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Abstract
We consider the problem of improving the Gaussian approximate posterior marginals computed by
expectation propagation and the Laplace method in latent Gaussian models and propose methods
that are similar in spirit to the Laplace approximation of Tierney and Kadane (1986). We show that
in the case of sparse Gaussian models, the computational complexity of expectation propagation
can be made comparable to that of the Laplace method by using aparallel updating scheme. In
some cases, expectation propagation gives excellent estimates where the Laplace approximation
fails. Inspired by bounds on the correct marginals, we arrive at factorized approximations, which
can be applied on top of both expectation propagation and theLaplace method. The factorized
approximations can give nearly indistinguishable resultsfrom the non-factorized approximations
and their computational complexity scales linearly with the number of variables. We experienced
that the expectation propagation based marginal approximations we introduce are typically more
accurate than the methods of similar complexity proposed byRue et al. (2009).
Keywords: approximate marginals, Gaussian Markov random fields, Laplace approximation,
variational inference, expectation propagation

1. Introduction

Following Rue et al. (2009), we consider the problem of computing marginalprobabilities over
single variables in (sparse) latent Gaussian models. Probabilistic models with latent Gaussian vari-
ables are of interest in many areas of statistics, such as spatial data analysis (Rue and Held, 2005),
and machine learning, such as Gaussian process models (e.g., Kuss and Rasmussen, 2005). The
general setting considered in this paper is as follows: the prior distribution over the latent variables
is a Gaussian random field with a sparse precision (inverse covariance)matrix and the likelihood
factorizes into a product of terms depending on just a single latent variable. Both the prior and
the likelihood may depend on a small set of hyper-parameters. We are interested in the posterior
marginal probabilities over single variables given all observations.

Rue et al. (2009) propose an integrated nested Laplace approximation to approximate these pos-
terior marginal distributions. Their procedure consists of three steps. 1)Approximate the posterior
of the hyper-parameters given the data and use this to determine a grid of hyper-parameter values.
2) Approximate the posterior marginal distributions given the data and the hyper-parameters values
on the grid. 3) Numerically integrate the product of the two approximations to obtain the posterior

c©2011 Botond Cseke and Tom Heskes.



CSEKE AND HESKES

marginals of interest. The crucial contribution is the improved marginal posterior approximation
in step 2), based on the approach of Tierney and Kadane (1986), thatgoes beyond the Gaussian
approximation and takes into account higher order characteristics of (all)likelihood terms. Com-
paring their approach with Monte Carlo sampling techniques on several high-dimensional models,
they show that their procedure is remarkably fast and accurate.

The main objective of the current paper is to see whether we can improve upon the approach
of Rue et al. (2009). Expectation propagation (Minka, 2001), a method for approximate inference
developed and studied mainly in the machine learning community, is then an obviouscandidate. It is
well-known to yield approximations that are more accurate than the Laplace method (e.g., Minka,
2001; Kuss and Rasmussen, 2005). Furthermore, expectation propagation can still be applied in
cases where the Laplace method is out of the question, for example, when the log-posterior is not
twice-differentiable (Seeger, 2008). The typical price to be paid is that of higher computational
complexity. However, we will see that, using a parallel instead of a sequential updating scheme,
expectation propagation is at most a small constant factor slower than the Laplace method in appli-
cations on sparse Gaussian models with many latent variables. Moreover, along the way we will
arrive at further approximations (both for expectation propagation andthe Laplace method) that
yield an order of magnitude speed-up, with hardly any degradation in performance.

The paper is structured as follows. In Sections 1.1 and 2 we specify the model and briefly present
the Laplace method and expectation propagation. In Section 3, we introduceand compare several
methods for correcting marginals given a fixed setting of the hyper-parameters. In Section 4.6, we
discuss the computational complexity of these methods when applied to sparse models. In Section 5,
we introduce a method for numerical integration over hyper-parameters and finally in Section 6, we
show that the proposed methods are competitive both in computational complexityand accuracy
with the methods introduced in Rue et al. (2009).

In order to increase the readability of the paper we include a schematic figure (Figure 13) and an
explanatory list (Section D of the Appendix) of the marginal approximation methods we introduce
or refer to. In the following we define the model and give a short outline ofhow we proceed to
approximate the marginal densities.

1.1 Latent Gaussian Models

In this section, we introduce notation and define the model under consideration. Let p(y|x,θl )
be the conditional probability of the observationsy = (y1, . . . ,yn)

T given the latent variablesx =
(x1, . . . ,xn)

T and the hyper-parametersθl . We assume thatp(y|x,θl ) factorizes as

p(y|x,θl ) =
n

∏
i=1

p(yi |xi ,θl ).

The priorp(x|θp) over the latent variables is taken to be Gaussian with canonical parametersh(θp)
andQ(θp), that is,

p(x|θp) ∝ exp

(

xTh(θp)−
1
2
xTQ(θp)x

)

.

Examples forp(x|θp) include Gaussian process models, whereQ−1(θp) is the covariance matrix
at the corresponding input and Gaussian Markov random fields, where the elements ofQ(θp) are
the interactions strengthsQi j (θp) between the latent variablesxi andx j . The priorp(θl ,θp) over
the hyper-parameters is typically taken to be non-informative—uniform forlocation variables and
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log-uniform for scale variables—and factorizes w.r.t.θl andθp. In order to simplify the notation,
we use the proxyθ = (θl ,θp) to denote the hyper-parameters of the model.

The joint distribution of the variables in the model we study is

p(y,x,θ) ∝
n

∏
i=1

p(yi |xi ,θ)exp

(

xTh(θ)− 1
2
xTQ(θ)x

)

p(θ) .

We takey fixed and we consider the problem of computing accurate approximations ofthe posterior
marginal densities of the latent variablesp(xi |y,θ), given a fixed hyper-parameter value. Then we
integrate these marginals over the approximations of the hyper-parameters posterior densityp(θ|y).
The exact quantities are given by the formulas

p(xi |y,θ) =
1

p(y|θ) p(yi |xi ,θ)
∫

dx\i p(x|θ)∏
j 6=i

p(y j |x j ,θ), (1)

p(θ|y) ∝ p(θ) p(y|θ) . (2)

We use the termevidencefor p(y|θ) = ∫
dxp(y,x|θ). In the following we omitp(y|x,θ)’s and

p(x|θ)’s dependence onθ whenever it is not relevant and useti (xi) as an alias ofp(yi |xi ,θ) and
p0(x) as an alias ofp(x|θ). We use the notationp(x) = Z−1

p p0(x)∏i ti (xi), with Zp(θ)≡ p(y|θ).
A Gaussian approximation ofp will be denoted byq andZq will denote its normalization constant.

1.2 An Outline of the Main Methods Presented in the Paper

In this paper, we will discuss a variety of methods for approximating marginalsin latent Gaussian
models. To assist the reader, we give an outline of these methods, leaving the technical details
for later sections. We advise the reader to consult Figure 13 and Section Din the Appendix for a
schematic figure and the corresponding explanatory list.

The posterior probability densityp(x) is proportional to a (sparse) multivariate Gaussian distri-
bution over all latent variables and a product of non-Gaussian termst j(x j), each of which depends
on just a single latent variable. The first step is to find a global, Gaussian approximation of this
posterior. There is obviously no need to approximate the Gaussian prior part, but we then do have to
approximate the non-Gaussian termst j(x j) by Gaussian forms̃t j(x j), thus constructing an approx-
imation q(x) ∝ p0(x)∏ j t̃ j(x j). Here we consider two choices, which we refer to as the Laplace
method and expectation propagation.

The Laplace method (LM) finds the maximum of the (log) posterior and then makes a second
order Taylor approximation around this maximum. It is easy to see that the Hessian, the matrix
with second derivatives in this second order Taylor approximation, consists of the (sparse) precision
matrix resulting from the Gaussian prior plus a diagonal term consisting of second derivatives of the
logarithm of each of the termst j(x j). Hence, the approximation resulting from the Laplace method
can always be written as the original priorp0(x) times a product of so-called term approximations
t̃ j(x j), each of which has a Gaussian form (not necessarily normalizable) depending on just a single
latent variable.

Expectation propagation (EP) aims to iteratively refine these term approximations t̃ j(x j). It
works as follows. In the product of Gaussian prior times term approximations, we replace the term
approximation that we aim to refine by the corresponding original non-Gaussian term. The resulting
distributiont j(x j)t̃ j(x j)

−1q(x) is referred to as the tilted distribution: a Gaussian formt̃ j(x j)
−1q(x)
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times a non-Gaussian termt j(x j) depending on a single latent variable. We then compute the ze-
roth, first, and second moments of this tilted distribution (e.g., through one-dimensional numerical
integration) and determine the term approximationt̃new

j (x j) which results in the same zeroth, first,
and second moments. In the Gaussian approximation, we replace the old term approximationt̃ j(x j)
by this new term approximatioñtnew

j (x j) . In its original setting, expectation propagation refines
term approximations̃t j(x j) sequentially. In this particular setting of sparse models with many latent
variables., a tremendous speed-up speed-up can be obtained by using abatch-mode version, that is,
updating the term approximations in parallel.

Whichever procedure one prefers, Laplace or expectation propagation, this first step yields a
global Gaussian approximationq(x) of the original non-Gaussian posterior. We can then write the
exact non-Gaussian posterior as this Gaussian approximationq(x) times a product of correction
terms, where each correction term is nothing but the original termt j(x j) divided by its term approx-
imation t̃ j(x j). Any further approximation is based on the assumption that these correctionterms
are close to 1 in average w.r.t.q, that is, that the Gaussian term approximation is indeed a sensible
approximation of the original non-Gaussian term in the region where the main mass ofq lies.

We are interested in accurate approximations of marginalsp(xi) on a single variable, sayxi . For
this, we have to integrate out all variables exceptxi . Decomposing the global Gaussian approxi-
mationq(x) into the product ofq(xi) and the conditionalq(x\i |xi), we can take bothq(xi) and the
correction term depending onxi outside of the integral overx\i . The remaining integrand is then the
conditional Gaussianq(x\i |xi) times the product of all correction terms, except the one forxi . The
crucial observation here is that this integrand is of exactly the same form asthe problem we started
with: a (sparse) Gaussian prior (here the conditionalq(x\i |xi)) times a product of non-Gaussian
terms (here the correction terms). In principle, we could again use the Laplace method or expecta-
tion propagation to approximate the integral. Doing this for the Laplace method yields the Laplace
approximation of Tierney and Kadane (1986) (LA -TK) (Section 3.1). Doing the same in conjunction
with expectation propagation leads to the approximation in Section 3.2.

