
Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Learning with Kernels

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Learning with Kernels

by

Bernhard Schölkopf

Alexander J. Smola

The MIT Press

Cambridge, Massachusetts

London, England

c©2000 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic

or mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

Printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

Learning with Kernels / by Bernhard Schölkopf,

Alexander J. Smola.

p. cm.

Includes bibliographical references and index.

ISBN 0-xxx-xxxxx-x (alk. paper)

1. Machine learning. 2. Algorithms. 3. Kernel functions

I. Schölkopf, Bernhard. II. Smola, Alexander J.

xxxx.x.xxx 2000

xxx.x’x–xxxx 00.xxxxx

CIP

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Contents

1 A Tutorial Introduction 1

1.1 Data Representation and Similarity 1

1.2 A Simple Pattern Recognition Algorithm 3

1.3 Some Insights From Statistical Learning Theory 6

1.4 Hyperplane Classifiers . 10

1.5 Support Vector Classification . 13

1.6 Support Vector Regression . 16

1.7 Kernel Principal Component Analysis 18

1.8 Empirical Results and Implementations 19

References 22

Index 26

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1 A Tutorial Introduction

This chapter describes the central ideas of support vector (SV) learning in a

nutshell. Its goal is to provide an overview of the basic concepts.

One of these concepts is that of a kernel. Rather than immediately going into

mathematical detail, we introduce kernels informally as similarity measures thatOverview

arise from a particular representation of patterns (Section 1.1), and describe a

simple kernel algorithm for pattern recognition (Section 1.2). Following that, we

report some basic insights from statistical learning theory, the mathematical theory

that underlies the basic idea of SV learning (Section 1.3). Finally, we briefly review

some of the main kernel algorithms, namely SV machines (Sections 1.4 to 1.6) and

kernel principal component analysis (Section 1.7).

We have aimed to keep this introductory chapter as basic as possible, whilstPrerequisites

giving a fairly comprehensive overview of the main ideas that will be discussed in

the present book. After reading it, readers should be able to place all the remaining

material in the book in context and judge which of the following chapters is of

particular interest to them.

As a consequence of this aim, most of the claims in the chapter are not proven.

Abundant references to later chapters will enable the interested reader to fill in the

gaps at a later stage, without losing sight of the main ideas described presently.

1.1 Data Representation and Similarity

One of the fundamental problems of learning theory is the following: suppose we

are given two classes of objects. Now we are faced with a new object, and we have

to assign it to one of the two classes. This problem can be formalized as follows: we

are given empirical dataTraining Data

(x1, y1), . . . , (xm, ym) ∈ X × {±1}. (1.1)

Here, X is some nonempty set that the patterns xi (sometimes called cases or

inputs) are taken from, sometimes referred to as the domain; the yi are called

labels , targets , or outputs . Note that there are only two classes of patterns. For the

sake of mathematical convenience, they are labeled by +1 and −1, respectively.

This is a particularly simple situation, referred to as (binary) pattern recognition

or (binary) classification.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

2 A Tutorial Introduction

It should be emphasized that the patterns could be just about anything, and we

have made no assumptions on X other than it being a set. For instance, the task

might be to categorize sheep into two classes, in which case the patterns xi would

simply be sheep.

In order to study the problem of learning, however, we need an additional kind

of structure. In learning, we want to be able to generalize to unseen data points. In

the case of pattern recognition, this means that given some new pattern x ∈ X, we

want to predict the corresponding y ∈ {±1}.1 By this we mean, loosely speaking,

that we choose y such that (x, y) is in some sense similar to the training examples

(1.1). To this end, we need notions of similarity in X and in {±1}.

Characterizing the similarity of the outputs {±1} is easy: in binary classification,

only two situations can occur: two labels can either be identical or different. The

choice of the similarity measure for the inputs, on the other hand, is a deep question

that lies at the core of the field of machine learning.

Let us consider a similarity measure of the form

k : X × X → R,

(x, x′) 7→ k(x, x′), (1.2)

that is, a function that, given two patterns x and x′, returns a real number

characterizing their similarity. Unless stated otherwise, we will assume that k is

symmetric, that is, k(x, x′) = k(x′, x) for all x, x′ ∈ X. For reasons that will become

clear later (cf. Remark ??), the function k is called a kernel [19, 1, 5, 6, 16].

General similarity measures of this form are rather difficult to study. Let us

therefore start from a particularly simple case, and generalize it subsequently. A

simple type of similarity measure that is of particular mathematical appeal is a dot

product. For instance, given two vectors x,x′ ∈ R
N , the canonical dot product isDot Product

defined as

〈x,x′〉 :=

N
∑

i=1

[x]i[x
′]i. (1.3)

Here, [x]i denotes the i-th entry of x.

Note that the dot product is also referred to as inner product or scalar product,

and sometimes denoted with round brackets and a dot, as (x · x′) — this is where

the “dot” in the name comes from. In Section ??, we give a general definition of

dot products. Usually, however, it is sufficient to think of dot products as (1.3).

The geometric interpretation of the canonical dot product is that it computes

the cosine of the angle between the vectors x and x
′, provided they are normalized

to length 1. Moreover, it allows computation of the length (or norm) of a vector x

asLength

‖x‖ =
√

〈x,x〉. (1.4)

1. Doing this for every x ∈ X amounts to estimating a function f : X → {±1}.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.2 A Simple Pattern Recognition Algorithm 3

Likewise, the distance between two vectors is computed as the length of the

difference vector. Therefore, being able to compute dot products amounts to being

able to carry out all geometric constructions that can be formulated in terms of

angles, lengths and distances.

Note, however, that we have not made the assumption that the patterns actually

live in a dot product space. So far, they could be any kind of objects. In order to

be able to use a dot product as a similarity measure, we therefore first need to

represent them as vectors in some dot product space H (which need not coincide

with R
N). To this end, we use a map

Φ : X → H

x 7→ x := Φ(x). (1.5)

The space H is called a feature space. Note that we have used a bold face x toFeature

Space denote the vectorial representation of x in the feature space. We will follow this

convention throughout the book.

To summarize, embedding the data into H via Φ has three benefits:

1. It lets us define a similarity measure from the dot product in H,

k(x, x′) := 〈x,x′〉 = 〈Φ(x), Φ(x′)〉 . (1.6)

2. It allows us to deal with the patterns geometrically, and thus lets us study

learning algorithms using linear algebra and analytic geometry.

3. The freedom to choose the mapping Φ will enable us to design a large variety

of similarity measures and learning algorithms. This also applies to the situation

where the inputs xi already live in a dot product space. In that case, we might

directly use the dot product as a similarity measure. However, nothing prevents us

from first applying a possibly nonlinear map Φ to change the representation into

one that is more suitable for a given problem. This will be elaborated in Chapter ??,

where the theory of kernels is developed in some detail.

Presently, we will give an example of a kernel algorithm.

1.2 A Simple Pattern Recognition Algorithm

We are now in the position to describe a pattern recognition learning algorithm that

is arguably one of the simplest possible. We make use of the structure introduced

in the previous section, that is, we assume that our data are embedded into a dot

product space H.2 Using the dot product, we can measure distances in that space.

The basic idea of the algorithm will be to assign a previously unseen pattern to the

class whose mean is closer.

2. For the definition of a dot product space, see Section ??.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

4 A Tutorial Introduction

+

o

o

o

o

+

+

c1

c2

x-c

w

x

c

.

