S(x).

Figure 6.3 shows the effect of the nugget variance on the pattern of simple
kriging weights for predicting S(x) when x = 0.45, coinciding with one of the
data locations. The model parameters are now κ = 1.5, ϕ = 0.1 and τ2 = 0.1, 0.5
or 1.0. Note firstly that when τ2 = 0 (not shown), a5(x) = 1, all other wi(x) = 0
and Ŝ(x) = Y5. This is sensible, because τ2 = 0 implies that S(0.45) = Y5
exactly. More generally, whenever τ2 = 0 the simple kriging predictor Ŝ(x)
interpolates the data, i.e. at each sampled location xi, Ŝ(xi) = Yi. As the value
of τ2 increases, the prediction weights are spread progressively over more of
the Yi and the total weight decreases. For very large τ2, the noise in the data
dominates the signal, implying that S(x) and Y are approximately independent,
the weights all approach zero and Ŝ(x) ≈ µ = 0, for any x.

Figure 6.4 shows the prediction weights for Ŝ(x) in a simple two-dimensional
example where the target location is surrounded by four data locations. The
model is again Matérn with κ = 1.5 and the three panels of Figure 6.4 corre-
spond to ϕ = 0.2, 0.1 and 0.05. The prediction algorithm is now ordinary, rather
than simple kriging, hence as ϕ approaches zero we obtain Ŝ(x) ≈ ȳ. Figure 6.5
shows the effect of varying the nugget variance τ2 in this example. The target
for prediction is again the central location x = (0.5, 0.5) and the model Matérn
with κ = 1.5, but now we fix ϕ = 0.1 and show results for τ2 = 0.1, 0.5 and 1.0.
As τ2 increases, the ordinary kriging predictor approaches Ŝ(x) = ȳ.

Recall that we extend the domain of the correlation function ρ(u) to the real
line by defining ρ(−u) = ρ(u). With this extension, the exponential, ρ(u) =
exp(−u/ϕ), is continuous but non-differentiable at u = 0, whereas the Matérn
of order 1.5 is differentiable everywhere. Figure 6.6 shows a set of 10 values Yi at
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Figure 6.4. Effect of the correlation function parameter ϕ on the kriging weights.
Gaussian model parameters are µ = 0, σ2 = 1, τ2 = 0. Panels show prediction weights
for Ŝ(0.5, 0.5) using ordinary kriging with an design of 4 sample locations on the unit
square. Matérn correlation of order κ = 1.5 with scale parameter ϕ = 0.2 (left panel),
ϕ = 0.1 (middle panel), ϕ = 0.05 (right panel).

Figure 6.5. Effect of the nugget parameter on the kriging weights. Panels show predic-
tion weights for Ŝ(0.5, 0.5) using ordinary kriging with an design of 4 sample locations
on the unit square. Gaussian model parameters are µ = 0, σ2 = 1, τ2 = 0.1 (left),
τ2 = 0.5 (centre), τ2 = 1 (right), Matérn correlation of order κ = 1.5 with scale
parameter ϕ = 0.1.

evenly spaced locations xi, together with the predictors Ŝ(x) assuming τ2 = 0
and either the exponential or the differentiable Matérn correlation function, in
each case with ϕ = 0.1. The predictors inherit the analytic smoothness of the
assumed correlation function — continuous for the exponential, differentiable
for the Matérn. This suggests that any contextual knowledge concerning the
smoothness of the underlying signal should be one consideration in choosing a
correlation function for particular applications.

6.4.2 Varying the correlation parameter

Figure 6.7 shows the result of an experiment with nine measurements yi taken at
randomly located points xi on the unit interval. The Gaussian model parameters
are µ = 0, σ2 = 1, τ2 = 0 and a Matérn correlation function with κ = 1.5 and
ϕ = 0.1, 0.025 or 0.01. As in our previous experiment, in every case the simple
kriging predictor Ŝ(x) interpolates the data, but its behaviour away from the
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Figure 6.6. The simple kriging predictor for an equi-spaced design of 10 sample lo-
cations on the unit interval. Gaussian model parameters are µ = 0, σ2 = 1, τ2 = 0,
Matérn correlation of order κ = 0.5 (solid line) or κ = 1.5 (dashed line) with scale
parameter ϕ = 0.1.

Figure 6.7. The simple kriging predictor for a random design of nine sample locations
on the unit interval. Gaussian model parameters are µ = 0, σ2 = 1, τ2 = 0, Matérn
correlation of order κ = 1.5 and scale parameter ϕ = 0.1 (solid line), ϕ = 0.025
(dashed line), ϕ = 0.01 (dotted line).

data locations xi is affected by the value of ϕ in the following way. Suppose
that we wish to predict S(x) at a location remote from all of the xi. Then,
for sufficiently small ϕ, the correlation between S(x) and any of the Yi will be
small, and the observed values of Yi correspondingly of little value in predicting
S(x). Thus, Ŝ(x) will be approximately equal to its unconditional expectation,
which in this case is zero. As the prediction location x moves closer to any or
all of the data locations, the correlations between S(x) and the Yi increase,
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Figure 6.8. Upper panel shows the simple kriging predictor for a random design of nine
sample locations on the unit interval. Gaussian model parameters are µ = 0, σ2 = 1,
τ2 = 0 (solid line), τ2 = 0.5 (dashed line), τ2 = 2 (dotted line), Matérn correlation
of order κ = 0.5 with scale parameter ϕ = 0.1. Lower panel shows the simple kriging
prediction standard errors for the same design of nine sample locations, now indicated
by vertical tick-marks above the x-axis.

and the observed values of the Yi make a correspondingly bigger impact on the
predicted surface Ŝ(x). In general, the predictor Ŝ(x) is a compromise between
the observations Yi and the prior expectation zero, and the balance between
the two depends on the overall correlation structure.

6.4.3 Varying the noise-to-signal ratio

Figure 6.8 involves the same nine data locations and measurements as in the
previous example. The upper panel now shows predictions for the Matérn corre-
lation function with κ = 0.5 (exponential model), ϕ = 0.1 and each of τ2 = 0, 0.5
and 2.0. This illustrates that when τ2 is positive, Ŝ(x) smooths rather than
interpolates, and that larger values of τ2 give progressively more smoothing
towards the unconditional mean, µ = 0. The lower panel of Figure 6.8 shows
the prediction standard deviation,

√
Var{S(x)|Y }, as a function of x. The gen-

eral pattern is that the prediction standard deviation increases with increasing
distance from neighbouring data locations, falling to zero at the data locations
if and only if τ2 = 0.
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6.5 Trans-Gaussian kriging

The term trans-Gaussian kriging was coined by Cressie (1993) to refer to
minimum mean-square error prediction using the transformed Gaussian model
described in Section 3.8.
As discussed in Section 3.8, one way to extend the applicability of the Gaus-

sian model is to assume that it holds only when the vector Y is transformed
component-wise. Specifically, for a set of data (xi, yi) : i = 1, . . . , n, we de-
fine y∗i = h(yi) for some known function h(·) and assume that the transformed
data y∗i are generated by an underlying Gaussian model. For the time being,
we assume that the Gaussian model is stationary, but all of the non-stationary
extensions discussed earlier can be applied to transformed data in the obvious
way.
Because the transformation function h(·) is assumed known, the results of

Section 6.2 apply to prediction of S(x) or other properties of the signal except
that Y ∗ replaces Y throughout. However, when a transformation is used, pre-
dictions are usually required on the scale of the original observations, in which
case we need to allow for the non-linearity in h(·). The simplest way to formalise
this is to assume that the target for prediction is

T (x) = h−1{µ+ S(x)}. (6.16)

In general, evaluation of the minimum mean square error predictor for (6.16)
is not straightforward. One exception, and the most common example in prac-
tice, is when h(·) = log(·). Then, h−1(·) = exp(·) and (6.16) can be written
as

T (x) = exp(µ) exp{S(x)} = exp(µ)T0(x). (6.17)

The conditional distribution of S(x) given Y ∗ is univariate Gaussian, with
mean and variance Ŝ(x) and v(x) given by (6.7) and (6.8) except that Y ∗

replaces Y . The distribution of T0(x) = exp{S(x)} under the same conditioning
is log-Gaussian, and standard properties of the log-Gaussian distribution imply
that

T̂0(x) = exp{Ŝ(x) + v(x)/2} (6.18)

with prediction variance

Var{T̂0(x)|Y ∗} = exp{2Ŝ(x) + v(x)}[exp{v(x)} − 1]. (6.19)

Note in particular that the second term within the exponential on the right
hand side of (6.18) is non-negative, and can be non-negligible however large the
data-set on which it is based.
Other transformation functions h(·) can be handled approximately by using

a low-order Taylor series expansion of h−1(·). For example, suppose that the
data are expressed as proportions pi : i = 1, . . . , n. One possible approach to
analysing such data is to apply a logit transform to obtain transformed data
y∗i : i = 1, . . . , n, where

y∗i = h(pi) = log{pi/(1− pi)},
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with inverse transform

pi = h−1(y∗i ) = {1 + exp(−y∗i )}−1. (6.20)

Analysing the data on the y∗-scale, we might then use a linear Gaussian model
to obtain predictions Ŝ(x) and associated prediction variances v(x) at each
location. The target for prediction on the original scale is T = h−1{S(x)}, for
an arbitrary location x. We consider a Taylor series expansion of T about Ŝ(x).
Writing g(·) = h−1(·), and suppressing the dependence on the location x, this
gives

T ≈ g(Ŝ) + (S − Ŝ)g′(Ŝ) + 0.5(S − Ŝ)2g′′(Ŝ).

Now, taking expectations with respect to the conditional distribution of S given
the data Y , we obtain the approximation

E[T |Y ] ≈ g(Ŝ(x)) + 0.5v(x)g′′(Ŝ(x))

for the minimum mean square error predictor, T̂ = E[T |Y ]. Substitution of
g(·) = h−1(·) from (6.20) gives the explicit expression

T̂ (x) = {1 + e(x)}−1 − 0.5v(x)e(x){1− e(x)}{1 + e(x)}−3,

where e(x) = exp{−Ŝ(x)}. Note that the correction to the naive predicted
proportion, h−1{Ŝ(x)} = {1 + e(x)}−1, is negative if e(x) < 1, corresponding
to a naive predicted proportion greater than 0.5, and conversely is positive if
the naive predicted proportion is less than 0.5.
We now give a simple, one-dimensional illustration of log-Gaussian kriging.

The data were generated by a log-Gaussian model for Y (x), assuming an un-
derlying Gaussian process S(x) with µ = 0, σ2 = 2, and Matérn correlation
function of order κ = 1.5 with ϕ = 0.15. The measurements Y ∗

i = log(Yi)
were generated at 11 unequally spaced points on the unit interval, with noise-
to-signal variance ratio τ2/σ2 = 0.1. The solid line in Figure 6.9 shows the
realisation of exp{S(x)} along with the data Y indicated by the circles. The
figure compares exp{S(x)} with two predictors: the minimum mean square error
predictor of exp{S(x)} as defined by (6.18); and the naive predictor exp{Ŝ(x)}
where Ŝ(x) is the minimum mean square error predictor of S(x). Note that the
bias-correction between the naive and minimum mean square error predictors
has a noticeable effect in regions where the sampling is sparse, as the correction
term involving the prediction variance is then more important.
As discussed in Section 6.2.4, prediction on the untransformed scale formally

corresponds to a non-linear target T in the Gaussian model, and closed-form
expressions for the minimum mean square error predictor T̂ = E[T |Y ] can only
be found in special cases, as shown above in the case of log-Gaussian kriging.
However, it is straightforward (although sometimes computationally expensive)
to generate an independent random sample from the predictive distribution of
the signal process S(x) on a fine grid to cover the study region. The correspond-
ing values of the target, T1, ..., Ts say, then form an independent random sample
of size s from the predictive distribution of T , and the sample mean T̄ gives a
Monte Carlo approximation to T̂ if required.
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Figure 6.9. A one-dimensional illustration of log-Gaussian kriging. The true signal,
exp{S(x)} is shown as a solid line, the observed data Y as a set of open circles.
The minimum mean square error predictor is shown as a dashed line and the naive
predictor, exp{Ŝ(x)} as a dotted line.

6.5.1 Analysis of Swiss rainfall data (continued)

In Section 5.4.7 we discussed parameter estimation for the Swiss rainfall data,
and concluded that a reasonable model for the data was a Gaussian model on
the square-root scale, i.e. a trans-Gaussian model with h(y) =

√
y . For the

correlation function we chose the Matérn model with κ = 1. We now show the
resulting spatial prediction of the rainfall surface, using plug-in values of the
Gaussian model parameters estimated by maximum likelihood.
Figure 6.10 shows plug-in predictions of T (x) = S2(x) and the correspond-

ing prediction variances, computed on a regular 7.5 × 7.5 km grid. Note that
prediction variances are large at locations where the predictions themselves are
large. This is one consequence of using the transformed model with λ < 1.

Another potentially interesting target for prediction is the proportion of the
total area for which rainfall exceeds some threshold value c. We denote this
target by A(c). For illustration, we choose a threshold of c = 200. For this
non-linear target the plug-in predictor is analytically intractable. We have there-
fore computed it from independent conditional simulations, generating a Monte
Carlo sample of size 1000.
Using the simple Monte Carlo approximation described above, we obtain the

plug-in prediction Ã(200) = 0.394. More interestingly, the left-hand panel of
Figure 6.11 shows a histogram of a Monte Carlo sample from the predictive
distribution of A(200), again based on 1000 simulations. Each simulation con-
tributes a point to the histogram as follows: we generate a realisation from the
predictive distribution of S(x) at points x on a fine grid and calculate the ap-
proximate value of A(200) for this realisation as the proportion of grid-locations
for which the realised S(x) is greater than 200. From the resulting histogram,
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Figure 6.10. Swiss rainfall data. Plug-in predictions of rainfall (left-hand panel) and
corresponding prediction variances (right-hand panel).

Figure 6.11. Prediction of functionals of S(x) for the Swiss rainfall data. The left-hand
panel shows the histogram of a sample of size 1000 drawn from the predictive distri-
bution of A(200). The right-hand panel shows the map of exceedance probabilities
P (x; 250).

we can read off predictive probabilities for A(200) to lie within any stated limits,
for example P(0.375 < A(200) < 0.412) = 0.90.
A further possible prediction target is a map of the probabilities, P (x; c) say,

that S(x) exceeds the threshold value c, given the data. The right-hand panel of
Figure 6.11 shows a map of P (x; 250), which is obtained by computing for each
point in the prediction grid the proportion of simulated values of S(x) which
exceed 250.
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6.6 Kriging with non-constant mean

Estimation of the spatial trend, µ(x) = E[Y (x)] where Y (x) represents the
response at location x, may be of interest for two different reasons. In some
problems, identifying a model for µ(x) is of direct scientific interest. Typically,
this arises when the experimenter has recorded a number of spatial explanatory
variables, dk(x), and wishes to know which of these influence the mean response,
µ(x). In other problems, the scientific goal is the prediction of an underlying
surface but a spatial trend is nevertheless evident and by including a term
for the trend, typically modelled empirically as a low-degree polynomial trend
surface, we improve the precision of the resulting predictions.
Both types of problem are embraced by the Gaussian model with a linear

specification for the trend,

µ(x) = β0 +

p∑
k=1

βkdk(x) = d(x)′β, (6.21)

where d(x)′ = (1, d1(x), ..., dp(x)). Inference about the regression parameters β,
either likelihood-based or Bayesian with a pragmatic choice of prior, is relatively
straightforward using the methods described in Chapters 5 and 7, respectively.
Here, we consider the problem of predicting realised values, or more general
properties of an underlying spatial surface.

6.6.1 Analysis of soil calcium data (continued)

Figure 6.12 shows maps of predicted values and the corresponding standard
errors for the soil calcium data of Example 1.4. Recall that for these data
the study area is divided into three sub-areas according to their management
history. As described in Section 5.4.8, our fitted model for these data has mean
parameters (39.71, 47.75, 53.52) for the three sub-areas and covariance structure
described by a stationary Gaussian process with signal variance σ2 = 98.7,
exponential correlation function with ϕ = 72.61 and nugget variance τ2 = 3.26.
The predictions were obtained at points covering the whole of the study area
at a spacing of 10 m. Note that the prediction map shows discontinuities at the
boundaries between the sub-areas as a consequence of treating sub-area as a
three-level factor.
An analysis of this kind requires the explanatory variable to be recorded

at both data locations and prediction locations. In classical geostatistical
terminology, this is called kriging with an external trend.

6.7 Computation

Prediction as discussed in this chapter is implemented in geoR by the function
krige.conv(). The name is a mnemonic for “conventional kriging,” in contrast
with another function for geostatistical prediction, krige.bayes(), which im-
plements a Bayesian algorithm to be described in Chapter 7. We have already
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Figure 6.12. Kriging predictions for the soil calcium data, treating sub-area as a factor
on three levels. The left-hand panel shows point predictions, the right-hand panel
prediction standard errors. See text for model specification.

shown how to use the function krige.conv() in Section 2.8, where we applied
it to the surface elevation data. Here we examine its options in greater detail,
starting from its arguments.

> args(krige.conv)

function (geodata, coords = geodata$coords, data = geodata$data,

locations, borders, krige, output)

NULL

The analysis carried out by a single call to the kriging function krige.conv()

requires input parameters to define: the data and coordinates using geodata;
the locations where predictions are required (locations); and the model as
specified by the argument krige. For convenience we pass arguments to krige

using krige.control() to specify the parameters of the model, which can be
done either by specifying the individual values for the model parameters, or by
an object which stores the results of a model-fitting procedure as presented
in Section 5.6. An additional, optional argument border allows the defini-
tion of the border of the region, which does not affect the calculations, but
is particularly useful for displaying results when we are making predictions over
non-rectangular regions.
The resulting object contains at least the elements sk$predict and

sk$krige.var, which contain the predicted values and kriging variances for
the prediction locations. However, other results can be obtained by optional el-
ements of output, which are selected by the call to the output.control()

function. For example, this function allows us to obtain simulations from
the predictive distribution, such as conditional simulations, or estimates of
quantiles, percentiles, and so on.
We now show the commands used to obtain the results reported earlier for the

Swiss rainfall data. The data are available within geoR and are loaded using the
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data() function. Estimation of model parameters uses the likfit() function
as discussed in Chapter 5. In the call below, we set the argument lambda=0.5
to fix the value for the parameter of the Box-Cox transformation.

> data(SIC)

> ml <- likfit(sic.all, ini = c(100, 40), nug = 10, lambda = 0.5,

+ kappa = 1)

For prediction, we first define a grid of prediction points using pred_grid().
This takes as its main arguments a polygon defining the prediction region,
which is typically the border of the study area and the grid spacing. A call
to krige.control() then passes the model parameters. In this example we
pass the model parameters as a single object, m1, but as discussed above the
krige.control() function also allows for the specification of each model pa-
rameter individually. By default, krige.control() performs ordinary kriging.
For the output, the call to output.control() includes options to generate
and store 1000 simulations of the conditional distribution of S given Y and to
define a threshold value 250 which will be used to compute exceedance proba-
bilities at each of the prediction locations. We then set the random seed, using
set.seed(), so as to allow for reproduction of the simulation results if re-
quired. Finally, we call the prediction function krige.conv() according to the
description given above.

> gr <- pred_grid(sic.borders, by = 7.5)

> KC <- krige.control(obj.model = ml)

> OC <- output.control(n.pred = 1000, simul = TRUE, thres = 250)

> set.seed(2419)

> pred <- krige.conv(sic.all, loc = gr, borders = sic.borders,

+ krige = KC, out = OC)

The maps shown in Figure 6.10 are then obtained using the built-in image()

function.

> image(pred, col = gray(seq(1, 0.1, l = 21)), zlim = predlim,

+ x.leg = c(0, 350), y.leg = c(-60, -30))

> image(pred, loc = gr, val = sqrt(pred$krige.var), zlim = selim,

+ col = gray(seq(1, 0.1, l = 21)), x.leg = c(0, 350),

+ y.leg = c(-60, -30))

Figure 6.11 shows predictions of two functionals of S(x) obtained from the
simulated realisations produced by the call to krige.conv(). The first is
the predictive distribution of A(200), the proportion of area with rainfall
greater than 200. We obtain this by post-processing the simulations using
apply() as shown below. The second is the map of exceedance probabilities
P (x; 250), which was included in the output by the options set in the call to
output.control().

> dim(pred$simulations)

> A200 <- apply(pred$simul, 2, function(y) sum(y > 200)/length(y))

> hist(A200, main = "")
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> image(pred, val = 1 - pred$prob, col = gray(seq(0.9, 0.1,

+ l = 41)), x.leg = c(0, 350), y.leg = c(-60, -30))

Our second example in this section concerns the soil calcium data. We proceed
in a similar manner as for the analysis of the Swiss rainfall data, using the
commands given below. We first load the data, which are also included with
geoR, and fit a model including the covariate area.

> data(ca20)

> fit <- likfit(ca20, ini = c(100, 60), trend = ~area)

For the predictions, we define a grid with spacing of 10 metres between the
points using the pred_grid() function as in the previous example. Because
the area is non-rectangular, we then use the polygrid() function to select the
grid points which fall within the prediction area. Next, we use this to build
a covariate vector with dimension equal to the number of prediction locations
indicating to which area each of the prediction points belongs.

> gr <- pred_grid(ca20$borders, by = 10)

> gr0 <- polygrid(gr, borders = ca20$border, bound = T)

> ind.reg <- numeric(nrow(gr0))

> ind.reg[.geoR_inout(gr0, ca20$reg1)] <- 1

> ind.reg[.geoR_inout(gr0, ca20$reg2)] <- 2

> ind.reg[.geoR_inout(gr0, ca20$reg3)] <- 3

> ind.reg <- as.factor(ind.reg)

We now use the krige.control() function and associated methods to imple-
ment the predictions and display the results. Since this is a prediction with
covariates we pass the covariate values at data locations to the argument
trend.d and at prediction locations to trend.l.

> KC <- krige.control(trend.d = ~area, trend.l = ~ind.reg,

+ obj.model = fit)

> ca20pred <- krige.conv(ca20, loc = gr, krige = KC)

> par(mar = c(2.8, 2.5, 0.5, 0.5), mgp = c(1.8, 0.7, 0),

+ mfrow = c(1, 2))

> image(ca20pred, loc = gr, col = gray(seq(1, 0.1, l = 21)),

+ x.leg = c(4930, 5350), y.leg = c(4790, 4840))

> polygon(ca20$reg1)

> polygon(ca20$reg2)

> polygon(ca20$reg3)

> image(ca20pred, loc = gr, val = sqrt(ca20pred$krige.var),

+ col = gray(seq(1, 0.15, l = 21)), x.leg = c(4930, 5350),

+ y.leg = c(4790, 4840))

> polygon(ca20$reg1)

> polygon(ca20$reg2)

> polygon(ca20$reg3)

Notice that the kriging function krige.conv() does not return the kriging
weights, although the calculations of these are performed internally. However,
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the weights can be obtained using the function krweights(), which takes as
arguments the data coordinates, the location(s) of the point(s) to be predicted
and the object which specifies the model. For example, to obtain the weights
shown in the lower-left panel of Figure 6.3 we use the commands below.

> coords <- cbind(c(0.2, 0.25, 0.6, 0.7), c(0.1, 0.8, 0.9,

+ 0.3))

> KC <- krige.control(ty = "ok", cov.model = "mat", kap = 1.5,

+ nug = 0.1, cov.pars = c(1, 0.1))

> krweights(coords, c(0.5, 0.5), KC)

[1] 0.1935404 0.2301559 0.2125838 0.3637199

6.8 Exercises

6.1. Evaluate the prediction weights associated with simple kriging, treating
all model parameters as known, when the model is a stationary Gaussian
process with µ = 0, σ2 = 0, τ2 = 0 and exponential correlation function
ρ(u) = exp(−u/ϕ), and the sampling locations are equally spaced along
the unit interval. Which of the weights are zero, and why?

