

Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG

Introdução

Prof.: Eduardo Vargas Ferreira

Estatística

Data Mining

Machine Learning **Data Mining** Estatística

Machine Learning Data Mining Estatística Métodos

Machine Learning Data Mining Estatística problemas Métodos

Machine Learning Data Mining Estatística aplicados a problemas Métodos

Definição

 Área de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados (Arthur Samuel, 1959).

Definição

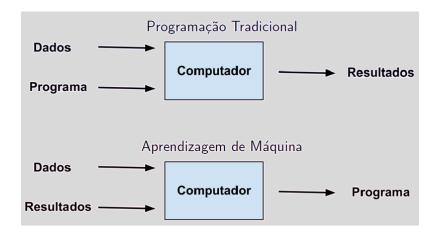
Um programa de computador é dito aprender a partir de uma experiência
 E com respeito a alguma classe de tarefas T e medida de desempenho P,
 se seu desempenho em tarefas T, medido por P, melhora com a experiência E (Tom Mitchell, 1998).

Exemplo

Suponha que seu Gmail observe/registre quais e-mails você marca ou não como spam. E, baseado nisso, aprende como melhor filtrar mensagens de spam de sua caixa de e-mails.

- Tarefa T: Classificar e-mails como spam ou não.
- Experiência E: observação de quais e-mails você marca como spam.
- Desempenho/performance P: número (ou proporção) de e-mails corretamente classificados como spam/não spam.

Definição



5

- Machine Learning é a ciência de descobrir estruturas e fazer predições em conjunto de dados;
- O aprendizado é efetuado a partir de raciocínio sobre exemplos fornecidos por um processo externo ao sistema de aprendizado;
- Ele pode ser divido em:
 - Aprendizado supervisionado;
 - * Aprendizado não-supervisionado

- Machine Learning é a ciência de descobrir estruturas e fazer predições em conjunto de dados;
- O aprendizado é efetuado a partir de raciocínio sobre exemplos fornecidos por um processo externo ao sistema de aprendizado;
- Ele pode ser divido em:
 - * Aprendizado supervisionado:
 - * Aprendizado não-supervisionado

- Machine Learning é a ciência de descobrir estruturas e fazer predições em conjunto de dados;
- O aprendizado é efetuado a partir de raciocínio sobre exemplos fornecidos por um processo externo ao sistema de aprendizado;
- Ele pode ser divido em:
 - * Aprendizado supervisionado;
 - * Aprendizado não-supervisionado.

- Machine Learning é a ciência de descobrir estruturas e fazer predições em conjunto de dados;
- O aprendizado é efetuado a partir de raciocínio sobre exemplos fornecidos por um processo externo ao sistema de aprendizado;
- Ele pode ser divido em:
 - Aprendizado supervisionado;
 - * Aprendizado não-supervisionado.

- Aprendizado supervisionado: é fornecido ao algoritmo de aprendizado, ou *indutor*, um conjunto de exemplos de treinamento para os quais o rótulo da classe associada é conhecido;
 - * Dadas as medições $(x_1, y_1), \ldots, (x_n, y_n)$, aprender um modelo para **prever** y baseado em x;
 - Ou seja, o objetivo é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados;
 - Para rótulos de classe discretos, esse problema é conhecido como classificação e para valores contínuos como regressão.

- Aprendizado supervisionado: é fornecido ao algoritmo de aprendizado, ou indutor, um conjunto de exemplos de treinamento para os quais o rótulo da classe associada é conhecido;
 - * Dadas as medições $(x_1, y_1), \ldots, (x_n, y_n)$, aprender um modelo para prever y baseado em x;
 - Ou seja, o objetivo é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados;
 - Para rótulos de classe discretos, esse problema é conhecido como classificação e para valores contínuos como regressão.