Figure 1.1 A simple geometric classification algorithm: given two classes of
points (depicted by ‘o’ and ‘+’), compute their means c1, c2 and assign a test
pattern x to the class whose mean it is closer to. This can be done by looking
at the dot product between x − c (where c = (c1 + c2)/2) and w := c1 − c2,
which changes sign as the enclosed angle passes through π/2. Note that the
corresponding decision boundary is a hyperplane (the dotted line) orthogonal to
w.

We thus begin by computing the means of the two classes in feature space,

c1 =
1

m1

∑

{i:yi=+1}

xi, (1.7)

c2 =
1

m2

∑

{i:yi=−1}

xi, (1.8)

where m1 and m2 are the number of examples with positive and negative labels,

respectively. We assume that both classes are non-empty, that is, m1, m2 > 0. We

then assign a new point x to the class whose mean is closer to it (Figure 1.1). This

geometric construction can be formulated in terms of the dot product 〈·, ·〉. Half-

way in between c1 and c2 lies the point c := (c1 + c2)/2. We compute the class of

x by checking whether the vector x− c connecting c to x encloses an angle smaller

than π/2 with the vector w := c1 − c2 connecting the class means. This leads to

y = sgn 〈(x − c),w〉

= sgn 〈(x − (c1 + c2)/2), (c1 − c2)〉

= sgn (〈x, c1〉 − 〈x, c2〉 + b). (1.9)

Here, we have defined the offset

b :=
1

2
(‖c2‖

2 − ‖c1‖
2), (1.10)

with the norm ‖x‖ :=
√

〈x,x〉. If the class means have the same distance to the

origin, then b will vanish.

Note that (1.9) induces a decision boundary which has the form of a hyperplane

(Figure 1.1), that is, a set of points that satisfy a constraint that can be written as

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.2 A Simple Pattern Recognition Algorithm 5

a linear equation.

It will prove instructive to rewrite (1.9) in terms of the input patterns xi, using

the kernel k to compute the dot products. Note, however, that (1.6) only tells us

how to compute the dot products between vectorial representations xi of inputs xi.

We therefore need to first express the vectors ci and w in terms of x1, . . . ,xm.

To this end, substitute (1.7) and (1.8) into (1.9) to get the decision functionDecision

Function

y = sgn





1

m1

∑

{i:yi=+1}

〈x,xi〉 −
1

m2

∑

{i:yi=−1}

〈x,xi〉 + b





= sgn





1

m1

∑

{i:yi=+1}

k(x, xi) −
1

m2

∑

{i:yi=−1}

k(x, xi) + b



 . (1.11)

Similarly, the offset becomes

b :=
1

2





1

m2
2

∑

{(i,j):yi=yj=−1}

k(xi, xj) −
1

m2
1

∑

{(i,j):yi=yj=+1}

k(xi, xj)



 . (1.12)

Surprisingly, it turns out that this rather simple-minded approach contains a well-

known statistical classification method as a special case. Assume that the class

means have the same distance to the origin (hence b = 0), and that k can be viewed

as a probability density when one of its arguments is fixed. By this we mean that

it is positive and has integral one,3
∫

X

k(x, x′)dx = 1 for all x′ ∈ X. (1.13)

In that case, (1.11) takes the form of the so-called Bayes classifier separating the

two classes, subject to the assumption that the two classes of patterns were gen-

erated by sampling from two probability distributions that are correctly estimated

by the Parzen windows estimators of the two class densities,Parzen Windows

p1(x) :=
1

m1

∑

{i:yi=+1}

k(x, xi), (1.14)

p2(x) :=
1

m2

∑

{i:yi=−1}

k(x, xi), (1.15)

where x ∈ X.

Given some point x, the label is then simply computed by checking which of the

two values, p1(x) or p2(x), is larger, which directly leads to (1.11). Note that this

decision is the best we can do if we have no prior information about the probabilities

of the two classes.

The classifier (1.11) is quite close to the type of classifier that this book deals

3. In order to state this assumption, we have to require that we can define an integral on
X.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

6 A Tutorial Introduction

with in detail. Both take the form of kernel expansions on the input domain,

y = sgn

(

m
∑

i=1

αik(x, xi) + b

)

. (1.16)

In both cases, the expansions correspond to separating hyperplanes in a feature

space. Both are example-based in the sense that the kernels are centered on the

training patterns, that is, one of the two arguments of the kernels is always a

training pattern. A test point is classified by comparing it to all the training points

that appear in (1.16) with a nonzero weight.

The main point where the more sophisticated techniques to be discussed in the

remainder of the book will deviate from (1.11) is in the selection of the patterns

that the kernels are centered on, that is, in the weights αi that are put on the

individual kernels in the decision function. It will no longer be the case that all

training patterns appear in the kernel expansion, and the weights of the kernels in

the expansion will no longer be uniform within the classes — recall that presently,

cf. (1.11), the weights were either (1/m1) or (−1/m2), depending on which class

the pattern belonged to.

In the feature space representation, this statement corresponds to saying that

we will study normal vectors w of decision hyperplanes that can be represented

as general linear combinations (i.e., with non-uniform coefficients) of the training

patterns. For instance, we might want to remove the influence of patterns that are

very far away from the decision boundary, either since we expect that they will not

improve the generalization error of the decision function, or since we would like to

reduce the computational cost of evaluating the decision function (cf. (1.11)). The

hyperplane will then only depend on a subset of training patterns called support

vectors.

1.3 Some Insights From Statistical Learning Theory

With the above example in mind, let us now consider the problem of pattern

recognition in a slightly more formal setting [34, 13, 14]. This will allow us to

indicate the factors affecting the design of “better” algorithms. Rather than just

provising tools to come up with new algorithms, we thus also want to provide some

insight in how to do it in a promising way.

In two-class pattern recognition, we seek to infer a function

f : X → {±1} (1.17)

from input-output training data (1.1). The training data are sometimes also called

the sample.

Figure 1.2 shows a simple 2D toy example of a pattern recognition problem.

The task is to separate the solid dots from the circles by finding a function which

takes the value 1 on the dots and −1 on the circles. Note that instead of plotting

this function, we may equivalently plot the boundaries where it switches between

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.3 Some Insights From Statistical Learning Theory 7

1 and −1, which is what do presently. In the rightmost plot, we see a classification

function which correctly separates all training points. From this picture, however,

it is unclear whether the same would hold true for test points which stem from the

same underlying regularity. For instance, what should happen to a test point which

lies close to one of the two “outliers,” sitting amidst points of the opposite class?

Maybe the outliers should not be allowed to claim their own custom-made regions

of the decision function. To avoid this, we could try to go for a simpler model which

disregards these points. The leftmost picture shows an almost linear separation of

the classes. This separation, however, not only misclassifies the above two outliers,

but also a number of “easy” points which are so close to the decision boundary that

the classifier really should be able to get them right. The picture in the middle,

finally, represents a compromise, by using a model with an intermediate complexity,

which gets most points right, without putting too much trust in anhy individual

point.

Figure 1.2 2D toy example of a binary classification, solved by three models
(shown are the decision boundaries). The models vary in complexity, ranging from
a simple one (left), which misclassifies a large number of points, to a complex one
(right), which “trusts” each point and comes up with solution that is consistent
with all training points (but may not work well on novel points). As an aside:
the plots were generated using the so-called soft-margin SVM to be explained in
Chapter ??; cf. also Figure ??.

The goal of statistical learning theory is to place these handwaving arguments in

a mathematical framework.