6.2. Extend the result of Exercise 6.1 to unequally spaced sampling locations.
Do you get the same pattern of zero and non-zero weights? Comment
briefly.

6.3. Extend the result of Exercise 6.1 to a two-dimensional set of sampling
locations (for ease of calculation, use a single prediction location and a
small number of sample locations). Do you get the same pattern of zero
and non-zero weights? Comment briefly.

6.4. Consider a stationary trans-Gaussian model with known transformation
function h(·), let x be an arbitrary location within the study region and
define T = h−1{S(x)}. Find explicit expressions for P(T > c|Y ) where
Y = (Y1, ..., Yn) denotes the observed measurements on the untransformed
scale and:
(a) h(u) = u
(b) h(u) = log u
(c) h(u) =

√
u.

6.5. Simulate and display realisations of zero-mean, unit variance stationary
Gaussian processes S(x) on a 40 by 40 grid of points in the unit square,
experimenting with different values for the correlation parameters to give a
range of“rough”and“smooth”surfaces. Note that for all of these processes,
the expected proportion of the unit square for which S(x) > 0 should be
one-half, although the actual proportion will vary between realisations.
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For each selected realisation, take as the data a random sample of size n
from the 1600 grid-point values of S(x).

(a) Obtain the predictive distribution of the proportion of the study area
for which S(x) > 0, i.e. A(0) in the notation of Section 6.5.1, using
plug-in predictions with:

(i) true parameter values

(ii) parameter values estimated by maximum likelihood.

Compare the two predictive distributions obtained under (i) and (ii).
(b) Investigate how the predictive distributions change as you increase

the sample size, n.
(c) Comment generally.
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7
Bayesian inference

In Chapters 5 and 6 we discussed geostatistical inference from a classical or non-
Bayesian perspective, treating parameter estimation and prediction as separate
problems. We did this for two reasons, one philosophical the other practical.
Firstly, in the non-Bayesian setting, there is a fundamental distinction between
a parameter and a prediction target. A parameter has a fixed, but unknown value
which represents a property of the processes which generate the data, whereas
a prediction target is the realised value of a random variable associated with
those same processes. Secondly, estimation and prediction are usually opera-
tionally separate in geostatistical practice, meaning that we first formulate our
model and estimate its parameters, then plug the estimated parameter values
into theoretical prediction equations as if they were the true values. An obvi-
ous concern with this two-phase approach is that ignoring uncertainty in the
parameter estimates may lead to optimistic assessments of predictive accuracy.
It is possible to address this concern in various ways without being Bayesian,
but in our view the Bayesian approach gives a more elegant solution, and it is
the one which we have adopted in our own work.

7.1 The Bayesian paradigm: a unified treatment of
estimation and prediction

7.1.1 Prediction using plug-in estimates

In general, a geostatistical model is specified through two sub-models: a sub-
model for an unobserved spatial process {S(x) : x ∈ IR2}, called the signal, and
a sub-model for the data Y = (Y1, . . . , Yn) conditional on S(·). Using θ as a



7.1. The Bayesian paradigm: a unified treatment of estimation and prediction 157

generic notation for all unknown parameters, a formal notation for the model
specification is

[Y, S|θ] = [S|θ][Y |S, θ], (7.1)

where S denotes the whole of the signal process, {S(x) : x ∈ IR2}. The square
bracket notation, [·], means “the distribution of” the random variable or vari-
ables enclosed in the brackets, with a vertical bar as usual denoting conditioning.
Whilst we find this notation helpful in emphasising the structure of a model, it
will sometimes be more convenient to use the notation p(·) to denote probabil-
ity or probability density, in which case we reserve π(·) to denote the Bayesian
prior distribution of model parameters.
The classical predictive distribution of S is the conditional distribution

[S|Y, θ], which in principle is obtainable from the model specification by an
application of Bayes’ Theorem. For any target for prediction, T , which is a de-
terministic functional of S the predictive distribution for T follows immediately
in principle from that of S, although it may or may not be analytically tractable.
In either event, to generate a realisation from the predictive distribution [T |Y, θ]
we need only generate a realisation from the predictive distribution [S|Y, θ] and
apply a deterministic calculation to convert from S to T .
A plug-in predictive distribution consists simply of treating estimated pa-

rameter values as if they were the truth; hence, for any target T the plug-in
predictive distribution is [T |Y, θ̂].

In the special case of the linear Gaussian model as defined in (5.12) and
with a prediction target T = S(x) the plug-in predictive distribution is known
explicitly. As demonstrated in Section 6.2.1, [T |Y, θ] is Gaussian with mean

T̂ = E[T |Y, θ] = µ(x) + r′V (θ)−1(Y − µ)

and variance

Var[T |Y, θ] = σ2(1− r′V (θ)−1r),

where µ(x) = d(x)′β is the n-element vector with elements µ(xi) : i = 1, ..., n,
σ2V (θ) = Var(Y |θ) as given by (6.6) and r is the n-element vector of correlations
with elements ri = Corr{S(x), Yi}.
These formulae assume that S(x) has zero mean i.e., any non-zero mean

is included in the specification of the regression model for µ(x). When the
target depends on both S and the trend, µ(x), for example when we want to
predict µ(x) + S(x) at an arbitrary location, we simply plug the appropriate
point estimate µ̂(x) into the definition of T . Plug-in prediction often results in
optimistic estimates of precision. Bayesian prediction remedies this.

7.1.2 Bayesian prediction

The Bayesian approach to prediction makes no formal distinction between the
unobserved signal process S and the model parameters θ. Both are unobserved
random variables. Hence, the starting point is a hierarchically specified joint
distribution for three random entities: the data, Y ; the signal, S; and the model
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parameters, θ. The specification extends the two-level hierarchical form (7.1) to
a three-level hierarchy,

[Y, S, θ] = [θ][S|θ][Y |S, θ], (7.2)

where now [θ] is the prior distribution for θ. In theory, the prior distribution
should reflect the scientist’s prior opinions about the likely values of θ prior to
collection and inspection of the data; in practice, as we discuss below, the prior
is often chosen pragmatically.
The Bayesian predictive distribution for S is defined as the conditional dis-

tribution [S|Y ]. This is again obtained from the model specification by an
application of Bayes’ Theorem, but starting from (7.2) rather than (7.1). This
leads to the result

[S|Y ] =

∫
[S|Y, θ][θ|Y ]dθ, (7.3)

showing that the Bayesian predictive distribution is a weighted average of plug-
in predictive distributions, in which the weights reflect our posterior uncertainty
about the values of the model parameters θ. As with plug-in prediction, the
predictive distribution for any target T which is a functional of S follows im-
mediately, as the transformation from S to T is deterministic. In practice, we
simulate samples from the predictive distribution of S, and from each such sim-
ulated sample we calculate a corresponding sampled value from the predictive
distribution of T .
Typically, but not universally, the Bayesian paradigm leads to more conser-

vative predictions in the sense that the resulting predictive distribution [T |Y ]

is more dispersed than the plug-in predictive distribution [T |Y, θ̂]. Note also
that as the data become more abundant, then for any parameter θ which is
identifiable from the data we expect the posterior distribution [θ|Y ] to become

progressively more concentrated around a single value θ̂. In other words, the
Bayesian predictive distribution for S, and therefore for any target T , converges
to the plug-in. However, the rate of convergence is problem specific, depending
on a complex inter-play involving the prior, the model and the sampling design.
In our experience the difference between the two can be substantial, especially
for non-linear targets T . Also, we re-emphasise our point of view that the com-
plete solution to a predictive problem is a probability distribution, not a single
value. In geostatistical applications where prediction is the scientific goal, point
estimates of parameters may be acceptable, but point predictions are of limited
value.
In the special case of the linear Gaussian model with target T = S(x) and

pragmatic prior assumptions, we can obtain explicit results for the Bayesian
predictive distribution of T . As in Section 5.3, we first illustrate the general
approach for the unrealistic case in which all model parameters other than the
mean and variance are assumed known, then relax these assumptions to derive
a prediction algorithm for the case of practical interest, in which all parameters
are assumed unknown and are assigned a joint prior distribution.
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7.1.3 Obstacles to practical Bayesian prediction

There are two major requirements which must be met before Bayesian inference
can be used in practice.
The first, and the more fundamental, is that the data analyst must be pre-

pared to specify a prior distribution for θ. Often, this is done pragmatically. A
guiding principle in applied work is that in the absence of clearly articulated
prior knowledge priors should be diffuse, in which case their effects are swamped
by the effect of the likelihood provided that the sample size is sufficiently large.
However, in the geostatistical setting where data are often highly correlated,
intuitive ideas of what constitutes a “large” sample may be misleading. Our ex-
perience has been that with data-sets of size several hundred, apparently diffuse
priors can still have a noticeable influence on the inferences. It seems to be a
general feature of geostatistical problems that the models are poorly identified,
in the sense that widely different combinations of parameter values lead to very
similar fits. This may not matter if parameter estimation is not of direct in-
terest but is only a means towards the goal of prediction. Even so, it remains
a lingering concern because the prior does potentially influence the predictive
distribution which we report for any target.
Another issue with regard to prior specification is whether priors for differ-

ent parameters should be independent. In practice, independent priors are often
assumed. However, this assumption is equally often questionable. Note in partic-
ular that the substantive meaning of an independent prior specification changes
if the model is re-parameterised by anything other than a component-wise
transformation.
The second, computational requirement is evaluation of the integral which

is required to convert a specified model and prior into a posterior or Bayesian
predictive distribution; see (7.4) below. In particular cases, including the linear
Gaussian model, it is possible to choose a convenient prior, called the conjugate
prior, so that the required integration can be performed analytically. More often,
numerical evaluation is required. In most practical problems the only feasible
evaluation strategies involve Monte Carlo methods, including the now ubiqui-
tous Markov chain Monte Carlo (MCMC) methods as discussed in Gilks et al.
(1996). Conversely, advances in computing power and theoretical developments
in Monte Carlo methods of inference have together made Bayesian inference a
feasible, and sometimes the only feasible, approach to inference for problems
involving complex stochastic models.

7.2 Bayesian estimation and prediction for the
Gaussian linear model

We first describe an implementation of Bayesian inference for parameter estima-
tion in the Gaussian linear model. We have argued that parameter estimation
is often not the primary goal of a geostatistical analysis. We discuss parameter
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estimation here as a prelude to the main focus of this chapter, namely Bayesian
prediction.
In Bayesian parameter estimation, the likelihood function ℓ(θ; y) is com-

bined with a prior distribution π(θ) via Bayes’ Theorem to yield a posterior
distribution for θ with density

p(θ|y) = ℓ(θ; y)π(θ)∫
ℓ(θ; y)π(θ)dθ

. (7.4)

Inferences about θ are then expressed as probability statements derived from
the posterior. For example, the classical notion of a confidence interval for a
single parameter, θk say, is replaced by a Bayesian credible interval (a, b), where
a and b are chosen so that under the posterior distribution for θ, P(a ≤ θk ≤
b) attains a specified value, for example 0.95. As is the case for a confidence
interval, the choice of a and b to achieve a given coverage probability is not
unique. Unless stated otherwise, we use a “central quantile-based” method so
that, for example, for a 95% credible interval we take a and b to be the 2.5% and
97.5% quantiles of the posterior or predictive distribution. If a point estimate is
required, an appropriate summary statistic can be calculated from the posterior,
for example its mean, median or mode.

7.2.1 Estimation

We again consider the Gaussian model (5.12) which includes a linear regression
specification for the spatial trend, so that

[Y ] ∼ N(Dβ, σ2R(ϕ) + τ2I).

To this model specification, whenever possible we add pragmatic specifications
for the prior distributions which allow us to obtain explicit expressions for
the corresponding posteriors. In other cases we discretise the prior to ease the
resulting computations.
We first consider the situation in which we fix τ2 = 0 i. e., we assume that

there is no nugget effect, and all other parameters in the correlation function
have known values. Using particular prior specifications, we can then derive
the posterior distributions for β and σ2 analytically. These assumptions are of
course unrealistic. We use them simply as a device to lead us towards a feasible
implementation in the more realistic setting when all parameters are unknown.
For fixed ϕ, the conjugate prior family for (β, σ2) is the Gaussian-Scaled-

Inverse-χ2. This specifies priors for β and σ2 with respective distributions

[β|σ2, ϕ] ∼ N
(
mb, σ

2Vb
)

and [σ2|ϕ] ∼ χ2
ScI

(
nσ, S

2
σ

)
,

where a χ2
ScI(nσ, S

2
σ) distribution has probability density function

π(z) ∝ z−(nσ/2+1) exp(−nσS2
σ/(2z)), z > 0. (7.5)

As a convenient shorthand, we write this as

[β, σ2|ϕ] ∼ Nχ2
ScI

(
mb, Vb, nσ, S

2
σ

)
. (7.6)
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Note, incidentally, that this is one case where a particular form of dependent
prior specification is convenient.
Using Bayes’ Theorem, we combine the prior with the likelihood given

by (5.13) and obtain the posterior distribution of the parameters as

[β, σ2|y, ϕ] ∼ Nχ2
ScI

(
β̃, Vβ̃ , nσ + n, S2

)
, (7.7)

where β̃ = Vβ̃(V
−1
b mb +D′R−1y), Vβ̃ = (V −1

b +D′R−1D)−1 and

S2 =
nσS

2
σ +m′

bV
−1
b mb + y′R−1y − β̃′V −1

β̃
β̃

nσ + n
. (7.8)

Under the conjugate specification, the degree to which the priors influence
the inferences for β and σ2 is controlled by the values of the constants mb, Vb,
nσ and S2

σ. Note in particular that the prior mean for 1/σ2 is 1/S2
σ and that the

prior distribution for σ2 becomes less diffuse as nσ increases. In practice, it may
be difficult to elicit appropriate values for these quantities, but in qualitative
terms we can think of S2

σ as a prior guess at the value of σ2, and nσ as a measure
of how well informed we consider this prior guess to be. Similarly, the prior mean
for β is mb and its prior distribution becomes less diffuse as Vb decreases, hence
the values of mb and of the elements of Vb should, roughly speaking, reflect our
prior guesses and the confidence we wish to place in them.
An alternative prior, often used as a default in Bayesian analysis of linear

models, is π(β, σ2) ∝ 1/σ2; see for example, O’Hagan (1994). This is an im-
proper distribution, because its integral over the parameter space is infinite.
Nevertheless, formal substitution of V −1

b = 0 and nσ = 0 into the formula (7.7)
for the posterior distribution gives the correct expression for the posterior dis-
tribution corresponding to this default prior, except that the degrees of freedom
are n− p, where p is the dimension of β, rather than n+ nσ.
More realistically, we now allow for uncertainty in all of the model parameters,

still considering the case of a model without a nugget effect, so that τ2 =
0, and with a single correlation parameter ϕ. We adopt a prior [β, σ2, ϕ] =
[β, σ2|ϕ] [ϕ], the product of (7.6) and a proper density for ϕ. In principle, the
prior distribution for ϕ should have continuous support, but in practice we
always use a discrete prior, obtained by discretising the distribution of ϕ in
equal width intervals. This requires us in particular to specify the range of
the prior for ϕ. In the absence of informed scientific opinion, we would do this
conservatively, but check that the posterior for ϕ assigns negligible probabilities
to the extreme points in the specified prior range.
The posterior distribution for the parameters is then given by

[β, σ2, ϕ|y] = [β, σ2|y, ϕ] [ϕ|y]

with [β, σ2|y, ϕ] given by (7.7) and

p (ϕ|y) ∝ π(ϕ) |Vβ̃ |
1
2 |R|− 1

2 (S2)−(n+nσ)/2, (7.9)

where Vβ̃ and S2 are given by (7.7) and (7.8) respectively. When the

prior is π(β, σ2, ϕ) ∝ π(ϕ)/σ2, the equation above holds with nσ = −p.



162 7. Bayesian inference

Berger, De Oliveira and Sansó (2001) use a special case of this as a default
non-informative prior for the parameters of a spatial Gaussian process.
To simulate samples from this posterior, we proceed as follows. We apply (7.9)

to compute posterior probabilities p(ϕ|y), noting that in practice the support
set will be discrete. We then simulate a value of ϕ from [ϕ|y], attach the sampled
value to [β, σ2|y, ϕ] and obtain a simulation from this distribution. By repeat-
ing the simulation as many times as required, we obtain a sample of triplets
(β, σ2, ϕ) from the joint posterior distribution of the model parameters.
To accommodate a positive nugget variance, τ2 > 0, in practice we use a

discrete joint prior for ϕ and ν2, where ν2 = τ2/σ2. This adds to the computa-
tional load, but introduces no new principles. In this case we replace R in the
equations above by V = R+ν2I. Similarly, if we wish to incorporate additional
parameters into the covariance structure of the signal process S(·), we would
again use a discretisation method to render the computations feasible.
Note that the form of Monte Carlo inference used here is direct simulation,

replicated independently, rather than MCMC. Hence, issues of convergence do
not arise and the simulation-induced variance in sampling from the posterior
for any quantity of interest is inversely proportional to the number of simulated
replicates. This allows us to assess the magnitude of the simulation-induced vari-
ation in the estimated posterior, or summaries of it, and to adjust the number
of simulations if necessary.

7.2.2 Prediction when correlation parameters are known

To extend the above results on Bayesian estimation to spatial prediction under
the linear Gaussian model, we temporarily assume that all parameters in the
correlation function have known values. In other words, we allow for uncertainty
only in the parameters β and σ2.
For fixed ϕ, the conjugate prior family for (β, σ2) is the Gaussian-Scaled-

Inverse-χ2, and the resulting posterior distribution of the parameters β and σ2

is given by equations (7.7) and (7.8). The additional step required for prediction
is to compute the Bayesian predictive distribution of the signal at an arbitrary
set of locations, say S∗ = (S(xn+1), . . . , S(xn+q)). This requires us to evaluate
the integral,

p(s∗|y) =
∫ ∫

p(s∗|y, β, σ2) p(β, σ2|y) dβdσ2, (7.10)

where p(S∗|Y, β, σ2) is a multivariate Gaussian density with mean and variance
given by the extension of (6.7) and (6.8) to the case of a linear regression model
for µ(x). Hence, the mean becomes

E[S∗|Y, β, σ2] = D∗β + r′V −1(Y −Dβ) (7.11)

where V = R+ ν2I whilst D∗ and D are the matrices of covariates correspond-
ing to prediction locations and sampling locations, respectively. The prediction
variance is unchanged,

Var[S∗|Y, β, σ2] = σ2(1− r′V −1r). (7.12)
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The integration in (7.10) yields a q-dimensional multivariate-t distribution
defined by:

[S∗|y] ∼ tnσ+n

(
µ∗, S2Σ∗) , (7.13)

E[S∗|y] = µ∗,

Var[S∗|y] =
nσ + n

nσ + n− 2
S2Σ∗,

where S2 is given by (7.8) and µ∗ and Σ∗ by the formulae

µ∗ = (D∗ − r′V −1D)Vβ̃V
−1
b mb

+
[
r′V −1 + (D∗ − r′V −1D)Vβ̃D

′V −1
]
y,

Σ∗ = V 0 − r′V −1r + (D∗ − r′V −1D)(V −1
b + V −1

β̂
)−1(D∗ − r′V −1D)′.

The three components in the formula for the prediction variance Σ∗ can be
interpreted as the variability a priori, the reduction due to the conditioning on
the data and the increase due to uncertainty in the value of β, respectively.

When it is difficult to elicit informative priors, we would usually adopt dif-
fuse, and apparently uninformative priors. However, the cautionary remarks
given in Section 7.1.3 still apply. Prediction of non-linear targets is carried out
using a simulation-based sampling procedure similar to the one described in
Section 6.2.4.

7.2.3 Uncertainty in the correlation parameters

More realistically, we now allow for uncertainty in all of the model parameters.
As in Section 7.2.1, it is helpful first to consider the case of a model without
measurement error i.e., τ2 = 0, and a single correlation parameter ϕ.
We adopt a prior π(β, σ2, ϕ) = π(β, σ2|ϕ) π(ϕ), the product of (7.6) and an

independent prior distribution for ϕ, which in practice we specify as a discrete
distribution spanning what is thought to be a reasonable range.
The posterior distribution for the parameters is then

[β, σ2, ϕ|y] = [β, σ2|y, ϕ] [ϕ|y]

where [β, σ2|y, ϕ] is given by (7.7), whilst the posterior density for ϕ is

p (ϕ|y) ∝ π(ϕ) |Vβ̃ |
1
2 |R|− 1

2 (S2)−(n+nσ)/2, (7.14)

with Vβ̃ and S2 given by (7.7) and (7.8), respectively. To simulate samples from
this posterior, we again use the simulation method described in Section 6.2.4.
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The predictive distribution for the value, S∗ = S(x∗) say, of the signal process
at an arbitrary location x∗, is given by

[S∗|y] =

∫ ∫ ∫
[S∗, β, σ2, ϕ|y] dβ dσ2 dϕ

=

∫ ∫ ∫
[S∗, β, σ2|y, ϕ] dβ dσ2 [ϕ|y] dϕ

=

∫
[S∗|y, ϕ] [ϕ|y] dϕ.

The discrete prior for ϕ allows analytic calculation of the moments of this
predictive distribution. For each value of ϕ we compute the moments of the
multivariate-t distribution (7.13) and calculate their weighted sum with weights
given by the probabilities p(ϕ|y).
To sample from the predictive distribution of S∗, we proceed as follows. We

first compute the posterior probabilities p(ϕ|y) on the discrete support set of
the prior for ϕ, then simulate values of ϕ from the posterior, [ϕ|y]. For each
sampled value of ϕ, we then simulate a value of (β, σ2) from the Gaussian con-
ditional distribution [β, σ2|y, ϕ], followed by a value of S∗ from the conditional
distribution [S∗|β, σ2, ϕ, y]. The resulting value of S∗ is an observation from the
required predictive distribution, [S∗|y]. The same method applies in principle
to the simulation of a vector of values in S∗ representing S(x) at a number of
different prediction points using the multivariate Gaussian predictive distribu-
tion [S∗|y, β, σ2, ϕ]. In practice, this may be computationally demanding if the
dimensionality of S∗ is large.

Finally, when τ2 > 0 or if we need to introduce additional parameters into
the covariance structure of S, we again proceed as in Section 7.2.1 by specifying
a discrete joint prior for [ϕ, ν2], where ν2 = τ2/σ2 and ϕ may now be vector
valued.

7.2.4 Prediction of targets which depend on both the signal and
the spatial trend

When the target for prediction depends on both the signal process, S(·), and the
trend, µ(·), we need to make a straightforward modification to the Bayesian pre-
diction methodology. At this point, it is helpful to consider the generic notation
for the model as given by (7.1), namely [Y, S|θ] = [S|θ][Y |S, θ], but to partition
the parameter vector θ as θ = (α, β), where α parameterises the covariance
structure and β parameterises the trend. Under this parameterisation, S is con-
ditionally independent of β given α. To sample from the predictive distribution
of any target T which depends on both S(·) and µ, we proceed as described in
Section 7.2.3, simulating values of α from the distribution [α|y] and of S from
the distribution [S|α, y]. At this point, if the target T involves the values of the
signal, S∗ say, at unsampled locations x, we can simulate these directly from
the multivariate Gaussian distribution [S∗|S, α], which does not depend on y.
Using the same values of α we then simulate values of β, and hence of µ(x) for
any locations x of interest, from the posterior distribution [β|α, y]. Finally, we
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use the sampled values of S, S∗ and µ(x) to calculate directly the corresponding
sampled values of T which are then realisations from the appropriate predictive
distribution, [T |y], as required.
We again emphasise that the simulated samples generated by the methods

described in this chapter are exact, independent samples from the required
predictive distributions, and the size of the simulation-induced variability can
therefore be assessed directly. As we shall discuss in Section 7.5, when we move
beyond the linear Gaussian setting, we need to resort to Markov chain Monte
Carlo methods, and to address issues concerning the convergence of sampled
values to their equilibrium distributions.