- Aprendizado supervisionado: é fornecido ao algoritmo de aprendizado, ou *indutor*, um conjunto de exemplos de treinamento para os quais o rótulo da classe associada é conhecido;
 - * Dadas as medições $(x_1, y_1), \ldots, (x_n, y_n)$, aprender um modelo para prever y baseado em x;
 - Ou seja, o objetivo é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados;
 - Para rótulos de classe discretos, esse problema é conhecido como classificação e para valores contínuos como regressão.

- Aprendizado supervisionado: é fornecido ao algoritmo de aprendizado, ou *indutor*, um conjunto de exemplos de treinamento para os quais o rótulo da classe associada é conhecido;
 - * Dadas as medições $(x_1, y_1), \dots, (x_n, y_n)$, aprender um modelo para prever y baseado em x;
 - Ou seja, o objetivo é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados;
 - * Para rótulos de classe discretos, esse problema é conhecido como classificação e para valores contínuos como regressão.

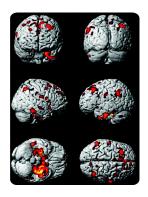
Exemplo de aprendizado supervisionado

Detecção de Spams

- x_i: e-mail;
- y_i: spam/não spam;
- **Objetivo:** prever y_i com base em x_i .

Exemplo de aprendizado supervisionado

Predição de Alzheimer



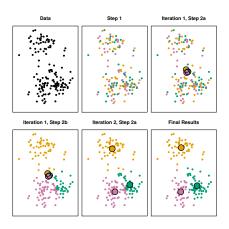
- x_i: imagem da ressonância magnética;
- y_i: Paciente com/sem Alzheimer;
- **Objetivo:** prever y_i com base em x_i .

Exemplo de aprendizado supervisionado

Leitura de pensamentos

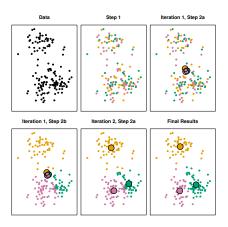
- x_i: imagem da ressonância magnética;
- y_i: "Pensamento";
- **Objetivo:** prever y_j com base em x_j .

 Aprendizado não-supervisionado: o indutor analisa os exemplos fornecidos e tenta determinar se alguns deles podem ser agrupados de alguma maneira.



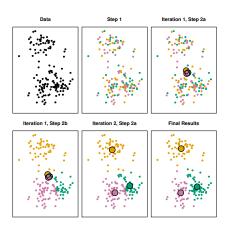
- Dadas as medições x₁,...,x_n, descobrir alguma estrutura baseada na similaridade:
- * Após a determinação dos agrupamentos, normalmente, é necessária uma análise para determinar o que cada agrupamento significa no contexto do problema.

 Aprendizado não-supervisionado: o indutor analisa os exemplos fornecidos e tenta determinar se alguns deles podem ser agrupados de alguma maneira.



- Dadas as medições x₁,...,x_n, descobrir alguma estrutura baseada na similaridade;
- * Após a determinação dos agrupamentos, normalmente, é necessária uma análise para determinar o que cada agrupamento significa no contexto do problema.

 Aprendizado não-supervisionado: o indutor analisa os exemplos fornecidos e tenta determinar se alguns deles podem ser agrupados de alguma maneira.



- Dadas as medições x₁,...,x_n, descobrir alguma estrutura baseada na similaridade;
- * Após a determinação dos agrupamentos, normalmente, é necessária uma análise para determinar o que cada agrupamento significa no contexto do problema.

Exemplo de aprendizado não-supervisionado

- Busca por imagens semelhantes
 - $\star x_i$: imagens na internet;
 - * Objetivo: Busca por estrutura semelhante.

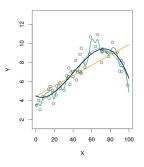


Exemplo de aprendizado não-supervisionado

- Recomendação de amizades
 - * x_i: existe um link entre dois usuários;

Como avaliar a precisão dos modelos?

