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2 Modelling framework

1 INTRODUCTION

When fitting an autoregressive model to Gaussian time series data, often the correct
order of the model is unknown. The model order cannot be estimated analytically by
conventional Bayesian techniques when the excitation variance is unknown. We present
MCMC methods for drawing samples from the joint posterior of all the unknowns, from
which Monte Carlo estimates of the quantities of interest can be made, with the possi-
bility of model mixing, if required, for tasks such as prediction, interpolation, smoothing
or noise reduction.

Previous work on MCMC autoregressive model selection has parameterised the
model using partial correlation coefficients (Barnett, Kohn & Sheather 1996, Barbieri
& O’Hagan 1996) or pole positions' (Huerta & West 1997). These have a simple phys-
ical interpretation for certain types of signal, and allow stationarity to be enforced in
a straightforward manner. We use the AR parameters, a, directly. This allows us to
use the full conditional density for a, which is available analytically, to propose efficient
reversible jump MCMC moves. Note that our method does not enforce stationarity of
the model.

While Barbieri & O’Hagan (1996) also use reversible jump MCMC for AR model
sampling, Barnett et al. (1996) and Huerta & West (1997) use stochastic search variable
selection approaches, which avoid changing the dimension of the parameter vector by
including all possible parameters at every iteration (George & McCulloch 1993).

2 MODELLING FRAMEWORK

2.1 Autoregressive time series model

We model the signal {y,} as:

k
p=et+ Y alFy,_; (1)
i=1
where
€t > N(et | 0703) (2)

is the excitation sequence and al*) is the AR parameter vector for a kth order model.
This can be rewritten in matrix-vector form as:

where yo and y; are formed by partitioning y into, respectively, the first k values and
the remainder, and A and Y*) take appropriate forms.

1Poles are the inverse of the roots of the characteristic equation.



2.2 Prior distributions 3

Since the excitation sequence is Gaussian, the (approximate) likelihood takes the
form (Box, Jenkins & Reinsel 1994, §A7.4):

p(y | k,a®) | 0?) = p(y1 | yo, k,a®),6?) (4)
=N(e|0,01,,) (5)

Ne
= (27r062)_ 2 exp(—%eTe) (6)

where n. is the length of e and y;.

2.2 Prior distributions

We choose simple conjugate prior distributions for the continuous parameters and a
uniform prior for the model order:

A ke{0,1,... kmax
p(k) = {(’;max elsevs{/here } ™
p(@® | k) =N(a® | 0,021}) (8)
(o) =1G (07 | aas Ba) (9)
p(07) =1G (07 | ac, Be) (10)

where the inverted-gamma distribution (see e.g. Johnson & Kotz 1970) is defined for
positive parameters « and 3, and positive z, as:

IG(o | a,8) & 2@+ exp(—B/a) (11)
which tends to the Jeffreys’ prior as a, 8 — 0. k, alk), 02 and ¢? are assumed to be a
priori independent.
2.3 Bayesian hierarchy

The posterior density for the parameters is then:

pk,a®, 02,07 | y) o< ply | k.a®), 02) p(k) p@® | g2)p(o?)p(o?)  (12)

-~

Likelihood Priors

3 REVERSIBLE JUMP MCMC

Metropolis-Hastings algorithms (Hastings 1970) developed from molecular simulations as
means to produce a Markov chain which converges to a required equilibrium distribution
p(80), without the need to sample directly from any inconvenient density.

Each step consists of:

e Choosing which subset of the parameters @ to update

e Proposing new values for the subset of the parameters associated with that move
by drawing from an arbitrary, convenient density:

0, ~ qu (0, | 0_u) (13)



4 Sampling strategy

e Calculating the acceptance probability for this move, A(@ — @'), which is a func-
tion of the density from which the proposal values were drawn and the joint density
to which the chain is required to converge:

AO — 6 = min(l, p (14)

=
N
e
=
S_/
)
g
N
2 e
=
5/
N——

o Either:

— Accepting the move, setting the parameters to the proposed values, or

— Rejecting the move, not changing any parameter values

Clearly, the more similar the densities ¢, (8, | 8_,) and p(@, | 6_,), the higher the
proportion of moves that will be accepted.

Reversible jump MCMC (Green 1995) is a generalisation which introduces moves
between parameter spaces of different dimensionality, whilst retaining detailed balance
(Hastings 1970), which is required for convergence, within each type of move.

