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Abstract. We present results from a large-scale empirical comparison
between ten learning methods: SVMs, neural nets, logistic regression,
naive bayes, memory-based learning, random forests, decision trees, bagged
trees, boosted trees, and boosted stumps. We evaluate the methods on
binary classification problems using nine performance criteria: accuracy,
squared error, cross-entropy, ROC Area, F-score, precision/recall break-
even point, average precision, lift, and calibration. Because some models
(e.g. SVMs and boosted trees) do not predict well-calibrated probabili-
ties, we compare the performance of the algorithms both before and after
calibrating their predictions with Platt Scaling and Isotonic Regression.
Before scaling, the models with the best overall performance are neural
nets, bagged trees, and random forests. After scaling, the best models
are boosted trees, random forests, and unscaled neural nets.

1 Introduction

There are few comprehensive empirical studies comparing learning algorithms.
STATLOG is perhaps the best known study [1]. STATLOG was very compre-
hensive, but since it was performed new learning algorithms have emerged (e.g.,
bagging, boosting, SVMs, random forests) that have excellent performance. Also,
learning algorithms are now evaluated on a broader set of performance metrics.
For example, the IR and NLP communities use Precision/Recall metrics, ROC
is used in medical informatics and has become popular in machine learning, etc.
It is important to evaluate learning algorithms on a variety of performances met-
rics because different learning algorithms are designed to to optimize different
criteria (e.g. SVMs and boosting optimize accuracy while neural nets typically
optimize squared error) and it is not uncommon for an algorithm to have optimal
performance on one performance metric and be suboptimal on another.

This paper presents the results of a large-scale empirical comparison between
ten supervised learning algorithms using nine performance criteria. The ten al-
gorithms are: SVMs, neural nets, logistic regression, naive bayes, memory-based
learning, random forests, decision trees, bagged trees, boosted trees, and boosted
stumps. We evaluate performance with accuracy, F-score, Lift, ROC Area, av-
erage precision, precision/recall break-even point, squared error, cross-entropy,
and probability calibration. We test many variations and parameter settings for
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each algorithm and select for each metric the variation/settings that perform
best. For example, we test SVMs with many kernels and kernel parameters and
report the performance of the kernel that has the best accuracy, the kernel that
has best AUC, etc. About 2000 models are tested on each problem.

Some of the results are surprising. To preview: neural networks give the
best average performance across all nine metrics and test problems. They are
closely followed by bagged trees and random forests. Boosted trees have the best
performance on accuracy, ROC area, average precision and break-even point,
but perform poorly on squared error, cross-entropy and calibration. SVMs also
have poor squared error, cross-entropy and calibration, but do well on other
metrics. Boosting stumps yields significantly worse performance than boosting
full decision trees on most problems. Memory-based learning performs better
than single decision trees and boosted stumps, but is not competitive with the
best methods. Because of their limited expressiveness, logistic regression and
naive bayes have the worst overall performance.

The poor squared error, cross-entropy and calibration of algorithms such as
boosted trees and SVMs is easy to explain. These three metrics interpret pre-
dictions as posterior probabilities, but SVMs and boosted trees are not designed
to predict probabilities. Because of this, we compare the performance of each
algorithm both before and after calibrating its predictions with Platt Scaling
and Isotonic Regression. Calibration dramatically improves the performance of
boosted trees, boosted stumps, SVMs and naive bayes on the probability metrics.
After calibration, boosted trees have the best performance across the nine met-
rics, now outperforming neural nets. Calibration also improves the performance
of random forests moving them to second place overall. Neural nets, bagged
trees, memory-based learning and logistic regression, however, receive little or
no benefit from calibration.