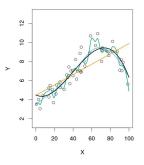
Suponha que estamos interessados em estudar a relação entre X e Y



- A verdadeira relação está representada pela curva em preto;
- Podemos definir varias funções h(x), mas qual fornece a melhor predição?
- Resposta: a que apresentar menos custo (ou risco).

Como avaliar a precisão dos modelos?

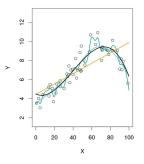
Suponha que estamos interessados em estudar a relação entre X e Y



- A verdadeira relação está representada pela curva em preto;
- Podemos definir varias funções h(x), mas qual fornece a melhor predição?
- Resposta: a que apresentar menos custo (ou risco).

Como avaliar a precisão dos modelos?

Suponha que estamos interessados em estudar a relação entre X e Y



- A verdadeira relação está representada pela curva em preto;
- Podemos definir varias funções h(x), mas qual fornece a melhor predição?
- Resposta: a que apresentar menos custo (ou risco).

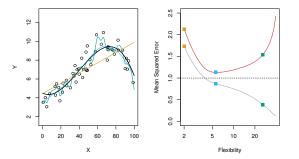
- Descreve o quão bom a superfície de resposta h(x) ajustou-se aos dados;
- Valores pequenos da função custo corresponde à melhores ajustes;
- Notação: $J(y_i, h(\mathbf{x}))$;

- Descreve o quão bom a superfície de resposta h(x) ajustou-se aos dados;
- Valores pequenos da função custo corresponde à melhores ajustes;
- Notação: $J(y_i, h(\mathbf{x}))$;

- Descreve o quão bom a superfície de resposta h(x) ajustou-se aos dados;
- Valores pequenos da função custo corresponde à melhores ajustes;
- Notação: $J(y_i, h(\mathbf{x}))$;

- Descreve o quão bom a superfície de resposta h(x) ajustou-se aos dados;
- Valores pequenos da função custo corresponde à melhores ajustes;
- Notação: J(y_i, h(x));

- Descreve o quão bom a superfície de resposta h(x) ajustou-se aos dados;
- Valores pequenos da função custo corresponde à melhores ajustes;
- Notação: J(y_i, h(x));



Tipos de função custo

Soma de quadrado dos desvios (SQD)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^{n} [y_i - h(x_i)]^T$$

Note que

$$f(y|x) \sim e^{-\left(\frac{y-h(x)}{\sigma}\right)^2}$$

 Assim, se quisermos minimizar o -log da verossimilhança (equivalente a maximizar o log da verossimilhança), temos (desprezando as constantes)

$$min\{-(\log\text{-verossimilhança})\} \sim min\left\{-\log\left(\prod_{i=1}^{n}e^{-\left(\frac{y_{i}-h(x_{i})}{\sigma}\right)^{2}\right)\right\}$$
$$\sim min\left\{\frac{1}{n}\sum_{i=1}^{n}[y_{i}-h(x_{i})]^{2}\right\}.$$

Tipos de função custo

Soma de quadrado dos desvios (SQD)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^n [y_i - h(x_i)]^2$$

Note que

$$f(y|x) \sim e^{-\left(\frac{y-h(x)}{\sigma}\right)^2}$$

 Assim, se quisermos minimizar o -log da verossimilhança (equivalente a maximizar o log da verossimilhança), temos (desprezando as constantes)

$$min\{-(\log\text{-verossimilhança})\} \sim min\left\{-\log\left(\prod_{i=1}^{n}e^{-\left(\frac{y_{i}-h(x_{i})}{\sigma}\right)^{2}\right)\right\}$$
$$\sim min\left\{\frac{1}{n}\sum_{i=1}^{n}[y_{i}-h(x_{i})]^{2}\right\}.$$

Tipos de função custo

Soma de quadrado dos desvios (SQD)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^n [y_i - h(x_i)]^2$$

Note que

$$f(y|x) \sim e^{-\left(\frac{y-h(x)}{\sigma}\right)^2}$$
.

