Computation of the likelihood function for GLMMs

Rasmus Waagepetersen Department of Mathematics

Aalborg University Denmark

November 5, 2007

- likelihood for GLMM
- penalized quasi-likelihood estimation
- Laplace approximation
- Gaussian quadrature
- case study of non-linear mixed effects model

Generalized linear mixed effects models

Consider stochastic variable $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ and random effects U.

Two step formulation of GLMM:

- $\mathbf{U} \sim N(0, \Sigma)$.
- Given realization \mathbf{u} of \mathbf{U}, Y_{i} independent and each follows density $f_{i}(\mathbf{y} \mid \mathbf{u})$ with mean $\mu_{i}=g^{-1}\left(\eta_{i}\right)$ and linear predictor $\eta=X \beta+Z \mathbf{u}$.
I.e. conditional on \mathbf{U}, Y_{i} follows a generalized linear models.

NB: GLMM specified in terms of marginal density of \mathbf{U} and conditional density of \mathbf{Y} given \mathbf{U}. But the likelihood is the marginal density of $f(\mathbf{y})$ which can be hard to evaluate!

Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal distribution of \mathbf{Y} directly as a multivariate normal. That is, $f(\mathbf{y})$ is a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the integral:

$$
f(\mathbf{y})=\int_{\mathbb{R}^{m}} f(\mathbf{y}, \mathbf{u}) \mathrm{d} \mathbf{u}=\int_{\mathbb{R}^{m}} f(\mathbf{y} \mid \mathbf{u}) f(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

since $f(\mathbf{y} \mid \mathbf{u}) f(\mathbf{u})$ is a very complex function.
Today: numerical methods for evaluating likelihood of GLMM.

Non-normal example: logistic regression with random intercepts

$$
\begin{aligned}
& U_{j} \sim N\left(0, \tau^{2}\right), j=1, \ldots, m \\
& Y_{j} \mid U_{j}=u_{j} \sim \operatorname{binomial}\left(n_{j}, p_{j}\right) \\
& \log \left(p_{j} /\left(1-p_{j}\right)\right)=\eta_{j}=\beta+U_{j} \\
& p_{j}=\exp \left(\eta_{j}\right) /\left(1+\exp \left(\eta_{j}\right)\right)
\end{aligned}
$$

Conditional density:

$$
f(y \mid u ; \beta)=\prod_{j} p_{j}^{y_{j}}\left(1-p_{j}\right)^{1-y_{j}}=\prod_{j} \frac{\exp \left(\beta+u_{j}\right)^{y_{j}}}{\left(1+\exp \left(\beta+u_{j}\right)\right)^{n_{j}}}
$$

Likelihood function $\left(u=\left(u_{1}, \ldots, u_{m}\right)\right)$
$\int_{\mathbb{R}^{m}} f(y \mid u ; \beta) f\left(u ; \tau^{2}\right) \mathrm{d} u=\prod_{j} \int_{\mathbb{R}} \frac{\exp \left(\beta+u_{j}\right)^{y_{j}}}{\left(1+\exp \left(\beta+u_{j}\right)\right)^{n_{j}}} \frac{\exp \left(-u_{j}^{2} /\left(2 \tau^{2}\right)\right)}{\sqrt{2 \pi \tau^{2}}} \mathrm{~d} u_{j}$
Integrals can not be evaluated in closed form.

Compute

$$
L(\theta)=\int_{\mathbb{R}} f(y \mid u ; \beta) f\left(u ; \tau^{2}\right) \mathrm{d} u
$$

Possibilities:

- Laplace approximation.
- Numerical integration/quadrature (e.g. Gaussian quadrature as in PROC NLMIXED (SAS) or GLLAM (STATA)) (one level of random effects, dimensions one or two).

Laplace approximation

Let $g(u)=\log (f(y \mid u) f(u))$ and choose \hat{u} so $g^{\prime}(\hat{u})=0$
$(\hat{u}=\arg \max g(u))$.
Taylor expansion around \hat{u} :

$$
g(u) \approx \tilde{g}(u)=
$$

$g(\hat{u})+(u-\hat{u}) g^{\prime}(\hat{u})+\frac{1}{2}(u-\hat{u})^{2} g^{\prime \prime}(\hat{u})=g(\hat{u})-\frac{1}{2}(u-\hat{u})^{2}\left(-g^{\prime \prime}(\hat{u})\right)$
I.e. $\exp (\tilde{g}(u))$ proportional to normal density $N\left(\mu_{L P}, \sigma_{L P}^{2}\right)$, $\mu_{L P}=\hat{u} \sigma_{L P}^{2}=-1 / g^{\prime \prime}(\hat{u})$.

$$
\begin{aligned}
L(\theta) & =\int_{\mathbb{R}} \exp (g(u)) \mathrm{d} u \approx \int_{\mathbb{R}} \exp (\tilde{g}(u)) \mathrm{d} u \\
& =\exp (g(\hat{u})) \int_{\mathbb{R}} \exp \left(-\frac{1}{2 \sigma_{L P}^{2}}\left(u-\mu_{L P}\right)^{2}\right) \mathrm{d} u=\exp (g(\hat{u})) \sqrt{2 \pi \sigma_{L P}^{2}}
\end{aligned}
$$

Laplace approximation also possible for higher dimensions (multivariate Taylor expansion).

