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Abstract

We consider the problem of improving the Gaussian approtampasterior marginals computed by
expectation propagation and the Laplace method in latenss§ian models and propose methods
that are similar in spirit to the Laplace approximation céffiey and Kadane (1986). We show that
in the case of sparse Gaussian models, the computationgllexity of expectation propagation
can be made comparable to that of the Laplace method by ugiagadie! updating scheme. In
some cases, expectation propagation gives excellentassmvhere the Laplace approximation
fails. Inspired by bounds on the correct marginals, we arait/factorized approximations, which
can be applied on top of both expectation propagation and.aéiptace method. The factorized
approximations can give nearly indistinguishable resiutimn the non-factorized approximations
and their computational complexity scales linearly wite tumber of variables. We experienced
that the expectation propagation based marginal appraixingawe introduce are typically more
accurate than the methods of similar complexity proposeRuny et al. (2009).

Keywords: approximate marginals, Gaussian Markov random fields, dagplpproximation,
variational inference, expectation propagation

1. Introduction

Following Rue et al. (2009), we consider the problem of computing margircddabilities over
single variables in (sparse) latent Gaussian models. Probabilistic modelstwith@Gaussian vari-
ables are of interest in many areas of statistics, such as spatial datasa(Rilysand Held, 2005),
and machine learning, such as Gaussian process models (e.g., KusasandsRen, 2005). The
general setting considered in this paper is as follows: the prior distribut@ntie latent variables
is a Gaussian random field with a sparse precision (inverse covariaratg) and the likelihood
factorizes into a product of terms depending on just a single latent vari@ad# the prior and
the likelihood may depend on a small set of hyper-parameters. We arestetéia the posterior
marginal probabilities over single variables given all observations.

Rue et al. (2009) propose an integrated nested Laplace approximatigortxanate these pos-
terior marginal distributions. Their procedure consists of three stepSpfdroximate the posterior
of the hyper-parameters given the data and use this to determine a grigesfggrameter values.
2) Approximate the posterior marginal distributions given the data and trer{pgrameters values
on the grid. 3) Numerically integrate the product of the two approximationsteirothe posterior
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marginals of interest. The crucial contribution is the improved marginal postgpproximation
in step 2), based on the approach of Tierney and Kadane (19863dbatbeyond the Gaussian
approximation and takes into account higher order characteristics ofiallhood terms. Com-
paring their approach with Monte Carlo sampling techniques on severaldmggnsional models,
they show that their procedure is remarkably fast and accurate.

The main objective of the current paper is to see whether we can impravethp approach
of Rue et al. (2009). Expectation propagation (Minka, 2001), a methioddproximate inference
developed and studied mainly in the machine learning community, is then an obgindigate. Itis
well-known to yield approximations that are more accurate than the Laplacedn@thy., Minka,
2001; Kuss and Rasmussen, 2005). Furthermore, expectation ptigmagan still be applied in
cases where the Laplace method is out of the question, for example, whkgthosterior is not
twice-differentiable (Seeger, 2008). The typical price to be paid is thhtgher computational
complexity. However, we will see that, using a parallel instead of a sequeptating scheme,
expectation propagation is at most a small constant factor slower thanpltectanethod in appli-
cations on sparse Gaussian models with many latent variables. Morelovey,the way we will
arrive at further approximations (both for expectation propagationtaad.aplace method) that
yield an order of magnitude speed-up, with hardly any degradation innpeahce.

The paper is structured as follows. In Sections 1.1 and 2 we specify thel enadibriefly present
the Laplace method and expectation propagation. In Section 3, we intraddosompare several
methods for correcting marginals given a fixed setting of the hyper-paeasndén Section 4.6, we
discuss the computational complexity of these methods when applied to spaisis nho Section 5,
we introduce a method for numerical integration over hyper-parametefaatly in Section 6, we
show that the proposed methods are competitive both in computational comlesitgccuracy
with the methods introduced in Rue et al. (2009).

In order to increase the readability of the paper we include a schematie {igigure 13) and an
explanatory list (Section D of the Appendix) of the marginal approximation atsthve introduce
or refer to. In the following we define the model and give a short outlinkasi we proceed to
approximate the marginal densities.

1.1 Latent Gaussian Models

In this section, we introduce notation and define the model under cortsiterd.et p(y|x,6;)
be the conditional probability of the observatiops= (y1, ... ,yn)T given the latent variables =
(X1,... ,xn)T and the hyper-parametdds We assume thagi(y|x, 6,) factorizes as

p(ya.6) = [ p(y.0).

The priorp(x|6p) over the latent variables is taken to be Gaussian with canonical pararh&igis
andQ(6p), that is,

p(z|6p) O exp(a:Th(Gp) — %azTQ(Op) :13) .

Examples forp(z|6;) include Gaussian process models, wh@re!(8,) is the covariance matrix
at the corresponding input and Gaussian Markov random fields entherelements of)(6,) are
the interactions strengtl; (6,) between the latent variablesandx;. The priorp(6,,60,) over
the hyper-parameters is typically taken to be non-informative—unifornfofiation variables and
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log-uniform for scale variables—and factorizes w.@t.and@p. In order to simplify the notation,
we use the proxy = (6;,0,) to denote the hyper-parameters of the model.
The joint distribution of the variables in the model we study is

p(y..6) 0 [ plvbx.0)exp( aTh(6) — 37 Q(6) =) p(o)

We takey fixed and we consider the problem of computing accurate approximatiding pbsterior
marginal densities of the latent variableg«|y, 8), given a fixed hyper-parameter value. Then we
integrate these marginals over the approximations of the hyper-paramettgsqr density (0|y).
The exact quantities are given by the formulas

1
PONISA6) = gy PUAX.6) [ doy plel®) ] i .0), @
p(6ly) O p(O)P(Y). (2)

We use the ternevidencdor p(y|@) = [dzp(y,x|0). In the following we omitp(y|x,8)’'s and
p(x|08)’'s dependence ofi whenever it is not relevant and ute€x ) as an alias op(yi|x;,0) and
Po () as an alias op (x|8). We use the notatiop(x) = Z5~po (x) [;ti (%), with Z, (0) = p(y|0).
A Gaussian approximation gf will be denoted by anqu WI|| denote its normalization constant.

1.2 An Outline of the Main Methods Presented in the Paper

In this paper, we will discuss a variety of methods for approximating marginddgéent Gaussian
models. To assist the reader, we give an outline of these methods, leagitgctinical details
for later sections. We advise the reader to consult Figure 13 and SeciiothB Appendix for a
schematic figure and the corresponding explanatory list.

The posterior probability density(x) is proportional to a (sparse) multivariate Gaussian distri-
bution over all latent variables and a product of non-Gaussian tg(®)$, each of which depends
on just a single latent variable. The first step is to find a global, Gauss@xmation of this
posterior. There is obviously no need to approximate the Gaussian pripbpiawe then do have to
approximate the non-Gaussian tery(&;) by Gaussian form§(x;), thus constructing an approx-
imationg(x) O po(x) [;fj(xj). Here we consider two choices, which we refer to as the Laplace
method and expectation propagation.

The Laplace method (LM) finds the maximum of the (log) posterior and then sreakecond
order Taylor approximation around this maximum. It is easy to see that theaHe#se matrix
with second derivatives in this second order Taylor approximation jstsre the (sparse) precision
matrix resulting from the Gaussian prior plus a diagonal term consistingohgalerivatives of the
logarithm of each of the termg(x;). Hence, the approximation resulting from the Laplace method
can always be written as the original prigg(x) times a product of so-called term approximations
fj(xj), each of which has a Gaussian form (not necessarily normalizablehdig on just a single
latent variable.

Expectation propagation (EP) aims to iteratively refine these term approximéia;). It
works as follows. In the product of Gaussian prior times term approxingtive replace the term
approximation that we aim to refine by the corresponding original nors§amniterm. The resulting
distributiont; (x;)fj (x;) ~1q(z) is referred to as the tilted distribution: a Gaussian fétxj) ~1q(z)
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times a non-Gaussian terty(x;) depending on a single latent variable. We then compute the ze-
roth, first, and second moments of this tilted distribution (e.g., through one-diome numerical
integration) and determine the term approximaﬁ?ﬁ'ﬁ"(xj) which results in the same zeroth, first,
and second moments. In the Gaussian approximation, we replace the olpEorimationt;(x;)

by this new term approximatiof}‘e""(xj) . In its original setting, expectation propagation refines
term approximation§ (x;) sequentially. In this particular setting of sparse models with many latent
variables., a tremendous speed-up speed-up can be obtained by haitoh-anode version, that is,
updating the term approximations in parallel.

Whichever procedure one prefers, Laplace or expectation propagthis first step yields a
global Gaussian approximatia@fixz) of the original non-Gaussian posterior. We can then write the
exact non-Gaussian posterior as this Gaussian approximgtiontimes a product of correction
terms, where each correction term is nothing but the original tgixy) divided by its term approx-
imationf;(x;). Any further approximation is based on the assumption that these corréetina
are close to 1 in average w.rg, that is, that the Gaussian term approximation is indeed a sensible
approximation of the original non-Gaussian term in the region where the mais ofiglies.