2 Methodology

2.1 Learning Algorithms

We explore the parameter space and variations of each learning algorithm as
thoroughly as is computationally feasible. This section summarizes the parame-
ters used for each learning algorithms and may be skipped.
SVMs: we use the following kernels in SVMLight [2]: linear, polynomial de-
gree 2 & 3, radial with width {0.001,0.005,0.01,0.05,0.1,0.5,1,2} and vary the
regularization parameter by factors of ten from 10−7 to 103 with each kernel.
ANN we train neural nets with gradient descent backprop and vary the number
of hidden units {1,2,4,8,32,128} and the momentum {0,0.2,0.5,0.9}. We don’t
use validation sets for weight decay or early stopping. Instead, we stop the nets
at many different epochs so that some nets underfit or overfit.
Logistic Regression (LOGREG): we train unregularized and regularized
models, varying the regularization parameter by factors of 10 from 10−8 to 104.
Naive Bayes (NB): we use the Weka implementation. We handle continuous
attributes three ways: model them as a single normal, model them with kernel
estimation, or discretize them using supervised discretization.
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KNN: we use 26 values of K ranging from K = 1 to K = |trainset|. We use
KNN with Euclidean distance and Euclidean distance weighted by gain ratio.
We also use distance weighted KNN, and locally weighted averaging. The kernel
widths for locally weighted averaging vary from 20 to 210 times the minimum
distance between any two points in the train set.
Random Forests (RF): we use the Weka implementation. The forests have
1024 trees, and the size of the feature set to consider at each split is 1,2,4,6 or 8.
Decision trees (DT): we vary the splitting criterion, pruning options, and
smoothing (Laplacian or Bayesian smoothing). We use all of the tree models in
Buntine’s IND package: BAYES, ID3, CART, CART0, C4, MML, and SMML.
We also generate trees of type C44LS (C4 with no pruning and Laplacian smooth-
ing), C44BS (C44 with Bayesian smoothing), and MMLLS (MML with Laplacian
smoothing). See [3] for a description of C44LS.
Bagged trees (BAG-DT): we bag 100 trees of each type described above.
With boosted trees (BST-DT) we boost each tree type as well. Boosting can
overfit, so we consider boosted trees after 2,4,8,16,32,64,128,256,512,1024 and
2048 steps of boosting. With boosted stumps (BST-STMP) we boost single
level decision trees generated with 5 different splitting criteria, each boosted for
2,4,8,16,32,64,128,256,512,1024,2048,4096,8192 steps.

With LOGREG, ANN, SVM and KNN we scale attributes to 0 mean 1 std.
With DT, RF, NB, BAG-DT, BST-DT and BST-STMP we don’t scale the data.
In total, we train about 2000 different models in each trial on each problem.

2.2 Performance Metrics

We divide the nine performance metrics into three groups: threshold metrics,
ordering/rank metrics and probability metrics.

For the threshold metrics, accuracy (ACC), F-score (FSC) and lift (LFT),
it is not important how close a prediction is to a threshold, only if it is above
or below threshold. Usually ACC and FSC have a fixed threshold (we use 0.5).
For lift (see [4] for a description of Lift), often a fixed percent, p, of cases are
predicted as positive and the rest as negative (we use p = 25%).

The ordering/rank metrics depend only on the ordering of the cases, not the
actual predicted values. As long as ordering is preserved, it makes no difference
if predicted values fall between 0 and 1 or 0.89 and 0.90. These metrics measure
how well the positive cases are ordered before negative cases and can be viewed
as a summary of model performance across all possible thresholds. The rank
metrics we use are area under the ROC curve (ROC), average precision (APR),
and precision/recall break even point (BEP). See [5] for a discussion of ROC
from a machine learning perspective.

The probability metrics are minimized (in expectation) when the predicted
value for each case coincides with the true conditional probability of that case
being positive class. The probability metrics are squared error (RMS), cross-
entropy (MXE) and calibration (CAL). CAL measures the calibration of a model:
if a model predicts values near 0.85 for a number of cases, then about 85% of
those cases should prove to be positive class if the model is well calibrated at
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p = 0.85. CAL is calculated as follows: Order all cases by their predictions and
put cases 1-100 in the same bin. Calculate the percentage of these cases that
are true positives. This approximates the true probability that these cases are
positive. Then calculate the mean prediction for these cases. The absolute value
of the difference between the observed frequency and the mean prediction is the
calibration error for these 100 cases. Now take cases 2-101, 3-102, ... and compute
the errors in the same way. CAL is the mean of all these binned calibration errors.

2.3 Comparing Across Performance Metrics

Performance metrics such as accuracy or squared error have range [0, 1], while
others (lift, cross entropy) range from 0 to p where p depends on the data set. For
some metrics lower values indicate better performance. For others higher values
are better. Metrics such as ROC area have baseline rates that are independent
of the data, while others such as accuracy have baseline rates that depend on
the data. If baseline accuracy is 0.98, an accuracy of 0.981 probably is not good
performance, but on another problem the Bayes optimal rate might be 0.60 and
achieving an accuracy of 0.59 might be excellent performance.