However, both easily become very expensive, since we have to apply theLaplace method or run
a full expectation propagation for each setting ofxi . Luckily, we now have an additional property
that we can try to exploit: the non-Gaussian correction terms in the integrand have been constructed
such that they are somehow close to 1.

The first, obvious approximation is to replace these correction terms within the integral by 1,
leaving only the product ofq(xi) and the correction term depending onxi . We will refer to this type
of approximation as a local approximation. In the case of expectation propagation it is exactly the
corresponding marginal of the tilted distribution and we refer to it byEP-L (Section 3 ). The same
approximation, but then in conjunction with the Laplace method is referred to asLM -L (Section 3).

The method proposed by Rue and co-workers can be viewed as a compromise between apply-
ing the expensive Laplace method (LA -TK) and the cheap local approximation (LM -L). Instead of
finding the optimum of the integrand (conditional Gaussian times correction terms) and expanding
around that, Rue et al. (2009) propose to expand the integrand aroundthe optimum of conditional
Gaussian only. Essentially, in the computation of the optimum of the integrand theyhereby ig-
nore the correction terms and simply set them to 1. Their method is referred to as LA -CM (see
Section 4.1.2), whereCM stands for conditional mean. It is straightforward and from the compu-
tational point of view relatively inexpensive to correct for the fact thatthe Taylor expansion is not
done at the maximum of the integrand. The method which takes this into account iscalledLA -CM2
(Section 4.1.2).
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In conjunction with EP we can use a similar argument. The term approximations inside the
integral are optimized for the global Gaussian approximation, that is, when averaging overxi . A full
run of expectation propagation would give the term approximations that areoptimal conditioned
uponxi , instead of marginalized overxi . This difference is likely to be rather small and hence we
expect that the main difference can be picked up by doing just one (parallel) iteration of expectation
propagation. This approximation is referred to asEP-1STEP (Section 4.1.1). Iterating EP until
convergence would lead to an approximation that will be referred to asEP-FULL (Section 4.1.1).

Another line of reasoning, followed by Opper et al. (2009), is to Taylor expand the correction
terms around 1 (or their logarithm around 0). This is referred to asEP-OPW (Section 4.3). In their
original work, they apply this Taylor expansion not only for the correction terms inside the integral,
but also for the correction term depending onxi outside of the integral, which is unnecessary in
the current context. The interesting observation here is that, in a first-order Taylor expansion, the
correlations withinq(x\i |xi) become irrelevant and the integral overx\i factorizes into a product
of one-dimensional integrals. This (and also the existence of variational bounds on the marginals)
suggests the approximationEP-FACT (Section 4.2), which corresponds toEP-1STEP, but then with
q(x\i |xi) replaced by its factorization∏ j q(x j |xi). The same replacement forLA -CM gives a method
we refer to asLA -FACT (Section 4.2). BothEP-FACT andLA -FACT are an order of magnitude faster
than their counterparts based on the non-factorized conditional distribution since they do not require
computing the log-determinant of a high-dimensional (sparse) matrix for each setting ofxi . By a
recursive application of the factorization principle one can obtain better approximations, which will
be detailed in a future report. We useEP-FACTN to denote these approximations. In the following
we expand the above mentioned ideas. We start with the presentation of the global approximation
methods.

2. Global Gaussian Approximations

A close inspection of (1) and (2) shows that computingp(xi |y,θ) leads to computing similar inte-
grals as forp(y|θ). In this section, we review two approximation schemes that approximate such
integrals: the Laplace method and expectation propagation (Minka, 2001).There are other approx-
imation schemes, such as the variational approximation (e.g., Opper and Archambeau, 2009). The
marginal approximation methods we propose for expectation propagation in Section 3 can be, under
mild conditions, translated to the variational approximation in Opper and Archambeau (2009). For
this reason, we will not discuss the details of this method.

2.1 The Laplace Method

The Laplace method approximates the evidenceZp and, as a side product, it provides Gaussian
approximation that is characterized by the local properties of the distributionat its modex∗ =
argmax

x
logp(x). The mean parameter of the corresponding approximating Gaussian densityis

m= x∗ while the inverse of the covariance parameterV is the Hessian of− logp atx∗.
The idea behind the method is the following. Letf = logp. Expandingf in second order at an

arbitrary value ˜x, we get

f (x) = f (x̃)+(x− x̃)T ∇x f (x̃) (3)

+
1
2
(x− x̃)T∇2

xx
f (x̃)(x− x̃)+R2 [ f ] (x; x̃) ,
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whereR2 [ f ] (x; x̃) is the residual term of the expansion at ˜x with R2 [ f ] (x̃; x̃) = 0. By using the
change of variabless= x− x̃, we have

log
∫

dxef (x) = f (x̃)− 1
2

∇x f (x̃)T [∇2
xx

f (x̃)
]−1 ∇x f (x̃) (4)

−1
2

log|−∇2
xx

f (x̃) |+ logEs

[

eR2[ f ](s+x̃;x̃)
]

,

where|·| denotes the determinant and the expectation w.r.t.s is taken over a normal distribution
with canonical parameters∇x f (x̃) and−∇2

xx
f (x̃).

A closer look at (3) and (4) suggests that choosing ˜x = x∗ and using the approximation
R2 [logp] (x; x̃)≈ 0 yields an approximation of the log evidence

logZp ≈ logp(x∗)− 1
2

log|−∇2
xx

logp(x∗) |. (5)

In the meantime,p can be approximated by the Gaussian

q(x) = N
(

x|x∗,−
[

∇2
xx

logp(x∗)
]−1

)

.

Note that any reasonably good approximation of Es

[

eR2[ f ](s+x̃;x̃)
]

can improve the accuracy of the
approximation in (5).

The Laplace method requires the second order differentiability of logp atx∗, thus a sufficient
condition for the applicability of this approximation scheme is the second order differentiability of
logp. The necessary condition is the second order differentiability at the modex∗. A distributionp
for which the method fails to give any meaningful information about the variances is, for example,
whenp(y j |x j) = λexp(−λ|y j −x j |)/2. In this case, the Hessian of logp at an arbitrary point ˜x is
either equal to the precisionQ of the prior or it is undefined. Since the Laplace method captures the
characteristics of the modal configuration, it often gives poor estimates ofthe normalization constant
(e.g., Kuss and Rasmussen, 2005). The example in Section 4.1 shows how this behavior influences
the approximation of the marginals in case of a two dimensional toy model. However, compared to
other methods, the main advantage of the Laplace method is its speed. The optimization of logp
w.r.t. x for computingm= x∗ requires only a few Newton steps.

2.2 Expectation Propagation

Expectation propagation (EP) approximates the integral for computing the evidence in the following
way. Let us assume thatq is a Gaussian approximation ofp constrained to have the formq(x) =
Z−1

q p0(x)∏ j t̃ j(x j). Then the evidence can be approximated as

Zp =
∫

dx p0(x)∏
j

t j(x j),

= Zq

∫
dxq(x)∏

j

t j(x j)

t̃ j(x j)
,

≈ Zq∏
j

∫
dxj q(x j)

t j(x j)

t̃ j(x j)
(6)
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and we are left with choosing the appropriatet̃ j(x j)s that yield both a good approximation of the
evidence and ofp(x). EP computes the termst̃ j(x j) by iterating

t̃new
j (x j) ∝

Collapse
(

t j(x j)t̃ j(x j)
−1q(x)

)

q(x)
t̃ j(x j), for all j = 1, . . . ,n, (7)

where Collapse(r) = argminr ′∈N D [r||r ′] is the Kullback-Leibler (KL) projection of the distribution
r into the family of Gaussian distributionsN . In other words, it is the Gaussian distribution that
matches the first two moments ofr. Using the properties of the KL divergence, one can check
that when the termst j depend only on the variablesx j then Collapse

(

t j(x j)t̃ j(x j)
−1q(x)

)

/q(x) =
Collapse

(

t j(x j)t̃ j(x j)
−1q(x j)

)

/q(x j), therefore, the iteration in (7) is well defined. At any fixed
point of this iteration, we have a set oft̃ j(x j) terms for which Collapse

(

t j(x j)t̃ j(x j)
−1q(x)

)

= q(x)
for any j ∈ {1, . . . ,n}. By defining the cavity distributionq\ j(x) ∝ t̃ j(x j)

−1q(x) and scaling the
termst j , the above fixed point condition can be rewritten as

∫
dxj

{

1,x j ,x
2
j

}

q\ j(x j)t̃ j(x j) =
∫

dxj
{

1,x j ,x
2
j

}

q\ j(x j)t j(x j), j = 1, . . . ,n,

and so, the approximation forZp has the form

Zp ≈
∫

dx p0(x)∏
j

t̃ j(x j).

Expectation propagation, can be viewed as a generalization of loopy beliefpropagation (e.g.,
Murphy et al., 1999) to probabilistic models with continuous variables and alsoas an iterative ap-
plication of the assumed density filtering procedure (e.g., Csató and Opper, 2001). An equivalent
algorithm for Gaussian process classification based on statistical physicsmethods was derived in
Opper and Winther (2000). A close inspection of the parametric form of theiteration in Section C
of the Appendix shows that the convexity of log

∫
dxN(x|m,V ) t j (x j) w.r.t. m or the concavity

of logt j(x j) (Seeger, 2008) is a sufficient condition for the termst̃ js to be normalizable and thus
for the existence ofqnew. However, this alone does not guarantee convergence. To our knowledge,
the issue of EP’s convergence in case of the models we study in this paper isstill an open question.
The iteration in (7) can also be derived by using variational free energies (e.g., Heskes et al., 2005;
Minka, 2005). It can be relaxed such that the projections are taken ont j(x j)

αt̃ j(x j)
−αq(x), with

α ∈ (0,1]. The limit α → 0 corresponds to the variational approximation of Opper and Archambeau
(2009).