We assume that the data are generated independently from some unknown (but

fixed) probability distribution P(x, y).4 This is a standard assumption in learning

theory; data generated this way is commonly referred to as iid (independent and

identically distributed). Our goal is to find an f that will correctly classify unseen

examples (x, y), that is, we want f(x) = y for examples (x, y) that are also generated

from P(x, y).5 Correctness of the classification is measured by means of the zero-one

4. For a definition of a probability distribution, see Section ??.
5. We are mostly using the term example to denote a pair consisting of a training pattern
x and the corresponding target y.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

8 A Tutorial Introduction

loss function 1
2 |f(x) − y|. Note that the loss is 0 if (x, y) is classified correctly, and

1 otherwise.

If we put no restriction on the set of functions that we choose our estimated

f from, however, even a function that does very well on the training data,

e.g., by satisfying f(xi) = yi for all i = 1, . . . , m, need not generalize well to

unseen examples. To see this, note that for each function f and any test setTest Data

(x̄1, ȳ1), . . . , (x̄m̄, ȳm̄) ∈ X × {±1}, satisfying {x̄1, . . . , x̄m̄} ∩ {x1, . . . , xm} = ∅,

there exists another function f∗ such that f∗(xi) = f(xi) for all i = 1, . . . , m,

yet f∗(x̄i) 6= f(x̄i) for all i = 1, . . . , m̄. As we are only given the training data,

we have no means of selecting which of the two functions (and hence which of the

two different sets of test label predictions) is preferable. We conclude that only

minimizing the (average) training error (or empirical risk),Empirical Risk

Remp[f] =
1

m

m
∑

i=1

1

2
|f(xi) − yi|, (1.18)

does not imply a small test error (called risk), averaged over test examples drawn

from the underlying distribution P(x, y),Risk

R[f] =

∫

1

2
|f(x) − y| dP(x, y). (1.19)

The risk can be defined for any loss function, provided the integral exists. For the

present zero-one loss function, the risk equals the probability of misclassification.

Statistical learning theory (Chapter ??, [39, 34, 35, 12, 36, 3]), or VC (Vapnik-

Chervonenkis) theory, shows that it is imperative to restrict the set of functions

that f is chosen from to one which has a capacity that is suitable for the amountCapacity

of available training data. VC theory provides bounds on the test error. The

minimization of these bounds, which depend on both the empirical risk and the

capacity of the function class, leads to the principle of structural risk minimization

[34].

The best-known capacity concept of VC theory is the VC dimension, definedVC dimension

as follows: each function of the class labels the training patterns in a certain way.

Since the labels are in {±1}, there are at most 2m different labelings for m patterns.

However, a given class of functions might not be sufficiently rich to induce all these

labelings; in other words, it might not be able to shatter the m points. The VC

dimension is defined as the largest m such that there exists a set of m points

which the class can shatter, and ∞ if no such m exists. It can be thought of as

a one-number summary of a learning machine’s capacity. As such, it is necessarily

somewhat crude. Examples of more accurate capacities are the annealed VC entropy

or the Growth function. These are usually considered to be harder to evaluate,

but they play a fundamental role in the conceptual part of VC theory. Another

interesting capacity measure, which can be thought of as a scale-sensitive version

of the VC dimension, is the fat shattering dimension [17, 2]. For further details, cf.

Chapters ?? and ??.

Whilst it will be difficult for the non-expert to appreciate the results of VC theory

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.3 Some Insights From Statistical Learning Theory 9

already in this chapter, we will nevertheless briefly describe an example of a VC

bound is the following: if h < m is the VC dimension of the class of functions thatVC Bound

the learning machine can implement, then for all functions of that class, with a

probability of at least 1 − δ over the drawing of the training sample,6 the bound

R[f] ≤ Remp[f] + φ

(

h

m
,
log(δ)

m

)

(1.20)

holds, where the confidence term (or capacity term) φ is defined as

φ

(

h

m
,
log(δ)

m

)

=

√

h
(

log 2m
h

+ 1
)

− log(δ/4)

m
. (1.21)

The bound (1.20) deserves further explanatory remarks. Suppose we wanted

to learn a “dependency” where patterns and labels are statistically independent,

P(x, y) = P(x)P(y). In that case, the pattern x contains no information about the

label y. If, moreover, the two classes +1 and −1 are equally likely, there is no way

of making a good guess about the label of a test pattern.

Nevertheless, given a training set of finite size, we can always come up with a

learning machine which achieves zero training error (provided we have no examples

contradicting each other, i.e., whenever two patterns are identical, then they must

come with the same label). To reproduce the random labelings by correctly sepa-

rating all training examples, however, this machine will necessarily require a large

VC dimension h. Therefore, the confidence term (1.21), increasing monotonically

with h, will be large, and the bound (1.20) will not support possible hopes that

due to the small training error, we should expect a small test error. This makes it

understandable how it can hold independent of assumptions about the underlying

distribution P(x, y): it always holds (provided that h < m), but it does not always

make a nontrivial prediction. It is a bound on an error rate (which necessarily lies

in the interval [0, 1]), and thus it becomes meaningless if it is larger than 1. In order

to get nontrivial predictions from (1.20), the function class must be restricted such

that its capacity (e.g., VC dimension) is small enough (in relation to the available

amount of data). At the same time, the class should be large enough to provide

functions that are able to model the dependencies hidden in P(x, y). The choice of

the set of functions is thus crucial for learning from data. In the next section, we

take a closer look at a class of functions which is particularly interesting for pattern

recognition problems.

1.4 Hyperplane Classifiers

6. recall that each training example is generated from P (x, y), and thus the training data
are subject to randomness

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

10 A Tutorial Introduction

In the present section, we shall describe a hyperplane learning algorithm that can

be performed in a dot product space (such as the feature space that we introduced

previously). As described in the previous section, to design learning algorithms

whose statistical effectiveness can be controlled, one needs to come up with a class

of functions whose capacity can be computed.

Vapnik et al. [41, 38] considered the class of hyperplanes in some dot product

space H,

〈w,x〉 + b = 0 w ∈ H, b ∈ R, (1.22)

corresponding to decision functions

f(x) = sgn (〈w,x〉 + b), (1.23)

and proposed a learning algorithm for problems which are separable by hyperplanes

(sometimes said to be linearly separable), termed the Generalized Portrait, for

constructing f from empirical data. It is based on two facts. First (see Chapter ??),

among all hyperplanes separating the data, there exists a unique one, called the

optimal hyperplane, distinguished by the maximum margin of separation between

any training point and the hyperplane,Optimal

Hyperplane
max
w,b

min{‖x− xi‖ : x ∈ H, 〈w,x〉 + b = 0, i = 1, . . . , m}. (1.24)

Second (see Chapter ??), the capacity (as discussed in Section 1.3) of the

class of separating hyperplanes decreases with increasing margin. Hence there

are theoretical arguments supporting the good generalization performance of the

optimal hyperplane ([39, 34, 43, 4], cf. Chapters ??, ??, ??). In addition, it is

computationally attractive, since we will show below that it can be constructed by

solving a quadratic programming problem for which there exist efficient algorithms

(see Chapters ?? and ??).

Note that the form of the decision function is quite similar to our earlier example

(1.9)). The ways in which the classifiers are trained, however, are different. In the

earlier example, the normal vector of the hyperplane was trivially computed from

the class means as w = c1 − c2.