If J(k — k') is the probability of proposing a move from a parameter space of dimen-
sion k to one of dimension k', and ¢ contains those parameters which are present, and
have the same meaning, in models of both dimensionalities, then the required acceptance
probability is:

A((k,0®) — (k',6%)) = min<1 p(K, 0" | §) J(K' — k) g8 | k’,0(’“'),¢)>
9’ ) )

" p(k, 00 [ ) Tk = K) q(0%) | k,6%), )

RN J/

Target density ratio Transition probability ratio

(15)
Note that the Jacobian term which appears in Green’s (1995) formulation does not

appear here since we are proposing directly in the new parameter space.

4 SAMPLING STRATEGY

The parameters to be sampled comprise k, al*), o2 and o?.

4.1 Model moves

Sampling k involves a change in dimensionality, so we use a reversible jump move. First,
we choose to propose a move from order k to order £’ by sampling &’ from the distribution
J(k — k'), for which we use a discretised Laplacian density (see §4.3). We then sample
a new parameter vector al*) from a proposal density:

a(k’) ~ Q(a(k,) | kla a(k)aYaU(LQ’UBQ) (16)

Note that o and 02 remain unchanged during model moves. A more sophisticated
scheme might propose these too.
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We then calculate the acceptance probability (eq. 15):

A((k,a®) — (K',al)))
b

! / (k) 2
in(. () |y,02) U > 1) o(a) | ol ,y,a,e>> an
p(k,a®) | y,02,02) J(k — k') g(alk) Ik .y, 02, 02)

6

Ratio of posteriors Ratio of tran51t10n probabilities

4.1.1 Full parameter vector proposals

As the proposal density, we can use the full conditional for the complete parameter vector

a®) which is available analytically (see appendix A):
a(k)NQ( |k, 7y7 av 32): ( |kl,Y7 ) 62) (18)
o N(@*) | pyry, Coainy)
where
_ nT ’ _
C_hy =0, 2Y®) Ty ®) 4 o721, (19)
_ nT
Ky = O ZCZ(k’)Y(k) Y-[1..k] (20)

Rather than drawing a value of a*) then simply substituting equation (18) and the
likelihood and priors into equation (17), which could lead to numerical problems, we can
use the ‘Candidate’s Identity’ (Besag 1989):

p(k,a®) |y, 02,02)

2
p(a(k) | k’y?UaZaUeZ) =pkly,q, av ;) (21)
to simplify equation (17) in this case to:
! /
(k) D)) — p(K' | y,02,02) J(K' — k)
A((kaa ) — (k' ,a )) mln(]. (k | y,o_ag’o_eg) (k‘ N k_/) (22)

where p(k | y,02,02) is the posterior model order probability with 2 and o2 fixed

and known. Godsill (1997) gives some further discussion of this within a general model
uncertainty setting.
As shown in appendix A, this can be derived, by marginalising a*) and al) | as:

A((k,a®)y — (K, a®)y)

1
_ min<1 p(k') o, 2 exp(3#a Coin Mate) J(K' — k)> (23)
Pk) ’C (k)\i ex P(§Na<k)0;&>“a(k>) J(k = &)

p(k")

where PO will cancel because of the uniform prior (eq. 7). This expression is indepen-

dent of al*"), so the sampling operation of equation (18) need only be performed if the
move is accepted. This point has also been noted in the context of a change-point model
by Stark, Fitzgerald & Hladky (1997).



6 Sampling strategy

4.1.2 Partial parameter vector proposals

Alternatively, we can propose only the additional AR parameters introduced by the
move. Again, we propose using the full conditional for the new parameters:

g(@®) | K,a®,y,07,57)
5(alk) — E ) m k' <k (‘Death’)
k K
= (aEsz ] | K30, UeQ’aEL.)..k] =al) (24)
ol a<k>) K >k (‘Birth)

where 0| ;) denotes the first k& components of 6.

This proposal is quicker to compute than equation (18), but is likely to be more
susceptible to convergence problems because lower order parameters remain fixed during
moves between high order models. It is hence important also to make ‘within-model’
moves such as a®) ~ p(a®) | k,y, 02, 62) from time to time (see §B.1).

For partial parameter vector proposals, the acceptance probability takes different
forms for ‘birth’ (k' > k) and ‘death’ (k' < k) moves:?