In a personal correspondence, H. Rue emphasized that in many real world models, linear con-
straints of the formAx = b have to be considered and expressed the concern that EP might not
be suited to handle such constraints. Incorporating these constraints into EP would require to de-
fine updates for terms of the formδ0(Ax− b). In the following we propose a way to deal with
such terms. First we start out by deriving a sampling distributions for the Gaussian random vari-
ablesx|Ax = b, where we assume thatA is a k× n matrix with k < n. Let x ∼ N (m,V ) and
y=Ax−b+ǫ with ǫ∼N (0,vI). Then the conditional density ofx giveny is a Gaussian with pa-
rametersm+V AT(AV AT +vI)−1(y−Am+b) andV −V AT(AV AT +vI)−1AV . Setting
y = 0 and taking the limitv→ 0 we find that

x|Ax= b∼N
(

m−V AT(AV AT)−1(Am−b),V −V AT(AV AT)−1AV
)

. (8)
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As a consequence, we propose the following procedure: 1) first we perform the term updates for all
“regular” terms, then we project the new moment parameters ofq according to (8), 2) the value of
the corresponding factor in (6) isN(0|Am− b,AV AT) and it corresponds to a Bayesian update
in the limit v→ 0.

3. Approximation of the Posterior Marginals

The global approximations provide Gaussian approximationsq of p and approximations of the
evidenceZp. The Gaussian approximationq can be used to compute Gaussian approximations
of posterior marginals. In case of the Laplace method this only requires linear algebraic methods
(computing the diagonal elements of the Hessian’s inverse), while in the caseof EP, the approximate
marginals are a side product of the method itself. We refer to the corresponding Gaussian marginal
approximations byLM -G (Laplace method) andEP-G (EP). Moreover, one can make use of the
approximation method at hand in order to improve the Gaussian approximate marginals.

In case of the Laplace method, one can easily check that the residual termin (3) decomposes as
R2 [logp] (x; x̃) = ∑ j R2 [logt j ] (x j ; x̃ j), thus, when approximating the marginal ofxi it is sufficient
to assumeR2 [logt j ] (x j ; x̃ j)≈ 0 only for j 6= i. This yields a locally improved approximationq(xi)×
expR2 [logti ] (xi ;x∗i ) to which we refer byLM -L.

As shown in Section 2.2, EP is built on exploiting the low-dimensionality ofti (xi) and ap-
proximating thetilted marginalsti(xi)q\i (xi). These are known to be better approximations of the
marginalsp(xi) thanq(xi) (e.g., Opper and Winther, 2000; Opper et al., 2009). We refer to this
approximation byEP-L.

These observations show that there are ways to improve the marginals of theglobal approxima-
tion q by exploiting the properties of the methods. For the moment, however, we postpone this to
Section 4 and first try to compute the marginals from scratch. This gives us some insight into where
to look for further improvements.

The exact marginals can be computed as

p(xi) =
1
Zp

ti (xi)
∫

dx\i p0
(

x\i ,xi
)

∏
j 6=i

t j (x j) , (9)

thus, as mentioned earlier, computing the marginal for a fixedxi leads to computing the normaliza-
tion constant of the distributionp0

(

x\i |xi
)

∏ j 6=i t j (x j). Therefore, we can use our favorite method to
approximate it. In the following, we present the details of these proceduresfor the Laplace method
and EP.

3.1 Laplace Approximation

We use the same line of argument as in Section 2.1, but now we fixxi and expand logp w.r.t. x\i

at an arbitrary ˜x\i . The expression is identical to (3) withx = (xi ,x
T
\i)

T and x̃ = (xi , x̃
T
\i)

T . Let
x∗
\i (xi) = argmax

x\i
logp

(

xi ,x\i

)

and letx̃\i = x∗
\i (xi). Then the approximation of (4) simplifies

to a form similar to (5), that is, the approximation of the marginal density, up to theconstant logZp,
is given by

log
∫

dx\i p(x)≈ logp
(

xi ,x
∗
\i(xi)

)

− 1
2

log
∣

∣

∣
−∇2

x\ix\i
logp

(

xi ,x
∗
\i(xi)

)∣

∣

∣
. (10)
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This approximation is known in statistics as the Laplace approximation (Tierney and Kadane, 1986)
and we will refer to it as ˜pLA -TK

i (xi).
The error of the approximation can be characterized in terms of the residual of the second order

expansion. The residual decomposes as

R2 [logp] (x; x̃) = ∑
j 6=i

R2 [logt j ]
(

sj +x∗j (xi);x
∗
j (xi)

)

and the expectation (see Equation (4)) is taken w.r.t.s ∈ R
(n−1) having a normal density with mean

0 and inverse covariance−∇2
x\ix\i

logp(xi ,x
∗
\i(xi)). This means that in principle we have exact

estimates of the error and that any reasonable approximation of the integralcan improve the quality
of the approximation in (10).

3.2 Expectation Propagation

The integral in (9) can also be approximated using EP. As mentioned above EP typically provides
better approximations of logZp than the Laplace method. For this reason, the marginals computed
by approximating (9) using EP are expected to be more accurate. The procedure is as follows: (1)
fix xi and compute the canonical parameters ofp0(x\i |xi) given byh\i −Q\i,ixi andQ\i,\i and (2)
use EP to approximate the integral in (9). Thus we approximate the integral byleaving outp0(xi)
andti(xi) and applying EP using the priorp0(x\i |xi) and the termst j(x j), j 6= i.

4. Approximation of the Posterior Marginals by Correcting the Global
Approximations

As we have seen in the previous section, computing the marginal for a givenfixed xi value can be
as expensive as the global procedure itself. On the other hand, however, there are ways to improve
the marginals of the global approximation. In this section, we start from the “direct” approach and
try to re-use the results of the global approximation to improve on the locally improved marginals
LM -L andEP-L.

We start with the observation that for all the presented approximation methods, we can write the
approximating distributionq as

q(x) =
1
Zq

p0(x)∏
j

t̃ j (x j) . (11)

In case of the Laplace method, the canonical parameters of the Gaussian functionst̃ j are defined by
the parameters of the Taylor expansion of logt j at x∗i , while in case of EP, they are the parameters
corresponding to EP’s fixed point.

In the following, we do not keep track of the normalization constants that areindependent of
xi . In order to avoid overloading the notation and to express that a distributionis approximated as
proportional to an expression on the right hand side of the≈ relation, we occasionally useZ as a
proxy for unknown normalization constants. One can keep track of theseconstants, but in most
cases, from the practical point of view, it is easier to perform a univariate numerical interpolation
followed by numerical quadrature and (re)normalization.
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4.1 Improving the Marginals of the Global Approximations

Given a global Gaussian approximationq(x) of the form (11) with corresponding term approxima-
tions t̃i(xi), we can rewritep(xi) as

p(xi) =
Zq

Zp

ti (xi)

t̃i (xi)

∫
dx\i q(x)∏

j 6=i

t j (x j)

t̃ j (x j)
, (12)

=
Zq

Zp

ti (xi)

t̃i (xi)
q(xi)

∫
dx\i q

(

x\i |xi
)

∏
j 6=i

t j (x j)

t̃ j (x j)
,

=
Zq

Zp
εi(xi)q(xi)

∫
dx\i q

(

x\i |xi
)

∏
j 6=i

ε j(x j) ,

where we defineεi(xi)≡ ti(xi)/t̃i(xi). In case of EP, the term approximationst̃i(xi) are chosen to be
close to the termsti(xi) in average w.r.t.q(xi). For this reason, we expect theεi(xi)’s to be close to
1 in average w.r.tq(xi).

Equation (12) is still exact and it shows that there are two corrections to theGaussian approx-
imationq(xi): one direct, local correction throughεi(xi) and one more indirect correction through
the (weighted integral over)ε j(x j)s for j 6= i. The direct, local correction comes without additional
cost and suggests the above-mentioned (Section 3) local approximation

p(xi)≈
1
Z

εi(xi)q(xi) .

We use the notations ˜pEP-L
i (xi) and p̃LM -L

i (xi) for the approximations following the global Gaussian
approximations by EP and Laplace method, respectively.

To improve upon this approximation, we somehow have to get a handle on the indirect correction

ci(xi)≡
∫

dx\i q
(

x\i |xi
)

∏
j 6=i

ε j(x j) . (13)

Again, for eachxi , we are in fact back to the form (9): we have to estimate the normalization constant
of a latent Gaussian model, whereq

(

x\i |xi
)

now plays the role of an(n−1)-dimensional Gaussian
prior and theε j(x j)s are terms depending on a single variable. Running a complete procedure,be
it EP or Laplace, for eachxi—as described in Sections 3.1 and 3.2—is often computationally too
intensive and further approximations are needed to reduce the computational burden.

4.1.1 IMPROVING THE MARGINALS RESULTING FROMEP

Let us writeε̃ j(x j ;xi) for the term approximation ofε j(x j) in the context of approximatingci(xi).
A full run of EP for eachxi may be too expensive, so instead we propose to perform just one
simultaneous EP step for allj 6= i. Since the term approximations of the global EP approximation are
tuned to makẽt j(x j) close tot j(x j) w.r.t. q(xi), it is plausible to initializẽε j(x j ;xi) to 1. Following
EP, computing the new term approximation for termj then amounts to choosingε̃ j(x j ;xi) such that∫

dxj {1,x j ,x
2
j}q(x j |xi)ε̃ j(x j ;xi) =

∫
dxj {1,x j ,x

2
j}q(x j |xi)ε j(x j), (14)

that is, we get̃ε j(x j ;xi) by collapsingε j(x j ;xi)q(x j |xi) into a Gaussian and dividing it byq(x j |xi).
As we have seen in Section 2.2, EP computest̃ j such that∫

dxj {1,x j ,x
2
j}q(x j) =

∫
dxj {1,x j ,x

2
j}q(x j)ε j(x j),
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thus, the difference here is made by the conditioning onxi and ε̃ j(x j ;xi) can be viewed as an up-
datet̃ j(x j ;xi) of t̃ j(x j) that accounts “locally” for this difference—up to second order. Replacing
the termsε j(x j) in (13) by their term approximations̃ε j(x j ;xi) yields an estimate forci(xi). The
corresponding approximation

p(xi)≈
1
Z

εi(xi)q(xi)
∫

dx\i q
(

x\i |xi
)

∏
j 6=i

ε̃ j(x j ;xi)

is referred to as ˜pEP-1STEP
i (xi). By performing further EP steps, one can refine the term approxi-

mationsε̃ j(x j ;xi). Iterating the EP steps until convergence (as mentioned above) leads to a similar
(costly) approximation as in Section 3.2. We refer to the resulting approximationasEP-FULL.