In the present case, we need to do some additional work to find the normal vector

that leads to the largest margin. To construct the optimal hyperplane, one has to

compute

min
w∈H,b∈R

τ(w) =
1

2
‖w‖2 (1.25)

subject to yi(〈w,xi〉 + b) ≥ 1, i = 1, . . . , m. (1.26)

Note that the constraints (1.26) ensure that f(xi) will be +1 for yi = +1, and −1

for yi = −1. Now one might argue that for this to be the case, we don’t actually

need the “≥ 1” on the right hand side of (1.26). However, without it, it would not

be meaningful to minimize the length of w: to see this, imagine we wrote “> 0”

instead of “≥ 1.” Now assume that (w, b) were the solution. Let us rescale it by

multiplication with some 0 < λ < 1. Since λ > 0, the constraints are still satisfied.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.4 Hyperplane Classifiers 11

,
w

{x | <w x> + b = 0},

{x | <w x> + b = −1},
{x | <w x> + b = +1},

x2
x1

Note:

<w x1> + b = +1
<w x2> + b = −1

=> <w (x1−x2)> = 2

=> (x1−x2) =
w

||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.3 A binary classification toy problem: separate balls from diamonds.
The optimal hyperplane (1.24) is shown as a solid line. The problem being
separable, there exists a weight vector w and a threshold b such that yi(〈w,xi〉+
b) > 0 (i = 1, . . . , m). Rescaling w and b such that the point(s) closest to
the hyperplane satisfy | 〈w,xi〉 + b| = 1, we obtain a canonical form (w, b)
of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note that in this case, the
margin, measured perpendicularly to the hyperplane, equals 2/‖w‖. This can be
seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉 + b = 1, 〈w,x2〉 + b = −1, and projecting them onto the hyperplane
normal vector w/‖w‖.

However, since λ < 1, the length of w has decreased. Hence (w, b) was not the

minimizer in the first place.

The “≥ 1” on the right hand side of the constraints effectively fixes the scaling

of w. In fact, any other positive number would do.

Let us now try to get an intuition for why we should be minimizing the length of

w, (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal the distance

of xi to the hyperplane (cf. (1.24)). In general, we have to divide it by ‖w‖ to

transform it into the distance. Hence, if we can satisfy (1.25) for all i = 1, . . . , m

with an w of minimal length, then the overall margin will be maximal.

A more detailed explanation why this leads to the maximum margin hyperplane

will be given in Chapter ??. A short summary of the argument is also given in

Figure 1.3.

The function τ in (1.25) is called the objective function, while (1.26) are called

inequality constraints. Together, they form a so-called constrained optimization

problem. Problems of this kind are dealt with by introducing Lagrange multipliers

αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b, α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉 + b) − 1) . (1.27)

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . , αm).

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

12 A Tutorial Introduction

The Lagrangian L has to be minimized with respect to the primal variables w and

b and maximized with respect to the dual variables αi (in other words, a saddle

point has to be found). Note that the constraint has been incorporated into the

second term of the Lagrangian; it is not necessary to enforce it explicitly.

Let us try to get some intuition for this way of dealing with constrained optimiza-

tion problems. If a constraint (1.26) is violated, then yi(〈w,xi〉+b)−1 < 0, in which

case L can be increased by increasing the corresponding αi. At the same time, w

and b will have to change such that L decreases. To prevent αi (yi(〈w,xi〉 + b) − 1)

from becoming an arbitrarily large negative number, the change in w and b will

ensure that, provided the problem is separable, the constraint will eventually be

satisfied. Similarly, one can understand that for all constraints which are not pre-

cisely met as equalities, that is, for which yi(〈w,xi〉+ b)−1 > 0, the corresponding

αi must be 0: this is the value of αi that maximizes L. The latter is the statement of

the Karush-Kuhn-Tucker (KKT) complementarity conditions of optimization the-KKT Conditions

ory (Chapter ??).

The statement that at the saddle point, the derivatives of L with respect to the

primal variables must vanish,

∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α) = 0, (1.28)

leads to
m
∑

i=1

αiyi = 0 (1.29)

and

w =
m
∑

i=1

αiyixi. (1.30)

The solution vector thus has an expansion in terms of a subset of the training

patterns, namely those patterns whose αi is non-zero, called support vectors (SVs)

(cf. (1.16) in the initial example). By the KKT conditionsSupport Vector

αi[yi(〈xi,w〉 + b) − 1] = 0, i = 1, . . . , m, (1.31)

the SVs lie on the margin (cf. Figure 1.3). All remaining training examples (xj , yj)

are irrelevant: their constraint yj(〈w,xj〉 + b) ≥ 1 (cf. (1.26)) does not play a

role in the optimization, and they do not appear in the expansion (1.30). This

nicely captures our intuition of the problem: as the hyperplane (cf. Figure 1.3) is

completely determined by the patterns closest to it, the solution should not depend

on the other examples.

By substituting (1.29) and (1.30) into the Lagrangian (1.27), one eliminates the

primal variables w and b, arriving at the so-called dual optimization problem, which

is the problem that one usually solves in practice:Dual Problem

max
α

W (α) =

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyj 〈xi,xj〉 (1.32)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.5 Support Vector Classification 13

feature spaceinput space

Φ

◆

◆
◆

◆
❍

❍
❍

❍
❍

❍

Figure 1.4 The idea of SV machines: map the training data into a higher-
dimensional feature space via Φ, and construct a separating hyperplane with
maximum margin there. This yields a nonlinear decision boundary in input space.
By the use of a kernel function (1.2), it is possible to compute the separating
hyperplane without explicitly carrying out the map into the feature space.

subject to αi ≥ 0, i = 1, . . . , m, and

m
∑

i=1

αiyi = 0. (1.33)

Using (1.30), the hyperplane decision function (1.23) can thus be written as

f(x) = sgn

(

m
∑

i=1

yiαi 〈x,xi〉 + b

)

(1.34)

where b is computed by exploiting (1.31) (for details, cf. Chapter ??).

The structure of the optimization problem closely resembles those that typically

arise in Lagrange’s formulation of mechanics (e.g., [15]). There, often only a subset

of constraints become active, too. For instance, if we keep a ball in a box, then

it will typically roll into one of the corners. The constraints corresponding to the

walls which are not touched by the ball are irrelevant, those walls could just as well

be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical

interpretation of optimal margin hyperplanes [8]: If we assume that each SV xi

exerts a perpendicular force of size αi and sign yi on a solid plane sheet lying along

the hyperplane, then the solution satisfies the requirements of mechanical stability.

The constraint (1.29) states that the forces on the sheet sum to zero; and (1.30)

implies that the torques also sum to zero, via
∑

i xi × yiαiw/‖w‖ = w×w/‖w‖ =

0.8

1.5 Support Vector Classification

We now have all the tools to describe SV machines (Figure 1.4). Everything in the

last section was formulated in a dot product space. We think of this space as the

8. Here, the × denotes the vector (or cross) product, satisfying x × x = 0 for all x ∈ H.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

14 A Tutorial Introduction

feature space H described in Section 1.1. To express the formulas in terms of the

input patterns living in X, we thus need to employ (1.6), which expresses the dot

product of bold face feature vectors x,x′ in terms of the kernel k evaluated on input

patterns x, x′,

k(x, x′) = 〈x,x′〉 . (1.35)

This substitution, which is sometimes referred to as the kernel trick, was used

by Boser, Guyon, and Vapnik [6] to extend the Generalized Portrait hyperplane

classifier of Vapnik and co-workers [41, 39] to nonlinear Support Vector machines.

Aizerman et al [1] called H the linearization space, and used in the context of

the potential function classification method to express the dot product between

elements of H in terms of elements of the input space.