We are interested in accurate approximations of margip@$ on a single variable, say. For
this, we have to integrate out all variables excgptDecomposing the global Gaussian approxi-
mationq(x) into the product ofj(x ) and the conditionad|(x;|x ), we can take botly(x) and the
correction term depending onoutside of the integral over,;. The remaining integrand is then the
conditional Gaussiag(x\;|x) times the product of all correction terms, except the onegforhe
crucial observation here is that this integrand is of exactly the same fotine asoblem we started
with: a (sparse) Gaussian prior (here the conditiaal,[x)) times a product of non-Gaussian
terms (here the correction terms). In principle, we could again use thedeaplathod or expecta-
tion propagation to approximate the integral. Doing this for the Laplace methlut$ yiee Laplace
approximation of Tierney and Kadane (1986) ¢(TK) (Section 3.1). Doing the same in conjunction
with expectation propagation leads to the approximation in Section 3.2.

However, both easily become very expensive, since we have to applppiece method or run
a full expectation propagation for each setting«ofLuckily, we now have an additional property
that we can try to exploit: the non-Gaussian correction terms in the integeaedoeen constructed
such that they are somehow close to 1.

The first, obvious approximation is to replace these correction terms within téngrah by 1,
leaving only the product af(x;) and the correction term dependingxnWe will refer to this type
of approximation as a local approximation. In the case of expectation gatipa it is exactly the
corresponding marginal of the tilted distribution and we refer to iEbyL (Section 3 ). The same
approximation, but then in conjunction with the Laplace method is referreditm as(Section 3).

The method proposed by Rue and co-workers can be viewed as a cois@toetween apply-
ing the expensive Laplace methadh¢Tk) and the cheap local approximatiorm-L). Instead of
finding the optimum of the integrand (conditional Gaussian times correction)tamdsxpanding
around that, Rue et al. (2009) propose to expand the integrand atteenogtimum of conditional
Gaussian only. Essentially, in the computation of the optimum of the integranchérely ig-
nore the correction terms and simply set them to 1. Their method is referredLto-am (see
Section 4.1.2), wherewm stands for conditional mean. It is straightforward and from the compu-
tational point of view relatively inexpensive to correct for the fact that Taylor expansion is not
done at the maximum of the integrand. The method which takes this into acceafesLA-CcM2
(Section 4.1.2).
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In conjunction with EP we can use a similar argument. The term approximatiodg ite
integral are optimized for the global Gaussian approximation, that is, weeaging ovex;. A full
run of expectation propagation would give the term approximations thatginmal conditioned
uponx;, instead of marginalized ovey. This difference is likely to be rather small and hence we
expect that the main difference can be picked up by doing just ondlgdpitaration of expectation
propagation. This approximation is referred toEs1STEP (Section 4.1.1). lIterating EP until
convergence would lead to an approximation that will be referred epasJLL (Section 4.1.1).

Another line of reasoning, followed by Opper et al. (2009), is to Taykpaad the correction
terms around 1 (or their logarithm around 0). This is referred terasPw (Section 4.3). In their
original work, they apply this Taylor expansion not only for the correcteyms inside the integral,
but also for the correction term depending xproutside of the integral, which is unnecessary in
the current context. The interesting observation here is that, in a first-Oaylor expansion, the
correlations withing(z\j|x;) become irrelevant and the integral owey; factorizes into a product
of one-dimensional integrals. This (and also the existence of variationgds on the marginals)
suggests the approximati@w-FACT (Section 4.2), which correspondsee-1sSTEP, but then with
q(x\i|x) replaced by its factorizatiofy; q(x;|x). The same replacement fok-cm gives a method
we refer to as. A-FACT (Section 4.2). BotlEP-FACT andLA-FACT are an order of magnitude faster
than their counterparts based on the non-factorized conditional distritgitioe they do not require
computing the log-determinant of a high-dimensional (sparse) matrix fdér getting ofx,. By a
recursive application of the factorization principle one can obtain betfoapnations, which will
be detailed in a future report. We use-FACTN to denote these approximations. In the following
we expand the above mentioned ideas. We start with the presentation of Itia approximation
methods.

2. Global Gaussian Approximations

A close inspection of (1) and (2) shows that computr{gi|y, 0) leads to computing similar inte-
grals as forp(y|@). In this section, we review two approximation schemes that approximate such
integrals: the Laplace method and expectation propagation (Minka, ZDBéje are other approx-
imation schemes, such as the variational approximation (e.g., Opper anan#sehu, 2009). The
marginal approximation methods we propose for expectation propagati@ctio$3 can be, under
mild conditions, translated to the variational approximation in Opper and Archam{2009). For

this reason, we will not discuss the details of this method.

2.1 The Laplace Method

The Laplace method approximates the evideAgeand, as a side product, it provides Gaussian
approximation that is characterized by the local properties of the distribatigis modex* =
argmax, logp(x). The mean parameter of the corresponding approximating Gaussian density
m = x* while the inverse of the covariance paramateis the Hessian of-logp atx*.

The idea behind the method is the following. lfet log p. Expandingf in second order at an
arbitrary valuex; we get

f) = f(@&) +(@—2) O.f(2) 3)
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whereR, [f] (x; &) is the residual term of the expansionaatwith R [f] (&;Z) = 0. By using the
change of variables = « — &, we have

1

Iog/d:cef(w) = f (i) - EDmf (i)T [Diwf (':E)] -

U (&) @)
~Llog]— 02,1 (3 +logE, [aRlfle+5i9)]

where|-| denotes the determinant and the expectation w.id. taken over a normal distribution
with canonical parametefs, f (%) and—02, f ().

A closer look at (3) and (4) suggests that choosihg: z* and using the approximation
Rz [logp] (x; &) ~ 0 yields an approximation of the log evidence

* 1 *
logZy ~ logp(=*) - 5 log| - [, logp () | (5)
In the meantimep can be approximated by the Gaussian
* * 71
q(z) =N (m\w .~ [02zlogp(x7)] )

Note that any reasonably good approximation pf&!fl(s+2:2)] can improve the accuracy of the
approximation in (5).

The Laplace method requires the second order differentiability gb lige*, thus a sufficient
condition for the applicability of this approximation scheme is the second oiffiereshtiability of
logp. The necessary condition is the second order differentiability at the mtadé distribution p
for which the method fails to give any meaningful information about the veesis, for example,
whenp(y;|xj) = Aexp(—Aly; —Xj|) /2. In this case, the Hessian of Ipgt an arbitrary point s
either equal to the precisia@ of the prior or it is undefined. Since the Laplace method captures the
characteristics of the modal configuration, it often gives poor estimathe abrmalization constant
(e.g., Kuss and Rasmussen, 2005). The example in Section 4.1 showssbettawior influences
the approximation of the marginals in case of a two dimensional toy model. Hoveevepared to
other methods, the main advantage of the Laplace method is its speed. The djuimotdogp
w.r.t. & for computingm = x* requires only a few Newton steps.

2.2 Expectation Propagation

Expectation propagation (EP) approximates the integral for computing ithenee in the following
way. Let us assume thgtis a Gaussian approximation pfconstrained to have the forgix) =
Zglpo(w) M;fj(xj). Then the evidence can be approximated as

Zy = /dw Po(e) [t (%)),

(6)

%
N
—1
—
o
X
2
X
e
5
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and we are left with choosing the approprifitesj)s that yield both a good approximation of the
evidence and op(z). EP computes the ternigx;) by iterating

Collapse(t;( Xj) ta(x))

tj(xj),forallj=1,....n, )

() 0 i
where Collaps@) = argmin, ., D [r||r'] is the Kullback-Leibler (KL) projection of the distribution

r into the family of Gaussian distribution®. In other words, it is the Gaussian distribution that
matches the first two moments of Using the properties of the KL divergence, one can check
that when the term depend only on the variables then Collapsét; (x;)j(x;)) "ta(z)) /a(x) =
Collapse(t; (xj)j (xj;) ta(x;)) /q(x;), therefore, the iteration in (7) is well defined. At any fixed
point of this iteration, we have a setifx;) terms for which Collapst;(x;)ij(xj) a(z)) = q(x)

for any j € {1,...,n}. By defining the cavity distribution\ () O fj(x;)*q(z) and scaling the
termst;, the above fixed point condition can be rewritten as

/dxj {1,%,%¢} g\ (x)Ej (%)) = /dxj {Lx, 8}V (x))tj(x)), j =1,....n,

and so, the approximation f@, has the form

j

Expectation propagation, can be viewed as a generalization of loopy pebigagation (e.g.,
Murphy et al., 1999) to probabilistic models with continuous variables andaslsm iterative ap-
plication of the assumed density filtering procedure (e.g.,8Caatl Opper, 2001). An equivalent
algorithm for Gaussian process classification based on statistical pystb®ds was derived in
Opper and Winther (2000). A close inspection of the parametric form atehation in Section C
of the Appendix shows that the convexity of Ifdz N (x|m, V')t; (x;) w.r.t. m or the concavity
of logt;j(xj) (Seeger, 2008) is a sufficient condition for the teffijssto be normalizable and thus
for the existence off™". However, this alone does not guarantee convergence. To ouldahgsy
the issue of EP’s convergence in case of the models we study in this pagi#rais open question.
The iteration in (7) can also be derived by using variational free erse(gig., Heskes et al., 2005;
Minka, 2005). It can be relaxed such that the projections are takey(xqn°f;(x;) %q(x), with
a € (0,1]. The limita — O corresponds to the variational approximation of Opper and Archambeau
(2009).