7.3 Trans-Gaussian models

A possible approach to the transformed Gaussian model is to consider a para-
metric family of transformations, such as the Box-Cox family, and to treat the
choice of transformation as an additional parameter, λ say, to be estimated.
De Oliveira, Kedem and Short (1997) proceed in this way, using formal

Bayesian inference on all of the model parameters. We would be reluctant to
follow their approach, partly for the reasons given in Section 6.5, but more
particularly because we have reservations about combining predictions using
different measurement scales.
If empirical prediction is the sole aim, a possible strategy is the following.

Consider a small number of candidate values for λ, for example λ = 1, 0.5 or 0,
and adopt a discrete prior over these candidate values. Now, choose a sensible
prior for the remaining parameters conditional on each candidate value of λ,
taking care to make these conditional priors at least qualitatively consistent
with each other; for example, if the prior for the mean response parameter µ
given λ = 1 is centered on a value around 100, say, then the prior for µ given
λ = 0.5 should be centered around a value of about 10. Predictions can then
be made by applying a simple form of Bayesian model averaging, in which the
predictive distribution is a mixture of predictive distributions conditional on
each candidate value of λ, and weighted according to the posterior probabilities
determined for each candidate value.
When the scientific objectives extend beyond empirical prediction, we would

prefer to choose λ informally, then carry out a Bayesian analysis treating λ as a
fixed, pre-specified quantity, so as to preserve a physical interpretation for each
of the model parameters.
There are also some technical objections to applying formal Bayesian in-

ference to the transformed Gaussian model using the Box-Cox family of
transformations. Firstly, when using the Box-Cox transformed Gaussian model
with λ > 0, we can back-transform predictions to the original scale using for-
mulae for the moments of the t-distribution. However, this breaks down when
λ = 0, corresponding to the widely used log-transformation, because the expo-
nential of a t-distribution does not have finite moments, hence when λ = 0 the
conditional expectation which usually defines the minimum mean square error
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predictor does not exist. A second concern is that if Y > 0, as is strictly nec-
essary for the Box-Cox transformation to define a real-valued Y ∗ for all real λ,
then Y ∗ cannot strictly be Gaussian. Of course, this last point applies equally
to many situations in which the Gaussian is used routinely as an approximate
model for strictly non-negative data.
These comments are intended only as a gentle caution against the unthinking

application of the transformed Gaussian model. In practice, the transformed
Gaussian is a very useful extension of the Gaussian model when the data are
clearly non-Gaussian, and neither the sampling mechanism underlying the data
nor the particular scientific context in which the data arise suggests a specific
non-Gaussian alternative. Working within the transformed Gaussian frame-
work is also relatively straightforward computationally, by comparison with
the perhaps more elegant setting of generalized linear geostatistical models for
non-Gaussian data.

7.4 Case studies

7.4.1 Surface elevations

We first consider the surface elevation data from Example 1.1. In Chapter 5 we
fitted a linear Gaussian model to these data, assuming a linear trend surface on
the coordinates for the mean and a Matérn correlation structure with κ = 1.5
for the stationary process S(·). We now use this model for spatial prediction of
the elevation surface, T (x) = µ(x)+S(x), and compare the results obtained by
plug-in and Bayesian methods.
For plug-in prediction, maximum likelihood estimates of the remaining

parameters in the covariance structure are τ̂2 = 34.9, σ̂2 = 1693.1 and
ϕ̂ = 0.8. The parameter estimates which define the linear trend surface are
(912.5,−5,−16.5). The top-left panel of Figure 7.1 shows the resulting plug-in
prediction of surface elevations. The top-right and bottom-right panels show
the decomposition of the predicted surface into its two components, the linear
trend, µ̂(·) and the stochastic component Ŝ(·). The bottom-left panel shows
prediction standard errors.
For Bayesian prediction under the same model, we assign the priors as dis-

cussed in Section 7.2.1. Specifically, in this example we set π(β, σ2) = 1/σ2 and
a joint discrete prior π(ϕ, ν2) = 1/ϕ in the region [0.2, 6] × [0, 1] with 30 × 21
support points. Figure 7.2 shows prior and posterior distributions for the model
parameters ϕ and ν2. In both cases, the posterior assigns higher probabilities
to the lower values of the corresponding parameter.
For comparison with the plug-in results shown in Figure 7.1, we compute the

posterior means for µ(x) and T (x) = S(x) at each location x in a fine grid, and
the posterior standard deviations of T (x). The results are shown in Figure 7.3
where, to allow direct comparison, we have used the same grey scales for plug-in
and Bayesian maps of prediction results.
Figure 7.4 compares the plug-in and Bayesian predictive distributions at two

points. The first, (x, y) = (5.4, 0.4), coincides with one of the data locations
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Figure 7.1. Prediction results for the elevation data using plug-in parameter estimates.
Top-left panel shows predicted values for T (x) = µ(x)+S(x), top-right and bottom-left
panels shows the two components separately. Bottom-right panel shows the prediction
standard errors.

whereas the second, (x, y) = (1.7, 0.7), lies a distance 0.32 from the closest data
location. The Bayesian predictive distribution on the left reduces almost to a
spike because of the high posterior density at ν2 = 0, for which the variance
of the predictive distribution is equal to zero. Hence, sampled values from the
predictive distribution coincide with the observed elevation at this location.
For the plug-in prediction, because ν̂2 > 0 the plug-in predictive distribution is
more diffuse. For the other location, the Bayesian predictive distribution has a
slightly larger variance than the corresponding plug-in predictive distribution,
reflecting the effect of parameter uncertainty. Bayesian predictive distributions
typically have larger variances than the corresponding plug-in distributions, but
as the example shows, this is not invariably the case.
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Figure 7.2. Prior and posterior distributions for the model parameters ϕ on the left
panel and ν2 on the right panel.

Figure 7.3. Bayesian prediction results for the elevation data. Left panel shows pre-
dicted values for T (x) = µ(x) + S(x) and right panel shows the prediction standard
errors.

7.4.2 Analysis of Swiss rainfall data (continued)

In Chapter 5 we obtained the maximum likelihood parameter estimates for the
Swiss rainfall data assuming a transformed Gaussian model with transformation
parameter λ = 0.5, constant mean and Matérn correlation function with κ = 1.
In Section 6.5.1 we used the fitted model to obtain plug-in predictions over
Switzerland as shown in Figure 6.10.
We now revise the analysis by adopting the Bayesian approach, assuming the

same model as before but setting prior distributions for the model parameters
(µ, σ2, ϕ, ν2) as discussed in Section 7.2.3. For the correlation function parame-
ter ϕ we adopt a reciprocal prior π(ϕ) = 1/ϕ with ϕ taking values on a discrete
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Figure 7.4. Bayesian (solid line) and plug-in (dashed line) predictive distributions at
a data location (x, y) = (5.4, 0.4) and a prediction location (x, y) = (1.7, 0.7).

Table 7.1. Swiss rainfall data: posterior means and 95% central quantile-based credible
intervals for the model parameters.

Parameter Estimate 95% interval

β 144.35 [53.08 , 224.28]
σ2 13662.15 [8713.18 , 27116.35]
ϕ 49.97 [30 , 82.5]
ν2 0.03 [0 , 0.05]

support of 20 points in the interval [7.5, 150]. For the noise to signal variance
ratio ν2 = τ2/σ2 we use a uniform prior on a discrete support of 11 points
in the interval [0, 0.5]. We obtain 1000 samples from posterior and predictive
distributions.
Figure 7.5 shows the discrete prior and posterior distributions for the pa-

rameters ϕ and ν2. Table 7.1 shows the 95% credibility intervals for the model
parameters. To obtain predictions over the whole of Switzerland we define a
7.5 × 7.5 km grid of locations. Figure 7.6 shows the predicted values, which
range from 2.1 to 499.7, and associated standard errors ranging from 19.3 to
82.9. The limits for the grey scale are the same as were used in the correspond-
ing plot in Figure 6.10, where predicted values ranged from 3.5 to 480.4 and
predicted standard errors ranged from 4.8 to 77.5.
We also obtain Bayesian prediction of the proportion of the total area A(200)

for which rainfall exceeds the threshold 200 and compare the result with that
obtained in Section 6.5.1. We obtain a posterior mean Ã(200) = 0.409. From
the sample, we can read off predictive probabilities for A(200) to lie within
any stated limits, for example P(0.391 < A(200) < 0.426) = 0.90. Recall that
for the plug-in predictions the corresponding results were Ã(200) = 0.394 and
P(0.375 < A(200) < 0.41) = 0.90. The solid line in the left-hand panel of
Figure 7.7 shows a density estimate obtained using samples from the predictive
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Figure 7.5. Swiss rainfall data: discrete prior and posterior distributions for the
parameters ϕ on the left panel and ν2 on the right panel.

Figure 7.6. Swiss rainfall data. Bayesian predictions of rainfall (left-hand panel) and
corresponding prediction variances (right-hand panel).

distribution of A(200) whilst the dashed line shows the corresponding result
using plug-in prediction. This illustrates that Bayesian and plug-in methods
can give materially different predictive distributions. In our experience, this is
especially so for non-linear prediction targets.
Another possible prediction target is a map of the probabilities, P (x; c) say,

that S(x) exceeds the threshold value c, given the data. The right-hand panel
of Figure 7.7 shows a map of P (x; 250), which is obtained by computing for
each point in the prediction grid the proportion of simulated values of S(x)
which exceed the value of 250. This result is the Bayesian counterpart of the
one obtained for plug-in prediction, as shown in Figure 6.11.
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Figure 7.7. Prediction of functionals of S(x) for the Swiss rainfall data. The left-hand
panel shows density estimates based on a sample of size s = 2000 drawn from the pre-
dictive distribution of A(200) using either Bayesian prediction (solid line) or plug-in
prediction (dashed line). The right-hand panel shows the map of exceedance proba-
bilities P (x; 250) for the Bayesian prediction.

7.5 Bayesian estimation and prediction for generalized
linear geostatistical models

As previously discussed in Section 5.5, the implementation of a likelihood-based
method of inference for generalized linear geostatistical models is hampered
by the need to evaluate intractable, high-dimensional integrals. For Bayesian
inference, the usual way round this difficulty is to use Monte Carlo methods,
in particular Markov chain Monte Carlo, to generate samples from the required
posterior or predictive distributions. We therefore begin this section with a brief
discussion of Markov chain Monte Carlo methods as they apply in the current
context. Readers who wish to study Markov chain Monte Carlo methods in
detail may want to consult the textbooks listed at the end of Section 1.5.2.

7.5.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is now very widely used in Bayesian in-
ference. Its attraction is that, in principle, it provides a way of circumventing
the analytical and numerical intractability of Bayesian calculations by generat-
ing samples from the posterior distributions associated with almost arbitrarily
complex models. MCMC achieves this by simulating from a Markov chain con-
structed in such a way that the equilibrium distribution of the chain is the
required posterior, or Bayesian predictive distribution. Furthermore, it is possi-
ble to define general constructions for chains which meet this basic requirement.
However, for many applications, constructing reliable MCMC algorithms is diffi-
cult. By“reliable”we mean that the chain reaches at least a close approximation
to its equilibrium distribution sufficiently quickly to be within the capacity of
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Figure 7.8. Conditional independence graph for the generalized linear geostatistical
model. If two nodes are not connected by a line then the corresponding random
variables are conditionally independent given the random variables at all other nodes.

the available computing resource and, crucially, that we can recognise when it
has reached a close-to-equilibrium state.
We denote by θ the set of parameters which define the covariance structure of

the model, and by β the regression parameters which, with S(·), determine the
conditional expectation of Y . Our parameterisation assumes that E[S(x)] = 0,
hence β always includes an intercept term. We write S for the vector of values
of S(xi) at data locations xi, Y for the corresponding vector of measurements
Yi, and S

∗ for the vector of values of S(x) at prediction locations x. Note that
in practice, the prediction locations may or may not include the data locations
xi. We shall assume that S∗ and S are distinct. However, the algorithms for
sampling from the predictive distribution of S∗ automatically generate samples
from the predictive distribution of S. Hence, if predictions at data locations are
required, we simply combine the sampled values of S∗ and S.
For parameter estimation, we need to generate samples from the posterior

distribution [θ, β|Y ]. For prediction, we also require samples from the posterior
distribution [S∗|Y ]. Diggle et al. (1998) proposed an MCMC algorithm for both
tasks, based on the conditional independence structure of the generalized linear
geostatistical model as shown in Figure 7.8.

7.5.2 Estimation

For inference about model parameters, S∗ is irrelevant. Using the structure of
the conditional independence graph restricted to the nodes θ, β, S and Y , and
noting that the data Y are fixed, a single cycle of the MCMC algorithm involves
first sampling from [S|θ, β, Y ], then from [θ|S], and finally from [β|S, Y ]. The
second stage in the cycle can in turn be broken into a sequence of samples
from the univariate conditional distributions [Si|S−i, θ, β, Y ], where S−i denotes
the vector S with its ith element removed. Alternatively, the vector S can
be updated in a single step, as we shall discuss in Section 7.5.4. In principle,
repeating this process sufficiently many times from arbitrary starting values
for θ, β and S will eventually generate samples from [θ, β, S|Y ] and hence, by
simply ignoring the sampled values of S, from the required posterior [θ, β|Y ].
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We now consider the detailed form of each of these conditional distributions.
Firstly, Bayes’ Theorem immediately implies that

[θ|S] ∝ [S|θ][θ], (7.15)

and that [β|S, Y ] ∝ [Y |β, S][β]. The structure of the generalized linear model
implies that

p(Y |β, S) =
n∏
j=1

p(Yj |β, Sj), (7.16)

from which it follows that

p(β|S, Y ) ∝ {
n∏
j=1

p(Yj |β, Sj)}π(β). (7.17)

Finally, Bayes’ Theorem in conjunction with the conditional independence
structure of the model gives p(Si|S−i, θ, β, Y ) ∝ p(Y |S, β)p(Si|S−i, θ) and (7.16)
then gives

p(Si|S−i, θ, β, Y ) = {
n∏
j=1

p(Yj |Sj , β)}p(Si|S−i, θ). (7.18)

Because S(·) is a Gaussian process, the conditional distribution [S|θ] in equation
(7.15) is multivariate Gaussian, and p(Si|S−i, θ) in equation (7.18) is therefore
a univariate Gaussian density. This facilitates the alternative approach of block-
updating values of S jointly. In principle, we could specify any prior distributions
for θ and β in equations (7.15) and (7.17). Note also that p(Yj |Sj , β) = p(y;µj)
where µj = h−1{d′jβ + S(xj)} and h(·) is the link function of the generalized
linear model.
The resulting algorithm is straightforward to implement and is a general-

purpose method, which makes it suitable for incorporation into a general
package. However, for any particular model more efficient algorithms could cer-
tainly be devised; for further discussion, see Section 7.5.4. The general-purpose
algorithm can be described more explicitly as follows. Each step uses a version of
a class of methods known as Metropolis-Hastings algorithms, after Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller (1953) and Hastings (1970). These
algorithms involve sampling a proposed update and accepting or rejecting the
update with a probability which is chosen so as to guarantee convergence of the
chain to the required equilibrium distribution

• Step 0. Choose initial values for θ, β and S. The initial values for θ and β
should be compatible with their respective priors. Sensible initial values
for S are obtained by equating each Yi to its conditional expectation µi
given β and S(xi), and solving for Si = S(xi).

• Step 1. Update all the components of the parameter vector θ:

(i) choose a new proposed value θ′ by sampling uniformly from the
parameter space specified by the prior;
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(ii) accept θ′ with probability ∆(θ, θ′) = min
{
p(S|θ′)
p(S|θ) , 1

}
, otherwise

leave θ unchanged.

• Step 2. Update the signals, S:

(i) choose a new proposed value, S′
i, for the ith component of S from

the univariate Gaussian conditional probability density p(S′
i|S−i, θ),

where S−i denotes S with its ith element removed;

(ii) accept S′
i with probability ∆(Si, S

′
i) = min

{
p(yi|s′i,β)
p(yi|si,β) , 1

}
, otherwise

leave Si unchanged;
(iii) repeat (i) and (ii) for all i = 1, . . . , n.

• Step 3. Update all the elements of the regression parameter β:

(i) choose a new proposed value β′ from a conditional density p(β′|β);
(ii) accept β′ with probability

∆(β, β′) = min

{∏n
j=1 p(yj |sj , β′) p(β|β′)∏n
j=1 p(yj |sj , β) p(β′, |β)

, 1

}
,

otherwise leave β unchanged.

In this context, the conditional densities p(Si|S−i) in step 2, and p(β′|β) in
step 3 are called transition kernels. Any kernel gives a valid algorithm, but
the choice can have a major impact on computational efficiency. Note that
in step 2, the transition kernel is the modelled conditional distribution of Si
given S−i, which seems a natural choice, whereas in step 3 the transition kernel
p(β′|β) is essentially arbitrary. In general, a good choice of transition kernel
is problem-specific, and in our experience involves considerable trial-and-error
experimentation to achieve good results.
Steps 1–3 are repeated until the chain is judged to have reached its equilib-

rium distribution, the so-called “burn-in” of the algorithm. Further cycling over
steps 1–3 yields a sample from the posterior distribution, [θ, S, β|Y ], which can
then be processed as in Chapter 6, using properties of the empirical sample as
approximations to the corresponding properties of the posterior. In principle,
these samples can be made arbitrarily precise by increasing the length of the
simulation run. However, in contrast to the direct Monte Carlo methods used in
Chapter 6, the MCMC algorithm generates dependent samples, often in practice
very strongly dependent, and the simple rule of doubling the simulation size to
halve the Monte Carlo variance does not apply. It is common practice to thin
the MCMC output by sampling only at every rth cycle of the algorithm. In-
creasing r has the effect of reducing the dependence between successive sampled
values. This does not of course improve the statistical efficiency of a run of a
given length, but it may be a sensible compromise between the very small gains
in efficiency obtained by retaining the complete, strongly dependent sample and
the convenience of storing a much smaller number of sampled values.
The usual way to display a posterior distribution obtained from an MCMC

algorithm is as either a histogram or a smoothed non-parametric density es-
timate based on the sampled values after the algorithm is presumed to have
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converged. Because the MCMC sample is usually very large, typically many
thousands, the choice of bin-width for the histogram, or band-width for a non-
parametric smoother, is usually neither difficult nor critical. Nevertheless, the
earlier warning that MCMC samples are not independent still holds, and it is
always worth checking that splitting the MCMC sample in half gives essentially
the same posterior for any quantity of interest. For univariate posteriors, we
usually examine a superimposed plot of two cumulative empirical distribution
functions calculated from the two half-samples, together with the cumulative
prior distribution. Approximate equality of the two empirical distribution func-
tions suggests that the sample size is adequate and gives some assurance (but
no guarantee) that the algorithm is close to its equilibrium state. A large dif-
ference between the posterior and prior distributions confirms that the data are
strongly informative of the parameter in question.
Displaying multivariate posteriors is less straightforward. In the bivariate

case, standard practice appears to be to use an ordinary scatterplot, but a
simple non-parametric smoother again provides an alternative. In higher dimen-
sions, options include a scatterplot matrix display, a dynamic three-dimensional
spinning scatterplot or a classical dimension-reducing method such as a transfor-
mation to principal components. Inspection of the bivariate posteriors for pairs
of parameters can highlight possible problems of poorly identified combinations
of parameter values.

7.5.3 Prediction

For prediction of properties of the realised signal, S(·), we need to re-introduce
the fifth node, S∗, into the conditional independence graph of the model as in
Figure 7.8. The goal is then to generate samples from the conditional distribu-
tion [(S, S∗)|Y ] = [S|Y ][S∗|S, Y ]. The general prediction algorithm operates by
adding to the three-step algorithm described in Section 7.5.2 the following.

• Step 4. Draw a random sample from the multivariate Gaussian distri-
bution [S∗|Y, θ, β, S], where (θ, S, β) are the values generated in steps 1
to 3.

However, our model implies that S∗ is conditionally independent of both Y and
β, given S, and step 4 therefore reduces to direct simulation from the Gaussian
distribution [S∗|S, θ]. Specifically,

[S∗|S, θ] ∼ MVN(ΣT12Σ
−1
11 S, Σ22 − ΣT12Σ

−1
11 Σ12), (7.19)

where Σ11 = Var(S), Σ12 = Cov(S, S∗) and Σ22 = Var(S∗). Note that if
the MCMC sample is thinned, Step 4 is only needed when the corresponding
sampled value of S is stored for future use.

Prediction of any target T = T (S∗) then follows immediately, by computing
Tj = T (S∗

(j)) : j = 1, . . . ,m to give a sample of size m from the predictive

distribution [T |Y ], as required; here, S∗
(j) denotes the jth simulated sample

from the predictive distribution of the vector S∗. For point prediction, we can
approximate the minimum mean square error predictor, E[T (S∗)|y], by the
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sample mean, T̂ = m−1
∑m
j=1 T (S

∗
(j)). However, it will usually be preferable to

examine the whole of the predictive distribution, as discussed in Section 7.5.2
in the context of posterior distributions for model parameters.
Whenever possible, it is desirable to replace Monte Carlo sampling by direct

evaluation. For example, if it is possible to calculate E[T (S∗)|S(j)] directly, we
would use the approximation

E[T (S∗)|Y ] ≈ m−1
m∑
j=1

E[T (S∗)|S(j)],

thereby reducing the Monte Carlo error due to simulation. This device is
used within the package geoRglm (Christensen and Ribeiro, 2002), which is
specifically designed to fit the Poisson log-linear and binomial logistic-linear
GLGM’s.

7.5.4 Some possible improvements to the MCMC algorithm

As noted earlier, designing an MCMC algorithm may involve a compromise
between generality of application and efficiency for specific problems. Also, the
underlying theory for MCMC methods is still developing. With these qual-
ifications, we now describe the particular algorithms used in the geoRglm
package (Christensen and Ribeiro, 2002) as suggested by Christensen (2001),
Christensen and Waagepetersen (2002) and Diggle, Ribeiro Jr and Christensen
(2003).
To simulate from [S|y] we use the truncated Langevin-Hastings algorithm as

in Christensen, Møller and Waagepetersen (2001) with the values of S block-
updated as suggested by the results in Neal and Roberts (2006). This algorithm
uses gradient information in the proposal distribution and has been found to
work well in practice by comparison with a random walk Metropolis algorithm.
To do this, we first define S = Ω1/2Γ where Ω1/2 is a square root of Ω = Var[S],
for example using a Cholesky factorisation, and Γ ∼ N(0, I). We then use an
MCMC-algorithm to obtain a sample γ(1), . . . , γ(m) from [Γ|y], and pre-multiply

each vector γ(j) by Ω1/2 to obtain a sample s(1), . . . , s(m) from [S|y].
All components of Γ are updated simultaneously in the Langevin-Metropolis-

Hastings MCMC algorithm. The proposal distribution is a multivariate
Gaussian distribution with mean m(γ) = γ + (δ/2)∇(γ) where ∇(γ) =
∂
∂γ log f(γ|y), and variance δIn. For a generalised linear geostatistical model

with canonical link function h, the gradient ∇(γ) has the following form:

∇(γ) =
∂

∂γ
log f(γ|y) = −γ + (Ω1/2)′{y − h−1(η)}, (7.20)

where η = D′β + Ω1/2γ and h−1 is applied coordinatewise. If we modify the
gradient ∇(γ) (by truncating, say) such that the term {y−h−1(η)} is bounded,
the algorithm can be shown to be geometrically ergodic, and a Central Limit
Theorem holds. The Central Limit Theorem, with asymptotic variance esti-
mated by Geyer’s monotone sequence estimate (Geyer, 1992), can then be used
to assess the Monte Carlo error of the calculated prediction. The algorithm can
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be modified to handle other link functions, since the formula in (7.20) can be
generalised to models with a non-canonical link function.
To choose the proposal variance δ, we tune the algorithm by running a few

test sequences and choosing δ so that approximately 60% of the proposals are
accepted. To avoid storing a large number of high-dimensional simulations we
generally thin the sample; for example, we may choose to store only every 100th
simulation.