‘Birth’ move In this case, we are proposing
, (k)
Ay

where a, are the n new parameters drawn from the full conditional posterior density
(Troughton & Godsill 1997):

a, ~ q(au | K,a¥.y,07,07) oc N(ay | pa,, Ca,) (26)

where
Cal = o 2y Y () 4 o2, (27)
fo, = 072Ca, YO (3 — Y ®)a(h) (28)

where the matrix Y is partitioned columnwise as Y, and Y_,. Again, we can simplify
equation (17) by marginalising a,:

A((k,a®)) — (&, [25]))
. J(K — k) Pk | aEf,,.)..k] =a.y, o7, 07)
=min( L ) gk ey ) (2)
I k) p) [y | K, [a(,’?],af,af)p(au | 07) da,
- m (1’ Tk — k) p(k) (y |k, a®) 62, o2) ) (30)
K = k) p(K
= min (1, jgk - k’; Z((k)) |Cau|2 exp(ZpauCau uau)> (31)

2Life’ moves (k' = k) need not necessarily be proposed at all.



4.2 ‘Null’ moves 7

‘Death’ move Here, no new parameters are being proposed; we merely truncate
alk) at the &'th parameter. By definition, if

A((k,a®) — (K',a®))) = min(1, w(k,a® k', a®) 62, 52)) (32)

yYa

then

1
w(k,at) k' atk) o2 %2)>

’a

A((K,a®)) = (k,a®))) = min(l, (33)
so the calculations are similar to those for the acceptance probability for the correspond-
ing ‘birth’ move.

4.2 ‘Null’ moves

2 or 02 with fixed model order k does not involve any change

of dimensionality, so the treatment is straightforward, using a standard Gibbs sampler
move. See appendix B for details.

Sampling from al®), o

4.3 Move selection

We have described in previous sections the following types of move:
e Model moves

— ‘Birth’ moves

— ‘Death’ moves

o ‘Null’ moves

_ al®)

— 02 move

— 02 move

move

For simplicity, a partially systematic scan was chosen: each proposed model move is
followed by a 62 move and a 2 move, but sampling alk) is a relatively expensive move,
so it is performed randomly, less frequently.

The choice of model move is determined by the function J(k — k'). To ensure good
convergence, we want most proposed jumps to be small, but occasional large ones to

occur too. We have chosen a discretised Laplacian density:

J(k — k') oc exp(—X |k — k) ke{0,... kmax} (34)

5 RESULTS

The sampler was implemented as described, comparing both full and partial parameter
vector proposals.
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Figure 1: Orchestral recording (from top): Signal; Sampled model order values for full
proposals (solid) and partial proposals (dotted); Monte Carlo estimate of p(k | y); MDL
values.

5.1 Audio data

The samplers were used to fit an AR model to a block of 1000 samples from a 44.1kHz
sampled orchestral music recording. Figure 1 shows the signal, along with the results of
running the both samplers.

Although both versions converge to roughly the same model order distribution, it can
be seen that the sampler using partial proposals appears to generate a less well mixed
chain than the full proposal sampler.

The Monte Carlo estimate of the marginal posterior density p(k | y) was obtained by
calculating the histogram of £ having discarded the values from the first 50 iterations as
burn-in from the full parameter proposal sampler’s output. Such a short burn-in period
is deemed satisfactory from observation of many MCMC runs on the same data. Clearly,
the maximum a posteriori estimate of the model order is 26, which agrees with the
global minimum of the Minimum Description Length (MDL) criterion, which is plotted
for comparison.
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Figure 2: Convergence behaviour from 100 runs with synthetic AR(20) data: (left)
Full proposals; (right) Partial proposals; (top) Evolution of the model order histogram
— darkness represents frequency; (bottom) Frequency of choosing k = 20. Note differing
x scales.

5.2 Synthetic data

To demonstrate the different convergence behaviour, 3500 samples were synthesised from
an AR(20) process (see appendix C), and an ensemble of 100 runs were made with each
sampler. The results are shown in figure 2. For each iteration, the top plots show the
model order histogram, across the ensemble, and the bottom plots show the proportion
of the ensemble which have the ‘correct’ value of model order.

It can be seen that all the runs of the full proposal sampler appear to converge
within 50 iterations, whereas, even after 1000 iterations, some 15% of the partial proposal
sampler runs have not converged.

6 DISCUSSION

This reversible jump sampler provides a fast, straightforward way to cope with AR
model order uncertainty in an MCMC framework. Using the raw AR parameters allows



10 Simplification of A((k,a®) — (K,a)))

the methods presented here to take advantage of the partially analytic structure of the
AR model to speed convergence. The computation involved could probably be further
reduced, for a given class of problems, by using a fully random scan and adjusting the
move probabilities.