In a personal correspondence, H. Rue emphasized that in manyaddlmodels, linear con-
straints of the formAx = b have to be considered and expressed the concern that EP might not
be suited to handle such constraints. Incorporating these constraintsHint@@Ed require to de-
fine updates for terms of the fordy(Ax — b). In the following we propose a way to deal with
such terms. First we start out by deriving a sampling distributions for thes§&an random vari-
ablesz| Az = b, where we assume that is ak x n matrix withk < n. Letz ~ A((m,V') and
y = Ax—b+ewith e ~ AL(0,vI). Then the conditional density afgiveny is a Gaussian with pa-
rameteran + VAT (AV AT +vI)"Y(y— Am+b)andV —VAT(AVAT +VvI)"1AV. Setting
y = 0 and taking the limitv — 0 we find that

r|Az=b~ N (m-VATAVAT) {Am-b),V-VATAVAT)AV). (8)
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As a consequence, we propose the following procedure: 1) firsevierm the term updates for all
“regular” terms, then we project the new moment parametegsaaicording to (8), 2) the value of
the corresponding factor in (6) (0| Am — b, AV AT) and it corresponds to a Bayesian update
in the limitv — 0.

3. Approximation of the Posterior Marginals

The global approximations provide Gaussian approximatm$ p and approximations of the
evidenceZ,. The Gaussian approximatiancan be used to compute Gaussian approximations
of posterior marginals. In case of the Laplace method this only requires bfgsbraic methods
(computing the diagonal elements of the Hessian’s inverse), while in the@tB&ethe approximate
marginals are a side product of the method itself. We refer to the correisgo@dussian marginal
approximations by m-G (Laplace method) andpP-G (EP). Moreover, one can make use of the
approximation method at hand in order to improve the Gaussian approximateatsirg

In case of the Laplace method, one can easily check that the residuahtg@ntdecomposes as
Rx[logp] (z; &) = ¥ Re[logt;] (x;X;), thus, when approximating the marginabeft is sufficient
to assume, [logt;] (xj; Xj) = 0 only for j #i. This yields a locally improved approximatiorix;) x
expRa [logti] (xi;x) to which we refer by.m-L.

As shown in Section 2.2, EP is built on exploiting the low-dimensionality; 6§) and ap-
proximating thetilted marginalsti(x)q\ (x). These are known to be better approximations of the
marginalsp(x) thanq(x) (e.g., Opper and Winther, 2000; Opper et al., 2009). We refer to this
approximation byep-L.

These observations show that there are ways to improve the marginalggidiaéapproxima-
tion q by exploiting the properties of the methods. For the moment, however, wegpestiis to
Section 4 and first try to compute the marginals from scratch. This givemnus msight into where
to look for further improvements.

The exact marginals can be computed as

1
i) ==t () [ dayi po (@i, %) [t (X)),
p(x) Zpt (X|)/ \i Po (2 X)!;Iltj (%) (9)

thus, as mentioned earlier, computing the marginal for a fixéghds to computing the normaliza-
tion constant of the distributiopo (z\i[X) [1;.itj (Xj). Therefore, we can use our favorite method to
approximate it. In the following, we present the details of these proceflurédse Laplace method
and EP.

3.1 Laplace Approximation

We use the same line of argument as in Section 2.1, but now we did expand log w.r.t. @,

at an arbitraryz;. The expression is identical to (3) with = (xi,a:{i)T and# = (xi,.i:{i)T. Let
az’{i (%)= argmax, Iogp(xi,?c\i) and Ieta?\j = a;’{i (). Then the approx_imation of (4) simplifies
to a form similar to (5), that is, the approximation of the marginal density, up todghstant lo@,,

is given by

log [ daip(x) ~ logp (x.7;(x)) - %Iog\—mi\iw\i logp (%, 27(x) )| (10)
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This approximation is known in statistics as the Laplace approximation (Tieml{adane, 1986)
and we will refer to it ap™ ™ (x;).

The error of the approximation can be characterized in terms of the résidtha second order
expansion. The residual decomposes as

Ro[logp] (z; &) = ; Re[logt;] (sj +Xj (X); %] (%))
JF#

and the expectation (see Equation (4)) is taken vartR("1 having a normal density with mean
0 and inverse covariance 12 @y log p(x;, (xi)). This means that in principle we have exact
estimates of the error and that any reasonable approximation of the irtegrahprove the quality
of the approximation in (10).

3.2 Expectation Propagation

The integral in (9) can also be approximated using EP. As mentioned alfotygleally provides
better approximations of lag}, than the Laplace method. For this reason, the marginals computed
by approximating (9) using EP are expected to be more accurate. Thedpreds as follows: (1)

fix x; and compute the canonical parameterggife,j|x;) given byh,; — Q\;ix and@\; \; and (2)

use EP to approximate the integral in (9). Thus we approximate the integhading outpo(X;)
andtj(x;) and applying EP using the prige(z\i|x) and the terms;(x;), j # i.

4. Approximation of the Posterior Marginals by Correcting the Global
Approximations

As we have seen in the previous section, computing the marginal for a fipreglx; value can be
as expensive as the global procedure itself. On the other hand, éowhesre are ways to improve
the marginals of the global approximation. In this section, we start from tinectd approach and
try to re-use the results of the global approximation to improve on the locally wredrmarginals
LM-L andEP-L.

We start with the observation that for all the presented approximation metedsin write the
approximating distributiow as

q(z) =5~ po |_| £ (x)). (11)

In case of the Laplace method, the canonical parameters of the Gaussitinrist; are defined by
the parameters of the Taylor expansion oftlogt X", while in case of EP, they are the parameters
corresponding to EP’s fixed point.

In the following, we do not keep track of the normalization constants thaindependent of
X. In order to avoid overloading the notation and to express that a distribstegpproximated as
proportional to an expression on the right hand side ofthelation, we occasionally uséas a
proxy for unknown normalization constants. One can keep track of ttms&ants, but in most
cases, from the practical point of view, it is easier to perform a uiteanumerical interpolation
followed by numerical quadrature and (re)normalization.
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4.1 Improving the Marginals of the Global Approximations

Given a global Gaussian approximatigfx) of the form (11) with corresponding term approxima-
tionsti(x;), we can rewritep(x;) as

) = et [ dea@) ¢ o) (12)

where we defingj(x) =tj(x)/ti(x). In case of EP, the term approximatidn;) are chosen to be
close to the termg(x;) in average w.r.tq(x;). For this reason, we expect tbgx;)'s to be close to
1in average w.rg(x).

Equation (12) is still exact and it shows that there are two corrections tGalissian approx-
imationq(x;): one direct, local correction through(x;) and one more indirect correction through
the (weighted integral ovee) (x;)s for j #i. The direct, local correction comes without additional
cost and suggests the above-mentioned (Section 3) local approximation

p(x) ~ %Si(Xi)GI(Xi)-

We use the notationg™"(x;) and g-"(x;) for the approximations following the global Gaussian
approximations by EP and Laplace method, respectively.
To improve upon this approximation, we somehow have to get a handle on trezirabrrection

Gi(%) E/dai\iQ(SC\i!Xi) Elsj(xj)- (13)
J £

Again, for eaclx;, we are in fact back to the form (9): we have to estimate the normalizatioterins

of a latent Gaussian model, Wheq(;m\i |xi) now plays the role of atn— 1)-dimensional Gaussian
prior and thegj(x;)s are terms depending on a single variable. Running a complete prockdure,
it EP or Laplace, for eack—as described in Sections 3.1 and 3.2—is often computationally too
intensive and further approximations are needed to reduce the compaltstioden.

4.1.1 IMPROVING THEMARGINALS RESULTING FROMEP

Let us writeg;(x;;X) for the term approximation of;(x;) in the context of approximating ().

A full run of EP for eachx; may be too expensive, so instead we propose to perform just one
simultaneous EP step for gli~ i. Since the term approximations of the global EP approximation are
tuned to maké;(x;) close totj(x;) w.r.t. q(x), it is plausible to initialize€;(xj; X)) to 1. Following

EP, computing the new term approximation for tejthen amounts to choosirgg(x;; x;) such that

/dxj {1, %}, X Fa(xj )& (x5 %) :/dxj {1,x1,% Hal(xj 1% ) (X)), (14)

that is, we ge€;(x;;x) by collapsinge;(x;; X )a(X;|x) into a Gaussian and dividing it ky(x;|x;).
As we have seen in Section 2.2, EP compiitesich that

/dxj {1,xj7xJ2}q(xj) :/dxj {L,x}, X5 a(xj)Ej (%),
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thus, the difference here is made by the conditioningsaandég;(x;;x;) can be viewed as an up-
datet;(x;;x) of fj(x;) that accounts “locally” for this difference—up to second order. Repiac
the termsej(x;) in (13) by their term approximatiors (xj;X) yields an estimate foei(x;). The
corresponding approximation

p(xi) ~ ;a(xi)qo(i)/da’\iQ($\i|xi) Dléj(xjixi)

is referred to apP1STE(x;). By performing further EP steps, one can refine the term approxi-
mationsg;(x;j; ). Iterating the EP steps until convergence (as mentioned above) leadsitea s
(costly) approximation as in Section 3.2. We refer to the resulting approximagionFULL.

4.1.2 IMPROVING THE MARGINALS RESULTING FROM THELAPLACE METHOD

According to the Laplace approximation presented in Section 3.1 one hasotopate the condi-
tional modex;(x;) for every choice ok;. In order to lessen the computational burden, Rue et al.
(2009) propose to re-use the global approximation by approximating titbtmmal mode with the
conditional mean, that isz;ii(xi) ~myj+ V\U\/i,‘il(xi —m), wherem = x*(= argmax, logp(x)).
This approximation often performs reasonably well wigdan close to a Gaussian.

