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� Modelling framework

� Introduction

When �tting an autoregressive model to Gaussian time series data� often the correct
order of the model is unknown� The model order cannot be estimated analytically by
conventional Bayesian techniques when the excitation variance is unknown� We present
MCMC methods for drawing samples from the joint posterior of all the unknowns� from
which Monte Carlo estimates of the quantities of interest can be made� with the possi�
bility of model mixing� if required� for tasks such as prediction� interpolation� smoothing
or noise reduction�

Previous work on MCMC autoregressive model selection has parameterised the
model using partial correlation coe�cients �Barnett� Kohn � Sheather ���	� Barbieri
� O
Hagan ���	� or pole positions� �Huerta � West ������ These have a simple phys�
ical interpretation for certain types of signal� and allow stationarity to be enforced in
a straightforward manner� We use the AR parameters� a� directly� This allows us to
use the full conditional density for a� which is available analytically� to propose e�cient
reversible jump MCMC moves� Note that our method does not enforce stationarity of
the model�

While Barbieri � O
Hagan ����	� also use reversible jump MCMC for AR model
sampling� Barnett et al� ����	� and Huerta � West ������ use stochastic search variable
selection approaches� which avoid changing the dimension of the parameter vector by
including all possible parameters at every iteration �George � McCulloch �����

� Modelling framework

��� Autoregressive time series model

We model the signal fytg as�

yt � et �

kX
i�

a
�k�
i yt�i ���

where

et �
iid

N
�
et j �� �

�
e

�
���

is the excitation sequence and a�k� is the AR parameter vector for a kth order model�
This can be rewritten in matrix�vector form as�

e � Ay � y� �Y�k�a�k� ��

where y� and y� are formed by partitioning y into� respectively� the �rst k values and
the remainder� and A and Y�k� take appropriate forms�

�Poles are the inverse of the roots of the characteristic equation�



��� Prior distributions �

Since the excitation sequence is Gaussian� the �approximate� likelihood takes the
form �Box� Jenkins � Reinsel ����� xA�����

p�y j k�a�k�� ��e � � p�y� j y�� k�a
�k�� ��e � ���
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where ne is the length of e and y��

��� Prior distributions

We choose simple conjugate prior distributions for the continuous parameters and a
uniform prior for the model order�

p�k� �

�
�

kmax
k � f�� �� � � � kmaxg

� elsewhere
���
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�
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p���e � � IG
�
��e j �e� �e

�
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where the inverted�gamma distribution �see e�g� Johnson � Kotz ����� is de�ned for
positive parameters � and �� and positive x� as�

IG�x j �� �� � x������ exp����x� ����

which tends to the Je�reys
 prior as �� � � �� k� a�k�� ��a and ��e are assumed to be a

priori independent�

��� Bayesian hierarchy

The posterior density for the parameters is then�

p�k�a�k�� ��a � �
�
e j y� � p�y j k�a�k�� ��e �� �z �

Likelihood

p�k� p�a�k� j ��a � p��
�
a � p��

�
e �� �z �

Priors
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� Reversible jump MCMC

Metropolis�Hastings algorithms �Hastings ����� developed from molecular simulations as
means to produce a Markov chain which converges to a required equilibrium distribution
p���� without the need to sample directly from any inconvenient density�

Each step consists of�

� Choosing which subset of the parameters � to update

� Proposing new values for the subset of the parameters associated with that move
by drawing from an arbitrary� convenient density�

��u � qu��
�

u j ��u� ���



� Sampling strategy

� Calculating the acceptance probability for this move� A�� � ���� which is a func�
tion of the density from which the proposal values were drawn and the joint density
to which the chain is required to converge�

A�� � ��� � min

�
��
p���u j ��u�qu��u j ��u�

p��u j ��u�qu��
�

u j ��u�

�
����

� Either�

� Accepting the move� setting the parameters to the proposed values� or

� Rejecting the move� not changing any parameter values

Clearly� the more similar the densities qu��u j ��u� and p��u j ��u�� the higher the
proportion of moves that will be accepted�

Reversible jump MCMC �Green ����� is a generalisation which introduces moves
between parameter spaces of di�erent dimensionality� whilst retaining detailed balance
�Hastings ������ which is required for convergence� within each type of move�

If J�k � k�� is the probability of proposing a move from a parameter space of dimen�
sion k to one of dimension k�� and � contains those parameters which are present� and
have the same meaning� in models of both dimensionalities� then the required acceptance
probability is�

A
�
�k���k��� �k����k

���
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p�k����k
�� j ��

p�k���k� j ���� �z �
Target density ratio
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q���k� j k����k
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Note that the Jacobian term which appears in Green
s ������ formulation does not
appear here since we are proposing directly in the new parameter space�

� Sampling strategy

The parameters to be sampled comprise k�a�k�� ��e and ��a �

��� Model moves

Sampling k involves a change in dimensionality� so we use a reversible jump move� First�
we choose to propose a move from order k to order k� by sampling k� from the distribution
J�k � k��� for which we use a discretised Laplacian density �see x���� We then sample
a new parameter vector a�k

�� from a proposal density�

a�k
�� � q�a�k

�� j k��a�k��y� ��a � �
�
e � ��	�

Note that ��a and ��e remain unchanged during model moves� A more sophisticated
scheme might propose these too�



��� Model moves �

We then calculate the acceptance probability �eq� ����

A
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����� Full parameter vector proposals

As the proposal density� we can use the full conditional for the complete parameter vector
a�k

��� which is available analytically �see appendix A��
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Rather than drawing a value of a�k
��� then simply substituting equation ���� and the

likelihood and priors into equation ����� which could lead to numerical problems� we can
use the �Candidate
s Identity
 �Besag ������
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to simplify equation ���� in this case to�
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where p�k j y� ��a � �
�
e � is the posterior model order probability with ��a and ��e �xed

and known� Godsill ������ gives some further discussion of this within a general model
uncertainty setting�

As shown in appendix A� this can be derived� by marginalising a�k� and a�k
��� as�
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where p�k��
p�k� will cancel because of the uniform prior �eq� ��� This expression is indepen�

dent of a�k
��� so the sampling operation of equation ���� need only be performed if the

move is accepted� This point has also been noted in the context of a change�point model
by Stark� Fitzgerald � Hladky �������



� Sampling strategy

����� Partial parameter vector proposals

Alternatively� we can propose only the additional AR parameters introduced by the
move� Again� we propose using the full conditional for the new parameters�
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where �������k� denotes the �rst k components of ��

This proposal is quicker to compute than equation ����� but is likely to be more
susceptible to convergence problems because lower order parameters remain �xed during
moves between high order models� It is hence important also to make �within�model

moves such as a�k� � p�a�k� j k�y� ��a � �

�
e � from time to time �see xB����

For partial parameter vector proposals� the acceptance probability takes di�erent
forms for �birth
 �k� � k� and �death
 �k� 	 k� moves��

	Birth
 move In this case� we are proposing
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where au are the n new parameters drawn from the full conditional posterior density
�Troughton � Godsill ������
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where the matrix Y is partitioned columnwise as Yu and Y�u� Again� we can simplify
equation ���� by marginalising au�
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��Life� moves �k� � k� need not necessarily be proposed at all�



��� 	Null
 moves �

	Death
 move Here� no new parameters are being proposed� we merely truncate
a�k� at the k�th parameter� By de�nition� if

A
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so the calculations are similar to those for the acceptance probability for the correspond�
ing �birth
 move�

��� 	Null
 moves

Sampling from a�k�� ��e or ��a with �xed model order k does not involve any change
of dimensionality� so the treatment is straightforward� using a standard Gibbs sampler
move� See appendix B for details�

��� Move selection

We have described in previous sections the following types of move�

� Model moves

� �Birth
 moves

� �Death
 moves

� �Null
 moves

� a�k� move

� ��e move

� ��a move

For simplicity� a partially systematic scan was chosen� each proposed model move is
followed by a ��e move and a ��a move� but sampling a�k� is a relatively expensive move�
so it is performed randomly� less frequently�

The choice of model move is determined by the function J�k � k��� To ensure good
convergence� we want most proposed jumps to be small� but occasional large ones to
occur too� We have chosen a discretised Laplacian density�

J�k � k�� � exp��

��k� � k

��� k � f�� � � � kmaxg ���

� Results

The sampler was implemented as described� comparing both full and partial parameter
vector proposals�



� Results
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Figure � Orchestral recording �from top�� Signal	 Sampled model order values for full
proposals �solid� and partial proposals �dotted�	 Monte Carlo estimate of p�k j y�	 MDL
values�

��� Audio data

The samplers were used to �t an AR model to a block of ���� samples from a ����kHz
sampled orchestral music recording� Figure � shows the signal� along with the results of
running the both samplers�

Although both versions converge to roughly the same model order distribution� it can
be seen that the sampler using partial proposals appears to generate a less well mixed
chain than the full proposal sampler�

The Monte Carlo estimate of the marginal posterior density p�k j y� was obtained by
calculating the histogram of k having discarded the values from the �rst �� iterations as
burn�in from the full parameter proposal sampler
s output� Such a short burn�in period
is deemed satisfactory from observation of many MCMC runs on the same data� Clearly�
the maximum a posteriori estimate of the model order is �	� which agrees with the
global minimum of the Minimum Description Length �MDL� criterion� which is plotted
for comparison�



��� Synthetic data �
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Full proposals	 �right� Partial proposals	 �top� Evolution of the model order histogram
� darkness represents frequency	 �bottom� Frequency of choosing k � ��� Note diering
x scales�

��� Synthetic data

To demonstrate the di�erent convergence behaviour� ��� samples were synthesised from
an AR���� process �see appendix C�� and an ensemble of ��� runs were made with each
sampler� The results are shown in �gure �� For each iteration� the top plots show the
model order histogram� across the ensemble� and the bottom plots show the proportion
of the ensemble which have the �correct
 value of model order�

It can be seen that all the runs of the full proposal sampler appear to converge
within �� iterations� whereas� even after ���� iterations� some ��� of the partial proposal
sampler runs have not converged�

� Discussion

This reversible jump sampler provides a fast� straightforward way to cope with AR
model order uncertainty in an MCMC framework� Using the raw AR parameters allows



�� Simpli�cation of A
�
�k�a�k��� �k��a�k

���
�

the methods presented here to take advantage of the partially analytic structure of the
AR model to speed convergence� The computation involved could probably be further
reduced� for a given class of problems� by using a fully random scan and adjusting the
move probabilities�

Proposing the full parameter vector in each move leads to a reliable sampler� Whilst
proposing only part of the parameter vector makes acceptance probabilities faster to
compute� the resulting Markov chain is more highly correlated�

Furthermore� whilst the two methods behave similarly for many modelling problems�
in some cases� such as the AR���� process of �gure �� the partial parameter vector
proposals method is consistently very slow to converge� This is probably due to the
transition of equation ���� being quite unnatural when considered in terms of� for exam�
ple� pole positions� models of di�erent order to the correct one� but with similar values
for common parameters� may have low likelihood�

We do not enforce model stationarity� as this is di�cult to incorporate into a prior
on the AR parameters� Rejection sampling could be used� but the marginalisation in
equation �	� would need to be over a parameter space containing only stationary models�
This issue will be explored in future work�

A Simplification of A
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so
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To eliminate dependence on the scale of the signal� the same vector y�� and hence
length ne� is used for both model orders being considered� i�e� all probabilities are con�
ditional on the �rst max�k� k�� values of y�

B �Null� moves

B�� Sampling the AR parameter vector

We can sample a�k� directly from its full conditional �eq� ��� in a Gibbs move� for which
the acceptance probability is always ��

B�� Sampling the noise variance

We can also sample ��e using a Gibbs move� To do this� we require the full conditional
posterior distribution�
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We can sample from this inverted�gamma density directly�
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B�� Sampling the parameter variance

Similarly� we can use a Gibbs move to sample the hyperparameter ��a �
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C Test AR process

The data used in x��� was generated from the AR process with parameters�
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