4.1.2 IMPROVING THE MARGINALS RESULTING FROM THELAPLACE METHOD

According to the Laplace approximation presented in Section 3.1 one has to recompute the condi-
tional modex∗

\i(xi) for every choice ofxi . In order to lessen the computational burden, Rue et al.
(2009) propose to re-use the global approximation by approximating the conditional mode with the
conditional mean, that is,x∗

\i(xi)≈m\i +V\i,iV
−1
i,i (xi −mi), wherem= x∗(= argmax

x
logp(x)).

This approximation often performs reasonably well whenp is close to a Gaussian.
In our setting, the approximation proposed by Rue et al. (2009) can be understood as follows.

The error termsε j can be identified with the residual terms, that is, logεi(xi) = R2 [logti ] (xi ;mi). In
order to assessci(xi), one could, in principle, apply the Laplace method to

f (x\i ;xi)≡ q
(

x\i |xi
)

∏
j 6=i

ε j(x j) .

This would be identical to the direct method of Tierney and Kadane (1986) presented in Section 3.1.
Using the conditional mean as an approximation of the conditional mode leads to ignoring the terms
ε j(x j) and using the mode ofq(x\i |xi). The corresponding approximation is of the form (4.1.1),
where nowε̃ j(x j ;xi) follows from a second-order Taylor expansion of logε j(x j) around the mode
or mean ofq(x j |xi) instead of the mode off (x\i ;xi). We refer to this approximation as ˜pLA -CM

i (xi).
Taking a closer look at (4) and using our assumptions in Section 3.1, we caneasily see that

when we are not evaluating the normalization constant at the conditional mode, we can refine the
approximation by adding−1

2∇x\i f (x̃\i)[∇2
x\i ,x\i f (x̃\i)]

−1∇x\i f (x̃\i), which is not identical to zero
when the expansion in not made at the mode, that is, ˜x\i 6= x∗

\i(xi). As we will see in Section
4.7, this correction adds no significant computational burden to the method proposed in Rue et al.
(2009). We refer to this approximation as ˜pLA -CM2

i (xi).
In order to further reduce computational effort, Rue et al. (2009) suggest additional approxima-

tions. Because they can only be expected to reduce the accuracy of the final approximation, we will
not consider them in our experiments in Sections 4.5 and 6. Below we propose another EP-related
approximation, motivated by theoretical bounds on the correctionsci(xi).

4.2 Bounds and Factorized Approximations

The computational bottleneck in the above procedures for approximating thecorrectionci(xi) is
not computing appropriate approximations of the termsε j(x j), either through EP or Laplace, but
instead computing the normalization of the resulting Gaussian form in (4.1.1), which leads to the
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Figure 1: A two-dimensional example, illustrating how the Laplace approximationworks and why
it can fail. In the top-right panel, the black contour curves show the true distribution,
the gray contour curves stand for the global Laplace approximation, andthe black and
gray curves show the conditional modes and the conditional means w.r.t.x1. The square
and circle outline these quantities for a fixedx0

1. The dashed vertical line emphasizes
the “slice” p(x0

1,x2) at x0
1. The top-left panel showsp(x0

1,x2) and the approximations for
computing its area under the curve. The areas under the Gaussian curves corresponding to
the conditional mode (square) and the conditional mean (circle) are the approximations
of p(x0

1) =
∫

dx2 p(x0
1,x2). The bottom-right panel shows the marginal ofp(x1) and its

approximations. The conditional mean can severely underestimate the mass for x1 = x0
1.
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computation of a Gaussian normalization constant. Here we propose a simplification, which we
motivate through its connection to bounds on the marginal correctionci(xi).

Using Jensen’s inequality, we obtain the lower bound on (13)

ci(xi)≥ exp

[

∑
j 6=i

∫
dxj q(x j |xi) logε j(x j)

]

≡ clower
i (xi) .

Following Minka (2005), we can also get an upper bound:

ci(xi)≤ ∏
j 6=i

[∫
dxj q(x j |xi)ε j(x j)

n−1
]1/(n−1)

≡ cupper
i (xi) .

This upper bound will in many cases be useless because the integral oftendoes not exist. The lower
bound, which corresponds to a mean-field-type approximation, does nothave this problem, but may
still be somewhat conservative. We therefore propose the general family of approximations

c(α)i (xi) = ∏
j 6=i

[∫
dxj q(x j |xi)ε j(x j)

α
]1/α

.

It is easy to show that

clower
i (xi)≤ c(α)i (xi)≤ cupper

i (xi) ∀ 0≤ α ≤ n−1,

whereα = 0 is interpreted as the limitα → 0. Furthermore, for anyα we obtain exactly the same
Taylor expansion in terms ofε j(x j)−1 (see Opper et al., 2009 and Section 4.3 below). The most
sensible choice seems to beα = 1, because it gives exact results whenn = 2 as well as in the
case when allx js are indeed conditionally independent givenxi . We refer to the corresponding
approximation as ˜pEP-FACT

i (xi). Note that when EP converges, this approximation always exists,
becauseq(x j |xi)ε j(x j) is proportional to the conditional marginal of the so calledtilted distributions
t j(x j)t̃ j(x j)

−1q(x).
Using (14), it is easy to see that ˜pEP-FACT

i (xi) corresponds to ˜pEP-1STEP
i (xi) if in (4.1.1) we would

replaceq(x\i |xi) by the factorization∏ j 6=i q(x j |xi), that is, as if the variablesx j in the global Gaus-
sian approximation are conditionally independent givenxi . A similar replacement in the Laplace
approximation yields the approximation referred to as ˜pLA -FACT

i (xi). Here, we compute the univari-
ate integrals with the Laplace method and using the approximationx∗j (xi) ≈ Eq [x j |xi ], with q(x)
being the global approximation resulting from the Laplace method.

The factorization principle can be applied to groups of variablesxI by factorizingq(x\I |xI ).
Another way to make use of the factorization is by applying it recursively. In this way, we can
obtain higher order corrections of the approximate marginals and the evidence approximation. We
will detail these methods in a future report.

An advantage of the bounding arguments is that we can extend the factorized approximation to
cases whent j depends on more variables, say,xI j , with I j ∈ {1, . . . ,n}. In this case, the factorization
is unfeasible since∏ j t j

(

xI j

)

may not factorize w.r.t.x j . By using the bounding argument (Minka,
2005), we can still compute a “factorized” approximation

c(α)i (xi) = ∏
j 6=i

[∫
dxI j q(xI j |xi)ε j(xI j )

α
]1/α

.

An example illustrating this idea is the logistic regression model presented in Section 4.5.
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4.3 Connection to the Taylor Expansion in Opper et al. (2009)

The line of argument in Opper et al. (2009) when applied to approximating themarginals can be
explained in our notation as follows. By expandingp(x) = ZqZ−1

p q(x)∏ j ε j(x j) in first order
w.r.t. all ε j(x j)− 1, they obtain a first order approximation of the exactp in terms of the global
approximationq and the tilted distributionst j(x j)q\i(x). The marginalization of this expansion
yields the marginal approximation

p̃EP-OPW
i (xi)≡

Zq

Zp
q(xi)

[

1+∑
j

∫
dxjq(x j |xi)[ε j(x j)−1]

]

.

Since the goal of Opper et al. (2009) was to provide improved approximations of the posterior
distributionp(x), and not only of its marginals, a natural adaptation of their approach wouldbe to
expand w.r.t. to allj 6= i and noti itself. This leads to the approximation

p(xi)≈ q(xi)εi(xi)

[

1+∑
j 6=i

∫
dxjq(x j |xi)[ε j(x j)−1]

]

,

which is also the first order expansion of ˜pEP-FACT
i (xi) w.r.t. ε j(x j)−1, j 6= i. A further expansion

w.r.t εi(xi)−1 leads to ˜pEP-OPW
i (xi), thus the two approximations are equal in first order. An advan-

tage ofp̃EP-FACT
i (xi) is that it is non-negative by construction, while ˜pEP-OPW

i (xi) can take on negative
values.

4.4 Approximating Predictive Densities in Gaussian Process models

In many real-world problems, the priorp0(x) is defined as a Gaussian process—most often in
terms of moment parameters—and besides marginals, one is also interested in computing accurate
approximations of the predictive densities

p(x∗|y) = Z−1
p

∫
dx p0(x∗|x)p0(x)∏

j
t j(x j),

wherex∗ is a set of latent variables of which distribution we want to approximate. By defining the
q̂(x,x∗) ∝ p0(x∗|x)q(x) and using the same line of argument as in (12), one can derive similar
approximations asEP-FACT or EP-1STEP. For example, ˜pEP-FACT has the form

p̃EP-FACT(x∗) ∝ q̂(x∗)∏
j

∫
dxj q̂(xi |x∗)ε j(x j).

One can check that the marginalization and the conditioning of ˆq leads to rankk updates, wherek is
the dimensionality ofx∗. Fork= 1, the complexity ˜pEP-FACT(x∗) roughly scales with the complexity
of p̃EP-FACT

i (xi).

4.5 Comparisons on Toy Models

In the following, we compare the performance of the marginal approximationson a few low-
dimensional toy models; complex real-world models are considered in Section 6. For most of the
models presented below, we use a priorp0 with a symmetric covariance matrix
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Figure 2: Various marginal corrections for a probit model withti(xi) = Φ(4xi) and identical vari-
ances and correlations in the priorp0, using expectation propagation (left column)
and Laplace approximations (right column). The panels show the corrections for a 3-
dimensional model with prior variances and correlations(v,c) = (1,0.25) (top), (v,c) =
(4,0.9) (center) and for a 32-dimensional model(v,c) = (4,0.95) (bottom). Note how,
the accuracy of the approximations decreases as the correlation, the prior variance and
the dimension of the model increases.
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Figure 3: The posterior marginals of the first components of a 3-dimensionalmodel with Heaviside
terms with(v,c) = (4,0.5) (left) and(v,c) = (9,0.95) (right). The EP based approxima-
tions perform well even when the Laplace method is not applicable. The approximations
have a similar behavior as in case of the probit model.

V = v
[

(1−c)I+c11T
]

, where we vary the variancev and the correlationc. We have chosen the
models below, because they are often used in practice, and they lead to sufficiently non-Gaussian
posterior marginals.