In our setting, the approximation proposed by Rue et al. (2009) canderstood as follows.
The error terms; can be identified with the residual terms, that is,ddg) = Ro [logt] (x;; my). In
order to assess(x;), one could, in principle, apply the Laplace method to

f(\i;%) = q (2 |%) DSJ‘(XJ‘)-
IEq

This would be identical to the direct method of Tierney and Kadane (1986¢pted in Section 3.1.
Using the conditional mean as an approximation of the conditional mode lead®tinig the terms
€j(x;) and using the mode af(x\;|). The corresponding approximation is of the form (4.1.1),
where nowg;(x;; ) follows from a second-order Taylor expansion of ¢9x;) around the mode
or mean ofg(xj|x) instead of the mode df(x,;;%). We refer to this approximation g*~“"(x;).

Taking a closer look at (4) and using our assumptions in Section 3.1, weasdly see that
when we are not evaluating the normalization constant at the conditional, wedean refine the
approximation by adding-3 0, f(:E\i)[Di\hw\i f(&\i)] 'Oe, f (&), which is not identical to zero
when the expansion in not made at the mode, thak\isgé”a:ii (). As we will see in Section
4.7, this correction adds no significant computational burden to the methpdga® in Rue et al.
(2009). We refer to this approximation g "2 (x;).

In order to further reduce computational effort, Rue et al. (2009)asigadditional approxima-
tions. Because they can only be expected to reduce the accuracy ofhegpiproximation, we will
not consider them in our experiments in Sections 4.5 and 6. Below we maposher EP-related
approximation, motivated by theoretical bounds on the correctigrs.

4.2 Bounds and Factorized Approximations

The computational bottleneck in the above procedures for approximatingpthectionci(x;) is
not computing appropriate approximations of the teej(;), either through EP or Laplace, but
instead computing the normalization of the resulting Gaussian form in (4.1.i0hwdads to the
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p(x?, x2) The joint density and the Laplace approximation
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Figure 1: A two-dimensional example, illustrating how the Laplace approximatarks and why

it can fail. In the top-right panel, the black contour curves show the tisteilzlition,
the gray contour curves stand for the global Laplace approximationthendlack and
gray curves show the conditional modes and the conditional meansx.rfhe square
and circle outline these quantities for a fixél The dashed vertical line emphasizes
the “slice” p(xd,x,) atx?. The top-left panel shows(x?,x.) and the approximations for
computing its area under the curve. The areas under the Gaussias comesponding to
the conditional mode (square) and the conditional mean (circle) are tmexapations

of p(x?) = [dx p(x},%2). The bottom-right panel shows the marginalpgk,) and its
approximations. The conditional mean can severely underestimate the ma@s:f(x‘l’.
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computation of a Gaussian normalization constant. Here we propose a sirtiplificahich we
motivate through its connection to bounds on the marginal correcti).
Using Jensen’s inequality, we obtain the lower bound on (13)

Gi(%) > eXp[;/de Q(Xj!Xi)'OgEj(Xj)] = q*"'(x) .
k&l
Following Minka (2005), we can also get an upper bound:

l/(n—l)_ upper
=c¢ " (X).

Gi(x) < JI;I. [/dxj axjlx)ej(x)"*

This upper bound will in many cases be useless because the integradoé&gnot exist. The lower
bound, which corresponds to a mean-field-type approximation, doémwethis problem, but may
still be somewhat conservative. We therefore propose the genemidy faf approximations

1/a
00 = 7| [ e x|
J#
It is easy to show that

d™e(x) <q¥(x) <¢™e(x) vo<a<n-1,

wherea = 0 is interpreted as the limi — 0. Furthermore, for ang we obtain exactly the same
Taylor expansion in terms afj(x;) — 1 (see Opper et al., 2009 and Section 4.3 below). The most
sensible choice seems to be= 1, because it gives exact results whes- 2 as well as in the
case when alkjs are indeed conditionally independent given We refer to the corresponding
approximation apF™™¢T(x). Note that when EP converges, this approximation always exists,

|
becausej(x;|x )€j(X;) is proportional to the conditional marginal of the so calitiéd distributions

t (x))f ) ~*a().

Using (14), it is easy to see thpf™™CT(x;) corresponds t@=™1STE(x;) if in (4.1.1) we would
replaceq(xi|x) by the factorizatior];_« q(xj|x), that is, as if the variableg in the global Gaus-
sian approximation are conditionally independent gixenA similar replacement in the Laplace
approximation yields the approximation referred tgoaS™<"(x;). Here, we compute the univari-
ate integrals with the Laplace method and using the approximafiog) ~ Eq[xj[x], with q(z)
being the global approximation resulting from the Laplace method.

The factorization principle can be applied to groups of variableby factorizingg(z\ |z ).
Another way to make use of the factorization is by applying it recursivatythis way, we can
obtain higher order corrections of the approximate marginals and the eeid@proximation. We
will detail these methods in a future report.

An advantage of the bounding arguments is that we can extend the fadtappeoximation to
cases whety depends on more variables, say, with I € {1,...,n}. Inthis case, the factorization
is unfeasible sincf];tj (x;;) may not factorize w.r.tx;. By using the bounding argument (Minka,
2005), we can still compute a “factorized” approximation

1/a
00 = [] | o e ) o)

An example illustrating this idea is the logistic regression model presented in$éddio
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4.3 Connection to the Taylor Expansion in Opper et al. (2009)

The line of argument in Opper et al. (2009) when applied to approximatinghtirginals can be
explained in our notation as follows. By expandipgx) = Zqzrglq (x)1;€5(x;) in first order
w.r.t. all €j(x;) — 1, they obtain a first order approximation of the expéh terms of the global
approximationg and the tilted distributions;(x;)g"(z). The marginalization of this expansion
yields the marginal approximation

BE™OPW(x) = ?;)q(m

1+ g/deQ(Xj %) &) (X)) — 1]] :

Since the goal of Opper et al. (2009) was to provide improved approxingatd the posterior
distributionp(x), and not only of its marginals, a natural adaptation of their approach vieutd
expand w.r.t. to alj # i and noti itself. This leads to the approximation

P(Xi) ~ d(xi)&i (%)

1+;/deQ(Xj\Xi)[Ej (%j) — 1]] ,

which is also the first order expansion joff™ ™7 (x;) w.r.t. €j(x;) — 1, j #1i. A further expansion
w.r.t€i(x) — 1 leads top™°"¥(x), thus the two approximations are equal in first order. An advan-
tage of g™ <T(x;) is that it is non-negative by construction, whpg™®""(x;) can take on negative
values.

4.4 Approximating Predictive Densities in Gaussian Process models

In many real-world problems, the prigip(x) is defined as a Gaussian process—most often in
terms of moment parameters—and besides marginals, one is also interesteybining accurate
approximations of the predictive densities

Pl |y) = Zy* [ d po(a- ) po() [t (4):
J

wherezx, is a set of latent variables of which distribution we want to approximate. Hyidg the
§(x,z.) O po(x«|x)q(x) and using the same line of argument as in (12), one can derive similar
approximations asP-FACT or EP-1STER. For examplep® T has the form

5T (2.) DG(.)[] / dx; (x|, )E; (x;).
J

One can check that the marginalization and the conditionirgedds to rank updates, wherk is
the dimensionality ofc.. Fork = 1, the complexityp® ™<T(x, ) roughly scales with the complexity
Of erP_FACT(Xi)-

4.5 Comparisons on Toy Models

In the following, we compare the performance of the marginal approximatona few low-
dimensional toy models; complex real-world models are considered in Sectieor énost of the
models presented below, we use a prigg with a symmetric covariance matrix
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Figure 2: Various marginal corrections for a probit model witl ) = @ (4x) and identical vari-

ances and correlations in the pripp, using expectation propagation (left column)
and Laplace approximations (right column). The panels show the comsdiio a 3-
dimensional model with prior variances and correlations) = (1,0.25) (top), (v,c) =
(4,0.9) (center) and for a 32-dimensional modelc) = (4,0.95) (bottom). Note how,
the accuracy of the approximations decreases as the correlation, thegiamce and
the dimension of the model increases.
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Figure 3: The posterior marginals of the first components of a 3-dimensiwaz| with Heaviside
terms with(v,c) = (4,0.5) (left) and(v,c) = (9,0.95) (right). The EP based approxima-
tions perform well even when the Laplace method is not applicable. Thexipmtions
have a similar behavior as in case of the probit model.
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V=v[1- c)I+c11T} , Where we vary the varianaeand the correlatioe. We have chosen the
models below, because they are often used in practice, and they leadi¢@stlj non-Gaussian
posterior marginals.

Probit terms. The termg; are defined ag(x;) = ® (y;x;), where® is the standard Gaussian
cumulative density function. This choice of terms is typically made in binaryifileesion models,
wherey; € {—1,1}. In order to obtain skewed marginals, in this example weyset 4. The top
and center panels in Figure 2 show the marginal corrections of the firgbawent for a three-
dimensional model witliv, ¢) = (1,0.25) and(v,c) = (4,0.9), respectively. The bars, in this and all
other figures, correspond to a large number of Monte Carlo sampleg, eittaéned through Gibbs
or Metropolis sampling, and are supposed to represent the gold stan@iaedlocal correction
EP-L yields sufficiently accurate approximations when the correlations are (kagak but is clearly
insufficient when they are strong (center). The correctemd STEPandEP-FACT Yyield accurate
estimates and are almost indistinguishable even for strong prior correlaflahyswhen we increase
the number of dimensions (here from 3 to 32) and use strong prior dooredavith moderate prior
variancegv,c) = (4,0.95), we can see small differences (top-right). As we can see in Figure 2,
eP-oPw performs slightly worse thampP-FACT and can indeed turn negative.

