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Outline for today

◮ likelihood for GLMM

◮ penalized quasi-likelihood estimation

◮ Laplace approximation

◮ Gaussian quadrature

◮ case study of non-linear mixed effects model
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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1, . . . ,Yn) and random effects
U.

Two step formulation of GLMM:

◮ U ∼ N(0,Σ).

◮ Given realization u of U, Yi independent and each follows
density fi (y|u) with mean µi = g−1(ηi ) and linear predictor
η = Xβ + Zu.

I.e. conditional on U, Yi follows a generalized linear models.

NB: GLMM specified in terms of marginal density of U and
conditional density of Y given U. But the likelihood is the
marginal density of f (y) which can be hard to evaluate !
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Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f (y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

f (y) =

∫

Rm

f (y,u)du =

∫

Rm

f (y|u)f (u)du

since f (y|u)f (u) is a very complex function.

Today: numerical methods for evaluating likelihood of GLMM.
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Non-normal example: logistic regression with random

intercepts

Uj ∼ N(0, τ2), j = 1, . . . ,m

Yj |Uj = uj ∼ binomial(nj , pj)

log(pj/(1 − pj)) = ηj = β + Uj

pj = exp(ηj )/(1 + exp(ηj))

Conditional density:

f (y |u;β) =
∏

j

p
yj

j (1 − pj)
1−yj =

∏

j

exp(β + uj)
yj

(1 + exp(β + uj))nj

Likelihood function (u = (u1, . . . , um))
∫

Rm

f (y |u;β)f (u; τ2)du =
∏

j

∫

R

exp(β + uj)
yj

(1 + exp(β + uj))nj

exp(−u2
j /(2τ2))

√
2πτ2

duj

Integrals can not be evaluated in closed form. 5 / 18

One-dimensional case

Compute

L(θ) =

∫

R

f (y |u;β)f (u; τ2)du

Possibilities:

◮ Laplace approximation.

◮ Numerical integration/quadrature (e.g. Gaussian quadrature
as in PROC NLMIXED (SAS) or GLLAM (STATA)) (one level of
random effects, dimensions one or two).

6 / 18

Laplace approximation

Let g(u) = log(f (y |u)f (u)) and choose û so g ′(û) = 0
(û = arg max g(u)).

Taylor expansion around û:

g(u) ≈ g̃(u) =

g(û)+(u−û)g ′(û)+
1

2
(u−û)2g ′′(û) = g(û)− 1

2
(u−û)2

(

−g ′′(û)
)

I.e. exp(g̃(u)) proportional to normal density N
(

µLP , σ2
LP

)

,
µLP = û σ2

LP = −1/g ′′(û).

L(θ) =

∫

R

exp(g(u))du ≈
∫

R

exp(g̃(u))du

= exp(g(û))

∫

R

exp
(

− 1

2σ2
LP

(u − µLP)2
)

du = exp(g(û))
√

2πσ2
LP
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Laplace approximation also possible for higher dimensions
(multivariate Taylor expansion).

NB:

f (u|y) = f (y |u)f (u)/f (y) ∝ exp(g(u)) ≈ const exp
(

− 1

2σ2
LP

(u−µLP)2
)

where µLP = û σ2
LP =,−1/g ′′(û).

Hence
U|Y = y ≈ N

(

µLP , σ2
LP

)

Note: µLP is mode of conditional distribution - used for prediction
of random effects in lmer (ranef()).
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Adaptive Gaussian Quadrature
Gauss-Hermite quadrature (numerical integration) is

∫

f (x)φ(x)dx ≈
n

∑

i=1

wi f (xi )

where φ is the standard normal density and (xi ,wi ),i = 1, n are
certain arguments and weights which can be looked up in a table.

We can replace ≈ with = whenever f is a polynomial of degree
2n − 1 or less.

Adaptive Gauss-Hermite quadrature:
∫

f (y |u)f (u)du ≈
∫

f (y |u)f (u)

φ(u;µLP , σ2
LP )

φ(u;µLP , σ2
LP)du =

∫

f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

(change of variable: x = (u − µLP)/σLP )
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Advantage

f (y |u)f (u)

φ(u;µLP , σ2
LP)

=
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
x = (u−µLP)/σLP

close to constant (f (y)) – hence G-H quadrature very accurate.

GH scheme with n = 5:

x 2.020 0.959 0.0000000 -0.959 -2.020
w 0.011 0.222 0.533 0.222 0.011

(computed

using ghq in library glmmML).

(GH schmes for n = 5 and n = 10 available on web page)
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Prediction of random effects for GLMM

Conditional mean

E[U|Y = y ] =

∫

uf (u|y)du

is minimum mean square error predictor, i.e.

E(U − Û)2

is minimal with Û = H(Y ) where H(y) = E[U|Y = y ]

Difficult to analytically evaluate

E[U|Y = y ] =

∫

uf (y |u)f (u)/f (y)du
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Computation of conditional expectations (prediction)

E[U|Y = y ] =

∫

u
f (y |u)f (u)

f (y)
du =

1

f (y)

∫

(σLPx +µLP)
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

Note:

(σLPx + µLP)
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLP

behaves like a first order polynomial in x - hence GH still accurate.
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Penalized quasi-likelihood

One solution: do not use likelihood function but something simpler.

θ = (β, τ2)

PQL estimates θ̂ and û maximize joint density

f (y , u; θ) = f (y |u;β)f (u; τ2).

PQL estimates less accurate than ML.

Asymptotic results require increasing number of observations for
each random effect.

Implemented in lmer and SAS macro glimmix.
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Difficult cases

◮ correlated random effects

◮ crossed random effects

◮ nested random effects

Not possible to factorize likelihood into low-dimensional integrals –
hence numerical quadrature not applicable.

PQL and Laplace-approximation still applicable (lmer()).
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Case study: non-linear mixed effects model for cow mats

data
Compression vs. pressure for two brands
of mats
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Non-linear relation

y = mmf(x) =
ab + cxd

b + xd
,

Random variation between
mats of same brand, small
measurement noise.
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Estimation of non-linear model with fixed effects:

nlsfit=nls(nedtryk~mmf(tryk,a,b,c,d),start=

c(a=0.1,b=1.670,c=80,d=0.6),data=mattressdata1)

Estimation of non-linear model with a, b, c as random effects:

nlmerfit=nlmer(nedtryk~mmfnlmer(tryk,a,b,c,d)~(a|matno)+

(b|matno)+(c|matno),mattressdata1,start=c(a=0.04,b=1.64,c=74,d=0.64))
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Simulated data from the two models:

Fixed effects: residual standard
error 0.72
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With random effects: residual
standard error 0.17
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Std. err. for a, b, c are 0.64, 0.05
and 0.14

Random effects model gives much better representation of
variability in data.

NB: to assess influence of variability of different parameters we
need to look at partial derivatives (sensitivities) wrt. these
parameters.
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Exercises

See exercises sheet on webpage.
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