The kernel trick can be applied since all feature vectors only occurred in dot

products. The weight vector (cf. (1.30)) then becomes an expansion in feature space,

and therefore will typically no longer correspond to the Φ-image of a single vector

from input space (cf. Chapter ??). We thus obtain decision functions of the formDecision Function

(cf. (1.34))

f(x) = sgn

(

m
∑

i=1

yiαi 〈Φ(x), Φ(xi)〉 + b

)

= sgn

(

m
∑

i=1

yiαik(x, xi) + b

)

, (1.36)

and the following quadratic program (cf. (1.32)):

max
α

W (α) =

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjk(xi, xj) (1.37)

subject to αi ≥ 0, i = 1, . . . , m, and

m
∑

i=1

αiyi = 0. (1.38)

Figure 1.5 shows an example of this approach, using a Gaussian radial basis

function kernel. We will study the different possibilities for the kernel function in

detail below (Chapters ?? and Chapter ??).

In practice, a separating hyperplane may not exist, e.g., if a high noise level causes

a large overlap of the classes. To allow for the possibility of examples violatingSoft Margin

Hyperplane (1.26), one introduces slack variables [9, 35, 28]

ξi ≥ 0, i = 1, . . . , m (1.39)

in order to relax the constraints (1.26) to

yi(〈w,xi〉 + b) ≥ 1 − ξi, i = 1, . . . , m. (1.40)

A classifier which generalizes well is then found by controlling both the classifier

capacity (via ‖w‖) and the sum of the slacks
∑

i ξi. The latter can be shown to

provide an upper bound on the number of training errors.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.5 Support Vector Classification 15

Figure 1.5 Example of an SV classifier found by using a radial basis function
kernel k(x, x′) = exp(−‖x− x′‖2) (here, the input space is X = [−1, 1]2). Circles
and disks are two classes of training examples; the middle line is the decision
surface; the outer lines precisely meet the constraint (1.26). Note that the SVs
found by the algorithm (marked by extra circles) are not centers of clusters, but
examples which are critical for the given classification task. Grey values code
|
∑

m

i=1 yiαik(x, xi) + b|, that is, the modulus of the argument of the decision
function (1.36). The top and the bottom lines indicate places where it takes the
value 1, as enforced by the separation constraints (from [26]).

One possible realization of such a soft margin classifier is obtained by minimizing

the objective function

τ(w, ξ) =
1

2
‖w‖2 + C

m
∑

i=1

ξi (1.41)

subject to the constraints (1.39) and (1.40), where the constant C > 0 determines

the trade-off between margin maximization and training error minimization. Incor-

porating a kernel, and rewriting it in terms of Lagrange multipliers, this again leads

to the problem of maximizing (1.37), subject to the constraints

0 ≤ αi ≤ C, i = 1, . . . , m, and
m
∑

i=1

αiyi = 0. (1.42)

The only difference from the separable case is the upper bound C on the Lagrange

multipliers αi. This way, the influence of the individual patterns (which could be

outliers) gets limited. As above, the solution takes the form (1.36). The threshold

b can be computed by exploiting the fact that for all SVs xi with αi < C, the slack

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

16 A Tutorial Introduction

variable ξi is zero (this again follows from the KKT conditions), and hence

m
∑

j=1

αjyjk(xi, xj) + b = yi. (1.43)

Geometrically speaking, choosing b amounts to shifting the hyperplane, and (1.43)

states that we have to shift the hyperplane such that the SVs with zero slack

variables lie on the ±1 lines of Figure 1.3.

Another possible realization of a soft margin variant of the optimal hyperplane

uses the more natural ν-parameterization. In it, the parameter C is replaced by a

parameter ν ∈ (0, 1] which can be shown to provide lower and upper bounds for the

fraction of examples that will be SVs and those that will come to lie on the wrong

side of the hyperplane, respectively. It uses a primal objective function with the

error term
(

1
νm

∑

i ξi

)

−ρ instead of C
∑

i ξi (cf. (1.41)), and separation constraints

that involve a margin parameter ρ,

yi(〈w,xi〉 + b) ≥ ρ − ξi, i = 1, . . . , m, (1.44)

which itself is a variable of the optimization problem. The dual can be shown to

consist of maximizing the quadratic part of (1.37), subject to 0 ≤ αi ≤ 1/(νm),
∑

i αiyi = 0 and the additional constraint
∑

i αi = 1. We shall return to these

methods in more detail in Section ??.

1.6 Support Vector Regression

Let us turn to a problem slightly more general than pattern recognition. Rather than

dealing with outputs y ∈ {±1}, regression estimation is concerned with estimating

real-valued functions.

To generalize the SV algorithm to that case, an analog of the soft margin is

constructed in the space of the target values y (note that we now have y ∈ R) by

using Vapnik’s ε-insensitive loss function [35] (Figure 1.6, for details, see Chaptersε-Insensitive

Loss ?? and ??) . It quantifies the loss incurred by predicting f(x) instead of y as

|y − f(x)|ε = max{0, |y − f(x)| − ε}. (1.45)

To estimate a linear regression

f(x) = 〈w,x〉 + b (1.46)

one minimizes

1

2
‖w‖2 + C

m
∑

i=1

|yi − f(xi)|ε. (1.47)

Note that the term ‖w‖2 is the same as in pattern recognition (cf. (1.41)); for

further details, cf. Chapter ??.

We can transform this into a constrained optimization problem by introducing,

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.6 Support Vector Regression 17

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

y

x

y − f(x)

loss

Figure 1.6 In SV regression, a tube with radius ε is fitted to the data. The
trade-off between model complexity and points lying outside of the tube (with
positive slack variables ξ) is determined by minimizing (1.48).

akin to the soft margin case, slack variables. In the present case, we need two types

of slack variables for the two cases f(xi) − yi > ε and yi − f(xi) > ε, respectively.

We denote them by ξ and ξ∗, respectively, and collectively refer to them as ξ(∗).

The optimization problem consists of finding

min
w∈H,ξ(∗)∈Rm,b∈R

τ(w, ξ, ξ∗) =
1

2
‖w‖2 + C

m
∑

i=1

(ξi + ξ∗i) (1.48)

subject to f(xi) − yi ≤ ε + ξi (1.49)

yi − f(xi) ≤ ε + ξ∗i (1.50)

ξi, ξ
∗
i ≥ 0 (1.51)

for all i = 1, . . . , m.

Note that according to (1.49) and (1.50), any error smaller than ε does not require

a nonzero ξi or ξ∗i and hence does not enter the objective function (1.48).

Generalization to kernel -based regression estimation is carried out in complete

analogy to the case of pattern recognition. Introducing Lagrange multipliers, one

thus arrives at the following optimization problem: for C > 0, ε ≥ 0 chosen a priori,

maximize W (α, α∗) = −ε
m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi

−
1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj) (1.52)

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , m, and

m
∑

i=1

(αi − α∗
i) = 0.(1.53)

The regression estimate takes the formRegression

Function

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

18 A Tutorial Introduction

f(x) =

m
∑

i=1

(α∗
i − αi)k(xi, x) + b, (1.54)

where b is computed using the fact that (1.49) becomes an equality with ξi = 0 if

0 < αi < C, and (1.50) becomes an equality with ξ∗i = 0 if 0 < α∗
i < C (for details,

see Chapter ??). The solution thus looks quite similar to the pattern recognition

case (cf. (1.36) and Figure 1.7).

A number of extensions of this algorithm are possible. From an abstract point

of view, we just need some target function which depends on the vector (w, ξ) (cf.

