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1.1 Introduction

• Item Response Theory (IRT) plays nowadays a central role in the analysis and study
of tests and item scores

• Application of IRT models can be found in many fields

. psychometrics

. educational sciences

. sociometrics

. medicine

. . . .
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1.1 Introduction (cont’d)

• Standard IRT models are available in special-purpose software, such as BILOG &
MULTILOG and in R

• For R more information can be found at:
http://cran.r-project.org/web/views/Psychometrics.html
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1.1 Introduction (cont’d)

• A fundamental assumption behind these standard IRT models is unidimensionality :

. the interdependencies between the responses of each sample unit are explained by
a single latent variable

• In some cases tests are designed to measure a single trait, e.g.,

. reading ability

. environmental attitude

. . . .
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1.1 Introduction (cont’d)

• However, in many cases unidimensionality is too strict to be true, e.g.,

. tests measure different latent traits

* mathematics test: algebra, calculus, etc.

* types of depression: major depressive disorder, dysthymia, manic depression

. hierarchical/multilevel designs

* subjects are nested within clusters

* items are nested within different dimensions
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1.1 Introduction (cont’d)

• If there is a predominant general factor in the data, and dimensions beyond that
major dimension are relatively small, then multidimensionality has a little effect on
derived inferences

• However, if the unidimensionality assumption is seriously violated, then

. item parameter estimates will be biased, and

. the standard errors associated with ability parameter estimates will be too small
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1.2 Motivating Case Study

• Programme for International Student Assessment (PISA)

. launched by the Organization for Economic Co-operation and Development

. collect data on student and institutional factors that can explain differences in
student performance

. in 2003, 41 countries participated and the survey covered mathematics, reading,
science, and problem solving

• Data features

. different dimensions: ability in mathematics, reading, science, problem solving

. hierarchical design: students nested in schools, schools nested in countries

Seminar Wirtschaftsuniversität Wien – Jan 13th, 2010 6/37



1.2 Motivating Case Study

• Aim: estimate item and ability parameters, taking into account covariates and the
hierarchical design

• Using a multilevel analysis we will be able to simultaneously estimate the item and
ability
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1.3 What is this talk about

• Problem: as we will illustrate fitting complex latent variable models is a
computationally challenging task requiring a lot of computing time

• Our Aim: develop a computationally flexible approach that can fit latent variable
models with complex latent structures in reasonable computing time

• Work in progress. . . (no results yet available)

. promising results from the relevant framework of joint models for longitudinal and
time-to-event data (with high-dimensional random effects)
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2 Multidimensional IRT Models

• Notation:

. yi: vector of responses for the ith subject

. zi: vector of latent variables

• Basic assumption: conditional independence (CI)

. given the latent structure, we assume that the responses of the ith subject are
independent

p(yi | zi) =

p∏

k=1

p(yik | zi)

where p(·) denotes a pdf
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2 Multidimensional IRT Models (cont’d)

• In order CI to hold, a complex latent structure may be required

• A general definition of an IRT model

g{E(yi | zi)} = X iβ
(x) + Z iβ

(z)

where

. g(·): link function

. X i: design matrix for covariates

. Z i: vector of latent variables

. β(x): regression coefficients for covariates

. β(z): regression coefficients for latent variables
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2 Multidimensional IRT Models (cont’d)

• Examples:

. dichotomous data – 1 level (i subject, k item)

logit{Pr(yik = 1 | zi, θ)} = β0 + β1zi1 + β2zi2 + . . . + βqziq

q-latent-variable model
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2 Multidimensional IRT Models (cont’d)

• Examples:

. polytomous data (c = 1, 2, . . . ) – 2 levels (i subject in group j, k item)

Pr(yijk = c | zi, θ) = expit(akzij − bk,c−1)− expit(akzij − bk,c)

Level I: zij = β0j + β1jx1ij + eij

Level II: β0j = γ00 + γ01w1j + u0j

β1j = γ10 + γ11w1j + u1j

eij, ui denote Error Terms
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3.1 ML Estimation

• Estimation of multidimensional IRT model is typically based on marginal maximum
likelihood

`(θ) =

n∑
i=1

log

∫
p(yi | zi; θ) p(zi; θ) dzi

where

. θ denotes the parameter vector

. p(yi | zi; θ) denoted the density of the multidimensional IRT as introduced above

. we assume that zi are distributed according to a parametric distribution

. we integrate zi to obtain the marginal distribution for the observed responses
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3.1 ML Estimation (cont’d)

• Due to the fact that the integral

∫
p(yi|zi) p(zi) dzi

does not have a closed form solution

• Maximization of `(θ) is a computationally challenging task – it requires a
combination of

. numerical integration, and

. numerical optimization
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3.1 ML Estimation (cont’d)

• For numerical optimization standard choices are

. EM algorithm (we treat zi as ‘missing values’)

. Newton-type algorithms, such as Newton-Raphson or quasi-Newton

• Hybrid approaches that start with EM (as a refinement of the starting values) for a
fixed number of iterations, and continue with quasi-Newton have also been
successfully used
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3.1 ML Estimation (cont’d)

• For numerical integration standard choices are

. Monte Carlo

. (adaptive) Gauss-Hermite quadrature rule

• However, these are prohibitive when a moderate to high number of latent variables is
considered
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3.2 Laplace Approximation

• An alternative solution instead of numerical integration is the Laplace approximation

p(yi; θ) =

∫
exp{log p(yi | zi; θ) + log p(zi; θ)} dzi

=
[
(2π)q/2det(Σ)−1/2 exp {log p(yi | ẑi; θ) + log p(ẑi; θ)}

] (
1 + O(p−1

i )
)
,

where

. ẑi = argmax
zi

{log p(yi | zi) + log p(zi)}

. Σ = −∇2 {log p(yi | zi) + log p(zi)}
∣∣∣
zi=ẑi
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3.2 Laplace Approximation (cont’d)