Bayesian inference

We first consider Bayesian inference for a generalised linear geostatistical model
using the Gaussian-Scaled-Inverse-χ2 prior for [β, σ2] as defined in (7.6), hold-
ing ϕ fixed. The distribution [S] is obtained by integrating [S, β, σ2] over β
and σ2, leading to an n-dimensional multivariate-t distribution, tnσ

(mb, S
2
σ(R+

DVbD
′)). The posterior [S|y] is therefore given by

p(s|y) ∝
n∏
i=1

g(yi;h
−1(ηi))p(s) (7.21)

where p(s) is the density of [S].
In order to obtain a sample s(1), . . . , s(m) from this distribution we use a

Langevin-Hastings algorithm where η = D′mb + Sσ(R +DVbD
′)Ω1/2Γ, where

Ω = S2
σ(R +DVbD

′), and a priori Γ ∼ tn+nσ
(0, In). The gradient ∇(γ) which

determines the mean of the proposal distribution has the following form when
h is the canonical link function,

∇(γ) =
∂

∂γ
log f(γ|y) = −γ(n+nσ)/(nσ+∥γ∥2)+(Ω1/2)′{y−h−1(η)}. (7.22)

By using a conjugate prior for [β, σ2] we find that [β, σ2|s(j)], j = 1, . . . ,m
are Gaussian-Scaled-Inverse-χ2 distributions with means and variances given
by (7.7). Using this result, we can simulate from the posterior [β, σ2|y], and
calculate its mean and variance.
For prediction, we use procedures similar to those described in Section 7.5.3.

The only difference is that from (7.13), we see that for each simulation j =
1, . . . ,m, the conditional distribution [S∗|s(j)] is now multivariate t-distributed
rather than multivariate Gaussian.
A word of caution is needed concerning the use of so-called non-informative

priors for β and σ2 in a generalised linear geostatistical model. The prior 1/σ2

for σ2, recommended as a non-informative prior for the Bayesian linear Gaus-
sian model in Section 7.2.1, here results in an improper posterior distribution
(Natarajan and Kass, 2000), and should therefore be avoided. The same holds
for a linear Gaussian model with a fixed positive measurement error, τ20 > 0. So
far as we are aware, there is no consensus on what constitutes an appropriate
default prior for a generalised linear mixed model.
We now allow for uncertainty also in ϕ, and adopt as our prior π(β, σ2, ϕ) =

πNχ2
ScI

(β, σ2)π(ϕ), where πNχ2
ScI

is given by (7.5) and π(ϕ) is any proper prior.

When using an MCMC-algorithm updating ϕ, we need to calculate (R(ϕ) +
DVbD

′)1/2 for each new ϕ value, which is the most time-consuming part of the
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algorithm. To avoid this significant increase in computation time, we adopt a
discrete prior for ϕ on a set of values covering the range of interest. This allows
us to pre-compute and store (R(ϕ) +DVbD

′)1/2 for each prior value of ϕ.
To simulate from [S, ϕ|y], after integrating out β and σ2, we use a hybrid

Metropolis-Hastings algorithm in which S and ϕ are updated sequentially. The
update of S is of the same type as used earlier, with ϕ equal to the current value
in the MCMC iteration. To update ϕ we use a random walk Metropolis update
where the proposal distribution is a Gaussian distribution, but rounded to the
nearest ϕ value in the discrete prior support. The output of this algorithm is a
sample (s(1), ϕ(1)), . . . , (s(m), ϕ(m)) from the distribution [S, ϕ|y].

The predictive distribution for S∗ is given by

[S∗|y] =
∫ ∫

[S∗|S, ϕ][S, ϕ|y]dSdϕ.

To simulate from this predictive distribution, we simulate s∗(j) : j = 1, ...,m

from the corresponding multivariate t-distributions [S∗|s(j), ϕ(j)].
We may also want to introduce a nugget term into the specification of the

model, replacing S(xi) by S(xi) + Ui where the Ui are mutually independent
Gaussian variates with mean zero and variance τ2. Here, in contrast to the
Gaussian case, we can make a formal distinction between the Ui as a repre-
sentation of micro-scale variation and the error distribution induced by the
sampling mechanism, for example Poisson for count data. In some contexts,
the Ui may have a more specific interpretation. For example, if a binary re-
sponse were obtained from each of a number of sampling units at each of a
number of locations, a binomial error distribution would be a natural choice,
and the Ui and S(xi) would then represent non-spatial and spatial sources of
extra-binomial variation, respectively. The inferential procedure is essentially
unchanged, except that we now use a discrete joint prior [ϕ, τ2]. Note, how-
ever, that enlarging the model in this way may exacerbate problems associated
with poorly identified model parameters unless the sampling design includes
replicated observations at coincident sampling locations.
The above description corresponds to the current version of geoRglm at the

time of writing. Other possible improvements include the reparameterisation of
the model suggested by Zhang (2002), and orthogonalising and standardising
the conditional distribution [S|y], as suggested by Christensen, Roberts and
Skøld (2006).

7.6 Case studies in generalized linear geostatistical
modelling

7.6.1 Simulated data

We first consider the simulated data shown in Figure 4.5. The model used to
generate the data is a Poisson log-linear model whose true parameter values
are: an intercept-only regression term, β = 0.5; a signal variance σ2 = 2; and a
Matérn correlation function with ϕ = 0.2 and κ = 1.5.
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Table 7.2. Summaries of the posterior for the simulated Poisson data: posterior means
and 95% central quantile-based intervals.

parameters true values posterior mean 95% interval

β 0.5 0.4 [−1.15 , 1.58]
σ2 2.0 1.24 [0.51 , 2.76]
ϕ 0.2 0.48 [0.18 , 1.05]

Figure 7.9. Histograms and scatterplots of the sample from the posterior distribution
for model parameters for the simulated Poison data-set.

For the analysis, we adopt the correct model and treat the Matérn shape
parameter as fixed, κ = 1.5. For the correlation parameter we use a uniform
discrete prior with 100 support points in the interval (0, 2).

After tuning the MCMC algorithm, we used a burn-in of 10,000 iterations,
followed by a further 100,000 iterations, from which we stored every 100th value
to give a sample of 1,000 values from the posterior and predictive distributions.
Table 7.2 shows summaries of the posterior distributions, whilst Figure 7.9

shows univariate histograms and bivariate scatterplots of the samples from the
posterior. Although the central quantile-based interval for the parameter ϕ ex-
cludes the true value, the upper right-hand panel of Figure 7.9 shows that this
is a consequence of the asymmetry in the posterior for ϕ.
We obtained samples from the predicted distribution at two locations

(0.75, 0.15) and (0.25, 0.50). For the former the median of the sample from the
predictive distribution is 1.79 with prediction uncertainty of 0.97, whereas for
the latter the corresponding values are 4.39 and 2.32, respectively. Figure 7.10



180 7. Bayesian inference

Figure 7.10. Density estimated prediction distributions at two selected locations for
the Poisson simulated data.

shows density estimates for the samples from the predictive distribution at each
of these locations.

7.6.2 Rongelap island

Our second case study is based on the data from Example 1.2. The data were
collected as part of an investigation into the residual contamination arising
from nuclear weapons testing during the 1950’s. This testing programme re-
sulted in the deposition of large amounts of radioactive fallout on the pacific
island of Rongelap. The island has been uninhabited since the mid-1980’s. A
geostatistical analysis of residual contamination levels formed one component
of a wide-ranging project undertaken to establish whether the island was safe
for re-habitation. Earlier analyses of these data are reported by Diggle et al.
(1997) who used log-Gaussian kriging, and by Diggle et al. (1998) who used the
model-based approach reported here, but with minor differences in the detailed
implementation.
For our purposes, the data consist of nett photon emission counts Yi over

time-periods ti at locations xi indicated by the map in Figure 1.2. The term
“nett” emission count refers to the fact that an estimate of natural background
radiation has been subtracted from the raw count in such a way that the datum
Yi can be attributed to the local level of radioactive caesium at or near the
surface of the island. The background effect accounts for a very small fraction
of the total radioactivity, and we shall ignore it from now on.
The gamma camera which records photon emissions integrates information

received over a circular area centred on each location xi. There is also a progres-
sive “dilution” effect with increasing distance from xi. Hence, if λ∗(x) denotes
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the true rate of photon emissions per unit time at location x, the raw count at
location x will follow a Poisson distribution with mean

µ(x) = t(x)

∫
w(x− u)λ∗(u)du (7.23)

where t(x) denotes the observation time corresponding to location x. The func-
tion w(·) decays to zero over a distance of approximately 10 metres, but we do
not know its precise form. However, the minimum distance between any two
locations in Figure 1.2 is 40 metres. Hence, rather than model λ∗(·) in (7.23)
directly, we will model λ(·), where

λ(x) =

∫
w(x− u)λ∗(u)du.

Our general objective is to describe the spatial variation in the spatial process
λ(x). Note that any spatial correlation in λ(·) induced by the integration of
the underlying process λ∗(·) operates at a scale too small to be identified from
the observed data. Hence, any empirically observed spatial correlation must be
the result of genuine spatial variation in local levels of residual contamination,
rather than an artefact of the sampling procedure.
The sampling design for the Rongelap island survey was a lattice plus in-fill

design of the kind which we discuss in Chapter 8. This consists of a primary
lattice overlaid by in-fill squares in selected lattice cells. In fact, the survey was
conducted in two stages. The primary lattice, at 200m spacing, was used for the
first visit to the island. The in-fill squares were added in a second visit, to en-
able better estimation of the small-scale spatial variation. For the second-stage
sample, two of the primary grid squares were selected randomly at either end of
the island. As we discuss in Chapter 8, inclusion of pairs of closely spaced points
in the sampling design can be important for identification of spatial covariance
structure, and therefore for effective spatial prediction when the true model is
unknown. In this application, we can also use the in-fill squares to make an
admittedly incomplete assessment of the stationarity of the underlying signal
process. For example, if we let y denote the nett count per second, then for
50 sample locations at the western end of the island including the two in-fill
squares, the sample mean and standard deviation of log(y) are 2.17 and 0.29,
whilst for 53 locations covering the eastern in-fill area the corresponding figures
are 1.85 and 0.35. Hence, the western extremity is the more heavily contami-
nated, but the variation over two areas of comparable size is quite similar; see
also the exercises at the end of this chapter.
Taking all of the above into consideration, we adopt a Poisson log-linear

model with log-observation time as an offset and a latent stationary spatial
process S(·) in the linear predictor. Explicitly, if Yi denotes the nett count over
observation time ti at location xi, then our modelling assumptions are

• conditional on a latent spatial process S(·), the Yi are mutually
independent Poisson variates with respective means µi, where

logµi = log ti + β + S(xi); (7.24)

• S(·) is a stationary Gaussian process.
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Figure 7.11. Empirical variogram of the transformed Rongelap data.

In order to make a preliminary assessment of the covariance structure, we
transform each datum (Yi, ti) to Y

∗
i = log(Yi/ti). Under the assumed log-linear

structure of the proposed model, we can think of Y ∗
i as a noisy version of the

unobserved S(xi). Hence, the sample variogram of the observed values of Y ∗
i

should give a qualitative pointer to the covariance structure of the latent process
S(·). Figure 7.11 shows the resulting empirical variogram. The relatively large
intercept suggests that measurement error, which in the model derives from the
approximate Poisson sampling distribution of the nett counts, accounts for a
substantial proportion of the total variation. However, there is also clear struc-
ture to the empirical variogram, indicating that the residual spatial variation is
also important. The convex shape of the empirical variogram suggests that this
spatial variation is fairly rough in character.
The remaining results in this section are taken from the analysis reported in

Diggle et al. (1998), who used the powered exponential family (3.7) to model
the correlation structure of S(·),

ρ(u) = exp{−(u/ϕ)κ}.

Recall that for this model, κ ≤ 2 and unless k = 2 the model corresponds to a
mean-square continuous but non-differentiable process S(·). Also, for κ ≤ 1 the
correlation function ρ(·) is convex, which would be consistent with our earlier
comment on the shape of the sample variogram of the Y ∗

i .
The priors for β, σ2, ϕ and κ were independent uniforms, with respective

ranges (−3, 7), (0, 15), (0, 120) and (0.1, 1.95). The corresponding marginal pos-
teriors have means 1.7, 0.89, 22.8 and 0.7, and modes 1.7, 0.65, 4.7 and 0.7. Note
in particular the strong positive skewness in the posterior for ϕ, and confirma-
tion that the data favour κ < 1 i.e., a convex correlation function for the process
S(·).
For prediction, Diggle et al. (1998) ran their MCMC algorithm for 51,000

iterations, discarded the first 1000 and then sampled every 100 iterations to give
a sample of 500 values from the posterior distributions of the model parameter,
and from the predictive distribution of the surface S(x) at 960 locations forming
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Figure 7.12. Point predictions of intensity (mean count per second) for the Rongelap
data. Each value is the mean of a Monte Carlo sample of size 500.

a square lattice to cover the island at a spacing of 50 metres. By transforming
each sampled S(x) to λ(x) = exp{β + S(x)}, they obtained a sample of 500
values from the predictive distribution of the spatially varying intensity, or mean
emission count per second, over the island. Figure 7.12 shows the resulting
point-wise mean surface. This map includes the southeast corner of the island
as an enlarged inset, to show the nature of the predicted small-scale spatial
variation in intensity. Note also the generally higher levels of the predictions at
the western end of the island.
A question of particular practical importance in this example is the pattern

of occurrence of relatively high levels of residual contamination. Maps of point
predictions like the one shown in Figure 7.12 do not give a very satisfactory an-
swer to questions of this kind because they do not convey predictive uncertainty.
One way round this is to define a specific target T and to show the whole of
the predictive distribution of T , rather than just a summary. To illustrate this
approach, the left-hand panel of Figure 7.13 shows the predictive distribution
of T = max{λ(x)}, where the maximum is computed over the same 960 predic-
tion locations as were used to construct Figure 7.12. Note that the predictive
distribution extends far beyond the maximum of the point-wise predictions of
λ(x) shown in Figure 7.12. The two versions of the predictive distribution refer
to predictions with and without allowance for parameter uncertainty, showing
that for this highly non-linear functional of S(·) parameter uncertainty makes
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Figure 7.13. Predictive inference for the Rongelap island data. The left-hand panel
shows the predictive distribution of T = maxλ(x), computed from a grid to cover the
island at a spacing of 50 metres, with (solid line) and without (dashed line) allowance
for parameter uncertainty. The right-hand panel shows point predictions (solid line)
and 95% credible limits (dashed lines) for T (z), the areal proportion of the island for
which intensity exceeds z counts per second.

a material difference. Of course, by the same token so does the assumed para-
metric model which underlies this predictive inference. By contrast, predictive
inferences for the point-wise values of λ(x) are much less sensitive to parameter
uncertainty.
The right-hand panel of Figure 7.13 summarises the predictive distributions

of a family of targets, T (z) equal to the areal proportion of the island for which
λ(x) > z. The predictive distribution for each value of z is summarised by its
point prediction and associated 95% central quantile-based interval.

7.6.3 Childhood malaria in The Gambia

Our third case study uses the data from Example 1.3. This concerns spatial
variation in the prevalence of malarial parasites in blood samples taken from
children in village communities in The Gambia, Africa. Figure 1.3 shows a
map of the village locations. Note that these represent only a small fraction of
the village communities in The Gambia. The strongly clustered arrangement
of sampled villages is clearly not ideal from a theoretical point of view, but
reflects the practical necessities of field work in difficult conditions on a limited
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budget. Thomson, Connor, D’Alessandro, Rowlingson, Diggle, Cresswell and
Greenwood (1999) describe the background to the study in more detail. The
analysis described here was previously reported by Diggle, Moyeed, Rowlingson
and Thomson (2002).
Two similarities between this and the Rongelap data are the following. Firstly,

there is a natural sampling model for the responses conditional on the underly-
ing signal, in this case the binomial distribution. Secondly, there is no natural
way to specify a mechanistic model for the residual spatial variation, hence we
again adopt a stationary Gaussian process as a flexible empirical model. One
notable difference from the Rongelap case study is that covariates are recorded
both at village-level and at individual child-level. Village-level covariates are a
satellite-derived measure of the green-ness of the surrounding vegetation, which
is a predictor of how favourable the local environment is for mosquitos to breed,
and a binary indicator of whether the village had its own health centre. Child-
level covariates are sex, age and bed-net use. Sex is thought to be unimportant.
Age is almost certainly important because of chronic infections. Bed-net use is
also likely to be important; this is a three-level factor coded as a pair of binary
covariates, one for bed-net use itself, the other indicating whether the net was
treated with insecticide.
In this example, valid inferences about covariate effects are probably more

important in practice than estimation of spatial variation in its own right. The
primary role of the latent spatial process S(·) is to guard against spuriously sig-
nificant covariate effects which might result from ignoring the spatial correlation
inherent in the data. Residual spatial effects, estimated after adjustment for
covariate effects, are nevertheless of some interest, since identifying areas of un-
usually high or low residual prevalence might point to other, as yet unidentified,
risk factors.
In order to take account of child-level covariates, the natural statistical model

for these data is a generalized linear mixed model for the binary outcome ob-
served on each child. Diggle, Moyeed, Rowlingson and Thomson (2002) initially
tried to fit a model which included both spatial and non-spatial random effects,
as follows. Let pij denote the probability that the jth child in the ith village
gives a positive blood-test result. Then,

log{pij/(1− pij)} = α+ β′zij + Ui + S(xi). (7.25)

where the Ui are mutually independent Gaussian random effects with mean
zero and variance τ2, whilst S(x) is a zero-mean stationary Gaussian process
with variance σ2 and correlation function ρ(u) = exp{−(|u|/ϕ)κ}. Diggle, Moy-
eed, Rowlingson and Thomson (2002) were unable to estimate jointly the two
variance components τ2 and σ2. This suggests that the random effect part of
model (7.25) is over-ambitious. Because the scientific focus in this example is
on estimating covariate effects, it would be tempting to eliminate the spatial
effect, S(x) altogether. The non-spatial random effects Ui would then represent
a classical generalized linear mixed model with the simplest possible random
effects structure, which could be fitted either through approximate likelihood-
based methods or, more pragmatically, by fitting a classical generalised linear
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model with a simple adjustment factor applied to the nominal standard errors
to take account of extra-binomial variation at the village-level; see, for example,
chapter 4 of McCullagh and Nelder (1989). Note, however, that the implicit esti-
mands in these two analyses would differ. Specifically, the β parameters in (7.25)
measure covariate effects conditional on village-level random effects, whilst the
classical generalised linear model estimates different parameters, β∗ say, which
measure covariate effects averaged over the distribution of the random effects.
In general, |β∗| < |β| element-wise, as discussed, for example, in chapter 7 of
Diggle, Heagerty, Liang and Zeger (2002).
Diggle, Moyeed, Rowlingson and Thomson (2002) report that in the non-

spatial version of (7.25), the predicted village-level random effects Ûi showed
substantial spatial correlation. Since spatial variation, although not the primary
focus of the analysis, is of some interest, they therefore persevered with a spa-
tial model, but omitted the non-spatial random effects Ui. They also made a
pragmatic modification to the stationarity assumption for S(x), in response to
the strongly clustered nature of the sampling design, by introducing a five-level
factor corresponding to villages included in each of the five separate surveys
from which the data were assembled. The five areas corresponded to villages in
the western, central and eastern parts of The Gambia, but with the western and
eastern parts further divided into villages north and south of the River Gambia.
The model was fitted using an MCMC algorithm as described in Diggle,

Moyeed, Rowlingson and Thomson (2002). Table 7.3 summarises the results in
terms of marginal posterior means and 95% credible intervals for the model
parameters. With regard to the spatial covariance parameters, the widths of
the credible intervals underline the difficulty of estimating these parameters
precisely, reinforcing our earlier comments that the inferences are potentially
sensitive to prior specifications. We would argue, however, that our formal ap-
proach to inference simply reveals difficulties which are hidden when more ad
hoc methods of parameter estimation are used.

7.6.4 Loa loa prevalence in equatorial Africa

Our final case study again relates to binomial sampling for estimating tropi-
cal disease prevalence. However, in contrast to The Gambia malaria example,
the spatial variation in prevalence has direct policy implications. The analysis
reported here is taken from Diggle, Thomson, Christensen, Rowlingson, Ob-
somer, Gardon, Wanji, Takougang, Enyong, Kamgno, Remme, Boussinesq and
Molyneux (2006).
Predicting the spatial distribution of Loa loa prevalence is important because

it affects the operation of the African Programme for Onchocerciasis Control
(APOC), a major international programme to combat onchocerciasis in the
wet tropics. APOC oversees the mass treatment of susceptible communities
with the drug ivermectin, which is effective in protecting against onchocercia-
sis, but has been observed to produce severe, and occasionally fatal, reactions in
some individuals who are heavily co-infected with Loa loa parasites. Boussinesq,
Gardon, Kamgno, Pion, Gardon-Wendel and Chippaux (2001) confirmed empir-
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Table 7.3. Point estimates (posterior means and medians) and 95% central quan-
tile-based credible intervals for the parameters of the model fitted to The Gambia
malaria data.

Parameters 95% credible interval Mean Median

α -2.9665 2.6243 -0.1312 -0.0780
β1 (age) 0.0005 0.0009 0.0007 0.0007
β2 (untreated) -0.6731 -0.0420 -0.3578 -0.3594
β3 (treated) -0.7538 0.0884 -0.3295 -0.3259
β4 (green-ness -0.0857 0.0479 -0.0201 -0.0208
β5 (PHC) -0.7879 0.1299 -0.3448 -0.3499
β6 (area 2) -1.1442 0.5102 -0.3247 -0.3316
β7 (area 3) -1.4086 0.5586 -0.5321 -0.5592
β8 (area 4) -0.1095 2.4253 1.0494 1.0170
β9 (area 5) 0.1648 2.6063 1.3096 1.3251
σ2 0.3118 1.0502 0.5856 0.5535
ϕ 0.9158 10.2007 2.5223 1.4230
δ 0.0795 2.7846 1.0841 0.9374

ically that such individuals are more likely to be found in areas with high local
prevalence. They also investigated the relationship between local prevalence and
the proportion of individuals infected at levels sufficiently high to render them
apparently susceptible to severe reactions. Informed by this and other work,
current APOC policy is to put in place precautionary measures before mass
distribution of ivermectin in communities for which the local prevalence of Loa
loa is thought to exceed 20%. However, direct estimation of prevalence through-
out the relevant area, which covers most of the wet tropical zone, is impractical.
One response to this is to conduct a geostatistical analysis of survey data on
Loa loa prevalence obtained from scattered village communities, and to map the
predictive probability that the 20% policy intervention threshold is exceeded.
The data for the analysis include empirical prevalence estimates ob-

tained by microscopic examination for the presence of Loa loa parasites
in blood samples taken from a total of 21,938 individuals from 168 vil-
lages. The locations of these villages are shown in Figure 7.17. To these
data are added environmental explanatory variables measured on a regular
grid covering the study region at a spacing of approximately 1 km. The
environmental variables are those chosen by Thomson, Obsomer, Kamgno, Gar-
don, Wanji, Takougang, Enyong, Remme, Molyneux and Boussinesq (2004)
in a non-spatial logistic regression analysis of the prevalence data. These
are elevation, obtained from the United States Geological Survey website
http://edcdaac.usgs.gov/gtopo30/hydro/africa.html, and a vegetation
index (Normalised Difference Vegetation Index, NDVI), a measure of the green-
ness of the vegetation which is derived from satellite data available from the
web-site http://free.vgt.vito.be.