(1.48)). There are multiple degrees of freedom for constructing it, including some

freedom how to penalize, or regularize. For instance, more general loss functions

can be used for ξ, leading to problems that can still be solved efficiently [31, 29], cf.

Chapter ??. Moreover, norms other than the 2-norm ‖.‖ can be used to regularize

the solution (see Chapters ?? and ??).

Finally, the algorithm can be modified such that ε need not be specified a priori.

Instead, one specifies an upper bound 0 ≤ ν ≤ 1 on the fraction of points allowed

to lie outside the tube (asymptotically, the number of SVs) and the corresponding

ε is computed automatically. This is achieved by using as primal objective functionν-SV Regression

1

2
‖w‖2 + C

(

νmε +

m
∑

i=1

|yi − f(xi)|ε

)

(1.55)

instead of (1.47), and treating ε ≥ 0 as a parameter that we minimize over. For

more details, cf. Chapter ??.

1.7 Kernel Principal Component Analysis

The kernel method for computing dot products in feature spaces is not restricted

to SV machines. Indeed, it has been pointed out that it can be used to develop

nonlinear generalizations of any algorithm that can be cast in terms of dot products,

such as principal component analysis (PCA).

Principal component analysis is perhaps the most common feature extraction

algorithm; for details, see Chapter ??. The term feature extraction commonly refers

to procedures for extracting (real) numbers from patterns which in some sense

represent the crucial information contained in the latter.

PCA in feature space leads to an algorithm called kernel PCA, carrying out

linear PCA in the feature space H. By the solution of an eigenvalue problem, the

algorithm computes nonlinear feature extraction functions

fn(x) =

m
∑

i=1

αn
i k(xi, x), (1.56)

where, up to a normalization, the αn
i are the components of the n-th eigenvector of

the kernel matrix K := (k(xi, xj))ij .

In a nutshell, this can be understood as follows. To do PCA in H, we wish to

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.8 Empirical Results and Implementations 19

find eigenvectors v and eigenvalues λ of the so-called covariance matrix C in the

feature space, where

C :=
1

m

m
∑

i=1

Φ(xi)Φ(xi)
>. (1.57)

Here, Φ(xi)
> denotes the the transpose of Φ(xi) (see Section ??).

In the case when H is very high dimensional, the computational costs of doing

this directly are prohibitive. Fortunately, one can show that all solutions to

Cv = λv (1.58)

with λ 6= 0 must lie in the span of Φ-images of the training data. Thus, we may

expand the solution v as

v =

m
∑

i=1

αiΦ(xi), (1.59)

thereby reducing the problem to that of finding the αi. It turns out that this leads

to a dual eigenvalue problem for the expansion coefficients,Kernel PCA

Eigenvalue

Problem
mλα = Kα, (1.60)

where α = (α1, . . . , αm)>.

To extract nonlinear features from a test point x, we compute the dot product

between Φ(x) and the n-th eigenvector in feature space byFeature

Extraction

〈vn, Φ(x)〉 =

m
∑

i=1

αn
i k(xi, x). (1.61)

As in the case of SVMs, the architecture can be visualized by Figure 1.7. Usually,

this will be computationally far less expensive than taking the dot product in the

feature space explicitly. A toy example is shown in Chapter ?? (Figure ??).

1.8 Empirical Results and Implementations

Having described the basics of SV machines, we now summarize some empirical

findings. By the use of kernels, the optimal margin classifier was turned into a

high-performance classifier. Surprisingly, it was noticed that the polynomial kernelExamples of

Kernels
k(x, x′) = 〈x, x′〉

d
, (1.62)

the Gaussian

k(x, x′) = exp

(

−
‖x − x′‖2

2 σ2

)

, (1.63)

and the sigmoid

k(x, x′) = tanh (κ 〈x, x′〉 + Θ) , (1.64)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

20 A Tutorial Introduction

Σ

. . .

output σ (Σ υi k (x,xi))

weightsυ1 υ2 υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) = k (x,xi)(.) (.) (.)

Φ(x1) Φ(x2)

 σ ()

Figure 1.7 Architecture of SV machines and related kernel methods. The
input x and the expansion patterns (SVs) xi (we assume that we are dealing
with handwritten digits) are nonlinearly mapped (by Φ) into a feature space H

where dot products are computed. By the use of the kernel k, these two layers
are in practice computed in one single step. The results are linearly combined
by weights υi, found by solving a quadratic program (in pattern recognition,
υi = yiαi; in regression estimation, υi = α∗

i − αi) or an eigenvalue problem
(kernel PCA). The linear combination is fed into the function σ (in pattern
recognition, σ(x) = sgn (x + b); in regression estimation, σ(x) = x + b; in kernel
PCA, σ(x) = x).

with suitable choices of d ∈ N and σ, κ, Θ ∈ R (here, X ⊂ R
N) empirically led to

SV classifiers with very similar accuracies and SV sets (Chapter ??). In this sense,

the SV set seems to characterize (or compress) the given task in a manner which

to some extent is independent of the type of kernel (that is, the type of classifier)

used.

Initial work at AT&T Bell Labs focused on OCR (optical character recognition),Applications

a problem where the two main issues are classification accuracy and classification

speed. Consequently, some effort went into the improvement of SV machines on

these issues, leading to the Virtual SV method for incorporating prior knowledge

about transformation invariances by transforming SVs (Chapter ??), and the

Reduced Set method (Chapter ??) for speeding up classification. This way, SV

machines soon became competitive with the best available classifiers on OCR and

other object recognition tasks [8], and later even achieved the world record on the

main handwritten digit benchmark dataset [11].

An initial weakness of SV machines, less apparent in OCR applications which areImplementation

characterized by low noise levels, was that the size of the quadratic programming

problem (Chapter ??) scaled with the number of support vectors. This was due to

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

1.8 Empirical Results and Implementations 21

the fact that in (1.37), the quadratic part contained at least all SVs — the common

practice was to extract the SVs by going through the training data in chunks while

regularly testing for the possibility that some of the patterns that were initially

not identified as SVs turn out to become SVs at a later stage. This procedure is

referred to as chunking; note that without chunking, the size of the matrix would

be m × m, where m is the number of all training examples.

What happens if we have a high-noise problem? In this case, many of the slack

variables ξi will become nonzero, and all the corresponding examples will become

SVs. For this case, decomposition algorithms were proposed [23, 24], based on the

observation that not only can we leave out the non-SV examples (the xi with

αi = 0) from the current chunk, but also some of the SVs, especially those that hit

the upper boundary (αi = C). The chunks are usually dealt with using quadratic

optimizers. Among the optimizers used for SVMs are LOQO [33], MINOS [22], and

variants of conjugate gradient descent, such as the optimizers of Bottou [25] and

Burges [7]. Several public domain SV packages and optimizers are listed on the

web page http://www.kernel-machines.org. For more details on implementations,

see Chapter ??.

Once the SV algorithm had been generalized to regression, researchers started

applying it to various problems of estimating real-valued functions. Very good

results were obtained on the Boston housing benchmark [32], and on problems of

times series prediction (see [21, 20, 18]). Moreover, the SV method was applied

to the solution of inverse function estimation problems ([40]; cf. [37, 42]). For

overviews, the interested reader is referred to [7, 27, 30, 10].

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

References

[1] M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote Control,
25:821–837, 1964.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale–sensitive Dimensions,
Uniform Convergence, and Learnability. Journal of the ACM, 44(4):615–631, 1997.

[3] M. Anthony and P. Bartlett. A Theory of Learning in Artificial Neural Networks. Cambridge
University Press, 1999.