To permit averaging across metrics and problems, performances must be
placed on a comparable scale. One way to do this is to normalize the performance
for each problem and metric from 0 to 1, where 0 is baseline performance and
1 is Bayes optimal. Because we cannot estimate the Bayes optimal rate on real
problem we use the best observed performance as a proxy. We use the following
baseline model: predict p for every case, where p is the percent of positives in
the test set. If a model performs worse than baseline, its normalized score will be
negative. CAL, the metric used to measure probability calibration, is unusual in
that the baseline model has excellent calibration.1 This creates a problem when
normalizing CAL scores because the baseline model and Bayes optimal model
have similar CAL scores. Unlike the other measures, CAL is scaled so that the
mean observed CAL score is 0.0 and the best observed CAL score is 1.0.

One disadvantage of normalized scores is that recovering a raw performance
requires knowing what performances define the top and bottom of the scale, and
as new best models are found the top of the scale may change. We will make the
performances that define the top and bottom of the scales for each problem and
metric available on the web so that others may compare to our results.

2.4 Calibration Methods

Some of the learning algorithms we examine are not designed to predict prob-
abilities. For example the outputs of an SVM are just normalized distances to
the decision boundary. And naive bayes models are known to predict poorly
calibrated probabilities because of the unrealistic independence assumption.

1 Because of this, CAL typically is not used alone, but is used in conjunction with other
measures such as ROC or RMS to insure that models have both good discrimination
and good calibration. This does not mean CAL is a poor metric – it is effective at
distinguishing poorly calibrated models from well calibrated models.
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Table 1. Description of problems

problem #attr train size test size %poz

adult 14/104 4000 35222 25%
covt 54 4000 25000 36%
ltr.p1 16 4000 14000 3%
ltr.p2 16 4000 14000 53%
medis 63 4000 8199 11%
mg 124 4000 12807 17%
slac 59 4000 25000 50%
hs 200 4000 4366 24%

A number of methods have been proposed for mapping predictions to poste-
rior probabilities. Platt [6] proposed transforming SVM predictions to posterior
probabilities by passing them through a sigmoid. Platt’s method also works well
for boosted trees and boosted stumps. A sigmoid, however, might not be the
correct transformation for all learning algorithms.

Zadrozny and Elkan[7, 8] used a more general method based on Isotonic Re-
gression [9] to calibrate predictions from SVMs, naive bayes, boosted naive bayes,
and decision trees. Isotonic Regression is more general in that the only restriction
it makes is that the mapping function be isotonic (monotonically increasing). A
standard algorithm for Isotonic Regression that finds a piecewise constant solu-
tion is the pair-adjacent violators (PAV) algorithm [10]. To calibrate models, we
use the same 1000 points validation set that will be used for model selection.

2.5 Data Sets

We compare the algorithms on 8 binary classification problems. ADULT, COVT
and LETTER are from UCI Machine Learning Repository [11]. ADULT is the
only problem that has nominal attributes. For ANNs, SVMs and KNNs we trans-
form nominal attributes to boolean. Each DT, BAG-DT, BST-DT, BST-STMP,
and NB model is trained twice, once with the transformed attributes and once
with the original attributes. COVT has been converted to a binary problem by
treating the largest class as the positive and the rest as negative. We converted
LETTER to boolean in two ways. LTR.p1 treats the letter ”O” as positive and
the remaining 25 letters as negative, yielding a very unbalanced binary problem.
LTR.p2 uses letters A-M as positives and the rest as negatives, yielding a dif-
ficult, but well balanced, problem. HS is the IndianPine92 data set [12] where
the difficult class Soybean-mintill is the positive class. SLAC is a problem from
the Stanford Linear Accelerator. MEDIS and MG are medical data sets. The
characteristics of these data sets are summarized in Table 1.