Let Yi denote the number of positive samples out of ni individuals tested at
location xi. Diggle et al. (2006) fitted a generalised linear geostatistical model
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in which the Yi are assumed to be conditionally independent binomial variates
given an unobserved Gaussian process S(x). The mean response at xi is E[Yi] =
nip(xi), where p(xi) depends on the values at xi of the chosen environmental
variables and on S(xi). Specifically, the model assumes that

log(p(x)/{1−p(x)}) = β0+f1(ELEV)+f2(max(NDVI))+f3(SD(NDVI))+S(x).
(7.26)

In (7.26), the functions f1(·), f2(·) and f3(·) are piece-wise linear functions
which capture the effects of elevation and NDVI on Loa loa prevalence at the
location x. Only linear functions fj(·) were considered initially, but exploratory
analysis showed threshold effects in the impact of both elevation and NDVI
on prevalence, which were confirmed as qualitatively reasonable on substantive
grounds; for example, the biting fly which is the vector for Loa loa transmission
is known not to survive at high elevations. The rationale for including both
the maximum and standard deviation of NDVI, each calculated for each grid
location from repeated satellite scans over time, is that together they capture,
albeit crudely, the effects of overall greenness of the local vegetation and seasonal
variation in local greenness, both of which were thought to affect the ability of
the Loa loa vector to breed successfully.
Figures 7.14, 7.15 and 7.16 show the construction of the piece-wise linear

functions f1(·), f2(·) and f3(·) through which the model represents the effects
of elevation and NDVI on Loa loa prevalence in the spatial model (7.26). There
is a positive association between elevation and prevalence up to a threshold of
1000 metres above sea-level, beyond which prevalence drops sharply, becoming
effectively zero above 1300 metres. The effect of maximum NDVI on prevalence
is modelled as a linear increase up to a value of 0.8, and constant thereafter;
the defined range of NDVI is from zero to one. Finally, standard deviation of
NDVI shows a very weak association with prevalence which we represent as a
simple linear effect.
The model for S(·) is a stationary Gaussian process with mean zero and

covariance function

γ(u) = σ2{exp(−u/ϕ) + ν2I(u = 0)},

where I(·) denotes the indicator function. The form of the covariance struc-
ture was chosen after inspecting the empirical variogram of residuals from a
non-spatial binomial logistic regression model. The nugget term, τ2 = σ2ν2,
represents non-spatial extra-binomial variation in village-level prevalence. This
is attributed to non-specific social and demographic attributes of individual
village communities which are not spatially dependent.
Prior specifications for the model parameters were as follows: for (β, σ2), an

improper prior π(β, σ2) ∝ 1; for the correlation parameter, ϕ, a proper uniform
prior, π(ϕ) = c−1 : 0 ≤ ϕ ≤ c, with c = 1 degree of latitude/longitude at
the equator, or approximately 100 km; for the relative nugget parameter, ν2,
a fixed value ν2 = 0.4. The upper limit for ϕ and the fixed value of ν2 were
again chosen after inspection of the residual empirical variogram. Fixing ν2 was
a pragmatic strategy to circumvent problems with poor identifiability.
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Figure 7.14. Piece-wise linear function used in the spatial model to describe the effect
of elevation on Loa loa prevalence.

The target for prediction is the predictive probability, for any location x, that
p(x) exceeds 0.2 given the data. Monte Carlo methods were used to construct
a map of these predictive probabilities on a regular grid with spacing approxi-
mately 1 km, chosen to match the spatial resolution of the explanatory variables
in the model.
The inferential procedure divides naturally into two steps. The first step is to

generate samples from the joint posterior distribution of the model parameters
(β, σ2, ϕ) and the spatial random effects S at the village locations, using a
Markov chain Monte Carlo (MCMC) algorithm as described in Section 7.5.4.
The second step is then to generate samples from the predictive distribution
of the spatial random effects at all locations in the square grid of prediction
locations; this step requires only direct simulation from a multivariate Gaussian
distribution.
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Figure 7.15. Piece-wise linear function used in the spatial model to describe the effect
of maximum NDVI on Loa loa prevalence.

Table 7.4 gives summaries of the posterior distributions for the model param-
eters, based on sampling every 1000th iteration from 1,000,000 iterations of the
MCMC algorithm. The correspondence between the β parameters and (7.26)
is as follows: β0 is the intercept; β1, β2 and β3 are the slope parameters in the
linear spline for the elevation effect (f1(ELEV) in (7.26)), covering the elevation
ranges 0–650 metres, 650–1000 metres and 1000–1300 metres, respectively; the
linear spline for the effect of maximum NDVI has slope β4 between 0.0 and
0.8, and is constant thereafter (f2(max(NDVI)) in equation (7.26)); β5 is the
slope of the linear effect of the standard deviation of NDVI (f3(SD(NDVI)) in
equation (7.26)).
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Figure 7.16. Piece-wise linear function used in the spatial model to describe the effect
of standard deviation of NDVI on Loa loa prevalence.

For prediction of the 20% prevalence contour at location x0, say, the following
Monte Carlo approximation was used,

P [p(x0) > 0.2|y] ≈ (1/m)

m∑
j=1

P (S(x0) > c|Sj , βj , σ2
j , ϕj),

where, in addition to previous notation, c = log(0.2/(1 − 0.2)) and a sub-
script j indicates the jth of m samples from the posterior distribution of the
model parameters. As noted earlier, inference was based on the empirical pos-
terior/predictive distributions of every 1000th sample from 1,000,000 MCMC
iterations, hence m = 1000. Note also that S(x0) conditional on S, β, σ2 and
ϕ follows a Gaussian distribution function, yielding an explicit expression for
P (S(x0) > t|S, β, σ2, ϕ) in (7.27).
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Table 7.4. Posterior means and standard deviations for parameters of the model fitted
to the Loa loa data. See text for detailed explanation.

parameter Mean Std. dev.

β0 −11.38 2.15
β1 0.0007 0.0007
β2 0.0004 0.0011
β3 −0.0109 0.0016
β4 12.45 2.92
β5 −3.53 4.77
σ2 0.58 0.11
ϕ2 0.70 0.18

Figure 7.17. Point estimates of Loa loa prevalence. Village locations which provided
survey data are shown as solid dots, coded by size to correspond to the observed
proportions of positive blood-test results amongst sampled individuals. The spatially
continuous grey-scale map shows, at each point on the map, the point prediction of
the underlying prevalence.

The total number of prediction locations in the grid at 1 km spacing was
550,000, albeit including a small proportion of off-shore locations for which
predictions are formally available but of no relevance. To ease the computational
load of the predictive calculation, the prediction locations were divided into
sub-sets consisting of approximately 10,000 locations. Separate predictions were
then made within each sub-set and combined to produce the maps shown here.
The map of estimated prevalence obtained from the spatial model is pre-

sented in Figure 7.17. This map corresponds broadly with the map obtained
by Thomson et al. (2004) using a non-spatial logistic regression model, but its
local features differ because of the effect of the residual spatial term, S(x).
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Figure 7.18. Predictive inference for the Loa loa data. Village locations which provided
survey data are shown as solid dots, coded by size and colour to correspond to the
observed proportions of positive blood-test results amongst sampled individuals. The
spatially continuous map shows, at each point on the map, the predictive probability
that the underlying prevalence is greater than 20%.

Figure 7.18 shows the predictive probability map obtained from the spatial
model. Dark grey areas are those where there is a relatively high predictive
probability that the policy intervention threshold of 20% is exceeded. Likewise,
pale grey areas are those where the predictive probability of exceeding the
20% threshold is relatively small. The intermediate areas can be considered as
areas of high uncertainty. The maps are clearer in the colour versions which are
posted on the book’s website. There, red-brown areas correspond to predictive
probabilities greater than 0.7, orange-yellow areas to predictive probabilities
less than 0.3, whilst predictive probabilities between 0.3 and 0.7 are coded in
shades of pink.
As we would expect, there is a qualitative similarity between the maps in

Figures 7.17 and 7.18 but the quantitative differences are sufficient materially
to affect their interpretation. Note in particular that the relationship between
the value of the empirical prevalence at a particular location x and the cor-
responding predictive probability of exceeding the 20% threshold involves an
interplay between the influences of the environmental explanatory variables at
x and of the empirical prevalences at nearby locations.
From the point of view of the people who need to make local decisions, the

obvious limitation of the predictive probability map is the high degree of uncer-
tainty in many parts of the study region. The solution is to obtain more survey
data, concentrating on the areas of high uncertainty. However, the kind of data
used to construct the map are expensive to collect and additional sampling
on the scale required is unlikely to be affordable. In response to this impasse,
Takougang, Wanji, Yenshu, Aripko, Lamlenn, Eka, Enyong, Meli, Kale and
Remme (2002) have developed a simple questionnaire instrument, RAPLOA,
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for estimating local prevalence, as a low-cost alternative to the parasitologi-
cal sampling method used here. Combining the data from parasitological and
RAPLOA sampling is a problem in bivariate generalised linear modelling, which
takes us beyond the scope of this book but is the subject of work-in-progress
by Ciprian Crainiceanu, Barry Rowlingson and Peter Diggle.

7.7 Computation

7.7.1 Gaussian models

For plug-in prediction based on the Gaussian linear model, our computational
implementation comprises two steps: parameter estimation, for instance us-
ing likfit(); and point prediction using krige.conv() Within the Bayesian
framework this distinction is much less clear and we therefore implement in-
ference as a whole in a single function, krige.bayes(). This function can
return either or both posterior distributions for model parameters and predictive
distributions for the unobserved signal S(x) at prediction locations x.

The geoR function krige.bayes() implements Bayesian inference for the
Gaussian linear model whereas the functions binom.krige.bayes() and
pois.krige.bayes() in the package geoRglm implement methods for the bino-
mial and Poisson generalised linear geostatistical models. Our initial examples in
this section illustrate some of the options available to the user of krige.bayes()

> args(krige.bayes)

function (geodata, coords = geodata$coords, data = geodata$data,

locations = "no", borders, model, prior, output)

NULL

The function requires arguments specifying the data object, model and prior
information. Implementation is made more convenient by using the supplemen-
tary functions model.control() and prior.control() to specify the model
and prior information. Specification of the prediction locations is optional; if
these are omitted, krige.bayes() carries out Bayesian inference about the
model parameters but does not perform any spatial prediction. Other optional
arguments include the border of the study area, which is particularly rele-
vant for non-rectangular areas, and options to specify which results should
be included in the output. For the latter, summaries for the predictive dis-
tribution can be obtained using output.control(), as discussed in relation
to the krige.conv() function in Chapter 6. Additional options relevant to
Bayesian inference, namely the number of samples to be drawn from the poste-
rior and predictive distributions, are specified by the arguments n.posterior
and n.predictive, respectively. The remaining arguments define the required
summaries of the predictive distributions, again as discussed in relation to the
krige.conv() function.

> args(output.control)
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function (n.posterior, n.predictive, moments, n.back.moments,

simulations.predictive, mean.var, quantile, threshold, sim.means,

sim.vars, signal, messages)

NULL

We now illustrate the use of these functions for Bayesian inference in the
Gaussian linear model by showing the sequence of commands for the Bayesian
analysis of the elevation data, as reported in Section 7.4.1.
Firstly, a call to model.control() specifies the option of fitting a first degree

polynomial trend. This option can be used for covariates which correspond to
the coordinates or to another covariate. Therefore, we specify the trend on the
data coordinates using the argument trend.d and on the prediction locations
in trend.l.
Next, we set the support points for the default independent, discrete uniform

priors for ϕ and ν2 = τ2/σ2. For σ2 and β we use the default prior π(β, σ2) =
1/σ2. Using the function output.control() we define the number of samples
to be drawn from the predictive distributions and ask for their analytically
computed mean and variance. Note that all of the control functions have other
arguments with default values; as always, the calls to the functions only specify
values for the arguments for which we want to override the defaults.

> MC <- model.control(trend.d = "1st", trend.l = "1st",

+ kappa = 1.5)

> PC <- prior.control(phi.discrete = seq(0, 6, l = 21),

+ phi.prior = "reciprocal", tausq.rel.prior = "unif",

+ tausq.rel.discrete = seq(0, 1, l = 11))

> OC <- output.control(n.post = 1000, moments = T)

After setting the control functions, we proceed to the computations required
for Bayesian inference. We first define a grid of prediction points to cover the
study area, then call the function krige.bayes(), passing the results of the
control functions as arguments.

> set.seed(268)

> skb <- krige.bayes(elevation, loc = locs, model = MC,

+ prior = PC, output = OC)

The resulting object is of the class krige.bayes. An object of this class has two
main elements, posterior and predictive, which are used to store samples
and other information concerning the predictive and posterior distributions.
The krige.bayes class also includes methods for the generic functions image(),
persp() and contour. These operate in a similar way as for krige.conv(), to
facilitate displaying spatial predictions. The generic summary() function can be
used to summarise the results with regard to spatial prediction. Finally, the
command plot(skb) generates Figure 7.2, showing the marginal posteriors for
the parameters ϕ and ν.
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7.7.2 Non-Gaussian models

In this section we show how we used the geoRglm package to fit a Poisson
log-linear model to the simulated data whose Bayesian analysis we presented in
Section 7.6.1.
The algorithm uses the Langevin-Hastings algorithm to simulate from the

predictive distribution of the random effect S at each of the data locations;
we tuned the algorithm by adjusting the proposal distribution so as to achieve
an acceptance rate of about 60%. For the correlation parameter ϕ, we used a
random walk proposal, ϕ′ = ϕ + Z, where Z has mean zero and variance v2,
and adjusted v2 to achieve an acceptance rate around 25 to 30%. The tuning
phase involved the following commands, adjusting the arguments S.scale and
phi.sc until the quoted approximate acceptance rates were obtained.

> set.seed(371)

> MCc <- mcmc.control(S.scale = 0.014, n.iter = 5000,

+ thin = 100, phi.sc = 0.15)

> PGC <- prior.glm.control(phi.prior = "uniform",

+ phi.discrete = seq(0, 2, by = 0.02), tausq.rel = 0)

> pkb <- pois.krige.bayes(dt, prior = PGC, mcmc = MCc)

After tuning the algorithm, the full-length run was initiated by the following
commands.

> set.seed(371)

> MCc <- mcmc.control(S.scale = 0.025, phi.sc = 0.1, n.iter = 110000,

+ burn.in = 10000, thin = 100, phi.start = 0.2)

> PGC <- prior.glm.control(phi.prior = "exponential", phi = 0.2,

+ phi.discrete = seq(0, 2, by = 0.02), tausq.rel = 0)

> OC <- output.glm.control(sim.pred = T)

> locs <- cbind(c(0.75, 0.15), c(0.25, 0.5))

> pkb <- pois.krige.bayes(dt, loc = locs, prior = PGC,

+ mcmc = MCc, out = OC)

For the binomial model with logit link functions, the steps are essentially the
same, except that the geoRglm function used is binom.krige.bayes() instead
of pois.krige.bayes.

7.8 Exercises

7.1. Consider the stationary Gaussian model in which Yi = β + S(xi) + Zi :
i = 1, . . . , n, where S(x) is a stationary Gaussian process with mean
zero, variance σ2 and correlation function ρ(u), whilst the Zi are mutu-
ally independent N(0, τ2) random variables. Assume that all parameters
except β are known. Derive the Bayesian predictive distribution of S(x)
for an arbitrary location x when β is assigned an improper uniform prior,
π(β) constant for all real β. Compare the result with the ordinary kriging
formulae given in Chapter 6.
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7.2. Repeat the calculations of exercise 7.1, but assigning a proper Gaussian
prior, β ∼ N(m, v). Explore how varying m and v affects the predictions
obtained for the following, one-dimensional synthetic data, taking σ2 = 1,
τ2 = 0.25 and ρ(u) = exp(−u/5).
xi 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
yi 5.44 5.40 4.44 4.04 4.19 4.94 4.94 5.71 5.63

xi 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00
yi 6.09 5.95 5.08 5.64 5.75 4.51 4.98 5.30 5.82

xi 19.00 20.00 21.00 22.00 23.00 24.00 25.00
yi 5.11 5.60 5.45 5.15 5.88 5.60 5.33

7.3. Let S ∼ N(µ, σ2), and suppose that, conditional on S, random variables
Yi : i = 1, . . . , n are mutually independent, identically distributed, Yi ∼
N(S, 1). Find the predictive distribution of S given Y = (Y1, . . . , Yn) when

(a) it is known that µ = 10 and σ2 = 1;
(b) it is known that σ2 = 1, but µ is unknown and is assigned a prior

distribution, µ ∼ N(10, v2).

Compare the predictive distributions obtained under (a) and (b) for
various combinations of n and v2, and comment generally.

7.4. Use the Rongelap data to obtain two sub-sets of data, from the western
and eastern ends of the island, and in each case include the data from the
two in-fill squares. Define a response variable y = log(number of emis-
sions per second). Compute and compare sample variograms for the two
sub-sets. Suggest a parametric model for these data and use (classical
or Bayesian) likelihood-based methods to investigate whether a good fit
can be obtained for both sets of data using a common set of parameters.
Discuss the implications for the analysis of the complete Rongelap data.

7.5. Experiment with your own simulated data from the Poisson log-linear
model and investigate the sensitivity of the MCMC algorithm to different
choices for the model parameters and for the tuning parameters.

7.6. Reproduce the simulated binomial data shown in Figure 4.6. Use geoRglm
in conjunction with priors of your choice to obtain predictive distributions
for the signal S(x)S at locations x = (0.6, 0.6) and x = (0.9, 0.5).

7.7. Compare the predictive inferences which you obtained in Exercise 7.6 with
those obtained by fitting a linear Gaussian model to the empirical logit
transformed data, log{(y + 0.5)/(n− y + 0.5)}.

7.8. Compare the results of Exercises 7.7 and 7.8 and comment generally.
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8
Geostatistical design

In this chapter, we consider the specific design problem of where to locate the
sample points xi : i = 1, ..., n. In particular applications other design issues,
such as what to measure at each location, what covariates to record and so
forth, may be at least as important as the location of the sample points. But
questions of this kind can only be addressed in specific contexts, whereas the
sample-location problem can be treated generically.
In Chapter 1 we introduced the terms non-uniform, meaning that the method

of constructing the design incorporates systematic variation in the sampling
intensity over the study region, and preferential, meaning that the point pro-
cess which determines the sample locations and the signal process S(x) are
stochastically dependent. In this chapter, we shall consider both uniform and
non-uniform designs, but will restrict our attention to non-preferential designs.
As noted earlier, geostatistical analyses typically assume, if only implicitly, that
a non-preferential design has been used. A valid analysis of data obtained from
a preferential design requires the more general theoretical framework of marked
point processes, as discussed in Section 4.4.
In some applications, the design is essentially unrestricted, in the sense that

any point in the study region is a potential sample point. It will then usually
be appropriate to consider only uniform designs unless we have prior knowledge
that the character of the spatial signal, S(x), varies systematically over the
study region. For example, if it were known that S(x) was essentially constant
in particular sub-regions, there should be no need to sample intensively in those
sub-regions.
In other applications, the choice of sample points may be restricted in some

way. One form of restriction is when the study region includes sub-regions which
are of interest for prediction but inaccessible for sampling. An example would
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be the assessment of contaminated land in urban areas when it is required
to predict the pattern of soil contamination over the whole of a potential re-
development site, but the site includes derelict buildings where soil sampling
is impossible (Van Groenigen and Stein, 1998; Van Groenigen, Siderius and
Stein, 1999; Van Groenigen, Pieters and Stein, 2000). A second kind of restric-
tion is when there are only a finite number of candidate sample points. An
example would be spatial prediction using sample points chosen from an exist-
ing monitoring network, which may originally have been established for some
other purpose. The two kinds of restriction are often combined when sampling
in an urban environment and installation of the sampling equipment requires a
particular kind of location, such as a flat-roofed building.
All too frequently in our experience, the sampling design is presented as a fait

accompli. When this is the case, it is always worth asking why the particular
design has been used before proceeding with any formal analysis.
Different designs will be optimal for different purposes. In the geostatistical

setting, a particularly relevant contrast is between designs which are efficient
for parameter estimation, and designs which are efficient for spatial prediction.
For either purpose, an optimal design will typically depend not only on the
chosen optimality criterion but also on the underlying model parameters, which
are almost invariably unknown. This has led some authors to propose model-
independent design criteria, defined in terms of the geometry of the sample
locations. For example, Royle and Nychka (1988) consider minimising a mea-
sure of the average distance between sample locations and locations at which
predictions are required. Either or both of the sample and prediction locations
may represent locations of particular scientific interest or, more pragmatically,
a fine grid to cover the whole study area. The resulting designs tend to be spa-
tially regular in appearance. Royle and Nychka (1988) give an example in which
the sample locations are to be selected as a sub-set of an existing network of
environmental monitors in Chicago, and the prediction locations form a regular
grid over the whole city.
Amongst model-dependent approaches to geostatistical design, we can con-

trast those which focus on parameter estimation, and those which focus on
spatial prediction under an assumed model. In the first category, Russo (1984),
Warrick and Myers (1987), Zimmerman and Homer (1991) and Muller and
Zimmerman (1999) consider the design problem from the perspective of vari-
ogram estimation. As we have argued in earlier chapters, we are sceptical of
treating variogram estimation as a primary objective for formal inference. In
the second category, McBratney, Webster and Burgess (1981), McBratney and
Webster (1981), Winkels and Stein (1997), Spruill and Candela (1990), and
Ben-jamma, Marino and Loaiciga (1995) all considered the design problem us-
ing the maximum or average prediction variance over the study region as the
design criterion.
Several authors have used computationally sophisticated Monte Carlo al-

gorithms, such as simulated annealing, to search for optimal designs without
any prior restrictions on their geometry. Examples include Van Groenigen and
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Stein (1998), Van Groenigen et al. (1999), Van Groenigen et al. (2000) and Lark
(2002).
In the remainder of this chapter we take a model-based view of the design

problem. We discuss briefly the choice of study region within which all of the
sampling locations must lie. We then focus on the problem of choosing sam-
ple locations within a specified study region. We compare and contrast designs
which are efficient for prediction or for parameter estimation under an assumed
model, before using the Bayesian paradigm to obtain designs which are efficient
for prediction whilst allowing for uncertainty in the underlying model parame-
ters. Our general aim is to provide some insight into the kinds of design which
are easily implemented and reasonably efficient under a wide range of conditions,
rather than to search for a strictly optimal design for any particular problem.
In particular, unless the design points must be chosen from a pre-existing set
of locations, we favour designs with a modified lattice structure. The more so-
phisticated simulated annealing approach typically results in designs which are
irregular, but which are otherwise similar in character to the kinds of design we
advocate, in the sense that they exhibit a degree of spatial regularity combined
with some closely spaced sub-sets of locations.

