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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1,...,Y},) and random effects
u.

Two step formulation of GLMM:
» U~ N(O,X).
» Given realization u of U, Y; independent and each follows
density f;(y|u) with mean u; = g~%(7;) and linear predictor
n= X0+ Zu.

l.e. conditional on U, Y; follows a generalized linear models.
NB: GLMM specified in terms of marginal density of U and

conditional density of Y given U. But the likelihood is the
marginal density of f(y) which can be hard to evaluate !

Outline for today

likelihood for GLMM
penalized quasi-likelihood estimation
Laplace approximation

Gaussian quadrature
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case study of non-linear mixed effects model

Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f(y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

)= [ fupdu= [yl

since f(y[u)f(u) is a very complex function.

Today: numerical methods for evaluating likelihood of GLMM.



Non-normal example: logistic regression with random
intercepts

Ui~ N(0,72), j=1,....m
Y;|U; = uj ~ binomial(nj, p;)
log(p;/(1—pj)) =m; =B+ U
p;j = exp(n;)/(1 + exp(n;))

Conditional density:

Flylu; ) = H (1—py)t~ yJ:H( exp(3 + u;)"

1+ exp(B + uj))"

Likelihood functlon (v="(u1,...,um))

2 = exp(8+ ) exp(—u2/(2r%))
/R f(ylu; B)f(u; 7°)du = H/ q

+ exp(8 + uj))" voresl

Integrals can not be evaluated in closed form. 5

Laplace approximation
Let g(u) = log(f(y|u)f(u)) and choose @ so g'(d) =0
(& = arg max g(u)).
Taylor expansion around @:
g(u) ~ g(u) =
£(0)-+(u-0)g'(0) + 5 (u— 08" (8) = g(i)~ 5 (u—)* (~&"(8))

l.e. exp(g(u)) proportional to normal density N(yu1p,07p),
pp =t ofp =—1/g"().

6) = [ exple(u)du =~ / exp( (u))du

= exp(g / exp
R

~

(u— pep)?)du = exp(g(D))y/ 2707

iy
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One-dimensional case

Compute
L6) = [ F(vlus f(wi )i

Possibilities:
» Laplace approximation.

» Numerical integration/quadrature (e.g. Gaussian quadrature
as in PROC NLMIXED (SAS) or GLLAM (STATA)) (one level of
random effects, dimensions one or two).

Laplace approximation also possible for higher dimensions
(multivariate Taylor expansion).
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NB:
1

fluly) = f(y|u)f(u)/f(y) x exp(g(u)) = const exp (—F(u—;“pf)
Lp

where y p = 0 02p =,—1/g"(11).

Hence

UlY =y = N(uLp,otp)

Note: pyp is mode of conditional distribution - used for prediction
of random effects in 1mer (ranef()).
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Adaptive Gaussian Quadrature
Gauss-Hermite quadrature (numerical integration) is

/ F)B()dx ~ S wif (x)
i=1

where ¢ is the standard normal density and (x;, w;),i = 1, n are
certain arguments and weights which can be looked up in a table.

We can replace =~ with = whenever f is a polynomial of degree
2n — 1 or less.

Adaptive Gauss-Hermite quadrature:

/f(y|u)f(u )du ~ Flylo)f( u)

o(u; NLPaO'LP
/ f(ylorpx + pip)f(oLpx + puip)
B(x)

(change of variable: x = (u— uip)/oLp)

¢(U pip,oip)du =

o pd(x)dx

Prediction of random effects for GLMM

Conditional mean
E[UlY =y] = /uf(u\y)du
is minimum mean square error predictor, i.e.
E(U — U)?
is minimal with J = H(Y) where H(y) = E[U|Y = y]

Difficult to analytically evaluate

BUY =] = [ uf(yl)f(a)/F(y)du
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Advantage

Flylu)f(u) _ flylopx + pup)f(oLpx + puip)
¢(u; e, o7p) $(x)

close to constant (f(y)) — hence G-H quadrature very accurate.

GH scheme with n = 5:

2.020 0.959 0.0000000 -0.959 -2.020
0.011 0.222 0.533 0.222 0.011
using ghq in library glmmML).

(computed

(GH schmes for n =5 and n = 10 available on web page)

Computation of conditional expectations (prediction)

IE[U|Y=y]=/ Lyjfz)’;(”) u=

ﬁ /(O_LPX_’_MLP) f(y‘ULPX + M;/Z))(’;(O—LPX + MLP)O’[_P(ZS(X)dX

Note:

f(ylorpx + pip)f(orpx + puip)
oLp

(oLpx + piLp) o(x)

behaves like a first order polynomial in x - hence GH still accurate.

x = (u—pLp)/oLp
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Penalized quasi-likelihood Difficult cases

One solution: do not use likelihood function but something simpler.

0 = (8,72) » correlated random effects

» crossed random effects

PQL estimates § and & maximize joint density » nested random effects

f(y,u;0) = f(y|u; B)f (u; 72). Not possible to factorize likelihood into low-dimensional integrals —
hence numerical quadrature not applicable.
PQL estimates less accurate than ML.

Asymptotic results require increasing number of observations for PQL and Laplace-approximation still applicable (1mer ().

each random effect.

Implemented in 1lmer and SAS macro glimmix.
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Case study: non-linear mixed effects model for cow mats
data
Compression vs. pressure for two brands

of mats )
Estimation of non-linear model with fixed effects:

: P R S nlsfit=nls(nedtryk mmf (tryk,a,b,c,d),start=
c(a=0.1,b=1.670,c=80,d=0.6) ,data=mattressdatal)

= Non-linear relation
- 7 - d Estimation of non-linear model with a, b, ¢ as random effects:
~ ab+ cx
7 y = mmf(x) = — o - ~
/a | b+ xd nlmerfit=nlmer (nedtryk mmfnlmer(tryk,a,b,c,d)” (almatno)+

8
L

(b|matno)+(c|matno) ,mattressdatal,start=c(a=0.04,b=1.64,c=74,4=0.64))
Random variation between
mats of same brand, small
measurement noise.

compression

pressure
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Simulated data from the two models:

Fixed effects: residual standard With random effects: residual
error 0.72 standard error 0.17

compression

20

20

10

Std. err. for a, b, ¢ are 0.64,0.05

and 0.14
Random effects model gives much better representation of

variability in data.

NB: to assess influence of variability of different parameters we
need to look at partial derivatives (sensitivities) wrt. these
parameters.

Exercises

See exercises sheet on webpage.
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