3 Performances by Metric

For each test problem we randomly select 5000 cases for training and use the rest
of the cases as a large final test set. We use 5-fold cross validation on the 5000
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Table 2. Normalized scores for each learning method by metric (avg. over 8 problems)

model c acc fsc lft roc apr bep rms mxe cal mean opt

bst-dt p .860* .854 .956* .977 .958 .952 .929 .932 .808* .914 .941

bst-dt i .812* .921* .948 .965 .937 .942 .896 .859 .798* .897 .939*
rf p .866 .871 .958 .977* .957* .948* .892 .898 .702 .897 .906
rf i .847* .915 .948 .966 .937 .940* .881 .828 .791 .895 .910
ann - .817* .875 .947* .963 .926 .929 .872 .878 .826 .892 .932
svm p .823 .851 .928 .961 .931 .929 .882 .880 .769 .884 .909
bag-dt i .820 .886 .947 .961 .930 .925 .859 .822 .771 .880 .905
bag-dt - .836 .849 .953 .972 .950* .928 .875 .901 .637 .878 .899
rf - .844* .845 .958 .977* .957* .948* .882 .899 .567 .875 .882
bag-dt p .822 .843 .953 .972 .950* .929 .863 .874 .666 .875 .893
ann i .816* .934 .943 .949 .906 .920 .835 .782 .767 .873 .927
svm i .806 .914 .924 .946 .910 .928 .859 .799 .759* .872 .912
ann p .833 .863 .947* .963 .926 .929 .842 .839 .651 .866 .903
knn p .759 .820 .914 .937 .893 .898 .786 .805 .706 .835 .869
knn i .753 .866 .905 .926 .873 .893 .782 .756 .746 .834 .883
knn - .759 .839 .914 .937 .893 .898 .783 .769 .684 .831 .858
bst-stmp p .698 .760 .898 .926 .871 .854 .740 .783 .678 .801 .834
bst-stmp i .677 .821 .892 .916 .850 .852 .708 .674 .679 .785 .832
bst-dt - .861* .885 .956* .977 .958 .952 .596 .598 .045 .758 .795
dt i .631 .787 .848 .864 .778 .807 .617 .627 .645 .734 .814
dt p .611 .771 .856 .871 .789 .808 .586 .625 .688 .734 .794
dt - .612 .789 .856 .871 .789 .808 .583 .638 .512 .717 .782
logreg - .602 .623 .829 .849 .732 .714 .614 .620 .678 .696 .704
logreg i .590 .640 .827 .848 .721 .726 .607 .594 .636 .688 .699
nb i .537 .616 .786 .830 .721 .731 .582 .576 .635 .668 .682
bst-stmp - .701 .782 .898 .926 .871 .854 .355 .339 .123 .650 .676
svm - .810 .891 .928 .961 .931 .929 .484 .447 -.546 .648 .712
logreg p .597 .606 .832 .855 .733 .717 .584 .591 .302 .646 .653
nb p .536 .615 .786 .833 .733 .730 .539 .565 .161 .611 .625
nb - .414 .637 .746 .767 .698 .689 .271 -.980 -.918 .258 .293

cases to obtain five trials. For each trial we use 4000 cases to train the different
models, 1000 cases to calibrate the models and select the best parameters, and
then report performance on the large final test set. We would like to run more
trials, but this is a very expensive set of experiments. Fortunately, even with
only five trials we are able to discern interesting differences between methods.

Table 2 shows the normalized score for each algorithm on each of the nine
metrics. For each problem and metric we find the best parameter settings for
each algorithm using the 1k validation sets set aside by cross-validation, then
report that model’s normalized score on the final test set. Each entry in the table
averages these scores across the five trials and eight test problems. The second
column tells if model predictions were calibrated after training. A “-” means
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the model predictions were not calibrated – they are the raw model predictions.
(The one exception is SVMs, where we linearly scale distances to the separating
hyperplane to the range [0,1] before computing the three probability metrics.) A
“P” or “I” in the second column indicates that the model predictions were scaled
after the model was trained using Platt Scaling (PLT) or Isotonic Regression
(ISO), respectively. These scaling methods were discussed in Section 2.4. In the
table, higher scores always indicate better performance.

The second to last column, MEAN, is the mean normalized score over the
nine metrics, eight problems, and five trials. The models in the table are sorted
by the mean normalized score in this column. For now, ignore the last column,
OPT. This column will be discussed later in this section.