• Assim, se quisermos minimizar o -log da verossimilhança (equivalente a maximizar o log da verossimilhança), temos (desprezando as constantes)

$$min\{-(\log\text{-verossimilhança})\} \sim min\left\{-\log\left(\prod_{i=1}^{n}e^{-\left(\frac{y_{i}-h(x_{i})}{\sigma}\right)^{2}\right)\right\}$$
$$\sim min\left\{\frac{1}{n}\sum_{i=1}^{n}[y_{i}-h(x_{i})]^{2}\right\}.$$

Soma de quadrado dos desvios (SQD)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^n [y_i - h(x_i)]^2$$

Note que

$$f(y|x) \sim e^{-\left(\frac{y-h(x)}{\sigma}\right)^2}$$
.

 Assim, se quisermos minimizar o -log da verossimilhança (equivalente a maximizar o log da verossimilhança), temos (desprezando as constantes)

$$\begin{split} & \textit{min}\{-(\text{log-verossimilhança})\} & \sim & \textit{min}\left\{-log\left(\prod_{i=1}^n e^{-\left(\frac{y_i-h(x_i)}{\sigma}\right)^2\right)}\right\} \\ & \sim & \textit{min}\left\{\frac{1}{n}\sum_{i=1}^n [y_i-h(x_i)]^2\right\}. \end{split}$$

Soma dos desvios absolutos (SDA)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

Temos

$$f(y|x) \sim e^{-|y-h(x)|}$$
 (Distribuição Laplace)

Mais robusta na presença de outliers

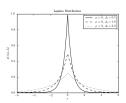
Soma dos desvios absolutos (SDA)

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

Temos

$$f(y|x) \sim e^{-|y-h(x)|}$$
 (Distribuição Laplace).



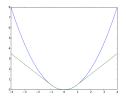
• Mais robusta na presença de outliers.

Huber-M cost

Definido como

$$J(y_i, h(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \frac{1}{2} [y_i - h(x_i)]^2, & \text{para } |y - h(\mathbf{x}_i)| \le \delta, \\ \delta |y_i - h(x_i)| - \frac{1}{2} \delta^2, & \text{caso contrário.} \end{cases}$$

Abaixo, a curva azul representa a SQD e verde a função Huber.



- Ela combina as qualidades da SQD e SQA.
- O parâmetro δ é obtido automaticamente para um específico percentil dos erros absolutos.

• Fase de treino:

• Fase de teste (ou aplicação do modelo):

- Fase de treino:
 - * Entra com os dados e os verdadeiros níveis;

• Fase de teste (ou aplicação do modelo):

- Fase de treino:
 - * Entra com os dados e os verdadeiros níveis;
 - * Obtém um "classificador".

• Fase de teste (ou aplicação do modelo):

- Fase de treino:
 - * Entra com os dados e os verdadeiros níveis;
 - * Obtém um "classificador".

- Fase de teste (ou aplicação do modelo):
 - * Entra com os dados;

- Fase de treino:
 - * Entra com os dados e os verdadeiros níveis;
 - * Obtém um "classificador".

- Fase de teste (ou aplicação do modelo):
 - ★ Entra com os dados;
 - ⋆ Obtém seu nível (de acordo com o "classificador").

Exemplo

- ATCCGTATAGTCGATCAGTCAGCTACTATGCGTAT CANCER
- TGCATGCATGCAGATCGATCGCCAACGTAC NO CANCER
- ATTATATTCTGCGATCGAAGCTATGCGATCGTCGA CANCER
- TATGCGCGCGAGTTTTATGAGGCGATCGATGCTA CANCER
- ATCGCATCGACGTACGATGCTGATTATTATAGCCG NO CANCER
- GATCATGCTGCGAGAGGAGATTTTATGCGATAGA CANCER

...

ATCGTCTGATGCAGCGAGCTATGCGTACGTAGCA????