8.1 Choosing the study region

The study region, A say, within which sample points xi will be confined, is often
pre-determined by the context of the investigation; for example, the whole of
Rongelap island was the only natural choice of study region for the data of
Example 1.2. When A is not pre-determined, we need to choose its size and its
shape. For example, in ecological applications the potential study area may be
an entire habitat, only a small proportion of which will be selected for detailed
study.
In theory, the shape of A is relatively unimportant. In practice, a long, thin

shape limits the scope to investigate directional effects and from this point of
view a compact shape such as a square or circular A is preferable.
The size of A is more important, in that it limits the range of spatial scales

which can be investigated. If A is too small, the full range of spatial variation in
the underlying measurement process may not be captured. Empirical evidence
for this would be provided by a sample variogram which fails to level out at large
distances. At the other extreme, if A is too large then, given a limitation on total
resources, the individual sample points will tend to be widely separated and
small-scale spatial effects may go undetected. One way to compromise between
these competing considerations is to sample from several widely separated sub-
areas. The results from the different sub-areas can then be pooled if the analysis
of the subsequent data indicates that this is justified.
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Figure 8.1. Three designs with n = 100 locations: random (left-hand panel), square
lattice (centre panel) and triangular lattice (right-hand panel).

8.2 Choosing the sample locations: uniform designs

In practice, geostatistical designs are often chosen informally, rather than by
the use of explicit design criteria. In this section, we show examples of four
simple classes of design which we shall use later in the chapter to illustrate the
impact of the choice of design on the subsequent inferences which can be made
from the data.
In a completely random design, the design points xi : i = 1, ..., n form an

independent random sample from the uniform distribution on A. The left-hand
panel of Figure 8.1 gives an example with n = 100. A completely random design
guarantees that the design is independent of the underlying spatial phenomenon
of interest, S(x), which is a requirement for validity of standard geostatistical
methods of inference. However, from a spatial perspective this design is poten-
tially inefficient because it can lead to a very uneven coverage of A. At the
opposite extreme, a regular lattice design achieves even coverage of A and re-
tains the requirement of being independent provided the position of the first
lattice point is chosen independently of S(x). The centre and right-hand panels
of Figure 8.1 show two examples with n = 100 = 10× 10. It is arguable that a
triangular lattice, rather than a square lattice, represents the extreme of spatial
regularity, but the convenience of laying out the orthogonal rows and columns
of a square lattice seems to prevail in practice.
From the perspective of spatial prediction, a lattice design is usually more

efficient than a completely random design. When, as is typical, S(x) has
positive-valued correlation structure, close pairs of points are wasteful because
they provide little more information about S(x) than does a single point, and
the lattice design automatically excludes such close pairs. However, this ignores
two important practical considerations. Firstly, if the data include a substantial
nugget variance, replicate measurements at close, or even identical, locations
do convey useful additional information. Secondly, and more generally, close
pairs of point are often especially helpful in the estimation of parameters which
define the covariance structure of the model. These considerations suggest that
some compromise between spatial regularity, for even coverage of A, and closely
spaced points, for estimation of unknown model parameters, might be desirable.
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Figure 8.2. Two designs with 100 locations: lattice with close pairs (left-hand panel)
and lattice plus in-fill (right-hand panel).

Two classes of design which formalise this idea are lattice plus close pairs and
lattice plus in-fill designs.
The lattice plus close pairs design consists of locations in a regular k × k

lattice at spacing ∆ together with a further m points, each of which is located
uniformly at random within a disc of radius δ = α∆ whose centre is at a
randomly selected lattice location. We use the notation (k×k,m, α), noting that
from the design point of view, the choice of the distance scale is arbitrary and
hence ∆ is irrelevant. The left-hand panel of Figure 8.2 shows a (9× 9, 19, 0.05)
lattice plus close pairs design on the unit square.
The lattice plus in-fill design consists of locations in a regular k × k lattice

at spacing ∆ together with further locations in a more finely spaced lattice
within m randomly chosen cells of the primary lattice. We use the notation
(k× k,m, r× r), where each in-filled lattice cell consists of an r× r lattice and
therefore involves r2−4 additional locations. The right-hand panel of Figure 8.2
shows an (8× 8, 3, 4× 4) lattice plus in-fill design on the unit square.

8.3 Designing for efficient prediction

Suppose that the study area A has been chosen. In this section we assume, for
convenience, that A is a square of unit side-length, but this choice is not critical
to our conclusions.
Our objective is to choose n sample locations xi, where n is fixed by resource

constraints, so as to obtain the “best” predictions of the underlying signal pro-
cess S(x). Recall that for any target T , we define the mean square prediction
error as MSE(T ) = E[(T̂ − T )2]. When T = S(x) for a particular location x,
we write M(x) = E[{Ŝ(x)− S(x)}2]. Amongst many possible criteria to define
“best” we consider the following:

1. minimise the maximum of M(x) over all x ∈ A, where M(x) =
MSE{S(x)};
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2. minimise the spatial average of M(x),∫
A

M(x)dx

3. minimise MSE(T ) where T is the spatial average of S(x),

T =

∫
A

S(x)dx

.

For criteria of this kind, intuition suggests that spatially regular designs will
perform well. As noted earlier, model-free design criteria of the kind proposed by
Royle and Nychka (1988) tend in practice to produce spatially regular designs
when the goal is to optimise some version of average predictive performance
over the whole study region.
Early work in the forestry literature, summarised in Matérn (1986, chapter 5)

confirms the intuitively sensible idea that regular lattice designs are generally
efficient for prediction of the spatial average of S(x). The same intuition suggests
that regular lattice designs should be efficient whenever the optimality criterion
is neutral with regard to location, in the sense that all parts of the study region
A are of equal scientific interest. The problem of estimating a spatial average
is related to the classical survey sampling problem of estimating the mean of a
finite population, and whether this is better approached through design-based
or model-based methods. See, for example, Bellhouse (1977) or Sarndal (1978).
We now give some numerical comparisons between two contrasting designs

on the unit square: a regular k × k square lattice; and a completely random
spatial distribution of n = k2 locations. An example of each of the two designs
when k = 10 was shown in Figure 8.1. For each of these two designs, we have
evaluated each of the three design criteria listed above, using a 25 by 25 square
lattice of prediction locations as a discrete approximation to the whole of A, and
generating data from replicated simulations of the stationary Gaussian model
with mean µ, signal variance σ2, correlation function ρ(u) = exp(−u/ϕ) and
nugget variance τ2. For the simulations, we fixed µ = 0, σ2 + τ2 = 1 but varied
ϕ and the noise-to-signal variance ratio τ2/σ2.
Table 8.1 summarises the results of the simulation experiment. The lattice

design dominates the random design, in the sense that in all cases it produces a
smaller value for the design criterion. However, the relative efficiency depends
on both the design criterion and the model parameters.

8.4 Designing for efficient parameter estimation

When the design objective is to estimate model parameters efficiently, we need
to balance two competing considerations. On the one hand, pairs of sample
points which are spatially close relative to the range of the spatial correlation
are needed to identify correlation parameters. On the other hand, the measure-
ments from spatially close points are themselves correlated, and therefore less
informative about marginal parameters (in particular, mean and variance) than



204 8. Geostatistical design

Table 8.1. Comparison of random and square lattice designs, each with n = 100
sample locations, with respect to three design criteria: spatial maximum of mean
square prediction error M(x); spatial average of mean square prediction error M(x);
scaled mean square error, 100×MSE(T ), for T =

∫
S(x)dx. The simulation model is

a stationary Gaussian process with parameters µ = 0, σ2+τ2 = 1, correlation function
ρ(u) = exp(−u/ϕ) and nugget variance τ2. The tabulated figures are averages of each
design criterion over N = 500 replicate simulations.

max M(x) average M(x) MSE(T )
Model parameters Random Lattice Random Lattice Random Lattice

ϕ = 0.05 9.28 8.20 0.77 0.71 0.53 0.40
τ2 = 0 ϕ = 0.15 5.41 3.61 0.40 0.30 0.49 0.18

ϕ = 0.25 3.67 2.17 0.26 0.19 0.34 0.10

ϕ = 0.05 9.57 8.53 0.81 0.76 0.54 0.41
τ2 = 0.1 ϕ = 0.15 6.22 4.59 0.50 0.41 0.56 0.28

ϕ = 0.25 4.44 3.34 0.37 0.30 0.47 0.22

ϕ = 0.05 10.10 9.62 0.88 0.86 0.51 0.40
τ2 = 0.3 ϕ = 0.15 7.45 6.63 0.65 0.60 0.68 0.43

ϕ = 0.25 6.23 5.70 0.55 0.51 0.58 0.38

would be the case with more widely spaced points. The wider the class of mod-
els under consideration, the stronger the case for including close pairs of points
in the design. If the functional form of the theoretical correlation function is
not tightly constrained by the assumed model, then we would need empirical
correlation estimates over a wide range of distances in order to ascertain its
shape. For estimating a single unknown correlation parameter a more restricted
range of distances, such as would be obtained using a regular lattice design,
may be adequate.
Other general considerations in designing for parameter estimation are the

following. Firstly, as we have seen in Chapter 6, the nugget variance has a
big effect on how spatial prediction operates in practice, and it is therefore
particularly important to estimate this parameter accurately. This supports the
inclusion of at least some close pairs of points in the design, as exemplified by
either the lattice plus close pairs or the lattice plus in-fill design. Secondly, and
as is typical of most branches of applied statistics, we do not know in advance the
values of the model parameters, or indeed the precise form of the model itself.
Hence, designs which perform reasonably over a wide range of parameter values,
and which help diagnose lack-of-fit to particular models, may be preferable to
ones which are optimal for particular values of the model parameters.
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8.5 A Bayesian design criterion

When efficient prediction is the goal, the comparative results reported in Sec-
tion 8.3 can be criticised for ignoring the effects of parameter uncertainty. In
the Bayesian setting, the predictive distribution of S(·) is a weighted average
of plug-in predictive distributions,

[S|Y ] =

∫
[S|Y, θ][θ|Y ]dθ, (8.1)

where θ denotes the complete set of model parameters. Hence, a design which
optimises a suitable property of the plug-in predictive distribution, for example
the average prediction variance over a set of target locations, may not be op-
timal from the Bayesian viewpoint if it results in a highly dispersed posterior
distribution for θ. By optimising with respect to the Bayesian predictive distri-
bution (8.1), we achieve the desired objective whilst allowing for the effects of
parameter uncertainty.
This suggests that Bayesian-optimal designs for spatial prediction will tend

to be spatially less regular than plug-in-optimal designs, because they need to
compromise between the regular designs which are efficient for prediction under
a known model, and the less regular designs which are efficient for parameter
estimation. Formally, this compromise is realised through (8.1), which penalises
inefficient parameter estimation in a natural way. Diggle and Lophaven (2006)
give explicit results for two different settings, which they call retrospective and
prospective design. The first is where, because of resource constraints, an ex-
isting design is to be modified by deletion of one or more points and data are
available from the existing design. The second is where a design is to be chosen
in advance of any data collection. The remainder of this section draws heavily
on the material in Diggle and Lophaven (2006).

8.5.1 Retrospective design

To motivate the retrospective design problem, Diggle and Lophaven (2006) con-
sidered the following problem in environmental monitoring. In order to measure
the spatial variation in an environmental variable of concern, a relatively dense
network of monitoring locations is established, and data are collected from each.
Armed with the data from this initial network, and seeking to economise on its
continued maintenance, we wish to reduce the number of sites whilst incurring
the least possible associated loss of environmental information. As a specific,
but hypothetical example, suppose that an existing network consists of the 50
sites whose spatial distribution is shown in Figure 8.3, and that we wish to
reduce this network to one with 20 sites.
The data on the initial design were generated using the stationary Gaussian

model with mean µ = 0, signal variance σ2 = 1 and exponential correlation
function ρ(u) = exp(−u/ϕ) with parameter ϕ = 0.3. For the noise-to-signal
variance ratio, ν2 = τ2/σ2, we used each of the values ν2 = 0, 0.3 and 0.6.
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Figure 8.3. The locations in the initial design of a hypothetical monitoring network
with 50 sites (from Diggle and Lophaven, 2006).

Denote by v(x) the prediction variance, Var{S(x)|Y }, at the point x. For the
examples in this section, Diggle and Lophaven (2006) used the design criterion

v̄ =

∫
A

v(x)dx, (8.2)

which they approximate by the average of v(x) over points x in a regular 6× 6
grid. For the classical design approach, ignoring parameter uncertainty, the
prediction variance was evaluated using ordinary kriging for prediction. For the
Bayesian approach the prior for ϕ was uniform on (0, 2.35), whilst for (µ, σ2|ϕ)
a diffuse prior proportional to 1/σ2 was used. For the ratio ν2 Diggle and
Lophaven (2006) compared results obtained by assuming known ν2 and by
assigning to ν2 a prior uniform distribution on (0, 1). Posteriors were computed
by direct simulation as described in Chapter 7.
Figure 8.4 shows the final designs of 20 locations according to the three differ-

ent treatments of parameter uncertainty, for each of the three considered values
of ν2. The most striking feature of the results is that the classical design cri-
terion, which ignores parameter uncertainty, leads to spatially regular designs
with well-separated monitoring sites, whereas either variant of the Bayesian
approach leads to retention of some close pairs of sites, representing the pre-
viously noted compromise between designing for prediction and for parameter
estimation. Within the Bayesian approach, treating ν2 as known or unknown
generally led to comparable degrees of spatial regularity in the selected designs.

Example 8.1. Salinity monitoring in the Kattegat basin
As an application of their retrospective design criterion, Diggle and Lophaven

(2006) considered the deletion of points from an existing network established
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Figure 8.4. Final designs obtained when a hypothetical monitoring network is reduced
from 50 to 20 sites. The designs in panels A, D and G assume that all model parameters
are known, and correspond to noise-to-signal variance ratios ν2 = τ2/σ2 = 0, 0.3, 0.6
respectively. The designs in panels B, E and H assume that all model parameters
except ν2 are unknown, whilst those in panels C, F and I assume that all parameters
are unknown, again corresponding to true noise-to-signal variance ratios ν2 = 0, 0.3,
0.6.

to monitor spatial variation in salinity within the Kattegat basin, between
Denmark and Sweden. The initial network consists of 70 sites, whose spatial dis-
tribution is shown in Figure 8.5. Each measurement represents average salinity
over a particular time period.
The data showed a north-south trend in salinity, and for the design evalua-

tions Diggle and Lophaven (2006) used a Gaussian model with a linear trend
surface, µ(x) = β0 + β1x1 + β2x2 where x1 and x2 denote the east-west and
north-south coordinates of a generic location x. The ratio ν2 = τ2/σ2 was fixed
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Figure 8.5. Locations of the 70 monitoring stations (• and ×) measuring salinity in
the Kattegat basin, and of the 20 stations (×) which are retained in the final design.

at its estimated value, ν2 = 0.42, partly to economise on computation but also
because, as noted above, fixing ν2 seems generally to make a relatively small
difference to the chosen design. For ϕ, a uniform prior on the interval from 10
to 100 kilometres was used, for (β, σ2|ϕ) a diffuse prior proportional to 1/σ2.
The design criterion was the spatial average of the prediction variance, as given
by (8.2), but approximated by averaging v(x) over 95 locations in a regular
grid covering the Kattegat area at a spacing of 15 kilometres. The resulting
network of 20 retained monitoring stations is shown in Figure 8.5. It consists
mostly of well-separated stations, but with some close pairs, again illustrating
how the Bayesian approach compromises between designing for prediction and
for estimation.

8.5.2 Prospective design

In its purest form, the prospective design problem is to locate a given number
of points, x1, ..., xn say, within a designated planar region A without any prior
constraints. Modified versions of the problem limit the xi to be chosen either
from designated sub-regions of A or from within a finite set of candidate loca-
tions. In practice, the first two versions of the problem can be approximated by
the third version, by defining candidate locations as a fine grid to cover those
parts of A which are available for sampling.
In the retrospective design problem, the data from the existing design were

used to estimate model parameters, θ, and the resulting posterior for θ was used
to evaluate the prediction variance, v(x) = Var{S(x)|Y }, which would result
from a modified design. When designing prospectively, we do not have any data
Y . Diggle and Lophaven (2006) therefore proceeded by simulating data under
an assumed value for θ and used as design criterion the expectation of the
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spatially averaged prediction variance E[v̄] with respect to the distribution of
Y at the true parameter value θ0. Hence, the design criterion is

E[v̄] =

∫
A

EY |θ0 [v(x)]dx. (8.3)

Evaluation of (8.3) using Monte Carlo methods proceeds as follows. First
simulate s independent data-sets, Yk : k = 1, ..., s from the model with param-
eter values θ0 = (µ0, σ

2
0 , ϕ0, τ

2
0 ). From each simulated data-set, calculate the

corresponding value, v̄k, of the spatially averaged prediction variance. Finally,
use the sample average of the v̄k over the s simulations as an approximation to
E[v̄].

Example 8.2. Comparing regular lattice, lattice plus close pairs and lattice
plus in-fill designs.
This example compares the regular 8×8 lattice with the (7×7, 15, 0.5) lattice

plus close pairs design and the (7, 3, 3× 3) lattice plus in-fill design. All designs
were constructed on a unit square region, with the lattice spacing adjusted
accordingly.
Although designs of the same type vary because of the random selection of

the secondary locations, Diggle and Lophaven (2006) found that this had only a
small impact on the spatially averaged prediction variance, and therefore used
only five independent replicates of each design to evaluate the expectation of
the average prediction variance. The model used in each case was the linear
Gaussian model with constant mean µ, signal variance σ2, nugget variance τ2

and exponential correlation function, ρ(u;ϕ) = exp(−|u|/ϕ), with prior specifi-
cations as follows; for ϕ, a uniform prior on (0, 1.3); for the ratio ν2 = τ2/σ2,
a uniform prior on (0, 1) and for (µ, σ2|ϕ, ν2), a diffuse prior proportional to
1/σ2.
Evaluations of the chosen design criterion for each of the three candidate

designs with true parameter values β = 0, σ2 = 1, ϕ = 0.2, 0.4, 0.6, 0.8, 1.0
and ν2 = 0.0, 0.2, 0.4, 0.6, 0.8 are summarised in Figure 8.6. This shows that
the lattice plus close pairs design results in lower values of the design criterion
compared to both the lattice plus in-fill design and the regular 8 × 8 lattice,
meaning that predictions are computed more accurately from the lattice plus
close pairs design. In contrast, the performance of the lattice plus in-fill design
is only slightly better than that of the regular lattice.
Although a single example cannot be definitive, the qualitative message which

we take from Example 8.2 is that, whilst adding some closely spaced groups
of points to a lattice design is beneficial, the lattice plus in-fill design risks
committing too high a proportion of the total sampling effort to the closely
spaced points. For example, in the Rongelap island study of Example 1.2, the
in-fills account for 100 of the 157, or more than two-thirds, of the points in the
design. Some justification in this application is provided by the fact that the
data were initially collected using only the 57 locations in the primary lattice,
so re-considering the primary lattice spacing was not an option. Also, in terms
of effort in the field, locating and taking measurements from a 5 by 5 in-fill was
easier than locating several in-fills with fewer points in each.
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Figure 8.6. Prospective design results showing the difference in efficiency of the regular
8× 8 lattice, the (7× 7, 15, 0.5) lattice plus close pairs design, and the (7× 7, 3, 3× 3)
lattice plus in-fill design.

8.6 Exercises

8.1. Consider a stationary Gaussian process in one spatial dimension, in which
the design consists of n equally spaced locations along the unit interval
with xi = (−1 + 2i)/(2n) : i = 1, ..., n. Suppose that the process has
unknown mean µ but known variance σ2 = 1 and correlation function
ρ(u) = exp(−u/ϕ) with known ϕ = 0.2.
Investigate, using simulation if necessary, the impact of n on the effi-
ciency of the maximum likelihood estimator for µ. Does the variance of µ̂
approach zero in the limit as n→ ∞? If not, why not?

8.2. Repeat exercise 8.1, but treating each of σ2 and ρ in turn as the unknown
parameter to be estimated.

8.3. Repeat exercises 8.1 and 8.2, but now considering the design to consist of
n equally spaced locations xi = i : 1, ..., n.
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8.4. Discuss the similarities and differences amongst your results from exercises
8.1, 8.2 and 8.3.

8.5. An existing design on the unit square A consists of four locations, one
at each corner of A. Suppose that the underlying model is a stationary
Gaussian process with mean µ, signal variance σ2, correlation function
ρ(u) = exp(−u/ϕ) and nugget variance τ2. Suppose also that the objective
is to add a fifth location, x, to the design in order to predict the spatial
average of the signal process S(x) with the smallest possible prediction
mean square error, assuming that the model parameter values are known.

(a) Guess the optimal location for the fifth point.
(b) Suppose that we use the naive predictor ȳ. Compare the mean square

prediction errors for the original four-point and the augmented five-
point design.

(c) Repeat, but using the simple kriging predictor.
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9
Multivariate geostatistical models

Multivariate geostatistical methods arise when two or more different response
variables are measured at spatial location within a continuous spatial region.
As noted briefly in the discussion of Example 1.4, this situation can arise either
because the variables are all of equal scientific interest and we wish to describe
their joint spatial distribution, or because we wish to describe the conditional
distribution of a response variable of primary interest given one or more spatially
referenced covariates, but the covariates are only observable at a finite set of
sample locations and are therefore treated as sampled values from an underlying
stochastic process. A third situation in which multivariate methods are useful is
when the variable of primary interest, Y say, is difficult or expensive to measure,
but it is easy to measure a second variable, Z, which is known to be correlated
with Y . In this situation, for efficient prediction of the variable the most cost-
effective design may be one in which a small number of of measurements of Y
are combined with a large number of cheaper measurements of Z.

Our general notation for multivariate geostatistical data of dimension d is
(Yij , xij) : i = 1, . . . , nj ; j = 1, . . . , d. Hence, Yij denotes the measurement of
the jth variable at location xij . We do not necessarily assume that the the same
set of sampling locations is used for all dimensions of the response variable. If
they are, then we say that the data are balanced; the notation for a balanced
data-set simplifies to (Yij , xi) : i = 1, . . . , n; j = 1, . . . , d.

Although we do not require the data to be balanced, we do make the implicit
assumption that missing values are non-informative. For example, if a study
design specifies that two measurements, Yi1 and Yi2 say, should be made at a
common set of locations xi : i = 1, . . . , n, but Yi2 is missing at some of these
locations, we assume that the pattern of missing data has nothing to do with
the values of Yi2 which would have been observed had they not been missing.
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This is not always an innocuous assumption. For a general discussion of ways
of dealing with missing values, see Little and Rubin (2002).
In this chapter, we shall mostly focus on the bivariate case d = 2, as the

generalisation to d > 2 will usually be obvious.

9.1 Exploratory analysis

9.1.1 Non-spatial methods

As in the univariate case, standard methods of exploratory analysis which do
not explicitly recognise the underlying spatial structure of the data remain
useful. Thus, in addition to the kinds of exploratory methods mentioned in
Section 2.3, we would always begin a multivariate geostatistical analysis by
examining scatterplots of pairs of variables and by computing the covariance and
correlation matrices of the data, treated as if they were a (possibly incomplete)
random sample of size n from a d-dimensional multivariate distribution. For
the soil data introduced in Example 1.4, the scatterplot of calcium against
magnesium content shown in Figure 1.6 provides a simple example.
When d is larger than 3, the empirical multivariate distribution of the data

cannot be inspected directly. Most text-books on multivariate analysis discuss
the various techniques available for finding and displaying interesting projec-
tions of high-dimensional data; see, for example, Chapter 5 of Krzanowski and
Marriott (1994). One of the oldest, and still widely used, methods is principal
component analysis, which is based on the singular value decomposition of a
covariance or correlation matrix, as follows.
Let V denote the d by d sample covariance or correlation matrix of the data.