It is known that the Laplace method does not perform well on this model ugs and Ras-
mussen, 2005). The approximations it yields tend to be acceptable foroogakations (top), with
LA-CM andLA-FACT clearly outperformingM-G andLM-L, but are far off when the correlations
are stronger (center, bottom). These corrections suffer from gsbethe same problems as the
global Gaussian approximation based on Laplace’s method: the mode dandetts® Hessian rep-
resent the mean and the covariance badly and fail to sufficiently improve is. interesting to
see thatLA-cM2 can be almost as accuratelas TK, while its computational complexity scales
with LA-CM. The examples suggest that, at least in case of this modet,M2 has the best accu-
racy/complexity tradeoff when comparedua-cm andLA-TK.
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Figure 4: The posterior densities of a non-zero and a zero coefficiemttoy linear regression
model with double exponential prior on the coefficients. It is interesting topeoe the
effects of the double exponential prior terms centered a zero on the qofthg local
approximatiorep-L. The effect is insignificant in the case the non-zero coefficient while
in the case of the zero coefficient it has a strong effect, bukekie might still be quite
inaccurate. We considered= 8 coefficients the first two being 1 and the rest 0 and we
generatean = 8 observables according to the model.

Step-function termsExpectation propagation can still be applied when the Laplace method
is not applicable. One such example is when the tesnase defined as (x;) = ©(y;X;), where
O is the step-functior®(z) = sign(z) for z# 0 and®(0) = 1. We chosey; = 1. The plots on
the left of Figure 3 show the marginals of the first component of a three diomal model with
(v,c) = (4,0.5) (left) and(v,c) = (9,0.95) (right). The performance of the approximations is similar
to those of the previous model, except that in this case, we are dealing vatmtgious marginals.

Linear regression with sparsifying prioAnother model where the Laplace method is not appli-
cable is the linear regression model with double exponential prior on thfciets. We choose a
model withn = 8 coefficients anth= 8 observations-mbeing close tm led to the most interesting
posterior marginals. The elements of the design mdftiare sampled according to the standard
normal density and renormalized such that every column vector has ugihlefihe regression
coefficients are chosen as= [1,1,0,...,0]" and the observationg are generated by = Uz +,
whereg; is normal with variance = 0.01. We take zero centered independent double exponential
priors on thex; coefficients. The panels of Figure 4 show a few posterior marginals oégnession
coefficientsx; given the maximum a posteriori (MAP) hyper-parameteandA. The priors on the
hyper-parameters are taken as independent and log-uniform. Thexapations are accurate but
in this case, the local approximatiores-L fail dramatically when the mass of the distribution is not
close to zero.

A logistic regression mode¥Ve can try to us&pP-FACT to approximate the marginal probability
densities even when the tertnsi € {1,...,m} depend on more than one variable or a linear trans-
formation of the variables. As an example, we define the termgaas= ®(u ). In this case, the
factorization principle does not apply, but we can still use the line of argumeSection 4.2 and
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Figure 5: The posterior marginal approximatierFACT of the coefficients in a toy logistic regres-
sion model with Gaussian prior on the coefficients and moderate posteriefatmns..
The panels show that even when the non-Gaussian terms depend on amoadhvari-
able and the posterior the approximatiemFACT might still be accurate. We generated
n = 8 coefficients andn = 8 observable variables.

evaluate howep-FACT performs. The panels of Figure 5 show a few marginals of a model where
we have chosen! ~ A((0,10) and an independent Gaussian pri(xz) = [1; N(x;|0,v1) with
v=0.01. We usedh = 8 andm = 8. Although one would expect that the factorization might lead
to poor approximationsgP-FACT seems to approximate the marginals significantly better than the
global approximatiorepr-G.

4.6 Computational Complexities of the Global Approximations in Sparsésaussian Models

In this section, we review the computational complexities of the Laplace methbéxqectation
propagation when applied to sparse Gaussian models, that is, modelsi¢ortthén-dimensional
precision matrix@ of the Gaussian prior is sparse. This is common in many practical applications
in which the priorpg can be defined as a Gaussian Markov random field (e.g., van Gereagn et
2009, 2010). We explore whether EP is indeed orders of magnituderslagvsuggested in Rue
et al. (2009).

The computational complexity for both the (global) Laplace method and exjpecfopaga-
tion is dominated by several operations. 1) ComputingGhelesky factarL of a matrix@Q, for
example, corresponding to the posterior approximapicotf or p-™ ¢, with the same sparsity struc-
ture as the prior precision matr@. The computational complexity, denotegho|, Scales typically
with nnzeros (Q)?/n, with nnzeros (Q) being the number of non-zeros in the precision magix
2) Computing theliagonal elements of the invers&(Q. For sparse matrices, these can be computed
efficiently by solving the Takahashi equations (Takahashi et al., 1&7&nan and Tinney, 1975),
which take the Cholesky factdr as input. A detailed description of solving the Takahasi equations
can be found in Section A of the Appendix. The computational complexitypteeit;k, scales
with n® in the worst case, but typically scales withzeros (L)?/n. In practice, we experienced
that it is significantly more expensive than the Cholesky factorizationjipgshie to the additional
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covariance values one has to compute during the prdc&¥sSolving atriangular systenof the
form La = b, with corresponding computational complexéy, U nnzeros (L).

The complexity of the latter two operations strongly depends on the numbemeteros in
the Cholesky factor, which should be kept to a minimum. There are variouodeth achieve
this by reordering the variables of the model. The approximate minimum degoegering al-
gorithm (Amestoy et al., 1996) seems to be the one with the best averagenpemnte (Ingram,
2006). Since the sparsity structure is fixed, the reordering algorithrtohas run only once, prior
to running any other algorithm.

4.6.1 THE LAPLACE METHOD

To compute the global Gaussian approximation using the Laplace method, tMeafiesto find
the maximum a-posteriori solution. This can be done using, for example, ¢lhdoN method.
Each Newton step requires one Cholesky factorization and solving twgalersystems. The off-
diagonal elements of the posterior precision majiare by construction equal to the off-diagonal
elements of the prior precision matrix, so we only have to compute tiagonal elements. To
arrive at the lowest-order margingfs"~¢ for all nodesi, we need the diagonal elements of the
covariance matrix, the inverse of the precision matrix. These can be cainpyteolving the
Takahashi equations, for which we can use the Cholesky factor cothjputiee last Newton step.
Thus, computing the lowest order (Gaussian) margipgis®Tor all variabless, i = 1,...,n by the
Laplace method scales in total WitB$Ht°" x (Cchol+ 2 X Ciria) + Craka:

4.6.2 EXPECTATION PROPAGATION

In order to update a term approximatifix; ), we computeg'/ (x;) using the marginalg(x;) from

the current global approximatian(x) and re-estimate the normalization constant and the first two
moments of; (x;) q\} (x;). In standard practice, the term approximatigrere updated sequentially
and all marginal means and variances are recomputed using rank atesiafler each term update.
Instead, we adopt a parallel strategy, that is, we recompute marginas medwariances only after
we have updatedll term approximation§, j =1,...,n.

A parallel EP step consists of: 1) compute the Cholesky factorization ofufrert preci-
sion matrix, 2) solve two triangular systems to compute the current posterior amebsolve the
Takahashi equations to compute the diagonal elements of the covariance @uadr 3) if nec-
essary, use univariate Gauss-Hermite numerical quadraturenyiiffinodes to compute the mo-
ments ofej(x;)q(x;) for all j =1,...,n. This adds up to a computational complexity that scales
with ngtﬁpsx (Cchol+ 2 X Ciria -+ Craka+ N X Nquag) . After convergence, EP yields the lowest order
marginalspt™¢ for all variables, i =1,...,n.

Because of the parallel schedule, we can make use of exactly the samatatiomal tricks as
with the Laplace method (Cholesky, Takahashi). Since solving the Takiabesations for large
n dominates all other operations, the main difference between the LaplacedwaetdEP is that
for EP we have to solve these equations a number of times, namely the nuniberstéps, yet
for Laplace only once. Initializing the term approximations in EP to the terms cutddy the
Laplace method and then performing a few EP steps to obtain better estimatespobliability
mass, makes EP just a (small) constant factor slower than Laplace. Emrgffiequential updating

1. We used thenATLAB implementation of the sparse Cholesky factorization and a C implementatisolfong the
Takahashi equations.
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steps\ methods LA-CM LA-FACT EP-1STEP EPFACT
a(xj|x) Ctria -+ N X Ngrid ’ Ciria + N X Ngrid ‘ Ctria+NXNgrid ~ Ctria + N X Ngrid
€ (Xj; %) N X Ngrid N X Ngrid N X Ngrid X Nquad ’ N X Ngrid X rlquad‘

Norm. or det.-s 'W‘ N X Ngrid ’ Cehol X Ngrid ‘ N X Ngrid

Table 1: Computational complexities of the steps for computing an improved rabagiproxima-
tion for a particular node using the various methods. The frames highlight the complex-
ities that typically dominate the computation tim®sa, Cchol, @NdCiaka refer to solving a
sparse triangular system, a Cholesky factorization, and Takahasdtiatg) respectively.
Ngrid refers to the number of grid points angl,aqto the number of Gauss-Hermite quadra-
ture nodes fox;.

of EP, we would need a fast one-rank Takahashi update (or somethiiigr), which, to the best of
our knowledge, does not exist yet.

It is interesting to realize that since for ai}; # O the Takahashi equations also provide
[Q*l]ij, we can run EP using the factdrg(x,x;) = ti(%)Y/™t;(x;)Y/" whereny is the number of
neighbors of nod& according to the adjacency matrix defined by the structu@.ofhis increases
the amount of computation, but the approximation might be more accurate.