NB:
$f(u \mid y)=f(y \mid u) f(u) / f(y) \propto \exp (g(u)) \approx$ const $\exp \left(-\frac{1}{2 \sigma_{L P}^{2}}\left(u-\mu_{L P}\right)^{2}\right)$
where $\mu_{L P}=\hat{u} \sigma_{L P}^{2}=,-1 / g^{\prime \prime}(\hat{u})$.
Hence

$$
U \mid Y=y \approx N\left(\mu_{L P}, \sigma_{L P}^{2}\right)
$$

Note: $\mu_{L P}$ is mode of conditional distribution - used for prediction of random effects in lmer (ranef()).

Adaptive Gaussian Quadrature

Gauss-Hermite quadrature (numerical integration) is

$$
\int f(x) \phi(x) \mathrm{d} x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where ϕ is the standard normal density and $\left(x_{i}, w_{i}\right), i=1, n$ are certain arguments and weights which can be looked up in a table.

We can replace \approx with $=$ whenever f is a polynomial of degree $2 n-1$ or less.

Adaptive Gauss-Hermite quadrature:

$$
\int f(y \mid u) f(u) \mathrm{d} u \approx \int \frac{f(y \mid u) f(u)}{\phi\left(u ; \mu_{L P}, \sigma_{L P}^{2}\right)} \phi\left(u ; \mu_{L P}, \sigma_{L P}^{2}\right) \mathrm{d} u=
$$

$$
\int \frac{f\left(y \mid \sigma_{L P} x+\mu_{L P}\right) f\left(\sigma_{L P} x+\mu_{L P}\right)}{\phi(x)} \sigma_{L P} \phi(x) \mathrm{d} x
$$

(change of variable: $\left.x=\left(u-\mu_{L P}\right) / \sigma_{L P}\right)$

Advantage
$\frac{f(y \mid u) f(u)}{\phi\left(u ; \mu_{L P}, \sigma_{L P}^{2}\right)}=\frac{f\left(y \mid \sigma_{L P} x+\mu_{L P}\right) f\left(\sigma_{L P} x+\mu_{L P}\right)}{\phi(x)} \quad x=\left(u-\mu_{L P}\right) / \sigma_{L P}$
close to constant $(f(y))$ - hence G-H quadrature very accurate.
GH scheme with $n=5$:

x	2.020	0.959	0.0000000	-0.959	-2.020	
w	0.011	0.222	0.533	0.222	0.011	(computed
using ghq in library glmmL).						

(GH schmes for $n=5$ and $n=10$ available on web page)

Prediction of random effects for GLMM

Conditional mean

$$
\mathbb{E}[U \mid Y=y]=\int u f(u \mid y) \mathrm{d} u
$$

is minimum mean square error predictor, i.e.

$$
\mathbb{E}(U-\hat{U})^{2}
$$

is minimal with $\hat{U}=H(Y)$ where $H(y)=\mathbb{E}[U \mid Y=y]$
Difficult to analytically evaluate

$$
\mathbb{E}[U \mid Y=y]=\int u f(y \mid u) f(u) / f(y) \mathrm{d} u
$$

Computation of conditional expectations (prediction)

$$
\begin{aligned}
& \mathbb{E}[U \mid Y=y]=\int u \frac{f(y \mid u) f(u)}{f(y)} \mathrm{d} u= \\
& \frac{1}{f(y)} \int\left(\sigma_{L P} x+\mu_{L P}\right) \frac{f\left(y \mid \sigma_{L P} x+\mu_{L P}\right) f\left(\sigma_{L P} x+\mu_{L P}\right)}{\phi(x)} \sigma_{L P} \phi(x) \mathrm{d} x
\end{aligned}
$$

Note:

$$
\left(\sigma_{L P X}+\mu_{L P}\right) \frac{f\left(y \mid \sigma_{L P} x+\mu_{L P}\right) f\left(\sigma_{L P} x+\mu_{L P}\right)}{\phi(x)} \sigma_{L P}
$$

behaves like a first order polynomial in x - hence GH still accurate.

Penalized quasi-likelihood

One solution: do not use likelihood function but something simpler

$$
\theta=\left(\beta, \tau^{2}\right)
$$

PQL estimates $\hat{\theta}$ and \hat{u} maximize joint density

$$
f(y, u ; \theta)=f(y \mid u ; \beta) f\left(u ; \tau^{2}\right)
$$

PQL estimates less accurate than ML.
Asymptotic results require increasing number of observations for each random effect.

Implemented in lmer and SAS macro glimmix.

- correlated random effects
- crossed random effects
- nested random effects

Not possible to factorize likelihood into low-dimensional integrals hence numerical quadrature not applicable.

PQL and Laplace-approximation still applicable (1mer()).

Case study: non-linear mixed effects model for cow mats
data
Compression vs. pressure for two brands of mats

Estimation of non-linear model with fixed effects:
nlsfit=nls(nedtryk~mmf(tryk,a,b,c,d),start=
$c(a=0.1, b=1.670, c=80, d=0.6)$, data=mattressdata1)
Estimation of non-linear model with a, b, c as random effects:
nlmerfit=nlmer(nedtryk~mmfnlmer(tryk, a, b, c, d) (a|matno) +
(b|matno) $+(\mathrm{c} \mid$ matno $)$, mattressdata1, $\operatorname{start}=c(a=0.04, b=1.64, c=74, d=0.64)$)

Simulated data from the two models

Fixed effects: residual standard error 0.72

With random effects: residual standard error 0.17

Std. err. for a, b, c are $0.64,0.05$ and 0.14

Random effects model gives much better representation of variability in data.

NB: to assess influence of variability of different parameters we need to look at partial derivatives (sensitivities) wrt. these parameters.