In the table, the algorithm with the best performance on each metric is
boldfaced. Other algorithm’s whose performance is statistically indistinguish-
able from the best algorithm at p = 0.05 using paired t-tests on the 5 trials are
*’ed.2 Entries in the table that are neither bold nor starred indicate performance
that is significantly lower than the best models at p = 0.05.3

Averaging across all nine metrics, the strongest models in the table are cali-
brated boosted trees, calibrated random forests, uncalibrated neural nets, PLT-
calibrated SVMs, and calibrated or uncalibrated bagged trees. If calibration is
not used, the best models overall are neural nets, bagged trees, and random
forests. With or without calibration, the poorest performing models are naive
bayes, logistic regression, and decision trees. Memory-based methods (e.g. KNN)
are remarkably unaffected by calibration, but exhibit mediocre overall perfor-
mance. Boosted stumps, even after calibration, also have mediocre performance,
and do not perform nearly as well as boosted full trees.

Looking at individual metrics, we see that boosted trees, which have poor
squared error, cross-entropy, and probability calibration prior to calibration,
dominate the other algorithms on these metrics after calibration. Other meth-
ods that also predict good probabilities are calibrated random forests and un-
calibrated neural nets. Interestingly, calibrating neural nets with either PLT or
ISO hurts their calibration. If neural nets are trained well to begin with it is
better not to adjust their predictions.

2 Performing this many independent t-tests, each at p = 0.05, is problematic. Some
differences that are labeled significant in the table probably are not truly significant
at p = 0.05. We considered applying a more stringent experiment-wise p-value that
takes into account the number of tests performed, but the strong correlations between
performances on different metrics, and on calibrated and uncalibrated models, makes
this problematic as well, so we decided to keep it simple. Most of the differences in
the table are significant well beyond p = 0.05. Doing the t-tests at p = 0.01 adds
few additional stars to table.

3 Note that it is possible for the difference between the scores 0.90 and 0.89 to be
statistically significant, and yet for the same 0.90 score to be statistically indistin-
guishable from a poorer score of 0.88 if the variance of the 0.88 score is higher than
the variance of the 0.89 score.
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Boosted trees also have top performance on the ordering metrics: area under
the ROC, average precision, and the precision/recall break-even point.4 Random
forests have virtually the same performance as boosted trees on these metrics.
The neural nets and SVMs also order cases extremely well.

On metrics that compare predictions to a threshold, accuracy, F-score, and
Lift, the best models are calibrated random forests, followed by calibrated boosted
trees, and neural nets. We do not yet understand why ISO-calibration improves
neural net F-Score – on all other metrics calibration hurts neural net perfor-
mance. If one does not need to treat model predictions as probabilities, uncal-
ibrated boosted trees and random forests have excellent performance on both
the threshold and ordering metrics.

The last column, OPT, is the mean normalized score for the nine metrics
when model selection is done by cheating by looking at the final test sets. The
means in this column represent the best performance that could be achieved with
each learning method if model selection were done optimally. We present these
numbers because parameter optimization is more critical (and more difficult)
with some algorithms than with others. For example, bagging works well with
most decision tree types and requires little tuning, but neural nets and SVMs
require careful parameter selection. As expected, the mean normalized scores in
the “cheating” column (OPT) tend to be higher than the mean normalized scores
when selection is done using 1k validation sets because model selection using the
validation sets does not always select the model with the best performance on
the final test set.

Comparing the MEAN and OPT columns, selection using 1k validation sets
yields on average about 0.03 decrease in normalized score compared to optimal
selection. As expected, high variance models have the biggest drop in perfor-
mance when selection is sub-optimal. For some of these models the loss is enough
that it affects their position in the table. For example, ANNs have enough vari-
ance that model selection using 1k validation sets clearly is sub-optimal, causing
ANNs to drop several positions in the table when selection is done this way.
Random Forests, however, as expected have small variance, and thus lose very
little performance when selection is done using 1k validation sets. SVM’s have
variance between RF and ANNs, and thus lose more than RF, but less than
ANN. Boosted trees also have relatively high variance, but their overall perfor-
mance after PLT or ISO calibration is so strong that they remain the best model
overall even when selection is done using 1-k validation sets.

4 Performances by Problem

Table 3 shows the normalized score for each algorithm on each of the eight test
problems. Each entry is an average over the nine performance metrics and five
trials when selection is done using 1k validation sets.