[4] P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines
and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods — Support Vector Learning, pages 43–54, Cambridge, MA,
1999. MIT Press.

[5] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer-
Verlag, New York, 1984.

[6] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pages 144–152, Pittsburgh, PA, July 1992. ACM Press.

[7] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

[8] C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector
learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems 9, pages 375–381, Cambridge, MA, 1997. MIT Press.

[9] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 – 297, 1995.

[10] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, Cambridge, UK, 2000.

[11] D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine
Learning, 2001. Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet
Propulsion Laboratory, Pasadena, CA, 2000.

[12] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Number 31 in Applications of mathematics. Springer, New York, 1996.

[13] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York,
1973.

[14] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, San Diego,
2nd edition, 1990.

[15] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1986.

[16] I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large VC-dimension
classifiers. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems, volume 5, pages 147–155. Morgan Kaufmann, San
Mateo, CA, 1993.

[17] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts.
In Proc. of the 31st Symposium on the Foundations of Comp. Sci., pages 382–391. IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[18] D. Mattera and S. Haykin. Support vector machines for dynamic reconstruction of a chaotic
system. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods — Support Vector Learning, pages 211–242, Cambridge, MA, 1999. MIT Press.

[19] J. Mercer. Functions of positive and negative type and their connection with the theory of

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

24 REFERENCES

integral equations. Philos. Trans. Roy. Soc. London, A 209:415–446, 1909.

[20] S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time series using a
support vector machine. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural
Networks for Signal Processing VII — Proceedings of the 1997 IEEE Workshop, pages 511 –
520, New York, 1997. IEEE.

[21] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting
time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, and J.-D.
Nicoud, editors, Artificial Neural Networks — ICANN’97, pages 999 – 1004, Berlin, 1997.
Springer Lecture Notes in Computer Science, Vol. 1327.

[22] B. A. Murtagh and M. A. Saunders. MINOS 5.4 user’s guide. Technical Report SOL 83.20,
Stanford University, 1993.

[23] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector
machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks for
Signal Processing VII — Proceedings of the 1997 IEEE Workshop, pages 276 – 285, New
York, 1997. IEEE.

[24] J. Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[25] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola. Support
vector machine - reference manual. Technical Report CSD-TR-98-03, Department of Com-
puter Science, Royal Holloway, University of London, Egham, UK, 1998. SVM available at
http://svm.dcs.rhbnc.ac.uk/.

[26] B. Schölkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector learning
machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors,
Artificial Neural Networks — ICANN’96, pages 47 – 52, Berlin, 1996. Springer Lecture Notes
in Computer Science, Vol. 1112.

[27] B. Schölkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods — Support
Vector Learning. MIT Press, Cambridge, MA, 1999.

[28] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207 – 1245, 2000.

[29] A. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators
and support vector kernels. Neural Networks, 11:637–649, 1998.

[30] A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large Margin
Classifiers. MIT Press, Cambridge, MA, 2000.

[31] A. J. Smola and B. Schölkopf. On a kernel–based method for pattern recognition, regression,
approximation and operator inversion. Algorithmica, 22:211–231, 1998.

[32] M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston. Support
vector regression with ANOVA decomposition kernels. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages
285–292, Cambridge, MA, 1999. MIT Press.

[33] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic
Publishers, Hingham, MA, 1997.

[34] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka,
Moscow, 1979. (English translation: Springer Verlag, New York, 1982).

[35] V. Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 1995.

[36] V. Vapnik. Statistical Learning Theory. Wiley, NY, 1998.

[37] V. Vapnik. Three remarks on the support vector method of function estimation. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 25–42, Cambridge, MA, 1999. MIT Press.

[38] V. Vapnik and A. Chervonenkis. A note on one class of perceptrons. Automation and
Remote Control, 25, 1964.

[39] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka,
Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeich-
enerkennung, Akademie–Verlag, Berlin, 1979).

[40] V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation,
regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors,

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

REFERENCES 25

Advances in Neural Information Processing Systems 9, pages 281–287, Cambridge, MA, 1997.
MIT Press.

[41] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automa-
tion and Remote Control, 24, 1963.

[42] J. Weston. Leave–one–out support vector machines. In Proceedings of the International
Joint Conference on Artifical Intelligence, Sweden, 1999.

[43] R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regular-
ization networks and support vector machines via entropy numbers of compact operators.
Technical Report 19, NeuroCOLT, http://www.neurocolt.com, 1998. Accepted for publica-
tion in IEEE Transactions on Information Theory.