• It requires a large number of repeated measurements per individual in order to
provide a good approximation to the integral

• Contrary to Monte Carlo and Gaussian quadrature, in the Laplace approximation we
cannot control the approximation error

• Therefore, it would be desirable to improve the approximation, especially for small to
moderate number of repeated measurements per individual
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3.3 Score Vector in Latent Variable Models

• The score vector in latent variable models can be written in the form (Rizopoulos et al.,

JRSSB, 2009)

Si(θ) =
∑

i

∂

∂θ
log

∫
p(yi | zi; θ) p(zi; θ) dzi

=
∑

i

∫
∂

∂θ

{
log p(yi | zi; θ) + log p(zi; θ)

}
p(zi | yi; θ) dzi

• Observed data score vector = expected value of complete data score vector wrt the
posterior of the latent variables given the observed data
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3.3 Score Vector in Latent Variable Models (cont’d)

• Why is this useful

. easy to combine EM with quasi-Newton

. enables a more efficient Laplace approximation
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3.4 EM & quasi-Newton

• EM algorithm for latent variable models

. maximize the expected value of the complete data log-likelihood (expectation is
taken wrt the posterior of the latent variables given the observed data)

Qi(θ | θ∗) =

∫
log{p(yi | zi; θ)p(zi; θ)} p(zi | yi; θ

∗) dzi

• To maximize Q(·) we need to solve

∫
∂

∂θ

{
log p(yi | zi; θ) + log p(zi; θ)

}
p(zi | yi; θ

∗) dzi = 0

which is Si(θ)
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3.4 EM & quasi-Newton (cont’d)

• Direct maximization for latent variable models using quasi-Newton

. maximize the observed data log-likelihood ⇒ solve the score equations Si(θ) = 0

• Therefore, both EM and quasi-Newton require calculation of the same function Si(θ)

. take into advantage of the stability of EM during the first iteration, and later
change to quasi-Newton which has better convergence rate
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3.5 Fully Exponential Laplace Approximation

• Fitting latent variable models under MML requires calculations of the form

∫
A(zi) p(zi | yi) dzi,

where A(zi) = ∂{log p(yi | zi; θ) + log p(zi; θ)}/∂θ

• Note that the above can be written as

E {A(zi)} =

∫
A(zi) p(yi | zi) p(zi) dzi∫

p(yi | zi) p(zi) dzi
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3.5 Fully Exponential Laplace Approximation

• If we apply the standard Laplace approximation in the numerator and denominator of
E {A(zi)}, then the O(p−1

i ) terms cancel out, which leads to a O(p−2
i )

approximation

• This approximation has been used for Bayesian computations (Tierney et al., JASA, 1989)

• Caveat: it can only be applied for positive functions

. however, A(zi), which is the complete data score vector, is not restricted to be
positive
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3.5 Fully Exponential Laplace Approximation

• Write the previous equation as

E {A(zi)} =
d

ds
log E[exp{sA(zi)}]

∣∣∣
s=0

• Then we obtain the approximation

E {A(zi)} =

{
A(ẑi) +

d

ds
log det(Σs)

−1/2
∣∣∣
s=0

} (
1 + O(p−2

i )
)
,

where

. Σs = −∇2 {sA(zi) + log p(yi | zi) + log p(zi)}
∣∣∣
zi=ẑ(s)

i

. ẑi same as in the simple Laplace approximation
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3.5 Fully Exponential Laplace Approximation

• The enhanced Laplace approximation is

. the simple Laplace approximation,

. and differentiation of {log det(Σs)
−1/2} wrt s

∂

∂sk
log det(Σs)

−1/2 = −1

2
tr

(
Σ−1 ∂

∂sk
Σs

∣∣∣
s=0,zi=ẑi

)

• Features:

. it is rather technical (you can get lost in the derivatives of {log det(Σs)
−1/2} wrt

s)

. however, calculating these terms does not pose a great computational challenge
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3.5 Fully Exponential Laplace Approximation

. an issue with this approximation is that it cannot be used for terms for which
∂A(ẑm)/∂zm = 0 ⇒ it cannot be used to calculate the log-likelihood (e.g., to
perform LRTs)
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3.6 Asymptotic Behaviour of Laplace Estimators

• Let S(θ) true score vector; S̃(θ) Laplace-based score vector

n−1S(θ) = n−1S̃(θ) + O
{
min(pi)

−2
}

• Let θ0 true parameter vector; θ̂ Laplace-based MLE

n−1S(θ̂) = n−1S(θ0) + n−1H(θ0)(θ̂ − θ0) + Op(1) ⇒

(θ̂ − θ0) = Op

[
max

{
n−1/2, min(pi)

−2
}]

• θ̂ consistent as both n, pi →∞

Seminar Wirtschaftsuniversität Wien – Jan 13th, 2010 34/37



4 Conclusion

• Results from the similar framework of joint modelling of longitudinal and
time-to-event data

. Gauss-Hermite requires creating a design matrix of dimensions N × hq

(N : total sample size; h: quadrature points; q: dimension of integration)

. for a data set h = 3, q = 8 we need 58531× 6561 design matrix

. One EM iteration

* Gauss-Hermite: > 15min

* Fully Exponential Laplace Approximation: 12sec
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4 Conclusion (cont’d)

• What has been done

. theory almost finalized

. preliminary R programs written

• What needs to be done

. finalize programs

. simulation studies
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Thank you for your attention!
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