4 PLT calibration does not change the ordering predicted by models, so it does not
affect these metrics. ISO calibration, however, can introduce ties in the predicted
values that may affect performance on the ordering metrics.
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As the No Free Lunch Theorem suggests, there is no universally best learning
algorithm. Even the best models (calibrated boosted trees, calibrated random
forests, and uncalibrated neural nets) perform poorly on some problems, and
models that have poor average performance perform well on a few problems or
metrics. For example, the best models on the ADULT problem are bagged trees
and calibrated boosted stumps. Boosted trees and random forests perform much
worse. Bagged trees also perform very well on MG and SLAC. On MEDIS, the
best model is logistic regression. The only models that never exhibit excellent
performance on any of these problems are naive bayes, un-bagged un-boosted
decision trees, and memory-based learning. Surprisingly, although SVMs have
excellent overall performance, they never yield the best performance on any
problem or metric. Currently we are adding a few text problems to the test suite
to see if SVMs will perform best on data sets with very high dimension.

Boosting full decision trees yields better performance than boosting stumps
on five of the eight problems. Occasionally boosted stumps perform very well,
but when they do not, they can perform so badly that their average performance
is poor. On ADULT, when boosting decision trees, the first iteration of boost-
ing hurts the performance of all tree types, and never recovers in subsequent
rounds. When this happens even single decision trees outperform their boosted
counterparts. Bagged trees, however, consistently outperform un-bagged trees on
all eight problems. Bagging is “safer” than boosting, even on the six metrics for
which boosting yields the best overall performance. Interestingly, although neu-
ral nets rarely are the top performers in Table 2 or Table 3, they never perform
poorly on any problem or metric, and thus have excellent average performance
across all of the problems and metrics. Given that neural nets also don’t need
to be calibrated, they are remarkably robust models.

5 Relative Computational Cost

With neural nets there are many parameters one could adjust: net size, architec-
ture, backprop method, update interval, learning rate, momentum, etc. Because
each parameter can affect performance, both singly and in combinations, many
different nets must be trained to adequately explore the parameter space. As
expected, ANNs were one of the most expensive algorithms we trained.

SVMs also require adjusting many parameters. The SVM parameters that
have a big impact on the performance include the kernel, kernel parameters, and
regularization parameter. While most SVMs were fast to train, a few of them
took much longer. It is the cost of these few SVMs that makes SVMs expensive.

Although we experimented with a variety of MBL methods, distance mea-
sures, and control parameters, MBL proved less expensive than neural nets and
SVMs because our training sets contain only 4k points. On larger train sets MBL
would be slower. As expected, LOGREG and NB were very fast to train.

With boosted trees and stumps the parameters to set are the base tree/stump
type, and how many iterations to boost. What makes boosting expensive in prac-
tice is that it is not easy to parallelize. Training one tree or stump is fast, but
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Table 3. Normalized scores of each learning algorithm by problem (avg. over 9 metrics)