Probit terms.The termst j are defined ast j(x j) = Φ(y jx j), whereΦ is the standard Gaussian
cumulative density function. This choice of terms is typically made in binary classification models,
wherey j ∈ {−1,1}. In order to obtain skewed marginals, in this example we sety j = 4. The top
and center panels in Figure 2 show the marginal corrections of the first component for a three-
dimensional model with(v,c) = (1,0.25) and(v,c) = (4,0.9), respectively. The bars, in this and all
other figures, correspond to a large number of Monte Carlo samples, either obtained through Gibbs
or Metropolis sampling, and are supposed to represent the gold standard. The local correction
EP-L yields sufficiently accurate approximations when the correlations are weak(top), but is clearly
insufficient when they are strong (center). The correctionsEP-1STEPandEP-FACT yield accurate
estimates and are almost indistinguishable even for strong prior correlations. Only when we increase
the number of dimensions (here from 3 to 32) and use strong prior correlations with moderate prior
variances(v,c) = (4,0.95), we can see small differences (top-right). As we can see in Figure 2,
EP-OPW performs slightly worse thanEP-FACT and can indeed turn negative.

It is known that the Laplace method does not perform well on this model (e.g., Kuss and Ras-
mussen, 2005). The approximations it yields tend to be acceptable for weakcorrelations (top), with
LA -CM andLA -FACT clearly outperformingLM -G andLM -L, but are far off when the correlations
are stronger (center, bottom). These corrections suffer from essentially the same problems as the
global Gaussian approximation based on Laplace’s method: the mode and theinverse Hessian rep-
resent the mean and the covariance badly and fail to sufficiently improve it. It is interesting to
see thatLA -CM2 can be almost as accurate asLA -TK, while its computational complexity scales
with LA -CM. The examples suggest that, at least in case of this model,LA -CM2 has the best accu-
racy/complexity tradeoff when compared toLA -CM andLA -TK.
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Figure 4: The posterior densities of a non-zero and a zero coefficientin a toy linear regression
model with double exponential prior on the coefficients. It is interesting to compare the
effects of the double exponential prior terms centered a zero on the qualityof the local
approximationEP-L. The effect is insignificant in the case the non-zero coefficient while
in the case of the zero coefficient it has a strong effect, but theEP-L might still be quite
inaccurate. We consideredn= 8 coefficients the first two being 1 and the rest 0 and we
generatedm= 8 observables according to the model.

Step-function terms.Expectation propagation can still be applied when the Laplace method
is not applicable. One such example is when the termst j are defined ast j(x j) = Θ(y jx j), where
Θ is the step-functionΘ(z) = sign(z) for z 6= 0 andΘ(0) = 1. We choseyi = 1. The plots on
the left of Figure 3 show the marginals of the first component of a three dimensional model with
(v,c) = (4,0.5) (left) and(v,c) = (9,0.95) (right). The performance of the approximations is similar
to those of the previous model, except that in this case, we are dealing with discontinuous marginals.

Linear regression with sparsifying prior.Another model where the Laplace method is not appli-
cable is the linear regression model with double exponential prior on the coefficients. We choose a
model withn= 8 coefficients andm= 8 observations—mbeing close ton led to the most interesting
posterior marginals. The elements of the design matrixU are sampled according to the standard
normal density and renormalized such that every column vector has unit length. The regression
coefficients are chosen asx= [1,1,0, . . . ,0]T and the observationsy j are generated byy =Ux+ǫ,
whereε j is normal with variancev= 0.01. We take zero centered independent double exponential
priors on thex j coefficients. The panels of Figure 4 show a few posterior marginals of theregression
coefficientsx j given the maximum a posteriori (MAP) hyper-parametersv andλ. The priors on the
hyper-parameters are taken as independent and log-uniform. The approximations are accurate but
in this case, the local approximationsEP-L fail dramatically when the mass of the distribution is not
close to zero.

A logistic regression model.We can try to useEP-FACT to approximate the marginal probability
densities even when the termsti , i ∈ {1, . . . ,m} depend on more than one variable or a linear trans-
formation of the variables. As an example, we define the terms asti(x) = Φ(uT

i x). In this case, the
factorization principle does not apply, but we can still use the line of argument in Section 4.2 and
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Figure 5: The posterior marginal approximationEP-FACT of the coefficients in a toy logistic regres-
sion model with Gaussian prior on the coefficients and moderate posterior correlations..
The panels show that even when the non-Gaussian terms depend on more than one vari-
able and the posterior the approximationEP-FACT might still be accurate. We generated
n= 8 coefficients andm= 8 observable variables.

evaluate howEP-FACT performs. The panels of Figure 5 show a few marginals of a model where
we have chosenu j

i ∼ N (0,10) and an independent Gaussian priorp0(x) = ∏ j N(x j |0,v−1) with
v= 0.01. We usedn= 8 andm= 8. Although one would expect that the factorization might lead
to poor approximations,EP-FACT seems to approximate the marginals significantly better than the
global approximationEP-G.

4.6 Computational Complexities of the Global Approximations in SparseGaussian Models

In this section, we review the computational complexities of the Laplace method and expectation
propagation when applied to sparse Gaussian models, that is, models for which then-dimensional
precision matrixQ of the Gaussian prior is sparse. This is common in many practical applications
in which the priorp0 can be defined as a Gaussian Markov random field (e.g., van Gerven etal.,
2009, 2010). We explore whether EP is indeed orders of magnitude slower, as suggested in Rue
et al. (2009).

The computational complexity for both the (global) Laplace method and expectation propaga-
tion is dominated by several operations. 1) Computing theCholesky factor, L̃ of a matrixQ̃, for
example, corresponding to the posterior approximation ˜pEP-G or p̃LM -G, with the same sparsity struc-
ture as the prior precision matrixQ. The computational complexity, denotedcchol, scales typically
with nnzeros (Q)2/n, with nnzeros (Q) being the number of non-zeros in the precision matrixQ.
2) Computing thediagonal elements of the inverseof Q̃. For sparse matrices, these can be computed
efficiently by solving the Takahashi equations (Takahashi et al., 1973;Erisman and Tinney, 1975),
which take the Cholesky factor̃L as input. A detailed description of solving the Takahasi equations
can be found in Section A of the Appendix. The computational complexity, denotedctaka, scales
with n3 in the worst case, but typically scales withnnzeros (L)2/n. In practice, we experienced
that it is significantly more expensive than the Cholesky factorization, possibly due to the additional
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covariance values one has to compute during the process.1 3) Solving atriangular systemof the
form L̃a= b, with corresponding computational complexityctria ∝ nnzeros (L).

The complexity of the latter two operations strongly depends on the number of non-zeros in
the Cholesky factor, which should be kept to a minimum. There are various methods to achieve
this by reordering the variables of the model. The approximate minimum degree reordering al-
gorithm (Amestoy et al., 1996) seems to be the one with the best average performance (Ingram,
2006). Since the sparsity structure is fixed, the reordering algorithm hasto be run only once, prior
to running any other algorithm.

4.6.1 THE LAPLACE METHOD

To compute the global Gaussian approximation using the Laplace method, we first have to find
the maximum a-posteriori solution. This can be done using, for example, the Newton method.
Each Newton step requires one Cholesky factorization and solving two triangular systems. The off-
diagonal elements of the posterior precision matrixQ̃ are by construction equal to the off-diagonal
elements of the prior precision matrix, so we only have to compute then diagonal elements. To
arrive at the lowest-order marginals ˜pLM -G

i for all nodesi, we need the diagonal elements of the
covariance matrix, the inverse of the precision matrix. These can be computed by solving the
Takahashi equations, for which we can use the Cholesky factor computed in the last Newton step.
Thus, computing the lowest order (Gaussian) marginals ˜pLM -G

i for all variablesxi , i = 1, . . . ,n by the
Laplace method scales in total withnNewton

steps × (cchol+2×ctria)+ctaka.

4.6.2 EXPECTATION PROPAGATION

In order to update a term approximationt̃ j (x j), we computeq\ j (x j) using the marginalsq(x j) from
the current global approximationq(x) and re-estimate the normalization constant and the first two
moments oft j (x j)q\ j (x j). In standard practice, the term approximationst̃ j are updated sequentially
and all marginal means and variances are recomputed using rank one updates after each term update.
Instead, we adopt a parallel strategy, that is, we recompute marginal means and variances only after
we have updatedall term approximations̃t j , j = 1, . . . ,n.

A parallel EP step consists of: 1) compute the Cholesky factorization of the current preci-
sion matrix, 2) solve two triangular systems to compute the current posterior mean and solve the
Takahashi equations to compute the diagonal elements of the covariance matrix, and 3) if nec-
essary, use univariate Gauss-Hermite numerical quadrature withnquad nodes to compute the mo-
ments ofε j(x j)q(x j) for all j = 1, . . . ,n. This adds up to a computational complexity that scales
with nEP

steps×
(

cchol+2×ctria+ctaka+n×nquad
)

. After convergence, EP yields the lowest order
marginals ˜pEP-G

i for all variablesxi , i = 1, . . . ,n.
Because of the parallel schedule, we can make use of exactly the same computational tricks as

with the Laplace method (Cholesky, Takahashi). Since solving the Takahashi equations for large
n dominates all other operations, the main difference between the Laplace method and EP is that
for EP we have to solve these equations a number of times, namely the number ofEP steps, yet
for Laplace only once. Initializing the term approximations in EP to the terms obtained by the
Laplace method and then performing a few EP steps to obtain better estimates of the probability
mass, makes EP just a (small) constant factor slower than Laplace. For efficient sequential updating

1. We used theMATLAB implementation of the sparse Cholesky factorization and a C implementation for solving the
Takahashi equations.
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steps\ methods LA -CM LA -FACT EP-1STEP EP-FACT

q(x j |xi) ctria+n×ngrid ctria+n×ngrid ctria+n×ngrid ctria+n×ngrid

ε̃(x j ;xi) n×ngrid n×ngrid n×ngrid×nquad n×ngrid×nquad

Norm. or det.-s cchol×ngrid n×ngrid cchol×ngrid n×ngrid

Table 1: Computational complexities of the steps for computing an improved marginal approxima-
tion for a particular nodei using the various methods. The frames highlight the complex-
ities that typically dominate the computation time.ctria, cchol, andctaka refer to solving a
sparse triangular system, a Cholesky factorization, and Takahashi equations, respectively.
ngrid refers to the number of grid points andnquadto the number of Gauss-Hermite quadra-
ture nodes forxi .

of EP, we would need a fast one-rank Takahashi update (or somethingsimilar), which, to the best of
our knowledge, does not exist yet.