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

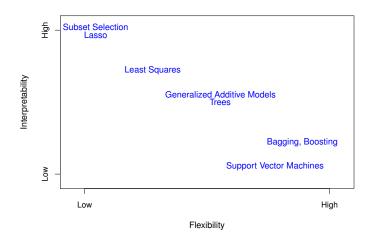
- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- Não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas este, em geral, não é o foco das análises.



As duas culturas

- Duas culturas no uso de modelos estatísticos:
 - Data Modeling Culture: Domina a comunidade estatística. Testar suposições é fundamental. Foco em inferência;
 - Algorithmic Modeling Culture: Domina a comunidade de machine learning. O modelo é utilizado apenas para criar bons algoritmos preditivos.

As duas culturas

L. Breiman: Statistical modeling: The two cultures. Statistical Science, 16(3):199-231, 2001 (disponível no material complementar).

- Duas culturas no uso de modelos estatísticos:
 - Data Modeling Culture: Domina a comunidade estatística. Testar suposições é fundamental. Foco em inferência;
 - Algorithmic Modeling Culture: Domina a comunidade de machine learning. O modelo é utilizado apenas para criar bons algoritmos preditivos.

Breve revisão de Álgebra Linear

Espaço e subespaço vetorial

- Um Espaço Vetorial consiste do seguinte:
 - 1 Um conjunto não vazio V de objetos, denominados vetores;
 - 2 Um corpo F (R ou C) de escalares.
 - 3 Uma operação de adição de vetores, que associa a cada par de elementos $u, v \in V$ um elemento $u + v \in V$, isto é, V é fechado com relação à operação de adição (relembre as 4 propriedades).
 - Uma operação de multiplicação por escalar, que associa a cada elemento $u \in V$ e cada escalar $\alpha \in F$ um elemento $\alpha u \in V$, isto é, V é fechado com relação à operação de multiplicação por escalar.

Espaço e subespaço vetorial

Exemplo: O conjunto $R_n = \{u = (x_1, \dots, x_n)/x_i \in R\}$, conjunto de todas as *n*-uplas reais, com a operação de adição de elementos definida por:

$$u + v = (x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

e a operação de multiplicação por escalar definida por:

$$\lambda u = (\lambda x_1, \dots, \lambda x_n)$$

é um espaço vetorial real.

 Um subespaço vetorial de V é um subconjunto U de V que é ele mesmo um espaço vetorial sobre o corpo F com as operações de adição de vetores e multiplicação por escalar definidas em V.

Exemplo: O subconjunto S do \mathbb{R}^3 definido da forma:

$$S = \{ w \in \mathbb{R}_3 / w = a(1, -1, 1) + b(2, 1, -1); a, b \in \mathbb{R} \},$$

 \acute{e} um subespaço vetorial de R^3 .

Dependência e Independência Linear

- Sejam V um espaço vetorial sobre o corpo F e $v_1, \ldots, v_n \in V$.
- Dizemos que o conjunto S = {v₁,..., v_n} ⊂ V é Linearmente Independente (LI) sse toda combinação linear nula

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = \mathbf{0}_V; \quad \alpha_i \in \mathcal{F}$$

implicar que $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Exemplo: O conjunto $S = \{1, x, x^2\}$ é linearmente independente no espaço vetorial $P_3(\mathbf{R})$.

Dependência e Independência Linear

- Sejam V um espaço vetorial sobre o corpo F e $v_1, \ldots, v_n \in V$.
- Dizemos que o conjunto S = {v₁,..., v_n} ⊂ V é Linearmente
 Dependente (LD) sse é possível uma combinação linear nula

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0_V; \quad \alpha_i \in \mathcal{F}$$

sem que os escalares $\alpha_1, \alpha_2, \dots, \alpha_n$ sejam todos nulos.