model c covt adult ltr.p1 ltr.p2 medis slac hs mg mean

bst-dt p .971 .875 .965 .982 .765 .882 .965 .908 .914

bst-dt i .954* .871 .910* .975* .727 .903 .949 .892 .897
rf p .919 .840 .914 .948 .816* .915* .924 .897 .897
rf i .912 .882 .878 .944 .787 .947 .911 .899 .895
ann - .808 .908 .919 .901 .826* .910 .947 .921 .893
svm p .805 .898 .941 .957 .774 .890 .937* .869 .884
bag-dt i .900 .936* .847 .900 .725 .920 .877 .938* .880
bag-dt - .918 .948 .877 .804 .765 .934* .829 .949 .878
rf - .895 .918 .902 .827 .794 .926* .831 .909 .875
bag-dt p .904 .902 .863 .899 .736 .897 .879 .917 .875
ann i .806 .890 .837 .890 .805* .921 .941* .890 .873
svm i .793 .888 .911* .957 .725* .906 .925 .868 .872
ann p .799 .868 .895 .853 .802* .893 .928 .890 .866
knn p .847 .809 .918 .924 .679 .808 .815 .882 .835
knn i .847 .802 .889 .931 .681 .819 .820 .879 .834
knn - .844 .799 .911 .925 .612 .838 .820 .896 .831
bst-stmp p .711 .943* .775 .677 .759* .813 .822 .909 .801
bst-stmp i .690 .945* .705 .658 .726 .825 .825 .909 .785
bst-dt - .857 .768 .850 .850 .401 .830 .825 .688 .758
dt i .725 .882 .731 .748 .474 .802 .657 .851 .734
dt p .729 .880 .724 .755 .458 .804 .646 .874 .734
dt - .682 .893 .708 .729 .467 .792 .609 .858 .717
logreg - .701 .855 .203 .448 .837 .885 .720 .916 .696
logreg i .679 .891 .254 .433 .800 .857 .695 .892 .688
nb i .646 .922 .678 .534 .744 .757 .328 .736 .668
bst-stmp - .669 .838 .334 .569 .580 .766 .642 .803 .650
svm - .615 .684 .495 .769 .552 .849 .555 .668 .648
logreg p .667 .849 .133 .425 .725 .854 .678 .840 .646
nb p .605 .801 .632 .457 .671 .734 .309 .679 .611
nb - .518 .617 .462 .398 -.180 .662 -1.03 .618 .258

training thousands takes time. Like boosting, bagging requires varying the base
tree type. Unlike boosting, however, bagging is easy to parallelize and usually
only 100 iterations are needed. This makes bagged trees cheap, and rather at-
tractive given their all around good performance. Random forests are less expen-
sive than boosted trees, but more expensive than bagged trees because random
forests require more trees than bagging before performance converges. Also the
fraction of features used in each tree in a random forest is a tunable parameter.

6 Related Work

STATLOG is perhaps the best known study [1]. STATLOG was a very compre-
hensive study when it was performed, but since then important new learning
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algorithms have been introduced such as bagging, boosting, SVMs, and ran-
dom forests. LeCun et al.[13] present a study that compares several learning
algorithms (including SVMs) on a handwriting recognition problem using three
performance criteria: accuracy, rejection rate, and computational cost. Cooper
et al. [14] present results from a study that evaluates nearly a dozen learning
methods on a real medical data set using both accuracy and an ROC-like metric.
Lim et al. [15] perform an empirical comparison of decision trees and other clas-
sification methods using accuracy as the main criterion. Bauer and Kohavi [16]
present an impressive empirical analysis of ensemble methods such as bagging
and boosting. Perlich et al. [17] conducts an empirical comparison between de-
cision trees and logistic regression. Provost and Domingos [3] examine the issue
of predicting probabilities with decision trees, including smoothed and bagged
trees. Provost and Fawcett [5] discuss the importance of evaluating learning al-
gorithms on metrics other than accuracy such as ROC.

7 Conclusions

This paper presents, to the best of our knowledge, the first comprehensive em-
pirical evaluation of the performance of learning algorithms on a large variety of
performance metrics. An interesting result is that good performance on thresh-
old or ordering metrics does not guarantee good performance on probability
metrics. The most important example of this are uncalibrated boosted decision
trees, which have the best performance on the ordering metrics, but below av-
erage performance on the probability metrics.

Calibration with either Platt’s method or Isotonic Regression is remarkably
effective at obtaining excellent performance on the probability metrics from
learning algorithms that performed well on the ordering metrics. Calibration
dramatically improves the performance of boosted trees, SVMs, boosted stumps,
and Naive Bayes, and provides a small, but noticeable improvement for random
forests. Neural nets, bagged trees, memory based methods, and logistic regression
are not improved by calibration.

With excellent performance on all nine metrics, calibrated boosted decision
trees were the best learning algorithm overall. They are followed by calibrated
random forests, uncalibrated neural nets, calibrated SVMs, and bagged trees.
The models that performed the poorest were naive bayes, logistic regression,
decision trees, and boosted stumps. Although some of the methods clearly per-
form better or worse than others on average, there is significant variability across
the problems and metrics. Even the best models sometimes perform poorly, and
models with poor average performance occasionally perform exceptionally well.

The learning methods developed in the last decade — boosting, random
forests, SVMs, and bagging — have excellent overall performance if their predic-
tions are calibrated after training. Neural nets, however, are still very competitive
and have the advantage of not requiring this extra calibration step.
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