It is interesting to realize that since for anyQi j 6= 0 the Takahashi equations also provide
[

Q−1
]

i j , we can run EP using the factorsti j (xi ,x j) = ti(xi)
1/ni t j(x j)

1/n j wherenk is the number of
neighbors of nodek according to the adjacency matrix defined by the structure ofQ. This increases
the amount of computation, but the approximation might be more accurate.

4.7 Computational Complexities of Marginal Approximations

After running the global approximation to obtain the lowest order approximation, we are left with
some Gaussianq(x) with known precision matrix, a corresponding Cholesky factor and single-node
marginalsq(xi). We now consider the complexity of computing a corrected marginal through the
various methods for a single nodei, usingngrid grid points (see the summary in Table 1).

The local corrections ˜pLM -L
i and p̃EP-L

i we get more or less for free. All other correction methods
require the computation of the conditional densitiesq(x j |xi). The conditional variance is indepen-
dent ofxi , the conditional mean is a linear function ofxi . Computingq(x j |xi) at all grid points
for each j then amounts to solving two sparse triangular systems and(n− 1)× ngrid evaluations.
To arrive at the term approximationsε̃(x j ;xi), we need to compute second order derivatives for the
Laplace approximation and numerical quadratures for EP, which is aboutnquad times more expen-
sive. ForLA -FACT, EP-OPW andEP-FACT, we then simply have to compute a product or sum ofn
normalization terms. ForLA -CMandEP-1STEP, we need to compute the determinant of an(n−1)-
dimensional sparse matrix, which costs a Cholesky factorization. ForLA -CM2 an additionalctria

has to be added for eachxi .

5. Inference of the Hyper-parameters

Until now, we considered estimating single-node marginals conditioned upon the hyper-parameters.
In this section, we consider the estimation of the posterior marginals that follow by integrating
over the hyper-parameters. For this, we need the posterior density of thehyper-parameters given
the observations, which is approximated by ˜p(θ|y) ∝ p̃(y|θ) p(θ), wherep̃(y|θ) is the evidence
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approximation provided by the Laplace method or expectation propagation. For the moment we
assume that the approximate posterior density of the hyper-parameters is unimodal.

We propose a slight modification of the method used by Rue et al. (2009). Their method explores
the space of the hyper-parameters in the eigen-space corresponding tothe modal configuration and
can be described briefly as: (1) compute the modal configuration(µ,Σ) of log p̃(θ|y), (2) starting
from the modeµ, select a set of uniformly spaced nodesXi along the scaled eigenvectors

√
λiui—

hereΣ=UΛUT—by thresholding at both ends according to log ˜p(µ|y)− log p̃
(

µ+ki∆
√

λiui |y
)

<
δ,ki ∈ Z, and finally (3) use all hyper-parameters corresponding to the nodes of the product grid
X1 × . . .×Xd,d = dim(θ) and satisfying the latter thresholding condition, to perform numerical
quadrature using the rectangle rule.

Since the computational bottleneck of the procedure is the evaluation of the approximate ev-
idence, we propose to improve this method by selecting the nodes—step (2) from above—in a
different way: we keep the thresholding condition but we do a breadth-first search with regard to
(k1, . . . ,kd) on the grid graphZd. We start from the origin and the hyper-parameter values that do not
satisfy the thresholding condition are not included in the set of nodes whose neighbors we search.
This simple modification proves to be very economical, since when exploring thevolume around
the mode, only the hyper-parameters that form the boundary surface are explored, but not selected.
Thus, the proportion of useless computational time is the ratio of surface to volume. Although the
boundary nodes do not satisfy the thresholding conditions, we can still use them in the numerical
procedure. The number of grid points to be evaluated grows exponentially, as it does for the method
in Rue et al. (2009). The difference is that in our method it roughly growsproportional to the vol-
ume of ad-dimensional sphere, whereas in the case of the method in Rue et al. (2009) it relates to
the (larger) volume of ad-dimensional cube. Figure 6 illustrates the methods on a two-dimensional
example. When the posterior density is not unimodal then we suggest to use ad-dimensional uni-
formly spaced grid, that is,Σ = I and choose a well suitedµ and thresholdδ which allows the
exploration of the most significant modes. Once the hyper-parameters{θ1, . . . ,θm} are selected, the
integration of the corrected approximate marginals over the hyper-parameter’s approximate poste-
rior density can be written as

p̃(xi |y) =
∑m

j=1 p̃(xi |y,θ j) p̃(θ j |y)
∑m

j=1 p̃(θ j |y)
,

implying that the proposed procedure is similar to a reasonably efficient sampling procedure.

6. Examples

As real-world examples, we chose four models: a stochastic volatility model (Zoeter and Heskes,
2005; Rue et al., 2009), a log Gaussian Cox process model (Rue et al., 2009), a Gaussian process
binary classification model (Kuss and Rasmussen, 2005) and a ranking model (Birlutiu and Heskes,
2007). Our aim is to show that the EP based correction methods can be as accurate as the Laplace
approximation based ones and given that we have a sparse Gaussian prior, EP can be considered as
an alternative to the Laplace method even when the number of variables is of the order of tens of
thousands.
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Figure 6: A comparison of the points selected by the thresholding breadth-first search procedure
(left panel) and the method proposed by Rue et al. (2009) (right panel)when exploring
in the eigen-space corresponding to the modal configuration. The black dots show the
selected points while the gray ones stand for the ones that do not satisfy thethresholding
condition. The principal axes on the figure are not perpendicular because of the different
scaling of the axes. The number of evaluations in our method roughly growsproportional
to the volume of ad-dimensional sphere, whereas the method of Rue et al. (2009) relates
to the (larger) volume of ad-dimensional cube.

6.1 A Stochastic Volatility Model

As a first example for a sparse Gaussian model, we implemented the stochastic volatility model
presented in Zoeter and Heskes (2005) where the authors used a sequential (global) EP algorithm
to approximate the posterior density. The same model was used by Rue et al. (2009) to show that
the global Laplace approximation is by magnitudes faster in sparse models than asequential EP
algorithm. They also showed that their marginal approximations work well on this model.

The data set consists of 945 samples of the daily difference of the pound-dollar exchange rate
from October 1st, 1981, to June 28th, 1995. The observationsyt given the latent variablesηt are
taken to be distributed independently according top(yt |ηt) = N(yt |0,eηt ). The quantityηt govern-
ing the volatility is a linear predictor defined to be the sumηt = ft +µof a first-order auto-regressive
Gaussian processp( ft | ft−1,φ,τ) = N( ft |φ ft−1,1/τ), with |φ|< 1, and an additional Gaussian bias
term with a priorµ∼ N(µ|0,1). Thus the prior on( f1, . . . , fT ,µ) is a sparse latent Gaussian field.
The prior on the hyper-parameterτ is taken to bep(τ) = Γ(τ|1,10) and a Gaussian priorN (0,3)
is taken overφ′ = log((1+φ)/(1−φ)).

The joint density of the stochastic volatility model is

p(y,f ,µ,τ,φ) =
T

∏
t=1

N
(

yt |0,eft+µ)N( f1|0,1)
T

∏
t=2

N( ft |φ ft−1,1/τ)

×N(µ|0,1)Γ(τ|1,10)N

(

log

(

1+φ
1−φ

)

|0,3
)(

2
1−φ2

)

,
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s

Figure 7: Plots of the posterior densities in the stochastic volatility model in Section 6.1. Figure
panels show the logarithm of the approximate posterior density of the hyper-parameters
using EP (top-right) and the Laplace method (top-left), their marginals (second row) and
the posterior marginal approximations off50 andµ (bottom rows) when integrated over
the corresponding approximations of the hyper-parameters’ posterior density. Dots show
the hyper-parameters used for numerical integration; ellipses visualize theHessian at the
approximate posterior density’s mode. The rest of the panels show the posterior density
approximations off50 andµ.
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whereΓ(·|k,θ) denotes the Gamma density with mean valuekθ. Rue et al. (2009) propose to use
the first 50 observations, both because of using the whole data set makesthe approximation problem
easier and because of comparison to Zoeter and Heskes (2005). For comparison, we used the same
number of observations.

The results are shown in Figure 7. The Laplace and EP approximation of theevidence are nearly
indistinguishable (top-row), as are the posterior marginals of the hyper-parameters (second row).
Here EP is around a factor 5 slower than Laplace. The posterior marginalsof f50 andµ obtained
using the more involved methods (bottom rows) are practically indistinguishablefrom each other
and the gold (sampling) standard. This is not the case for the cheaper variants LM -G, EP-G, and
LM -L, but is the case forEP-L (third row): apparently to obtain excellent posterior marginals on
this model, there is no need for (computationally expensive) corrections, but it suffices to compute a
single global EP approximation per hyper-parameter setting and correct this for the (non-Gaussian)
local term.

6.2 A log-Gaussian Cox Process Model

As a large sized example, we implemented the Laplace approximation and expectation propaga-
tion for the log-Gaussian Cox process model applied to the tropical rainforest bio-diversity data as
presented in Rue et al. (2009). The observational data used in Rue et al. (2009) is the number of
treesyi j form a certain species in a small rectangular rainforest area indexed byi = 1, . . . ,201 and
j = 1, . . . ,101 with mean altitudeai j and gradientgi j . The data is modeled by a discretized Poisson
point process in two dimensions and the log of the mean parameterηi j is defined as a Gaussian
field. This means that the observationsyi j are taken to be Poisson distributed with meanwi j eηi j ,
where the parameterswi j are proportional to the size of the area whereyi j is measured. Since Rue
et al. (2009) consider rectangular areas of the equal size, in their model wi j is constant.