Let λk : k = 1, . . . , d be the eigenvalues of V , ordered from largest to smallest,
and uk : k = 1, . . . , d the corresponding eigenvectors, scaled so that u′kuk = 1.
Then, writing Y = (Y1, . . . , Yd) for the generic, d-dimensional set of measured
variables, the kth principal component is the linear combination Pk = u′kY .
The principal components have the property that they are uncorrelated. Also,
P1 is the linear combination of the elements of Y which has the largest possi-
ble variance subject to the scaling constraint, P2 the largest possible variance
subject to the scaling constraint and to the aditional constraint of being uncor-
related with P1, and so on. Note that the principal components differ materially
according to whether V is the covariance matrix or the correlation matrix. The
correlation matrix should therefore be used unless the different variables are
measured in the same physical units. One very simple application of principal
component analysis is to choose low-dimensional views of the data which cap-
ture as much as possible of the variation, so as better to reveal multivariate
outliers or interesting patterns of association in the data. Also, the weightings
of the different dimensions of Y in the principal components can sometimes
have interesting interpretations in their own right, for example by highlighting
contrasts betweeen groups of variables.
We again use the soil chemistry data for illustration, now considering a

four-dimensional masurement variable defined by the calcium and magnesium
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Figure 9.1. Scatterplots of calcium and magnesium contents at the 0-20cm and 20-40cm
soil layers.

Table 9.1. Sample means, standard deviations and correlations for the four-variable
soil chemistry data.

Mean SD Correlation matrix

Ca 0-20cm (Y1) 50.68 11.08 1.000 0.758 0.329 0.425
Ca 20-40cm (Y2) 45.01 13.54 0.758 1.000 0.216 0.467
Mg 0-20cm (Y1) 27.34 6.28 0.329 0.216 1.000 0.708
Mg 20-40cm (Y1) 25.58 6.6 0.425 0.467 0.708 1.000

contents at each of two core depths, 0-20cm and 20-40cm. Pairwise scatter-
plots of the data, as shown in Figure 9.1 show strong correlations between the
two calcium variables and between the two magnesium variables, as might be
expected, and weaker correlations between calcium and magnesium variables.
Sample means, standard deviations and the correlation matrix of the data are
shown in Table 9.1.
A principal components analysis of the correlation matrix for these data finds

the first two principal components as

PC1 = −0.516Y1 − 0.504Y2 − 0.448Y3 − 0.529Y4,

and

PC2 = 0.443Y1 + 0.511Y2 − 0.623Y3 − 0.393Y4,
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where Y1 and Y2 are the two standardised calcium variables and Y3 and Y4
the two standardised magnesium variables. The first two principal components
have a natural interpretation as an overall weighted average and a calcium-
magnesium contrast. This in turn suggests, not unreasonably, that a reasonable
way to reduce the dimensionality of the data would be to average the two
calcium measurements and the two magnesium measurements at each sampling
location.

9.1.2 Spatial methods: mapping

To explore bivariate, or more generally multivariate spatial structure, the first
step is to map the data in a way which recognises their multivariate nature.
Modern methods of computer graphics can be adapted to the problem of map-
ping multivariate geostatistical data. Some of the simpler possibilities in the
bivariate case include the following.
Circle plots can be enhanced by using the size of each circle to represent the

value of one variable and the plotting colour or shade to represent a second.
In our opinion, when using colour in this way a simple gradation between two
contrasting colours, for example red to blue or gray scales, is more effective
than a multi-colour scale. Figure 9.2 shows the bivariate reduction of the four-
variable calcium-magnesium data plotted in this way with the grey shade of
each circle corresponding to the value of the first principal component and the
circle radius proportional to the value of the second.
Linked scatter-plots, which enable sub-sets of points to be highlighted by the

user simultaneously on two or more scatterplots, can also be very effective. For
example, Figure 9.3 links the scatterplot of calcium against magnesium contents
in the 20-40 cm soil layers to a plot of the sampling locations. By highlighting the
two apparent outliers in the calcium-magnesium plot, we can see immediately
that they derive from spatially neighbouring sample locations, which suggests
that they may represent a genuine local feature of the soil chemistry.

9.1.3 Spatial methods: cross-covariance, cross-correlation and the
cross-variogram

The covariance and correlation functions of a multivariate spatially process
are easily defined as follows. We define a d-dimensional spatial process as a
collection of random variables Y (x) = {Y1(x), . . . , Yd(x)}, where x ∈ IR2 (in
principle, there is no need to restrict the definition to two spatial dimensions,
but for our purposes this would be an unnecessary and unhelpful complication).
Then, the covariance function of Y (x) is a d×d matrix-valued function Γ(x, x′),
whose (j, k)th element is

γjk(x, x
′) = Cov{Yj(x), Yk(x′)}, (9.1)

with the obvious modification to define the correlation function. Note that for
each pair of locations (x, x′), the matrix Γ(x, x′) is symmetric, i.e. γjk(x, x

′) =
γkj(x, x

′). Also, γjj(x, x) = Var{Yj(x)} = σ2
j .
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Figure 9.2. Circle plot for the principal components of the calcium-magnesium data.
Gray shades are proportional to the values of the first principal component and circle
radii to values of the second.

Figure 9.3. An example of a linked pair of plots. Right hand panel shows the spatial
locations of the two atypical points in the scatterplot on the left hand panel.

In the stationary case, γjj(x, x) = σ2
j does not depend on x and in general

γjk(x, x
′) depends only on u = ||x − x′||. Also, we write the corresponding

correlation functions as ρjk(u) = γjk(u)/(σjσk). When k = j, the functions
ρjj(u) are the correlation functions of the univariate processes Yj(x) and are
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symmetric in u, i.e. ρjj(−u) = ρjj(u). When, k ̸= j the functions ρjk(u), called
the cross-correlation functions of Y (x), are not necessarily symmetric but must
satisfy the condition that ρjk(u) = ρkj(−u).
To define a cross-variogram for Y (x), there are at least two possibilities. The

first, and the more traditional, is

V ∗
jk(u) =

1

2
Cov[{Yj(x)− Yj(x− u)}{Yk(x)− Yk(x− u)}]. (9.2)

See, for example, Journel and Huijbregts (1978) or Chilès and Delfiner (1999).
Expanding the right hand side of (9.2) we find that

V ∗
jk(u) = γjk(0)−

1

2
{γjk(u) + γjk(−u)}

= σjσk[1−
1

2
{ρjk(u) + ρjk(−u)}]. (9.3)

The similarity between (9.3) and the corresponding relationship between
univariate covariance, correlation and variogram functions, as discussed in
Section 3.4, is clear.
The second possibility, introduced by Cressie and Wikle (1998) and called by

them the variance-based cross-variogram, is

Vjk(u) =
1

2
Var{Yj(x)− Yk(x− u)}. (9.4)

Expanding the right-hand side of (9.4) gives

Vjk(u) =
1

2
(σ2
j + σ2

k)− σjσkρjk(u). (9.5)

The expansion (9.5) highlights an apparent objection to (9.4), namely that it
mixes incompatible physical dimensions. However, we can overcome this by
working with standardised variables, in much the same way that we used the
correlation matrix, rather than the variance matrix, for principal component
analysis of variables measured on incommensurate scales. An advantage of (9.4)
over 9.2 is that it suggests a way of estimating the variogram empirically which
does not require the different variables to be measured at a common set of
sampling locations, and which we discuss in Section 9.3.1.
Using standardised variables reduces the two definitions of the cross-

variogram in (9.5) and (9.3) to

V ∗
jk(u) = 1− 1

2
{ρjk(u) + ρjk(−u)}

and

Vjk(u) = 1− ρjk(u),

respectively, hence

V ∗
jk(u) =

1

2
{Vjk(u) + Vjk(−u)}.

In particular, provided that we use standardised variables, we see that V ∗
jk(u) =

Vjk(u) when the cross-correlation function ρjk(u) is symmetric in u.
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9.2 Bivariate Gaussian models

In this Section, we consider some possible bivariate extensions to the univariate
Gaussian models which were the subject of Chapter 3. All of the general ideas
discussed there carry over into the bivariate setting, but with additional as-
pects introduced by the bivariate setting. In this Section, we shall focus on the
specification of valid models for stationary variation about a trend, including
the distinction between the observation process Y (x) and an unobserved signal
process S(x).

9.2.1 Bivariate signal and noise

For the bivariate Gaussian model, we assume that the data are related to an
unobserved bivariate stationary Gaussian process {S(x) = (S1(x), S2(x)) : x ∈
IR2}, with bivariate mean zero, variances σ2

j = Var{Sj(x)} and correlation
structure specified by three functions ρ11(u) = Corr{S1(x), S1(x−u)}, ρ22(u) =
Corr{S2(x), S2(x− u)} and ρ12(u) = Corr{S1(x), S2(x− u)}.
The simplest assumption we can make about the data Yij : i = 1, . . . , nj , j =

1, 2 is that Yij = Sj(xij), i.e. the signal at any location x can be observed
without error. When the data are subject to measurement error, the simplest
assumption is that the Yij are mutually independent given S(·) and Normally
distributed,

Yij ∼ N{µj(xij) + Sj(xij), τ
2
j } : i = 1, . . . , nj ; j = 1, 2. (9.6)

Under this model, each dimension of the response separately follows a univariate
Gaussian model, whilst dependence between the two response dimensions is
modelled indirectly through the structure of the unobserved process S(·). The
conditional independence assumption in (9.6) invites the interpretation that
the parameters τ2j represent the measurement error variances in each of the
two response dimensions. A less restrictive assumption than (9.6) would be
to allow the measurement errors associated with Y (x) = {Y1(x), Y2(x)} to be
correlated. This would only affect the model at locations where both of Y1(x)
and Y2(x) are measured; where only one of the Yj(x) is measured, (9.6) would
still hold. Correlated measurement errors might be partuclarly appropriate if, as
previously discussed in the univariate setting in Chapter 3, we want the nugget
effect to include spatial variation on scales smaller than the smallest inter-point
distance in the sampling design.
In the case of spatially independent error terms, the mean and covariance

structure of the data, Yij are given by

E[Yij ] = µj(xij),

Var{Yij} = τ2j + σ2
j

and, for (i, j) ̸= (i′, j′),

Cov{Yij , Yi′j′} = σjσj′ρjj′(||xij − xi′j′ ||)



9.2. Bivariate Gaussian models 219

Note in particular that non-zero error variances τ2j induce discontinuities at the
origin in the covariance structure of the measurement process.

9.2.2 Some simple constructions for a bivariate signal process

In order to construct particular bivariate models, we need to specify explicit
forms for the two mean functions µj(x) and for the covariance structure of S(·).
With regard to the means, in practice the easiest models to handle are those
in which the means are linear functions of spatial explanatory variables, as was
also true in the univariate case. With regard to the covariance structure, the
univariate models discussed in Chapter 3 are a natural starting point. However,
in extending these to the bivariate case, we need to be sure that the required
positive-definiteness conditions are not violated. Note that these require that
arbitrary linear combinations of either or both of the response dimensions should
have non-negative variances. A simple way to ensure that this is the case is to
build a bivariate model explicitly from univariate components.
A common-component model
One example of an explicit construction is the following. Suppose that S∗

0 (·),
S∗
1 (·) and S∗

2 (·) are independent univariate stationary Gaussian processes with
respective covariance functions γj(u) : j = 0, 1, 2. Define a bivariate process
S(·) = {S1(·), S2(·)} to have components

Sj(x) = S∗
0 (x) + S∗

j (x) : j = 1, 2.

Then, by construction S(·) is a valid bivariate process with covariance structure

Cov{Sj(x), Sj′(x− u)} = γ0(u) + I(j = j′)γj(u)

where I(·) is the indicator function, equal to one if its logical argument is true,
zero otherwise. Note that if, as is typically the case, the covariance functions
γj(u) are non-negative valued, then this construction can only generate non-
negative cross-covariances between S1(·) and S2(·). In practice this is often the
case or, if the two variables are inversely related, can be made so by revers-
ing the sign of one of the components. The common-component construction
extends to processes of dimension d > 1 in which all of the components Sj(x)
share an underlying common component S∗

0 (x). It cannot easily accommodate
relationships in which the sign of the cross-covariance is different at different
spatial separations. Also, as written the construction implicitly assumes a com-
mon measurement scale for all of the component processes. When this is not
the case, the model requires an additional d− 1 scaling parameters so that the
common component S∗

0 (x) is replaced by S∗
0j(x) = σ0jR(x) where R(x) has

unit variance.
Linear combinations of independent components
Another simple construction is to begin with two, or more generally
d, independent univariate processes Uk(x) and define Sj(x) as a linear
combination,

Sj(x) =

d∑
j=1

akjUj(x),
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or in vector-matrix notation,

S(x) = AU(x) (9.7)

Without loss of generality, we can assume that each process Uk(x) has variance
1. If Uk(x) has correlation function ρk(·), it follows that the matrix-valued
covariance function of S(x) is

Γ(x, x′) = ARA′, (9.8)

where R is the diagonal matrix with diagonal entries Rkk = ρk(x− x′). In the
special case where ρk(u) = ρ(u), (9.8) reduces to Γ(x, x′) = Bρ(x− x′). This is
sometimes called the proportional covariance model (Chilès and Delfiner, 1999).
The assumption that all of the Uk(x) share a common correlation function
reduces the number of parameters in the model to manageable proportions, but
otherwise does not seem particularly natural.
The linear model of co-regionalisation
By construction, we can also obtain valid models by adding two, or more
generally p, linear combinations of univariate models, to give

S(x) =

p∑
i=1

AiU
i(x), (9.9)

where now each U i(x) = {U i1(x), . . . , U id(x)} is a set of d independent univariate
processes. In practice, models of this kind would be very poorly identified with-
out some restrictions being placed beforehand on the processes U ik(x). In the
linear model of co-regionalisation, these restrictions are that each term on the
right-hand side of (9.9) is a proportional covariance model. This again raised the
question of whether the resulting savings in the number of unknown parameters
has a natural scientific interpretation or is merely a pragmatic device.
How useful are standard classes of multivariate model?
The question is worth asking because, as the examples above illustrate, even
very simple multivariate constructions quickly lead to models with either large
numbers of parameters and consequent problems of poor identifiability, or
potentially severe restrictions on the allowable form of cross-correlation struc-
ture. A better modelling strategy than an empirical search through a richly
parameterised standard model class may be to build multivariate models by
incorporating structural assumptions suggested by the context of each specific
application; see, for example, Knorr-Held and Best (2001a), who use the com-
mon component model in an epidemiological setting where it has a natural
interpretation.
MAYBE ADD MORE COMMENTS HERE ABOUT STRONG/WEAK

CORRELATIONS, CO-LOCATED DATA OR NOT, PRIMARY AND SE-
CUNDARY VARIABLES WHEN THE FORMER IS LESS ABUNDANT
(AND/OR MORE EXPENSIVE MEASUREMENTS) – SOME COMMENTS
ARE ALREADY IN TEXT BELOW, NEED TO CROSS CHECK WHETHER
WE MENTIONED EVERYTHING WE WANT TO MENTION.
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9.3 Estimation and prediction

9.3.1 Estimating covariance structure

As in the univariate case, we would recommend that likelihood-based methods
be used for formal inference about covariance structure. However, non-
parametric estimates of the cross-variograms are useful for exploratory and
diagnostic purposes.
We work throughout with standardised residuals, Rij = (Yij − µ̃j)/

√
σ̃ij ,

where µ̃ij and σ̃ij are the obvious estimators based on a provisional model for
µj = E[Yij ]. We then define the empirical cross-variogram ordinates as

vjk(i, i
′) =

1

2
(Rij −Ri′k)

2 (9.10)

and estimate the variance-based cross-variogram by averaging empirical cross-
variogram ordinates within specified ranges of u = ||xij−xi′k||. Note that, even
under the assumption of stationarity, we need to preserve a distinction between
the values u and −u. Hence, for any pair of sample locations xij and xi′k
separated by a distance u, the corresponding squared difference (Rij − Ri′k)

2

contributes to the estimates of both Vjk(u) and Vkj(−u). We therefore need a
consistent rule for distiguishing between positive and negative u, for example
by defining the distance between xij and xi′k as positive or negative according
to whether the first coordinate of xij is greater than, or less than or equal to,
the first coordinate of xi′k.
The likelihood-based and Bayesian methods already established in the uni-

variate case extend to the bivariate, or more generally multivariate, Gaussian
model with essentially only notational complications. From a formal point of
view, the data still constitute a single realisation from a high-dimensional, but
highly structured, multivariate Gaussian distribution and the likelihood has
the same form as we considered in Section 5.4.2, albeit with a more complex
structure for the variance matrix of the data.

9.3.2 Prediction

Under Gaussian modelling assumptions, spatial prediction also proceeds along
the same formal lines as in the univariate case. Notice, however, that even when
the scientific interest concerns only one of the measured variables, including data
on other variables can sometimes materially improve the predictive inferences
for the variable of interest. For example, if Y1 is of interest and Y2 is correlated
with Y1, then data on Y2 provide indirect information about Y1. This relates to
a very old idea in survey sampling, known as ratio or regression estimation of a
population mean. In that context, our goal is to estimate the finite-population
mean of a variable of interest, Y1 say. If we obtain the values of Y1 for a random
sample from the population, a simple estimate of the population mean is the
sample mean, Ȳ1. If, however, we know the values of another variable, Y2 say,
for the complete population, and Y1 and Y2 are correlated, it is advantageous to
adjust the sample mean estimate according to whether the mean of the values
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of Y2 for the sampled individuals is greater or less than the population mean of
Y2 (Cochran, 1977).
In the present context, data on Y2 are especially useful if they are available

at locations where we do not have direct measurements of Y1. Conversely, our
experience has been that when multivariate data are co-located and the target
for prediction involves only one of the variables, a multivariate model has little
or no advantage over a univariate model for the variable of direct interest.

9.4 Case study: soil data

We use the soil data presented in Example 1.4 to illustrate the common com-
ponent model, here confining ourselves to the measurements taken from the
largest subarea within the region. Following the results of the principal compo-
nent analysis, let Y1 and Y2 be the values of calcium and magnesium averaged
between the values at the depths 0-20 and 20-40 cm. The bivariate Gaussian
common component model can be written as

Yj(x) = µj + S0j(x) + Sj(x); j = 1, 2 (9.11)

where µj are the means for the two variables, S0j(x) is a stationary Gaussian
processes with covariance function γ0j(u) = σ2

0jϕ(u;ϕ0) : j = 1, 2 and ρ(u, ϕ0)
is a common correlation function with parameter(s) ϕ0. Sj(x) : j = 1, 2 are
two independent stationary Gaussian processes also independent from S0j(x)
with covariance function γj(u) = σ2ρ(u, ϕj). Scaling the processes S(·) the
model 9.11 can be written as

Yj(x) = µj + σ0jR0(x) + σjRj(x); j = 1, 2. (9.12)

The likelihood function follows from the multivariate Gaussian ETC ETC
ETC
In practice, to reduce the dimensionality of the numerical maximisation we

reparametrise the model as

Y1(x) = µ1 + σ {R0(x) + ν1R1(x)}
Y2(x) = µ2 + σ {ηR0(x) + ν2R2(x)}

The ML estimator for the mean parameter is given by

µ̂ = (µ̂1, µ̂2)′ = (X′V̂ −1X)−1X′V̂ −1y

and for σ2

σ̂2 = (y −Xµ̂)′V̂ −1(y −Xµ̂)/(n1 + n2) = Q̂/n

and the matrix V is parametrised by (η, ν1, ν2, ϕ0, ϕ1, ϕ2) with maximum
likelihood estimates obtained by numerical maximisation of the profile
log-likelihood

l(η, nu1, nu2, ϕ0, ϕ1, ϕ2) = −0.5{log (2π)+log |V |+n(1+log Q̂− log n)} (9.13)

with Q̂ = y′{V −1(I −X(X′V −1X)−1X′V −1)}y and X is a two column matrix
with dummy variables indicating data from variables 1 and 2, respectively.
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Figure 9.4. Prediction maps for calcium content from: the univariate model on the left
panel and bivariate model on the right panel.

Table 9.2. Parameter estimates for the bivariate model, top line for with all observation
and botom line with depleted data removing half of the Ca measurements.

data µ̂1 µ̂2 σ̂2
01 σ̂2

02 σ̂2
1 σ̂2

2 ϕ̂0 ϕ̂1 ϕ̂2
original 51.48 26.73 63.89 57.14 3.53 30.02 48.8 194.25 58.43
reduced 50.04 26.32 20.52 68.95 25.05 12.89 48.1 35.22 177.84

For the soil data we obtain maximum likelihood parameter estimates as shown
in the first rown of Table 9.2 with all correlation functions assumed to be
exponential.
Predictions at any location can obtained by: (results from MVN)
Figure 9.4 shows prediction maps of the calcium content over the area. The

left hand panel shows the prediction over the area using the univariate model
and on the right with the bivariate common component model.
The correlation between Ca and Mg measurements at the sampling locations

is 0.25
In the example below Ca and Mg measurements were both obtained at all

sampling locations. However in certain circunstances the data for the two vari-
ables are not necessarily obtained at the same locations. Moreover, it is not
uncommon that one of the variables, usualy of the main interest, is sampled
more sparsely than the other. In these circunstances the usage of the bivariate
model is more attractive ...the secondary variable complements the information
on the other ...
To ilustrate this we consider now a modified version of the soil data where

we assume that the focus is still in predicting Ca levels but considering the Ca
measurements are only available at 58 of the original 116 locations within sub-
area 3. For this depleted data-set we again consider two models: the univariate
and the bivariate fitted by maximum likelihood and with predictions over the
area show in Figure 9.5.
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Figure 9.5. Prediction mapas for depleted calcium content data set from the univariate
model on the left panel and bivariate on the right panel.

Figure 9.6. Predicted values from the uni versus bivariate models at grid points cov-
ering the area on left panel and for the 58 points taken from the original data set on
the right panel.

In addition we compare the predictions given by the univariate and bivariate
models at the 58 locations from which the Ca values were disregarded. The
mean square prediction errors are 4240.09 and 5108.4, respectively, whereas
The mean absolute errors are 392.93 and 404.48, respectively.
COMMENTS ON THE RESULTS HIGHLIGHTING THE WEAK

CORRELATION IN THE ORIGINAL DATA
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Figure 9.7. True values against predicted values from the univariate (left) and bivariate
(right) models.

9.5 Bivariate generalised linear models

For non-Gaussian data, the generalised linear geostatistical model can be ex-
tended to the multivariate case in exactly the same way as the Gaussian model
was extended in Section 9.2 above. We simply postulate an independent gen-
eralised linear model for each measured variable, conditional on an unobserved
multivariate Gaussian process S(x) = {S1(x), . . . , Sd(x)}. As in the Gaussian
case, working through the theoretical details requires essentially only notational
extensions to the univariate theory. The challenges lie more in formulating use-
ful, parsimonious models for S(x), as discussed in Section 9.2, and in successfully
implementing the resulting models in applications.
The common-component construction described in Section ??, whereby

Sj(x) = S∗
0 (x) + S∗

j (x), has been used in environmental epidemiology to in-
vestigate the joint spatial distribution of two or more diseases. In that context,
the Sj(·) represent the spatially varying risks of the different diseases j, and
the data consist of the numbers of cases of each disease at each of a number
of locations. The model has the nice interpretation that S∗

0 (·) describes spatial
variation in underlying risk factors common to the two diseases, whilst the S∗

j (·)
similarly represent risk factors unique to each disease. A specific example is de-
scribed by Knorr-Held and Best (2001b), where the two diseases in question are
oral and oesophageal cancer in districts of Germany during the period 1986-
1990. Their analysis is not strictly geostatistical in our sense, as they model
spatial variation over a discrete set of sub-regions which partition the overall
study-region, rather than treating the study region as a spatial continuum.
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Figure 9.8. Sampling locations for the Loa loa data-set.