4.7 Computational Complexities of Marginal Approximations

After running the global approximation to obtain the lowest order approximatie are left with
some Gaussiag(x) with known precision matrix, a corresponding Cholesky factor and singtk
marginalsg(x;). We now consider the complexity of computing a corrected marginal throwegh th
various methods for a single nodeusingngrig grid points (see the summary in Table 1).

The local correctiong;™ - and ™" we get more or less for free. All other correction methods
require the computation of the conditional densiti¢s;|x;). The conditional variance is indepen-
dent ofx;, the conditional mean is a linear function xgf Computingq(x;|x) at all grid points
for eachj then amounts to solving two sparse triangular systems(ardl) x ngrig evaluations.

To arrive at the term approximatiogéx;; x;), we need to compute second order derivatives for the
Laplace approximation and numerical quadratures for EP, which is agQuttimes more expen-
sive. ForLA-FACT, EP-OPW andEP-FACT, we then simply have to compute a product or sum of
normalization terms. Fara-cmandepP-1STER we need to compute the determinant of(ar- 1)-
dimensional sparse matrix, which costs a Cholesky factorization.LAarm2 an additionakyia

has to be added for eagh

5. Inference of the Hyper-parameters

Until now, we considered estimating single-node marginals conditioned updyper-parameters.
In this section, we consider the estimation of the posterior marginals that foljoitégrating

over the hyper-parameters. For this, we need the posterior density byplee-parameters given
the observations, which is approximated fp§8[y) O f(y|0) p(6), wherep(y|0) is the evidence
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approximation provided by the Laplace method or expectation propagatmmth& moment we
assume that the approximate posterior density of the hyper-parametenmsdgiah

We propose a slight modification of the method used by Rue et al. (2008iy. thod explores
the space of the hyper-parameters in the eigen-space corresponttiegitodal configuration and
can be described briefly as: (1) compute the modal configurégidn) of logp(8|y), (2) starting
from the moday, select a set of uniformly spaced nodgsalong the scaled eigenvectoyd\jui—
hereX = UAUT—by thresholding at both ends according to fxig|y) — log f (L + kiAvAiui|y) <
0,k € Z, and finally (3) use all hyper-parameters corresponding to the nddée product grid
X1 X ... x Xg,d = dim(6) and satisfying the latter thresholding condition, to perform numerical
guadrature using the rectangle rule.

Since the computational bottleneck of the procedure is the evaluation of thexapate ev-
idence, we propose to improve this method by selecting the nodes—steif2)afrove—in a
different way. we keep the thresholding condition but we do a brearthsiarch with regard to
(ki,...,kq) on the grid graptZ. We start from the origin and the hyper-parameter values that do not
satisfy the thresholding condition are not included in the set of nodesentgighbors we search.
This simple modification proves to be very economical, since when exploringotbene around
the mode, only the hyper-parameters that form the boundary surfaexlored, but not selected.
Thus, the proportion of useless computational time is the ratio of surfacdumeo Although the
boundary nodes do not satisfy the thresholding conditions, we can stithesn in the numerical
procedure. The number of grid points to be evaluated grows exponeraiitydoes for the method
in Rue et al. (2009). The difference is that in our method it roughly grneseportional to the vol-
ume of ad-dimensional sphere, whereas in the case of the method in Rue et al) (2@08tes to
the (larger) volume of d-dimensional cube. Figure 6 illustrates the methods on a two-dimensional
example. When the posterior density is not unimodal then we suggest todudereensional uni-
formly spaced grid, that is¥ = I and choose a well suited and threshold which allows the
exploration of the most significant modes. Once the hyper-param{@grs., 6} are selected, the
integration of the corrected approximate marginals over the hyper-parésragiproximate poste-
rior density can be written as

Lo YL P(xly,85) P(8jly)
S (T R

implying that the proposed procedure is similar to a reasonably efficientisgnppocedure.

6. Examples

As real-world examples, we chose four models: a stochastic volatility modekéZ and Heskes,
2005; Rue et al., 2009), a log Gaussian Cox process model (Rue €2@9), 2 Gaussian process
binary classification model (Kuss and Rasmussen, 2005) and a rankired (Batutiu and Heskes,
2007). Our aim is to show that the EP based correction methods can beuaata@s the Laplace
approximation based ones and given that we have a sparse GaussiagBPrcan be considered as
an alternative to the Laplace method even when the number of variables s ofdér of tens of
thousands.
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Figure 6: A comparison of the points selected by the thresholding breasittsdiarch procedure

(left panel) and the method proposed by Rue et al. (2009) (right patelh exploring

in the eigen-space corresponding to the modal configuration. The btasksdow the
selected points while the gray ones stand for the ones that do not satigfiyekbolding
condition. The principal axes on the figure are not perpendiculamuisecdaf the different
scaling of the axes. The number of evaluations in our method roughly gn@psrtional

to the volume of a-dimensional sphere, whereas the method of Rue et al. (2009) relates
to the (larger) volume of d-dimensional cube.

6.1 A Stochastic Volatility Model

As a first example for a sparse Gaussian model, we implemented the stoclodeiicyvmodel
presented in Zoeter and Heskes (2005) where the authors usedeataigiglobal) EP algorithm
to approximate the posterior density. The same model was used by Rue28i08l) fo show that
the global Laplace approximation is by magnitudes faster in sparse models Heguential EP
algorithm. They also showed that their marginal approximations work welliemtbdel.

The data set consists of 945 samples of the daily difference of the pmnllzd-exchange rate
from October %, 1981, to June 28 1995. The observationg given the latent variableg; are
taken to be distributed independently according g |n:) = N (y;|0,€"). The quantityn; govern-
ing the volatility is a linear predictor defined to be the sge= f; + p of a first-order auto-regressive
Gaussian process( fi| fi_1,@,1) = N (fi|ofi_1,1/1), with || < 1, and an additional Gaussian bias
term with a priorp ~ N (p|0,1). Thus the prior or{fy,..., fr,p) is a sparse latent Gaussian field.
The prior on the hyper-parameters taken to bep(t) = (1]1,10) and a Gaussian prick/ (0, 3)
is taken overy =log((1+@)/(1—@)).

The joint density of the stochastic volatility model is

T

I_LN (ft ‘(pft,]_, 1/'[)

t=

.
Py, fLLT,0) = HN (v]0,e" ") N (f,]0,1)
t=

x N(0,1)T (t|1,10)N (Iog Gf(‘g) 0,3) (1_2(p2) :
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Figure 7: Plots of the posterior densities in the stochastic volatility model in SectlonFggure
panels show the logarithm of the approximate posterior density of the ipgrameters
using EP (top-right) and the Laplace method (top-left), their marginals rislecov) and
the posterior marginal approximations f3p andp (bottom rows) when integrated over
the corresponding approximations of the hyper-parameters’ postensitgd. Dots show
the hyper-parameters used for numerical integration; ellipses visualittegwan at the
approximate posterior density’s mode. The rest of the panels show ttexiposlensity

approximations offsg and L
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whererl (-|k,0) denotes the Gamma density with mean vad@e Rue et al. (2009) propose to use
the first 50 observations, both because of using the whole data set thaleggproximation problem
easier and because of comparison to Zoeter and Heskes (2005hnroargson, we used the same
number of observations.

The results are shown in Figure 7. The Laplace and EP approximation®fittence are nearly
indistinguishable (top-row), as are the posterior marginals of the hygrargeters (second row).
Here EP is around a factor 5 slower than Laplace. The posterior margin&ls and u obtained
using the more involved methods (bottom rows) are practically indistinguisifiateeach other
and the gold (sampling) standard. This is not the case for the cheapemntsam-G, EP-G, and
LM-L, butis the case foEP-L (third row): apparently to obtain excellent posterior marginals on
this model, there is no need for (computationally expensive) correctiahi,duffices to compute a
single global EP approximation per hyper-parameter setting and coriebitthe (non-Gaussian)
local term.

6.2 A log-Gaussian Cox Process Model

As a large sized example, we implemented the Laplace approximation and ¢ixpeptapaga-
tion for the log-Gaussian Cox process model applied to the tropical rastfbio-diversity data as
presented in Rue et al. (2009). The observational data used in Rug22@9) is the number of
treesy;; form a certain species in a small rectangular rainforest area indexieé fty. .., 201 and

j =1,...,101 with mean altitude;; and gradieng;j. The data is modeled by a discretized Poisson
point process in two dimensions and the log of the mean paramgtes defined as a Gaussian
field. This means that the observationsare taken to be Poisson distributed with meayeli,
where the parameterg; are proportional to the size of the area whygydés measured. Since Rue
et al. (2009) consider rectangular areas of the equal size, in theil mgds constant.