The latent Gaussian fieldηi j modeling the log of the mean is defined as

ηi j = βaai j +βggi j +β0+ f (s)i j + f (u)i j

whereai j andgi j are scalar quantities specifying altitude and gradient data,βa andβg are the corre-
sponding linear coefficients andβ0 is a bias parameter. The latent fieldsf (s) andf (u) are defined as
follows: f (s) is a second-order polynomial intrinsic Gaussian Markov random field with precision
parameterevs constructed to mimic a thin plate spline on a uniform two dimensional grid, while
f (u) is an independent field withf (u)i j ∼N (0,e−vη) included to model the noise. The fieldsf (s) and

f (u) are modeling the unobserved spatially structured or unstructured covariates. Independent wide
priorsN (0,v−1

β ) are taken onβa,βg andβ0, with v−1
β = 103, thus the fieldf (s) explains the assumed

a-priori correlation inη. We worked with the data set used in the INLA software package (Mar-
tino and Rue, 2009). The data set contains the correspondingai j ,gi j ,wi j andyi j for a grid size of
101×201. We also used the same modeling approach, that is, we have taken(ηT ,f (s)T ,βa,βg,β0)

T

as latent variable, thus having an inference problem of dimension 40605. The joint density of the
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Figure 8: The panels show the altitudeai j , gradientgi j and the non-zero observationyi j data for the
log-Gaussian Cox process model in Section 6.2 together with the sparsity structure ofQ
and the Cholesky factorL of its approximate minimum degree reordering.
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Figure 9: The approximate posterior mean and variance of the Gaussian random fieldη from the
log-Gaussian Cox process model in Section 6.2. The top figures show the approximation
obtained by the EP algorithm. The bottom panels show the comparison of the former
to the approximation obtained by the Laplace method. The black contour curvein the
bottom-left panel corresponds to the zero value.
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Figure 10: The posterior approximations of the evidence (top) andβa andβg (bottom). The Laplace
method results in similar evidence estimates as EP (the level curves on the top panels
show identical levels). The marginal approximations show marginals for the approxi-
mate MAP hyper-parameters.
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log-Gaussian Cox process model is

p(y,η,f (s),βa,βg,β0|vη,vs,a,g,w) =

= ∏
i j

Poisson(yi j |wi j e
ηi j )N

(

ηi j | f (s)i j +ai j βa+gi j βg+β0,e
−vη

)

×
( vs

2π

)N/2
|S|1/2

∗ exp

{

−1
2

evsf (s)TSf (s)
}

N
(

βa,βg,β0|0,103I
)

,

where|S|∗ is the generalized determinant—an irrelevant constant—of the structure matrixS con-
sisting of the finite difference coefficients of a second order improper polynomial Gaussian Markov
random field on a uniform two dimensional grid—with the corresponding boundary conditions (Rue
and Held, 2005). We used uninformative priors forvη andvs. The bottom-right panels of Figure 8
show the sparsity structure of the precision matrixQ corresponding to the Gaussian random vector
(ηT ,f (s)T ,βa,βg,β0)

T and the sparsity structure of its Cholesky factorL whenQ is reordered with
the AMD algorithm.

Expectation propagation was initialized using the term approximations corresponding to the
Laplace method. Figure 8 shows the data we used and Figure 9 shows the mean values and standard
deviations of the log intensityη when using the EP algorithm and the Laplace method with the
hyper-parameter fixed to their corresponding approximate a posteriori (MAP) value.

The top panels of Figure 10 show the evidence approximations while the bottompanels show
the marginal approximations for the corresponding MAP hyper-parameters. Forβa, there is a slight
difference in variance between the Laplace approximation and the EP based methods, while forβg,
besides a similar effect, the approximation methods also improve on the mean ofLM -G. It seems
thatEP-G is a sufficiently good approximation andEP-FACT does not really improve on it.

6.3 A Gaussian Process Model for Binary Classification

In this section we revisit and detail the probit model presented in Section 4.5.We use it in a binary
classification problem with a Gaussian process prior on the latent variables. The data consists of the
inputsu j ∈ R

d, j = 1, . . . ,n and the corresponding binary outputsy j ∈ {−1,1} , j = 1, . . . ,n.
The model is defined as follows. The binary observablesyi are assumed to be Bernoulli dis-

tributed and conditionally independent given a set of latent variablesx j ∈ R, j = 1, . . . ,n which are
controlling the parameters of the distribution through the cumulative density functionΦ of the stan-
dard normal distribution, that is,p(y j |x j) = Φ(x j)

(1+y j )/2(1−Φ(x j))
(1−y j )/2. The latent variables

x j = x(u j) are modeled as the values at locationsui of a zero mean Gaussian processx with a
(positive definite) covariance functionc(·, ·). The joint density of the model can then be written as

p(y,x|
{

u j
}

j ,c) ∝ ∏
j

Φ(y jx j)N(x|0, [c(ui ,uk)]i,k),

where[c(ui ,uk)]i,k denotes the matrix formed by the covariance valuesc(ui ,uk), i,k = 1, . . . ,n.
We chose the Ionosphere2 data set and a zero mean Gaussian process with covariance function
c(ui ,uk) = exp(a−ev||ui −uk||2). This setting yields a non-sparse precision matrix, therefore, the
speed-up arguments do not apply. However, the parallel updating scheme is still applicable and it
does not have higher complexity than the serial one.

2. The data set is publicly available athttp://archive.ics.uci.edu/ml/datasets/Ionosphere .
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Figure 11: The approximate posterior marginal approximations of a Gaussian process binary clas-
sification model, with the hyper-parameters set to the approximate MAP values yielded
by EP. The behavior of the marginals is similar to that in Figure 2, however, in this case,
the correction provided byLA -CM2 is not that significant as in Figure 2.

Kuss and Rasmussen (2005) showed that on this model and data set EP leads to accurate ap-
proximations of the evidence while the Laplace method is substantially less accurate. We propose
to illustrate how this behaviour manifests itself when approximating marginals. We use the whole
set ofn= 351 data points and compare the resulting marginals with the histograms obtained from
1.5×106 samples by using elliptical slice sampling (Murray et al., 2010). The hyper-parameters
are set to the approximate MAP values obtained from EP’s evidence approximation with uniform
priors ona andv.

It turned out that many posterior marginal densities are skewed, however, most of the skewed
marginals are well approximated byEP-L (the marginal of EP’s tilted distribution). The panels of
Figure 11 show the approximate posterior marginal densities of the latent variable with j = 41.
These approximate posterior marginals exhibit a similar behavior like the ones inFigure 2.

6.4 A Ranking Model

To show that we can implement linear constraints with EP and that the factorization principle might
work even in is cases when the non-Gaussian terms depend on more than one variable, we use a
ranking model for rating players in sports competitions. The model is a simplifiedversion of the
models presented in Dangauthier et al. (2008) and Birlutiu and Heskes (2007) and we only consider
it as an example to support the above mentioned claims. We assume that a playerj is characterized
by his/her strength which at timet is x( j)

t . The prior on the evolution of the players’ strength
xt = (x(1)t , . . . ,x(n)t ) is taken to be a factorizingAR(1) model. Each game between two players is
represented by the triple(i, j, t) and the collection of these triples is denoted byG. We assume
that the outcomes of the games are a binary variablesyi, j,t ∈ {−1,1}, the games are conditionally
independent given the players strengths and the probability of playeri winning the game against
player j at timet is Φ(x(i)t −x( j)

t ), whereΦ is the standard normal cumulative density function. To
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Figure 12: The left panel shows the mean strengths of the players A. Agassi (cont.), Y. Kafelnikov
(dashed), C. Moya (dashed-dotted), and T. Henman (dotted) with the standard deviations
of A. Agassi’s strength based on the ranking model presented in Section 6.4. The data
set consists of the games played by these players against each other in theyears 1995-
2003. We implemented linear constraints such that the players strength sum to zero in
every year. The left panel shows that this indeed holds for the means. The right panel
shows A. Agassi’s strength distribution in 1996 which is a non-Gaussian density and can
be well approximated usingEP-FACT.

implement linear constraints, we constrain the players’ strength to sum to zeroat any given timet.
These constraints are purely artificial and are only considered for illustration purposes.

The joint posterior density of the players’ strength is given by

p(x1, . . . ,xT |y,v1,v,a) ∝
T

∏
t=1

δ0(1
Txt) ∏

(i, j,t)∈G

Φ(yi, j,t(x
(i)
t −x( j)

t ))

×
n

∏
j=1

N(x( j)|0,v1)
T−1

∏
t=1

N(x( j)
t+1|ax( j)

t ,v).

We approximate this density with a Gaussian density using EP and we use the factorized corrections
EP-FACT, to improve on the Gaussian marginals. The prior on the players strengths is asparse
Gaussian Markov random field, thus we can apply the methods presented inSection 4.6.2.

We have chosen a data set consisting of four3 tennis players and their ATP tournament games
played against each other form 1995 to 2003. There was a total of 45 games. To obtain reasonably
skewed marginals, we chosev1 = 1,a= 1 andv= 9. The left panel in Figure 12 shows the evolution
of the players’ mean strengths and the corresponding standard deviations for the best player. Note
that the players’ mean strengths average to zero at all times. The right panel shows that the factorized
approximationsEP-FACT, can indeed improve on the Gaussian marginal approximations computed
by EP even in models where non-Gaussian terms depend on more than one variable. This might be
due to the relatively sparse interaction between the variablesx( j)

t , t = 1, . . . ,T, j = 1, . . . ,n.

3. We have chosen A. Agassi, Y. Kafelnikov, C. Moya and T Henman.
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7. Discussion

We introduced several methods to improve on the marginal approximations obtained by marginal-
izing the global approximations. The approximation denoted byEP-FACT seems to be, in most
cases, both accurate and fast. An improvement in accuracy can be achieved with some additional
computational cost by usingEP-1STEP. We showed that by using a parallel EP scheduling the com-
putational complexity of EP in sparse Gaussian model can scale with the computational complexity
of the Laplace method.

There are many options for further improvement, in particular with respect toefficiency. The
ideas behind the simplified Laplace approximation of Rue et al. (2009), whichaims to prevent
the expensive computation of a determinant for eachxi , are applicable to expectation propagation.
However, if the computation of the determinant inEP-1STEPdominates the computation time, the
factorized approximationEP-FACT may be a faster but less accurate alternative.

One of the main problems of expectation propagation is that it is not guaranteed to converge
and may run into numerical problems. There were no problems with the convergence of EP in the
problems considered in this paper, but even when there are, it can still beuseful to start from the
Laplace solution and perform a few EP steps to get closer to the main mass of the probability instead
of relying on the mode and the curvature.