Index

ν-property, 199, 230, 255

σ-algebra, 574

k-means, 505

p-convex hulls, 443

Abalone dataset, 482

Abalone datasets, 285

adaptive loss, 73

AdaTron, 306

algorithm

regularized principal manifolds,

511

almost everywhere, 587

annealed entropy, 136

approximation

greedy, 430

ARD

see automatic relevance determi-

nation, 467

automatic relevance determination,

467

ball

unit, 587

Banach space, 583

barrier method, 172

basis, 579

canonical, 579

expansion, 582

Hilbert space, 584

orthonormal, 582

Bayes point, 216

Bayes classifier, 5

Bernoulli trial, 126

Best Element of a Set, 172

bias-variance dilemma, 124

bilinear form, 581

symmetric, 581

bound

Chernoff, 127

Hoeffding, 127

leave-one-out, 192

margin, 188

bracket cover, 519

cache, 278

capacity, 7, 413

cases, 1

Cauchy sequence, 583

Cauchy-Schwartz inequality, 581

centered

covariance matrix, 440

chunking, 291

classification

binary, 1

Gaussian process, 486

multi-class, 203

Compression, 532

compression, 504

condition, 154

condition of a

matrix, 154

conditional probability, 463

conjugate gradient descent, 154, 157

consistency, 129

constrained

optimization, 159

constraint, 11

constraint qualification

optimization, 161

continuous, 268

Lipschitz, 268

uniformly, 268

contrast function, 443

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

28 Index

convergence

in probability, 130

uniform, 130

convex combination, 579

convex set, 145

convexity constraint, 442

coordinate descent, 511

covariance

function, 28

covariance matrix, 408

covering number, 588

covering number, 133

cross validation, 209

data

iid, 7, 244

test, 7

training, 1

data dependent

prior distribution, 487

data set

USPS, 235, 420, 432, 543

dataset

Boston housing, 264

MNIST, 558

Santa Fe, 266

small MNIST, 559

USPS, 558

decision function, 13

decision function, 5

decomposition

sparse, 440

decomposition algorithm, 20

deflation method, 156

denoising, 532

density, 576

class-conditional, 434

density estimation, 62

density estimation, 535

differentiable

Kuhn Tucker conditions, 163

dimension, 579

dimensionality reduction, 413

direct sum, 390

discriminant

Fisher, 427

kernel Fisher, 427

kernel Fisher QP, 429

distribution, 574

distribution function, 576

divide and conquer, 451

domain, 1, 27, 573

dot product, 2, 581

canonical, 2

space, 581

eigenvalue, 583

eigenvector, 583

empirical

quantization error, 504

entropy number, 587

equivalence relation, 51

error

false negative, 551

margin, 187, 199

punt, 204

reject, 204

training, 7

estimate

density, 444

estimator, 64

almost unbiased, 192

quantile, 257

trimmed mean, 257

event, 573

evidence, 464

example, 575

expected

quantization error, 504

extreme point, 446

extreme point, 147

feature, 407

extraction, 410, 439, 441

map, 30

polynomial, 24

product, 24

space, 408, 422

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Index 29

feature space, 3

feature map

continuity, 38

feature space, 36

Fisher information, 65

Fisher score, 398

Fletcher-Reeves method, 157

Gaussian approximation, 467

Gaussian process, 472

generalization bound, 8

Generalized Portrait, 9

generative models, 514

generative topographic map, 516

global minimum, 147

gradient descent, 303

gradient descent, 152

Gram-Schmidt orthonormalization,

585

graphical model, 397

greedy algorithm, 452

greedy selection, 283

Growth function, 8

growth function, 136

Heavyside function, 294

hidden Markov model, 397

Hilbert space, 583

reproducing kernel, 442

separable, 583

Hilbert space, 32

reproducing kernel, 32

hit rate, 278

Hough transform, 216

Huber’s loss, 69

hyperparameter, 464

hyperplane, 4

canonical, 10

optimal, 9

soft margin, 14

supporting, 229

Implementation, 273

induction principle, 125

infeasible

optimization problem, 166

inputs, 1

integral operator, 28

interior point, 286

interior point methods, 168

intersection of

convex set, 146

interval cutting, 150

invariance

translation, 42

unitary, 41

Karush-Kuhn-Tucker conditions, 11

kernel, 2, 28

B-spline, 41

R-convolution, 390

admissible, 28

ANOVA, 265, 390

codon-improved, 396

conditionally positive definite, 44

direct sum, 390

examples, 41

feature analysis, 439

Fisher, 397

Gaussian, 41, 42, 390

Hilbert space representation, 27

infinitely divisible, 49

inhomogeneous polynomial, 41

jittered, 343

locality-improved, 396

map

empirical, 38

Mercer, 33

pairwise, 39

reproducing, 30

Mercer, 28

natural, 397–399

PCA, 585

pd, 29

polynomial, 25, 41

positive definite, 28

properties, 41

RBF, 42

reproducing, 28, 31

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

30 Index

Sigmoid, 41

sparse vector, 391

strictly positive definite, 29

symmetric, 2

tanh, 41

tensor product, 389

trick, 13, 32, 189, 195, 408

kernels

for structured objects, 390

KKT, see Karush-Kuhn-Tucker

KKT gap, 275

KKT gap, 164

Kronecker delta, 579

Kuhn Tucker conditions, 160

labels, 1

Lagrange multipliers, 11

Lagrange function, 160

Lagrangian, 11

Lagrangian SVM, 308

Laplace approximation, 483

Laplacian process, 487

learning from examples, 1

learning rate, 522

leave-one-out, 241

length constraint

principal curves, 510

likelihood, 62

linear combination, 579

linear independence, 579

linear map, 579

Lipschitz continuous, 519

log-likelihood, 398

logistic regression, 57, 461

loss

ε-insensitive, 243

ε-tube, 243

loss function, 56

loss function, 16, 17

ε-insensitive, 16

zero-one, 7

MAP

see maximum a posteriori esti-

mate, 466

margin

computational considerations, 198

matrix, 580

adjoint, 41

conditionally positive definite, 44

decoding, 205

Gram, 28

kernel, 28

positive definite, 28

product, 580

strictly positive definite, 29

tangent covariance, 335

transposed, 580

matrix inversion lemma

see Sherman-Woodbury-Morrison

formula, 484

maximum a posteriori estimate, 466

maximum likelihood, 63

measure

empirical, 577

metric, 581

Minimum description length, 187

misclassification error, 56

natural matrix, 399

necessary

Kuhn Tucker conditions, 162

Newton’s method, 150

noise

heteroscedastic, 263, 270

input, 186

parameter, 187

pattern, 186

norm, 580

operator, 587

semi, 580

normalized

projection, 448

notation, 588

objective function, 11

oil flow dataset, 523

online learning, 310

operator, 579

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Index 31

bounded, 587

compact, 588

norm, 587

optical character recognition, 20

optical character recognition, 420

optimal ν, 75

optimality conditions

optimization, 160

optimization

sequential minimal, 226

optimization problem

dual, 192

outlier, 228

outputs, 1

overfitting, 125

Parzen windows, 5, 224

pattern, 1

pattern recognition, 1

PCA, see principal component anal-

ysis

oriented, 337

Peano curve, 517

perceptron, 186

Polak-Ribiere method, 157

pre-image

approximate, 531

exact, 530

predictor corrector method, 157

principal component analysis, 407,

440

kernel, 18, 410

linear, 408

nonlinear, 409, 414

prior

improper, 467

probability, 573

conditional, 433

distribution, 574

measure, 574

posterior, 433

space, 575

programming problem

dual, 12, 13, 16

primal, 10, 15, 16

programming problem

dual, 165

linear, 165

quadratic, 165

projection pursuit, 443

kernel, 445

proof

see pudding, 151

pseudocode

Lagrangian SVM, 310

pudding

see proof, 151

quantile, 73, 451

multidimensional, 220

quantization error, 504

random evaluation, 174

random subset selection, 281

random subsets, 172

random evaluation, 450

rank-1 update, 282

Rayleigh Coefficient, 427

reduced set method, 20

reduced KKT system, 169

reduced KKT-system, 287

reduced set, 250, 530

Burges method, 547

expansion, 539

regression, 16

ν-LP, 262

regularization, 412

regularization operator

Fisher, 400

natural, 399

regularized

quantization functional, 508

regularized principal manifolds, 503

Relevance Vector Machines, 494

relevance vector machine, 250

Replacing the Metric, 155

restart, 277

risk, 125

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

32 Index

actual, 7

empirical, 7, 125

functional, 82, 135

regularized, 469

risk bound, 134

robust estimator, 69

RPM, see regularized principal man-

ifolds

RS, see reduced set

RVM

see Relevance Vector Machines,

494

sample, 6, 575

iid, 575

sample mean, 505

score function, 65

score map, 398

selectin rule

SMO, 302

semi-norm, 580

Sequential Minimal Optimization,

295

set

orthonormal, 582

SGMA

see sparse greedy matrix approx-

imation, 279

shattering, 7, 133

shattering coefficient, 133

Sherman Woodbury Morrison, 290

Sherman-Woodbury-Morrison formula,

484

significant figures, 171

similarity measure, 2

slack variable, 198

slack variables, 14, 589

SMO

see Sequential Minimal Opti-

mization, 295

SMO classification, 297

smoothing

kernel, 444

soft margin loss, 57

space

linear, 578

vector, 578

version, 216

span, 579

sparse greedy algorithm, 176

sparse greedy approximation, 479

sparse greedy matrix approximation,

279

sparsity, 429

SRM, see structural risk minimiza-

tion

statistical manifold, 398

stopping criterion, 274

structural risk minimization, 135

subset selection, 293

support vector

expansion, 247

pattern recognition, 12

support vector, 6, 11

expansion, 11

mechanical interpretation, 12

regression, 15

regression using ν, 17

set, 20

virtual, 20

supremum

essential, 587

SVC

primal reformulation, 546

symbols, 588

symmetrization, 133

target, 1

Taylor series expansion, 150

tensor product, 389

test error, 59

text categorization, 212

threshold, 15, 196, 199, 202, 300

topological space, 38

training

example, 7

transduction, 59

union bound, 520

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2001/03/02 20:32

Index 33

union bound, 132

unnormalized

projection, 448

USPS dataset, 285

variable

dual, 11

primal, 11

VC

entropy, 136

VC dimension, 7

VC entropy, 8

VC dimension, 137

vector quantization, 506

virtual examples, 323, 422

working set, 291