Exemplo: O conjunto $S = \{1, x, x^2, 2 - 3x + 2x^2\}$ é linearmente dependente no espaço vetorial $P_3(\mathbf{R})$. Por simplicidade, vamos denotar

$$p_1(x) = 1, p_2(x) = x, p_3(x) = x^2 \text{ e } p_4(x) = 2 - 3x + 2x^2.$$

Podemos verificar facilmente que $p_4(x) = 2p_1(x) - 3p_2(x) + 2p_3(x)$.

Base e Dimensão

• Seja V um espaço vetorial sobre o corpo F. Uma base de V é um conjunto linearmente independente de elementos de V que gera V.

Exemplo: Considere o espaço vetorial real $\mathrm{R}^3.$ O conjunto

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$$

é linearmente independente em ${\bf R}^3$ e gera o espaço ${\bf R}^3.$ Logo, β é uma base para ${\bf R}^3,$ denominada base canônica.

Exemplo: Considere o espaço vetorial real ${\rm R}^2$. O conjunto

$$\Gamma = \{(1,1), (-1,1)\}$$

é linearmente independente em R^2 e gera o espaço $\mathrm{R}^2.$ Logo, Γ é uma base para $\mathrm{R}^2.$

 A dimensão de V é definida como sendo o número de elementos de uma base de V.

Produto interno

- Em geometria Euclidiana as propriedades que nos possibilitam expressar o comprimento de vetor e o ângulo entre dois vetores são denominadas de propriedades métricas;
- \bullet No estudo do \mathbf{R}^n , definimos comprimento de vetores e ângulo entre vetores através do produto escalar

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$
 para $x, y \in \mathbb{R}^n$.

- Denotamos o produto interno entre dois elementos u e v de um espaço vetorial da seguinte forma: \(\lambda u, v \rangle;\)
- Utilizando as propriedades de simetria, distributividade e homogeneidade tem-se
 - $\star \langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ para todos $u, v, w \in V$;
 - $\star \langle u, \lambda v \rangle = \lambda \langle u, v \rangle$ para todos $u, v \in V$ e $\lambda \in \mathbb{R}$.

Norma em espaços de dimensão finita

- Seja V um espaço vetorial sobre o corpo F;
- Uma norma, ou comprimento, em V é uma aplicação $\|\cdot\|$;
- Para cada elemento $u \in V$ associa um número real $\|u\|$, que possui as seguintes propriedades:
 - * Positividade: ||u|| > 0, para $u \neq 0_v$, com $||u|| = 0 \iff u = 0_v$;
 - * Homogeneidade: $\|\lambda u\| = |\lambda| \|u\|$ para todo $u \in V, \lambda \in F$;
 - * Designaldade triangular: $||u+v|| \le ||u|| + ||v||$, $\forall u, v \in V$.
- Exemplos de normas ℓ^p :
 - $\star \|u\|_1 = \sum_{i=1}^n |u_i|;$
 - $\star \|u\|_2 = \left(\sum_{i=1}^n u_i^2\right)^{1/2};$
 - $\star \|u\|_{\infty} = \max\{u_i ; 1 \leq i \leq n\}.$

Definição de ângulo e ortogonalidade

- Seja V um espaço vetorial real munido do produto interno $\langle \cdot, \cdot \rangle$;
- O ângulo entre dois elementos não nulos $u,v\in V$ é definido como o valor $\theta\in[0,\pi]$ que satisfaz a equação

$$cos(\theta) = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2}.$$

 Assim, dizemos que os elementos u, v ∈ V são ortogonais se, e somente se, ⟨u, v⟩ = 0, e denotamos por u ⊥ v.

(Teorema de Pitágoras):

- Sejam V um espaço vetorial real munido do produto interno $\langle\cdot,\cdot\rangle$ e $\left\|\cdot\right\|_2$ a norma proveniente do produto interno;
- Então, os elementos $u, v \in V$ são ortogonais se, e somente se,

$$||u + v||_2^2 = ||u||_2^2 + ||v||_2^2$$
.