For models with weak correlations and smooth nonlinearities, any approximationmethod gives
reasonably good results. However, it is possible to come up with cases (strong correlations, hard
nonlinearities), where any deterministic approximation method fails. The most interesting problems
are somewhere in between, and for those we can hardly tell how advanced and computationally
intensive an approximation method we need. The heuristic suggested in Rue et al. (2009), to sys-
tematically increase the complexity and stop when no further changes can be obtained, appears to
be risky. In particular when going from the factorized to the non-factorized approximations, it is
often hard to see changes, but still both approximations can be far off. It would be interesting to
obtain a better theoretical understanding of the (asymptotic) approximation errors implied by the
different approaches.
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Appendix A. Solving the Takahashi Equations

The Takahashi equations (Takahashi et al., 1973) aim to compute certainelements of the inverse of
a positive definite matrix from its Cholesky factor. The derivation of the equations or the algorithm
can be found in many papers (e.g., Erisman and Tinney, 1975; Rue et al., 2009). In the following we
present the line of arguments in Rue et al. (2009). LetQ=LLT , z ∼ N(0,I) andLTx= z. Then
using the notationV =Q−1 we find thatx ∼ N(0,V ). The equationsLTx = z can be rewritten
asLii xi = zi −L−1

ii ∑n
k=i+1Lkixk. Multiplying both sides withx j , j ≥ n, usingz = L−Tx and taking

expectations we arrive at the Takahashi equationsVi j = δi j L
−2
ii −L−1

ii ∑n
k=i+1LkiVk j. Since we only
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want to compute the diagonal ofV or the elementsVi j for which Li j 6= 0, the algorithm can be
written in the followingMATLAB friendly form

1: function V = SolveTakahashi (L)
2: for i = n : −1 : 1
3: I =

{

j : Li j 6= 0, j > i
}

4: VI ,i =−VI ,ILI ,i/Li,i

5: Vi,I = V T
I ,i

6: Vi,i = 1/L2
i,i −Vi,ILI ,i/Lii

7: end

The complexity of this algorithm scales withnonzeros(Q)2/n.

Appendix B. Gaussian Formulas

The first and second moments of a distributionp(x)=Z−1(m,V ) f (x)q(x)with q(x)=N(x|m,V )
are given by

Ep [x] = m+V ∇m logZ(m,V ),

Vp [x] = V +V ∇2
mm

logZ(m,V )V .

Applying integration by parts, one can show that the moments ofp can also be written in the form

Ep [x] = m+
1
Z
V Eq [∇x f ] ,

Vp [x] = V +
1
Z2V

[

ZEq
[

∇2
xx

f
]

−Eq [∇x f ]Eq [∇x f ]T
]

V ,

provided thatf (x)e−x
T
x and ∂ f (x)

∂x e−x
T
x vanish at infinity and the required differentials and inte-

grals exist.

Appendix C. Details of EP in Latent Gaussian Models

Assume the distribution has the form

p(x) ∝ p0(x)∏
i

ti (Uix) ,

whereUi are linear transformations. This formulation includes both the representations whent j

depend only on a subset of parameters, that is,ti (x) = ti (xIi ) with Ui = I·,Ii and the representation
used in logistic regression, whereUi is theith row of the design matrix. Here we present the details
of theα-fractional or power EP where the updates are performed ont̃α

i (x).

C.1 Computing t̃new
i

First we compute the form of the term approximations, and show thatt̃i has a low rank repre-
sentation. Letq(x) = N(x|m,V ) and leth̃ = V −1m, Q̃ = V −1 the canonical parameters of
q(x). We useq\i (x) = N

(

x|m\i ,V \i
)

to denote the distributionq\i(x) ∝ q(x)/t̃α
i (x). After
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some calculus one can show that the moment matching Gaussianqnew(x) = N(x|mnew,V new) of
qi(x) ∝ tα

i (x)q
\i(x) is given by

mnew = m\i +V \iUT
i

[

UiV
\iUT

i

]−1[

E [zi ]−Uim
\i
]

,

V new = V \i +V \iUT
i

[

UiV
\iUT

i

]−1[

V [zi ]−UiV
\iUT

i

][

UiV
\iUT

i

]−1
UiV

\i ,

wherezi is a random variable distributed aszi ∼ t (zi)
α N

(

zi |Uim
\i ,UiV

\iUT
i

)

. The update for
the term approximatioñti(x) is given by(t̃new

i (x))α ∝ qnew(x)/q\i(x). The latter division yields

[V new]−1−
[

V \i
]−1

= UT
i

[

V [zi ]
−1−

[

UiV
\iUT

i

]−1
]

Ui , (15)

[V new]−1
mnew−

[

V \i
]−1

m\i = UT
i

[

V [zi ]
−1E [zi ]−

[

UiV
\iUT

i

]−1
Uim

\i
]

(16)

leading to

t̃new
i (x) ∝ exp

(

(U jx)
T
h̃ j − 1

2
(U jx)

T
Q̃ j (U jx)

)

,

whereh̃i andQ̃i are given by the corresponding quantities in (15) and (16). The approximating
distributionq is defined by the canonical parameters

h̃ = h+∑
i

UT
i h̃

i ,

Q̃ = Q+∑
i

UT
i Q̃

iUi ,

that is, the sum over the parameters oft̃i and the parameters of the priorp0(x)∝ exp
(

hTx−xTQx/2
)

.

C.2 Computing the Cavity Distribution q\i

Now, we turn our attention to the computation of the distributionq\i . The quantities we are interested
in areUim

\i andUiV
\iUT

j . After some calculus, one can show that these are given by

UiV
\iUT

i = Ui
(

Q̃−αUT
i Q̃

iUi
)−1

UT
i

=
(

UiV UT
i

)(

I−αQ̃i (UiV UT
i

))−1
,

Uim
\i = Ui

(

Q̃−αUT
i Q̃

iUi
)−1(

h̃−αUT
i h̃

i)

=
(

I−αQ̃i (UiV UT
i

))−1(
Uim−α

(

UiV UT
i

)

h̃i) .

Therefore, the computational bottleneck of EP reduces to the computation ofthe quantitiesUim

andUiV UT
i . These can be computed from the canonical representation ofq by UiQ̃

−1h and
UiQ̃

−1UT
i .
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C.3 Computing EP’s Evidence Approximation

Let us define

logZ(m,V )≡ 1
2
mTV −1m+

1
2

logdetV +
n
2

log(2π)

and
logZi (m,V )≡ log

∫
dxN(x|m,V ) tα

i (Uix) .

Expectation propagation approximates the evidencep(y|θ) by Zep=Z1−n/α ∏i Z
α
i . Using the above

introduced notation this can be written as

logZEP = logZ(m,V )

+
1
α ∑

i

[

logZ j

(

m\i ,V \i
)

+ logZ
(

m\i ,V \i
)

− logZ(m,V )
]

,

which in the case whenti depends onUix leads to

logZEP = logZ(m,V )+
1
α ∑

i

logZ j

(

Uim
\i ,UiV

\iUT
i

)

+
1
α ∑

i

[

logZ
(

Uim
\i ,UiV

\iUT
i

)

− logZ
(

Uim,UiV UT
i

)

]

.

Appendix D. A Summary of the Marginal Approximations

An explanatory list of the approximation methods in Figure 13.

• LA -TK. The Laplace approximation of Tierney and Kadane (1986). The approximation
p̃LA -TK(xi) is computed by using the Laplace method to approximateci(xi) (Section 3.1).

• EP-FULL. The full EP approximation of the marginal. This approximation is computed by
using EP to approximateci(xi) (Section 4.1.1).

• EP-L. EP local. The approximation ˜pEP-L(xi) ∝ εi(xi)q(xi) is obtained fromcxi (x) ≈ 1, where
εi(xi) = ti(xi)/t̃i(xi) andq(x) are computed by EP (Section 3).

• LM -L. Lapace method local. EP local. The approximation ˜pEP-L(xi) ∝ εi(xi)q(xi) is obtained
from cxi (x) ≈ 1 , whereεi(xi) = ti(xi)/t̃i(xi) andq(x) are computed by the Laplace method
(Section 3). In this case logεi(xi) = R2[logti ](xi).

• LA -CM. The Laplace approximation with the conditional mode approximated by the condi-
tional mean. The approximation ˜pLA -CM(xi) is computed as proposed in Rue et al. (2009),
that is, by using the approximationx∗

\i(xi) ≈ Eq
[

x\i |xi
]

whereq(x) is given by the Laplace
method (Section 4.1.2).

• LA -CM2. The similar approximation asLA -CM, but with an additional term added to account
for x∗

\i(xi)≈ Eq
[

x\i |xi
]

(Section 4.1.2).
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Expectation propagation (EP) Laplace method (LM)

with

EP-L LM-L

EP-1STEP LA-CM / LA-CM2

Use global method with some simpli!cations

Factorize and use the univariate global method

EP-FACT LA-FACT

EP-FACTN   EP-OPW 

(1st order)

Expansions with regard to 

EP-FULL LA-TK

Gaussian approximation

Latent Gaussian model

Figure 13: A schematic view of the approximation methods introduced or referred to in this paper.
For details see Section D of the Appendix.
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• EP-1STEP. The one step EP approximation. The approximation ˜pEP-1STEP(xi) is computed by
defining ε̃ j(x j ;xi) ≡ Collapse(q(x j |xi)ε j(x j))/q(x j |xi) and using the approximationci(xi) ≈∫

dx\i q(x\i |xi)∏ j 6=i ε̃ j(x j ;xi) (see Section 4.1.1). This corresponds to one EP step for com-
putingci(xi) with the initializationε̃ j(x j ;xi) = 1.

• EP-OPW. The Taylor expansion of Opper et al. (2009). The approximation ˜pEP-OPW(xi) is com-
puted by expanding p(x) ∝ p0(x)∏ j ε j(x j) in first order with regard to
ε j(x j)−1 for all j = 1, . . . ,n and integrating with regard tox\i . When expanding only for
j 6= i the approximation is equal in first order to ˜pEP-FACT(xi) (Section 4.3).

• EP-FACT. The factorized EP approximation. The approximation ˜pEP-FACT(xi) is computed
using the approximationci(xi) ≈ ∏ j 6=i

∫
dxj q(x j |xi)ε j(x j), where the univariate integrals are

computed numerically or analytically, if it is the case. For further details see Section 4.2.

• LA -FACT. A similar approximation asEP-FACT, but here, the univariate integrals are com-
puted with the Laplace method and using the approximationx∗j (xi) ≈ Eq [x j |xi ], with q(x)
being the global approximation resulting from the Laplace method. For further details see
Section 4.2.

• EP-FACTN. Higher order approximations obtained by using the factorization recursively. For
further details see Section 4.2.
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