9.6 Loa loa prevalence in equatorial Africa re-visited

TO CHECK WHETHER TO INCLUDE THE MAP OF THE REGION AND
IF YES REFER TO THE FIGURE IN THE TEXT.
In Section 7.6.4 we described an analysis of the spatial variation in the preva-

lence of loaloa as determined by parasitological sampling. As noted there, the
uncertainties in the resulting predictions could be reduced by extending the par-
asitological surveys to additional locations, but this would be expensive. This
motivated the development of a cheaper survey method, RAPLOA, as described
in Takougang et al. (2002). The RAPLOA methodology uses the results from
an easily administered questionnaire to estimate prevalence. RAPLOA data
can be acquired relatively cheaply, but are of lower quality than parasitological
data. However, by building a joint model for parasitological and RAPLOA data
we can exploit the relationship between the two to improve overall predictive
accuracy.
We first describe a simple, non-spatial analysis intended to validate the

RAPLOA methodology. The data were obtained from a series of surveys con-
ducted with the specific purpose of calibrating estimates of community-level
Loa loa prevalence obtained by the two different methods, parasitology and
RAPLOA. As decribed in Section 7.6.4, parasitological sampling involves the
microscopic examination of blood-samples for the presence of Loaloa parasites.
In the RAPLOA methodology, each person in the survey is asked three ques-
tions, and positive cases are those who answer “yes” to all three (Have you ever
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Table 9.3. Location and size of each of the four calibration surveys.

Survey Location Number of Number of persons per village
villages minimum mean maximum

0 Cameroon 74 24 117.3 268
1 DRC West 49 47 81.8 102
2 DRC East 50 46 81.8 96
3 Congo 50 27 66.5 100

suffered from eye-worm? Did it look like this photograph? Did it last less than
one week?).
Data from four surveys are available, each including a sample of villages

within a defined area. Table 9.3 summarises the amount of data available.
The two panels of Figure 9.9 show the empirical relationship between the pairs

of estimates, on the raw prevalence scale (left-hand panel) and on the empirical
logit scale (right-hand panel), the latter being a more natural scale on which to
build a bivariate statistical model. For each datum, if n denotes the number of
persons surveyed and y the number of positives, the raw estimated prevalence is
y/n, expressed as a percentage in Figure 9.9, and the empirical logit is log{(y+
0.5)/(n− y + 0.5)}. Figure 9.9 shows a strong, direct relationship between the
results obtained by the two methods. This relationship is approximately linear
on the empirical logit scale, with correlation 0.83, a pronounced shift between
the two means (−0.77 for RAPLOA, −2.41 for parasitology) but approximately
equal variances (2.53 for RAPLOA, 2.76 or parasitology). Results from the
four surveys show the same general pattern, with the Congo survey deviating
somewhat from the other three in presenting a shallower slope for the regression
of parasitology-based estimates on RAPLOA-based estimates.
For a preliminary assessment of the calibration relationship between preva-

lence as assessed by parasitology and by RAPLOA, we analysed the data as
follows. We assume that, after applying an empirical logit transformation, the
data within each of the four surveys can be regarded as a random sample from
a bivariate Gaussian distribution. We then computed the sample mean vector
and variance matrix of each sample, and derived the principal axis of each es-
timated bivariate Gaussian as the eigenvector associated with the larger of the
two eigenvalues of the sample variance matrix. Finally, we back-transformed
each of the four principal axes onto the prevalence scale. The two panels of Fig-
ure 9.10 show the resulting calibration relationships. Note that on the prevalence
scale, the four calibration curves agree closely over the range of parasitological
prevalences between zero and 20%, which is the relevant range with respect
to the declared policy, which hinges on whether prevalence does or does not
exceed 20% The results of this simple analysis are sufficiently encouraging to
suggest that formal spatial statistical modelling of the bivariate data would be
worthwhile.
Figure 9.11 shows the logits of prevalence against the available covariates ...

The plots for logits of raploa would be similar given the high correlation between
the logits of prev. and raploa. 4 sites are somehow different but specially the
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Figure 9.9. RAPLOA-based and parasitology-based estimates of prevalence from the
four surveys. The left-hand panel shows raw estimated prevalences, the right-hand
panel empirical logits of estimated prevalences. The four surveys are distinguished
by the plotting symbols: open circles (Cameroon); triangles (DRC West); plus signs
(DRC East); multiplication signs (Congo).

D.R.C. East... exploratory analysis on spatial structure also indicates greats
similarity in the spatial pattern between DRC west and Congo cluster of data.
This reinforces that the 3 main clusters of data can have differences not only
in the relations with covariates but also on spatial structure... but this requires
further investigation. The exploratory analysis also confirms that DRC west
and Congo are not only close in space but also show similar behavior... With
this and for purposes of illustration we proceed the analysis pooling data from
DRC west and Congo and restricting the analysis for this region...
Notice the left panel (thick dashed line) shows clearly that, ignoring the

information on diferent site cancels out the effect of the covariave, which is quite
pronouced when whe consider the sites individually. A parsimonious model coud
group together sites 2 (DRCWest), 4 (Congo) and maybe even 1 (Cameroon).
It is also to be noticed that covariates have different ranges of values for each
site which is a potential confounder if the nature of the relation changes for
diferente ranges of covariate values
For the right hand side plot we notice the potential outliers are all in

Camaroon region.
To enable predictive mapping of both parasitological and RAPLOA

prevalence, we construct a bivariate binomial sampling model as follows.
Firstly, at this stage we identify 4 duplicated locations which would prevent us

to fit the bivariate model by maximum likelihood. To proceed with the analysis,
and in the absence we combine the data at duplicated locations as if they were
a larger village.
Fitting the bivariate Gaussian common component model for this data (log-

its) we get the parameter estimates given in the top row of Table 9.4. The strong
relationship between the variables is reflected in the order of magnitude of the
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Figure 9.10. Preliminary estimates of the calibration relationships between
RAPLOA-based and parasitology-based estimates of prevalence from the four surveys.
The left-hand panel shows results on the empirical logit scale, assuming a bivariate
Gaussian distribution within each survey. The right-hand panel shows results back–
transformed to the prevalence scale. The four surveys are distinguished by the plotting
symbols and line-styles: open circles, solid lines (Cameroon); triangles, dashed lines
(DRC West); plus signs, dotted lines (DRC East); multiplication signs, dot-dash lines
(Congo). The thick dashed lines represent a single calibration curve fitted to the pooled
data from all four surveys.

Figure 9.11. Logits of prevalence plotted against the covariates, points and line types
are the same as in the previous Figure.

covariance parameters for the common termo in the model, and the relatively
high value of the correlation parameter ϕ̂0 compared with ϕ̂1 and ϕ̂2 indicates
a strong and common spatial pattern...
Given the pratical context where the cheap and more easily obtained

RAPLOA data can be potentially used to infer levels of the prevalence of the
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Table 9.4. Parameter estimates for the bivariate model with all observation (top line)
and after removing half of the logit prevalence measurements.

data µ̂1 µ̂2 σ̂2
01 σ̂2

02 σ̂2
1 σ̂2

2 ϕ̂0 ϕ̂1 ϕ̂2
original -2.45 -0.72 1.87 0.35 1.29 0.78 0.62 0 0.05
reduced -2.34 -0.8 0.8 0.53 1.13 0.5 0.43 0 0.02

Figure 9.12. Comparison of predicted values of the logit of the prevalence. Uni versus
bivariate models on left panel, uni versus true values on the middle panel and bivariate
versus true valus on the right panel.

disease... we illustrate the potential gain of the bivariate analysis by removing
50(similarly with what was done in the soil data) and comparing predictions
at those locations given by the univariate and bivariate models. The parame-
ters for the bivariate model are reestimated and the new estimates are show in
the bottom row of Table 9.4. We also fit a univariate model for the depleted
logit-prevalence data. (exponential cor. fc, fixed nugget = 0) and parameters
estimates are:
Using the univariate and bivariate models and data to predicted the depleted

data we get the results show in Figures 9.12. The mean square prediction errors
are 50.89 and 43.63, respectively, whereas The mean absolute errors are 36.83
and 36.1, respectively. (ALL IN THE LOGIT SCALE - WE MAY WANT TO
BACK TRANSFORM)
PETER IN THE LIGHT OF WHAT WE’VE DONE WHAT IS BELOW

NEEDS TO BE REVISED IN TERMS OF THE ANALYSIS AND/OR
BE PRESENTED AS A POSSIBLY MORE GENERAL STRATEGY FOR
POOLING ALL THE DATA.
Let θ1(x) and θ2(x) denote the true prevalences of Loa loa at a loca-

tion x, as measured by parasitologial and RAPLOA sampling, respectivly.
Denote by N1(x) and N2(x) the numbers of people surveyed at location x
using the two methodologies and Y1(x), Y2(x) the corresponding numbers of
positive indications. We assume that Y1(x) and Y2(x) are conditionally in-
dependent binomial variates given an unobserved bivariate Gaussian process
S(x) = {S1(x), S2(x) : x ∈ IR2}. Specifically, we assume that for each of
k = 1, 2, [Yk(x)|S(x)] = Binomial(Nk(x), θk(x)), where

logit{θk(x)} = µ(x) + Sk(x) (9.14)
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and µ(x) is specified by a linear regression model in spatially referenced explana-
tory variables d(x), hence µ(x) = d(x)′β. Because our practical objective is to
use RAPLOA data (k = 2) to make predictions about the underlying parasito-
logical prevalence surface, we specify the model for S(·) using the factorisation
[S1(x), S2(x)] = [S2(x)|S1(x)] [S1(x)], where

[S2(x)|S1(x)] ∼ N
{
α0 + α1S1(x), σ

2
ϵ

}
, (9.15)

and S1(x) is a stationary stochastic process in IR2 with mean zero and covariance
matrix C(·). An important assumption implied by the conditional model (9.15)
is that α0, β0 and σ2

ϵ , and hence the calibration relationship, are independent of
the location x. The exploratory analysis reported above gives some support to
the assumption of a linear calibration relationship on the logit-prevalence scale.
The bivariate model used so far implicitly assumes that different samples

of subjects are used for the parasitological and RAPLOA-based investigations.
If, as is the case for the current application, the same subjects are used for
both, then conditonal on the true underlying prevalence, the response from
each subject is a pair of correlated binary random variables. To accommodate
this, we extend the model as follows.
Let Yijk : k = 1, 2 denote a pair of binary random variables such that Yijk = 1

if the jth subject in the ith village return a positive test result according to
parasitology (k = 1) or RAPLOA (k = 2). Let S(x) = {S1(x), S2(x)} denote the
true underlying prevalence surfaces and let Uij denote a set of subject-specific
random effects which are assumed to be mutually independent, N(0, τ2), and
write U as a sbhorthand for the collection of all such Uij . Then, conditional on
S(·) and U , the random variables Yijk are mutually independent binary, with
pijk = P(Yijk = 1|S(·), U) given by

logit{pijk} = µ(xi) + Sk(xi) + Uij . (9.16)

Under this model, the data from a single village can be collapsed to a 2 by
2 table of counts, (N00, N01, N10, N11) corresponding to the frequencies of the
four possible outcomes for each subject. If we wished to include individual-level
covariates, then we would replace the µ(xi) in (9.16) by by µij(xi) and the
analysis would require the paired individual binary outcomes (Yij1, Yij2).

RESULTS TO BE ADDED

9.7 Computation

We first show how to fit the bivariate Gaussian common component model to
the soil data. To organise the data we use the commands below where we load
the data set, select the points within region 3 and build geodata objects with
the measurements of Ca and Mg contents. We also get data the borders of the
region from another data set.

> data(camg)

> camg3 <- subset(camg, region == 3)

> ca <- as.geodata(cbind(camg3[, 1:2], apply(camg3[, c(5, 8)],
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+ 1, mean)))

> data(ca20)

> ca$borders <- ca20$reg3

> mg <- as.geodata(cbind(camg3[, 1:2], apply(camg3[, c(6, 9)],

+ 1, mean)))

The function likfitBGCCM() fits the model and the resulting object is passed
to the method predict.BGCCM() to predict the Ca values in a grid over the area.

> camg.ml <- likfitBGCCM(ca, mg, method = "L-BFGS-B", control = list(parscale = c(1,

+ 1, 1, 100, 100, 100)))

> gr <- pred_grid(ca$borders, by = 5)

> camg.pred <- predict(camg.ml, loc = gr, borders = ca$borders)

WE COULD ADD EXAMPLE ON HOW TO SIMULATE BIVARIATE
DATA BUT I NOW BELIEVE IT IS BETTER TO LEAVE THIS AS
AN EXERCISE (REMEMBERING AT THIS STAGE IT WAS ALREADY
SHOW HOW TO SIMULATE UNIVARIATE PROCESESS IN EARLIER
CHAPTERS)

9.8 Exercises

TO BE ADDED
ONE POSSIBILTY WOULD BE DERIVING EXPRESSIONS FOR CO-

VARIANCES, LIKELIHOODS AND PREDICTIONS FOR THE BIVARIATE
MODELS
COMPUTATION EXERCISES COULD BE FOCUS ON SIMULATING

FROM THE DIFFERENT MODELS

9.1. XXXXXXXXX
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Appendix A
Statistical background

A.1 Statistical models

In very general terms, a statistical model specifies the form of the distribution
of a vector-valued random variable Y in terms of a vector-valued parameter, θ.
We write the model as [Y |θ], in which the square bracket notation means “the
distribution of” and the vertical bar denotes conditioning, hence [Y |θ] means
“the distribution of Y for a given value of θ.”The essence of a parameter is that
its value is unknown. However, if we can observe data y which can be assumed
to form a realisation of Y , then a central objective of statistical inference is
to use the specified model to find out as much as possible about θ. For any
statistical model [Y |θ], the likelihood, ℓ(θ), is algebraically equal to the joint
probability density function of Y , but considered as a function of θ, rather than
of Y . The likelihood function is fundamental to both classical and Bayesian
statistical inference; where these two schools of inference differ is in how they
interpret and use the likelihood function.

A.2 Classical inference

In classical inference, ℓ(θ) is considered as a function of the non-random vari-
able θ, with Y held fixed at its observed value y. It is usually more convenient
to work with the log-likelihood, L(θ) = log ℓ(θ). Values of θ which correspond
to relatively large or small values of L(θ) are considered to be more or less
supported by the evidence provided by the data, y. Thus, for a point estimate
of θ we use the maximum likelihood estimate, θ̂, defined to be the value which
maximises L(θ). Similarly, for an interval estimate of θ we use a likelihood inter-
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val, defined to be the set of values for which L(θ) ≥ L(θ̂)− c, for some suitable
value of c.
The log-likelihood is a function of the observed data y, and is therefore a

realisation of a random variable whose distribution is induced by that of Y .
To emphasise this, we shall temporarily use the expanded notation L(θ, y) for
the observed log-likelihood and L(θ, Y ) for the corresponding random variable.

By the same token, we write θ̂(y) for an observed value of θ̂ and θ̂(Y ) for the
corresponding random variable. The derivatives of the log-likelihood function
with respect to elements of θ play an important role in classical inference. In
particular, we define the information matrix, I(θ) to have (j, k)th element

Ijk = EY

[
− ∂2

∂θj∂θk
L(θ, Y )

]
.

Then, the properties of likelihood-based inference are summarised by the
following two theorems.

Theorem A.1. θ̂(Y ) ∼ MVN(θ, I(θ)−1)

Theorem A.2. 2{L(θ̂(Y ), Y ) − L(θ, Y )} ∼ χ2
p, where p is the dimensionality of

θ.

Both theorems are asymptotic in n, the dimensionality of y, and hold under
very general, but not universal, conditions. The main exceptions in practice are
when the true value of θ is on a boundary of the parameter space (for example, a
zero component of variance) or when one or more elements of θ define the range
of Y ; for example, if the Yi are uniformly distributed on (0, θ). For detailed
discussion, see for example Cox and Hinkley (1974).
In both of these theorems, and in classical inference more generally, the status

of θ is that there is a true value of θ which is fixed, but unknown and unknow-
able (the literal meaning of “parameter” is “beyond measurement”). Inferences
about θ take either of two forms. In hypothesis testing, we hypothesise a par-
ticular value, or a restricted set of values, for θ and ask, using either of our two
theorems, whether the data are reasonably consistent with the hypothesised
value. In parameter estimation, we assemble all hypothesised values with which
the data are reasonably consistent into a confidence set for θ.
The formal meaning of a hypothesis test, with significance level α, is the

following. We divide the space of all possible data-sets y into a critical region,
C, and its complement in such a way that if the hypothesis under test is true,
then under repeated sampling of the data y from the underlying model, y will
fall within C with probability p. Should this actually occur, we then reject the
hypothesis at significance level p. Conventionally, α = 0.05 or smaller. Thus,
in rejecting a hypothesis we are, in effect, saying that either an event of small
probability has been observed or the hypothesis under test is false, with an
implicit invitation to the reader to conclude the latter.
The formal meaning of a confidence set, with confidence level β, is that it is a

random set constructed in such a way that, over repeated sampling of the data
y from the underlying model, the confidence set will contain the true, fixed
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but unknown value of θ with probability β. It is tempting, but incorrect, to
interpret this as meaning that β is the probability that θ is contained in the
actual confidence set obtained from the observed data. In classical inference, a
parameter is not a random variable and probabilities cannot be ascribed to it.
Conventionally, confidence levels are set at β = 0.95 or larger.
There is a close duality between hypothesis testing and the evaluation of a

confidence set. Specifically, any procedure for testing the hypothesis θ = θ0 can
be converted to a procedure for evaluating a confidence set for θ; a β = 1 − α
confidence set consists of all hypothesised values θ0 which are not rejected using
a test with significance level α.
Operationally, likelihood-based inference is simple when θ is low dimensional,

the log-likelihood function is easily evaluated and the conditions for the validity
of theorems A.1 and A.2 are satisfied. The key numerical task is one of max-
imisation with respect to different possible values of θ. Specifically, using θ̂ to
denote the maximum likelihood estimator, define the deviance function for θ to
be

D(θ) = 2{L(θ̂)− L(θ)},

and write cp(β) for the β-quantile of the χ
2
p distribution i.e., P{χ2

p ≤ cp(β)} = β.
Then, using theorem A.2:

• the set of all values of θ such that D(θ) ≤ cp(β) is, asymptotically, a
β-level confidence set for θ;

• if D(θ0) > cp(β), the hypothesis θ = θ0 is rejected at the α = 1− β level
of significance.

A very useful extension to likelihood-based inference is the method of pro-
file likelihood, which operates as follows. Suppose that θ is partitioned as
θ = (θ1, θ2), with corresponding numbers of elements p1 and p2. Suppose also
that our primary objective is inference about θ1. For each possible value of θ1,
let θ̂2(θ1) be the value of θ2 which maximises the log-likelihood with θ1 held

fixed. We call LP (θ1) = L{θ1, θ̂2(θ1)} the profile log-likelihood for θ1. Then,
an extension to theorem A.2 states that we can treat the profile log-likelihood
as if it were a log-likelihood for a model with parameter θ1 of dimension p1.
Specifically, if we define the deviance function for θ1 as

D(θ1) = 2{LP (θ̂1)− LP (θ1)}

then, asymptotically, D(θ1) is distributed as chi-squared on p1 degrees of free-
dom. This result provides a method for eliminating the effects of the nuisance
parameters θ2 when making inference about the parameters of interest, θ1. Note
once more that the key mathematical operation is one of maximisation.

A.3 Bayesian inference

In Bayesian inference, the likelihood again plays a fundamental role, and θ is
again considered as an unknown quantity. However, the crucial difference from
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classical inference is that θ is considered to be a random variable. Hence, the
model-specification [Y |θ] must be converted to a joint distribution for Y and θ
by specifying a marginal distribution for θ, hence [Y, θ] = [Y |θ][θ]. The marginal
distribution of θ is also called the prior for θ. Its role is to describe the (lack of)
knowledge about θ in the absence of the data, Y . The process of inference then
consists of asking how conditioning on the realised data, y, changes the prior
for θ into its corresponding posterior distribution, [θ|y]. The mechanics of this
are provided by Bayes’ Theorem,

[θ|Y ] = [Y |θ][θ]/[Y ],

where [Y ] =
∫
[Y |θ][θ]dθ is the marginal distribution of Y induced by the

combination of the specified model, or likelihood function, and the specified
prior.
Bayesian inferential statements about θ are expressed as probabilities cal-

culated from the posterior, [θ|Y ]. For example, the Bayesian counterpart of a
β-level confidence set is a β-level credible set, defined as any set S such that

P(θ ∈ S|Y ) = β.

If a point estimate of θ is required, candidates include the mean or mode of
the posterior distribution. Operationally, the crucial requirement for Bayesian
inference is the evaluation of the integral which gives the marginal distribution
of Y . For many years, this requirement restricted the practical application of
Bayesian inference to simple problems. For complex problems and data struc-
tures, classical inference involving numerical evaluation and maximisation of
the likelihood function was a more practical strategy. However, the situation
changed radically with the recognition that Monte Carlo methods of integra-
tion, and in particular Markov chain Monte Carlo methods of the kind proposed
in Hastings (1970), could be used to generate simulated samples from the pos-
teriors in very complex models. As a result, Bayesian methods are now used in
many different areas of application.

A.4 Prediction

We now compare classical and Bayesian approaches to prediction. To do so, we
need to expand our model specification, [Y |θ], to include a target for prediction,
T , which is another random variable. Hence, the model becomes [T, Y |θ], a
specification of the joint distribution of T and Y for a given value of θ. From
a classical inferential perspective, we then need to manipulate the model using
Bayes’ Theorem to obtain the predictive distribution for T as the corresponding
conditional, [T |Y, θ]. The data give us the realised value of Y , and to complete
the predictive inference for T we can either plug-in the maximum likelihood
estimate θ̂ or examine how the predictive distribution varies over a range of
values of θ determined by its confidence set.
From a Bayesian perspective, the relevant predictive distribution is [T |Y ]

i.e., the distribution of the target conditional on what has been observed. Using
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standard conditional probability arguments, we can express this as

[T |Y ] =

∫
[T, θ|Y ]dθ

=

∫
[T |Y, θ][θ|Y ]dθ,

which shows that the Bayesian predictive distribution is a weighted average of
plug-in predictive distributions, with the weights determined by the posteror
for θ.

Note that under either the classical plug-in or the Bayesian approach, the
answer to a prediction question is a probability distribution. If we want to sum-
marise this distribution, so as to give a point prediction, an obvious candidate
summary is the mean i.e., the conditional expectation of T given Y . As discussed
in Chapter 2, a theoretical justification for this choice is that it mimimises mean
square prediction error. However, we emphasise that in general, the mean is just
one of several reasonable summaries of the predictive distribution.
Notice that if θ has a known value, then the manipulations needed for classical

prediction of T are exactly the manipulations needed for Bayesian inference
treating T as a parameter. It follows that in the Bayesian approach, in which
parameters are treated as random variables, the distinction between estimation
and prediction is not sharp; from a strictly mathematical point of view, the two
are identical. Nevertheless, we feel that it is useful to maintain the distinction to
emphasise that estimation and prediction address different scientific questions.
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