The latent Gaussian fielgl; modeling the log of the mean is defined as

Nij = Badij + BgGij + Bo+ fi(jS) + fi(jU)

wherea;j andg;; are scalar quantities specifying altitude and gradient @atandy are the corre-
sponding linear coefficients afig is a bias parameter. The latent fielfl§ and f(“) are defined as
follows: £(® is a second-order polynomial intrinsic Gaussian Markov random field witbigion
parametei’s constructed to mimic a thin plate spline on a uniform two dimensional grid, while
£ is an independent field witl](j”> ~ A((0,e ™) included to model the noise. The field& and

¥ are modeling the unobserved spatially structured or unstructured degariadependent wide
priors A((O, vgl) are taken offsa, By andfo, with vgl = 103, thus the fieldf® explains the assumed
a-priori correlation inmp. We worked with the data set used in the INLA software package (Mar-
tino and Rue, 2009). The data set contains the correspomgimg;,wi; andy;; for a grid size of
101x 201. We also used the same modeling approach, that is, we have(ltﬁkq”rﬁs)T, Ba. By, Bo)”

as latent variable, thus having an inference problem of dimension 406@5joint density of the
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Figure 8: The panels show the altitualg, gradientg;; and the non-zero observatigi data for the
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The posterior mean of 1 by using EP
The log posterior variance of n by using EP
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Figure 9: The approximate posterior mean and variance of the Gaussgomdieldn from the
log-Gaussian Cox process model in Section 6.2. The top figures shopwghexanation
obtained by the EP algorithm. The bottom panels show the comparison of therfor
to the approximation obtained by the Laplace method. The black contour icuthie
bottom-left panel corresponds to the zero value.
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Evidence approximation using the Laplace method Evidence approximation using Expectation propagation
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Figure 10: The posterior approximations of the evidence (topBamahdBy (bottom). The Laplace
method results in similar evidence estimates as EP (the level curves on the &p pan
show identical levels). The marginal approximations show marginals forgpeosi-
mate MAP hyper-parameters.
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log-Gaussian Cox process model is

p(y7n7 f(5)7 Baa Bg7 BO|VF]7VS7avng) =
= [] Poissortyij [wi;€')N (r]ij |17+ @) Ba+ Gij By + I30,e_v”>
i]

Vs

N/2 1 T
< (52) |S|1/2exp{2eVSf<s) Sf(s)}N(Ba,Bg,Bolﬂ,log‘I),

21

where| S|, is the generalized determinant—an irrelevant constant—of the structure rSator-
sisting of the finite difference coefficients of a second order improplgnpmial Gaussian Markov
random field on a uniform two dimensional grid—with the correspondingndary conditions (Rue
and Held, 2005). We used uninformative priors ¥grandvs. The bottom-right panels of Figure 8
show the sparsity structure of the precision mafgixorresponding to the Gaussian random vector
T, 707 Ba, By, Bo)T and the sparsity structure of its Cholesky fadiowhenQ@ is reordered with
the AMD algorithm.

Expectation propagation was initialized using the term approximations conésp to the
Laplace method. Figure 8 shows the data we used and Figure 9 shows theates and standard
deviations of the log intensityy when using the EP algorithm and the Laplace method with the
hyper-parameter fixed to their corresponding approximate a postéviaR) value.

The top panels of Figure 10 show the evidence approximations while the bp#oets show
the marginal approximations for the corresponding MAP hyper-paramédierf3,, there is a slight
difference in variance between the Laplace approximation and the EB iv&gleods, while fofy,
besides a similar effect, the approximation methods also improve on the mean®f It seems
thatep-G is a sufficiently good approximation ame-FACT does not really improve on it.

6.3 A Gaussian Process Model for Binary Classification

In this section we revisit and detail the probit model presented in SectioM& bise it in a binary
classification problem with a Gaussian process prior on the latent varidihleglata consists of the
inputsu; € RY, j =1,...,nand the corresponding binary outpyise {—1,1}, j=1,...,n.

The model is defined as follows. The binary observapiesre assumed to be Bernoulli dis-
tributed and conditionally independent given a set of latent variaplesR, j = 1,...,nwhich are
controlling the parameters of the distribution through the cumulative densityidurtd of the stan-
dard normal distribution, that ig(y;|x;) = ®(x;)X)/2(1— d(x;))Yi)/2, The latent variables
Xj = X(uj) are modeled as the values at locatiansof a zero mean Gaussian proceswith a
(positive definite) covariance functiax-, -). The joint density of the model can then be written as

Py, [ {uj};,c) O] Py;x)N(|0, [c(ui, wi)]; ),
j

where [c(ui, uk)]; , denotes the matrix formed by the covariance valel@s, uk), i,k =1,....n.

We chose the lonosphérelata set and a zero mean Gaussian process with covariance function
c(ui, ux) = expla— €'||ui — wy/|?). This setting yields a non-sparse precision matrix, therefore, the
speed-up arguments do not apply. However, the parallel updatingscisestill applicable and it
does not have higher complexity than the serial one.

2. The data set is publicly availablehdtp://archive.ics.uci.edu/ml/datasets/lonosphere
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Figure 11: The approximate posterior marginal approximations of a Gayssiaess binary clas-
sification model, with the hyper-parameters set to the approximate MAP vdgkldeq
by EP. The behavior of the marginals is similar to that in Figure 2, howevernscése,
the correction provided bya-cM2 is not that significant as in Figure 2.

Kuss and Rasmussen (2005) showed that on this model and data setdERoleacurate ap-
proximations of the evidence while the Laplace method is substantially lessatecWe propose
to illustrate how this behaviour manifests itself when approximating marginals.sé/¢the whole
set ofn = 351 data points and compare the resulting marginals with the histograms obtaimed f
1.5 x 10° samples by using elliptical slice sampling (Murray et al., 2010). The hypempeters
are set to the approximate MAP values obtained from EP’s evidencexamittion with uniform
priors ona andv.

It turned out that many posterior marginal densities are skewed, howewst of the skewed
marginals are well approximated Bp-L (the marginal of EP’s tilted distribution). The panels of
Figure 11 show the approximate posterior marginal densities of the latéablawith j = 41.
These approximate posterior marginals exhibit a similar behavior like the ofégure 2.

6.4 A Ranking Model

To show that we can implement linear constraints with EP and that the factonipainziple might
work even in is cases when the non-Gaussian terms depend on more thaariable, we use a
ranking model for rating players in sports competitions. The model is a simplifiezion of the
models presented in Dangauthier et al. (2008) and Birlutiu and Hesk@g)(@0d we only consider
it as an example to support the above mentioned claims. We assume that g jdestearacterized
by his/her strength which at timieis x[(’). The prior on the evolution of the players’ strength
Ty = (xt(l), ey (”)) is taken to be a factorizingR(1) model. Each game between two players is
represented by the tripl@, j,t) and the collection of these triples is denoted®y We assume
that the outcomes of the games are a binary variaplass {—1,1}, the games are conditionally
independent given the players strengths and the probability of playeming the game against

playerj at timet is ¢(><§i) — xt(‘)), where® is the standard normal cumulative density function. To
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Figure 12: The left panel shows the mean strengths of the players AsA@ant.), Y. Kafelnikov
(dashed), C. Moya (dashed-dotted), and T. Henman (dotted) with thdesthdeviations
of A. Agassi’s strength based on the ranking model presented in Sectioffiée data
set consists of the games played by these players against each otheyaéarthd 995-
2003. We implemented linear constraints such that the players strength seno to z
every year. The left panel shows that this indeed holds for the medmesright panel
shows A. Agassi’s strength distribution in 1996 which is a non-Gaussiasitgeand can
be well approximated usingpP-FACT.

implement linear constraints, we constrain the players’ strength to sum tazeny given time.
These constraints are purely artificial and are only considered for dlimtrpurposes.
The joint posterior density of the players’ strength is given by

T . .
Pats.owallyvava) O Ma(tTe) [ o(yi (4" —x")
t= (i,j1)eG
n

, T-1 _ ,
x [INOI0.w) [ NGxy )
=1 t=

We approximate this density with a Gaussian density using EP and we usettreétcorrections
EP-FACT, to improve on the Gaussian marginals. The prior on the players strengthsperse
Gaussian Markov random field, thus we can apply the methods preser8edtion 4.6.2.

We have chosen a data set consisting of ¥aannis players and their ATP tournament games
played against each other form 1995 to 2003. There was a total ofdéggalo obtain reasonably
skewed marginals, we choge=1,a=1 andv= 9. The left panel in Figure 12 shows the evolution
of the players’ mean strengths and the corresponding standard devifatidhe best player. Note
that the players’ mean strengths average to zero at all times. The righigbamws that the factorized
approximation€P-FACT, can indeed improve on the Gaussian marginal approximations computed
by EP even in models where non-Gaussian terms depend on more thaniabkeva his might be
due to the relatively sparse interaction between the varia:ﬁlés =1...,T,j=1...,n

3. We have chosen A. Agassi, Y. Kafelnikov, C. Moya and T Henman.
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7. Discussion

We introduced several methods to improve on the marginal approximatiorinexbtay marginal-
izing the global approximations. The approximation denotedbkyACT seems to be, in most
cases, both accurate and fast. An improvement in accuracy can beeathigh some additional
computational cost by usirgep-1STERP. We showed that by using a parallel EP scheduling the com-
putational complexity of EP in sparse Gaussian model can scale with the cdimpataomplexity

of the Laplace method.

There are many options for further improvement, in particular with respeeffitdency. The
ideas behind the simplified Laplace approximation of Rue et al. (2009), wimk to prevent
the expensive computation of a determinant for eachre applicable to expectation propagation.
However, if the computation of the determinantgp-1STEPdominates the computation time, the
factorized approximatioaP-FACT may be a faster but less accurate alternative.

One of the main problems of expectation propagation is that it is not guadattemnverge
and may run into numerical problems. There were no problems with the gama of EP in the
problems considered in this paper, but even when there are, it can stidldbel to start from the
Laplace solution and perform a few EP steps to get closer to the main masgobtability instead
of relying on the mode and the curvature.

For models with weak correlations and smooth nonlinearities, any approxinmag&tirod gives
reasonably good results. However, it is possible to come up with casesgstorrelations, hard
nonlinearities), where any deterministic approximation method fails. The mostsiiteg problems
are somewhere in between, and for those we can hardly tell how advandecomputationally
intensive an approximation method we need. The heuristic suggested irt Ru€2009), to sys-
tematically increase the complexity and stop when no further changes cdotdieenl, appears to
be risky. In particular when going from the factorized to the non-factdriapproximations, it is
often hard to see changes, but still both approximations can be fartaffould be interesting to
obtain a better theoretical understanding of the (asymptotic) approximations énplied by the
different approaches.