Proposing the full parameter vector in each move leads to a reliable sampler. Whilst
proposing only part of the parameter vector makes acceptance probabilities faster to
compute, the resulting Markov chain is more highly correlated.

Furthermore, whilst the two methods behave similarly for many modelling problems,
in some cases, such as the AR(20) process of figure 2, the partial parameter vector
proposals method is consistently very slow to converge. This is probably due to the
transition of equation (25) being quite unnatural when considered in terms of, for exam-
ple, pole positions; models of different order to the correct one, but with similar values
for common parameters, may have low likelihood.

We do not enforce model stationarity, as this is difficult to incorporate into a prior
on the AR parameters. Rejection sampling could be used, but the marginalisation in
equation (36) would need to be over a parameter space containing only stationary models.
This issue will be explored in future work.

A SIMPLIFICATION OF A((k,a®) — (K',a*)))

We can express p(k | y,02,02) as:
p(k | y,02,02) < p(k) p(y | k,02,02) (35)
— p(k) / p(y,a® | ko2, 0%) da® (36)
— p(k) / p(y | k,a®, 02, 02) pa® | &, o?) dal® (37)
but
p(y | k,a®, 02,62) p(a® | k,0?) (38)
=N(y; - Y®a® | 0,021, ) N(a) | 0,621}) (39)

Ne k
= (2m02)” 2 (2m07)” 2 exp(—3 (a(k)T(UeﬁY(k)TY(k) + 0, I;)a®)
—207°y] Y®a + 6%y {y1))
(40)

Ne 1
= (271—0-62)_ 2 Uaik‘ca(k) ‘ 2 exp(—% (0-672Y¥1YI - I‘I‘Z(lc)C;(}c)l‘l’a(k)))N(a(k) | Hak)s Ca(k))
(41)
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SO

ne 1 _ _
p(k | Yy, U(zza 03) X p(k) (2’"-0—62)7 2 Oq k‘ca(k) ‘ 2 exp(—% (Ue 2)’{}’1 - NZ(k) Ca(}c)”a(k)))

'/N(a(k) | prac), o) dat®)
(42)

ne _ 1 _ _
= P(k)@m’e?) 2 g, k‘ca(lc) ‘ 2 eXp(_%(Ue 2}’{}’1 - HZ(k) Ca(}c)l‘l‘a(k)))
(43)

because [N(0]...)df = 1.

To eliminate dependence on the scale of the signal, the same vector y;, and hence
length n,, is used for both model orders being considered, i.e. all probabilities are con-
ditional on the first max(k, k') values of y.

B ‘NuLL’ MOVES

B.1 Sampling the AR parameter vector

We can sample a(%) directly from its full conditional (eq. 18) in a Gibbs move, for which
the acceptance probability is always 1.

B.2 Sampling the noise variance

We can also sample 0 using a Gibbs move. To do this, we require the full conditional
posterior distribution:

Likelihood Prior

r - ~N A~
p(0 |y, k,a®), 02) o< p(y | k,a®), 02, 02) - p(0?) (44)
~ N(eTe | O,UeZIne) -IG(Je2 | ae,ﬁe) (45)

Ne _

o (27rae2)* 2 exp(—ﬁeTe) -0, 2ae+1) exp(—g—e;) (46)

1T
_ Ue—(ne+2ae+2) eXp(— ,3e+032e e) (47)
=1G (02 | se, Bse) (48)

where

Ose = Qe + %ne and Bse = Be + %eTe (49)

We can sample from this inverted-gamma density directly.



12 REFERENCES

B.3 Sampling the parameter variance

Similarly, we can use a Gibbs move to sample the hyperparameter o2:
2
a

p(o |a®)
((’“I

p(o; |y, k,a®, o?)

x p(a® | o7) - p(ffa?)

:N( )] 0,0, 1) - 1G (07 | @a, Ba)
= G( Oq |asa7/85a)

where

Opo =g+ 1k and  Bi =B, + 1a® a® (54)

C TEST AR PROCESS

The data used in §5.2 was generated from the AR process with parameters:

[ —0.5078 ]
4.5564
1.9504

~11.2203
—3.5378
19.1868
3.8193
—24.8657
—2.4029
25.0465
0.2678
—19.7237
1.1703
12.0275
—1.3091
—5.5202
0.6804
1.7487
—0.1543
| —0.2984 |
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