Acknowledgments

This research was supported by VICI grant 639.023.604 from theeNattds Organization for
Scientific Research (NWO). We would like to than&ward Rue and the anonymous reviewers for
their valuable comments on earlier versions of the manuscript.

Appendix A. Solving the Takahashi Equations

The Takahashi equations (Takahashi et al., 1973) aim to compute addaiants of the inverse of
a positive definite matrix from its Cholesky factor. The derivation of theaéiqus or the algorithm
can be found in many papers (e.g., Erisman and Tinney, 1975; Rue €&G4), 2n the following we
present the line of arguments in Rue et al. (2009).@et LL", z ~N(0,I) andL"x = z. Then
using the notatio = Q! we find thatz ~ N(0, V). The equationd.” z = z can be rewritten
asLjx =z — Lii_lZE:iH LkiXc. Multiplying both sides withx;, j > n, usingz = L~ Tz and taking
expectations we arrive at the Takahashi equatiéns: &L “ — Lj ' S i1 LkiVkj. Since we only
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want to compute the diagonal & or the element¥/; for which Lj; # 0, the algorithm can be
written in the followingmATLAB friendly form

1: function V' = SolveTakahashi (L)

2: fori=n:-1:1

3: I :{jZLij;ﬁO,j>i}
4: Vii=-Vi.Li/Li;

5: Vi) = VJ

6: Vii = 1/L% — Vi Ly i/ Lii
7: end

The complexity of this algorithm scales witonzeros(Q)?/n.

Appendix B. Gaussian Formulas
The first and second moments of a distributi(x) = Z~1(m, V') f (z) q(x) with g(x) = N (z|m, V)
are given by

Eplx m+V0O,logZ(m,V),
Vplz] = V4+VIZ,, logZ(m,V)V.

—

Applying integration by parts, one can show that the momengsaain also be written in the form

Eole] = mtZVEDLf],

Vpla] = V+ ?12V (76402, 1] - Eg[Da f1Eg [T 17|V,

provided thatf (m)e‘me and %e‘f’;m vanish at infinity and the required differentials and inte-
grals exist.

Appendix C. Details of EP in Latent Gaussian Models

Assume the distribution has the form
p(z) Opo(z) [t (Uiz),
i

whereU; are linear transformations. This formulation includes both the represerstatioent;
depend only on a subset of parameters, that(is, =t; (x),) with U; = I.; and the representation
used in logistic regression, whek# is theit" row of the design matrix. Here we present the details
of thea-fractional or power EP where the updates are performef @r).

C.1 Computing ™"

First we compute the form of the term approximations, and showfthss a low rank repre-
sentation. Leg(z) = N(z|m,V) and leth = Vim, Q=v1 the canonical parameters of
q(z). We useq\ (z) = N (z|m\,V\) to denote the distribution\'(z) O q(x)/{%(x). After
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some calculus one can show that the moment matching Gaugstdir) = N (z|m"®", V") of
qi(z) Ot (x)q\ (x) is given by

e m\i+V\iUiT[Uiv\iUiT}’l[E[Zi]_Uim\i]’
veer — Vi vIGT[ovioT] v =) - v o] [ovioT] o,

wherez; is a random variable distributed as~ t (zi)* N (zi|Uim\', UiV \'U]"). The update for
the term approximatiofi(x) is given by(f"®(x))® 0 g"®(x)/q\ (). The latter division yields

-1

[vnew-1_ [V\i} UT [V Bl [Ui V\iUiT} 1] Ui, (15)

[VneV\q—lmneW_ [V\i} _lm\i _ UiT [V [zﬂ—l E [Zi] . [UI V\ilfiq _llfim\i]

(16)

leading to

7(@) Dexp( (Uge) "B~ 5 (U0 @ W) ).

whereh' and Qi are given by the corresponding quantities in (15) and (16). The zjppating
distributionq is defined by the canonical parameters

h = h+SU'R,
Z i

Q = Q+5U'QU;,
|
thatis, the sum over the parameter§ ahd the parameters of the prigg(z) O exp(hTa: — wTQa:/Z) .

C.2 Computing the Cavity Distribution g\

Now, we turn our attention to the computation of the distribugdnThe quantities we are interested
inareUym\ andUiV\'UjT. After some calculus, one can show that these are given by

uviul = U (Q-aUTQ'U) U7
= (UVU) (I-aQ (UvUT))
Uim\i - U (Q o O(UiTQiUi)_l (iz . O(UinNLi)
= (I-aQ' (UVU"))  (Um-a(UVUT)R).
Therefore, the computational bottleneck of EP reduces to the computattbe gliantitied/im

anolUiVUiT. These can be computed from the canonical representationbgfU; Q—1h and
uiQ U
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C.3 Computing EP’s Evidence Approximation

Let us define

1 1
109Z (m, V) = ZmV "tm + > logdetV + g log (2m)

and
logZi (m, V) = Iog/d:cN (@|m, V)1 (Uiz).

Expectation propagation approximates the evidgreg8) by Zep = 21"/ 7, Z*. Using the above
introduced notation this can be written as

logZgp =logZ (m, V)
+ iz [Iogzj (m\i,V\i) +logZ (m\‘,V\i> —logZ(m, V)|,

which in the case wheth depends oV« leads to
1 \i \iprT
l0gZep =10gZ (m, V) + = .Z logZ, (Uim LUV, )

1 . .
5 .Z [Iogz (Uim\',UiV\'UiT> —logZ (Uim,UiVUiT)} .

Appendix D. A Summary of the Marginal Approximations

An explanatory list of the approximation methods in Figure 13.

e LA-TK. The Laplace approximation of Tierney and Kadane (1986). The ajppation
p-A-TK(x;) is computed by using the Laplace method to approxirods) (Section 3.1).

e EP-FULL. The full EP approximation of the marginal. This approximation is computed by
using EP to approximatg(x;) (Section 4.1.1).

e EP-L. EP local. The approximatiop™™*(x) 0 & (x)q(x) is obtained fronty (x) ~ 1, where
&(x) =t(x)/ti(x) andqg(x) are computed by EP (Section 3).

e LM-L. Lapace method local. EP local. The approximapbhi-T1x;) O € (X )q(X ) is obtained
from ¢ (x) = 1, wheres;(x) = ti(x;)/fi(x) andq(zx) are computed by the Laplace method
(Section 3). In this case lag(x) = R[logti](xi).

e LA-CM. The Laplace approximation with the conditional mode approximated by thea-cond
tional mean. The approximatiopt**“"(x;) is computed as proposed in Rue et al. (2009),
that is, by using the approximatiaet; (x;) ~ Eq [x\i|x ] whereq(zx) is given by the Laplace
method (Section 4.1.2).

e LA-CM2. The similar approximation as\-cMm, but with an additional term added to account
for z;(x) ~ Eq [@\i|x] (Section 4.1.2).
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Latent Gaussian model

p(x) o< po(x) [T t;(x;)

Gaussian approximation

Expectation propagation (EP) —>

q(x) o po(x) Hfj(l’j)

l«—— Laplace method (LM)

v

p(x) < q(z)[[€(x;) with e;(z;) =t;(x;)/t;(z))

v

J

ci(z) =1 ci(zy) ~ 1
BPL «—— " | p(a;) q(l‘i)q(xi)/dm\iq(w\i|xi) Hej(xj) — LM-L
J#i
ci(wi)

apply EP for ¢;(x;) apply LM for ¢;(x;)

EP-FULL < > LA-TK

Use global method with some simplifications

Collapse (q(x;|x:)e;(z;)) w||  ®3;(2i) = Eq [2i]2i]

EP-1STEP < » LA-CM/LA-CM2

Factorize and use the univariate global method

ci(z) = H fdij(xj\fi)Gj(xj)
J#i

*

(@1) ~ By ayla]

Gauss-Hermite quadrature y Z;
EP-FACT < > LA-FACT
Expansions with regard to €;(;)
recursive factorization ¥ Taylor expansion
EP-FACTN < YIOr exp EP-OPW
(1st order)

Figure 13: A schematic view of the approximation methods introduced oreefér in this paper.
For details see Section D of the Appendix.
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e EP-1STEPR The one step EP approximation. The approximap®h!STe?(x;) is computed by
defining&; (xj;x) = Collapséq(x;|x)&j(x;))/a(x|x) and using the approximatian(x) ~
Jdz\iq(ai[x) ;.4 €j (Xj: %) (see Section 4.1.1). This corresponds to one EP step for com-
putingci(x;) with the initializationg; (xj; x) = 1.

e EP-OPW. The Taylor expansion of Opper et al. (2009). The approximgif61?™*(x;) is com-
puted by expanding p(z) O po(x)[];€j(xj) in first order with regard to
gj(xj) —1forall j=1,...,nand integrating with regard te\;. When expanding only for
j # i the approximation is equal in first order p57*A°T(x;) (Section 4.3).

e EP-FACT. The factorized EP approximation. The approximatjfi ™<"(x;) is computed
using the approximation (x;) ~ [;.i /dx; q(Xj|x)€j(xj), where the univariate integrals are
computed numerically or analytically, if it is the case. For further details setofet.2.

e LA-FACT. A similar approximation agpP-FACT, but here, the univariate integrals are com-
puted with the Laplace method and using the approximatjgr ) ~ Eq [Xj|x], with g(x)
being the global approximation resulting from the Laplace method. For fudittails see
Section 4.2.

e EP-FACTN. Higher order approximations obtained by using the factorization relysiFor
further details see Section 4.2.
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