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SUMMARY

It is shown that the usual Laplace approximation is not a valid asymptotic approximation
when the dimension of the integral is comparable with the limiting parameter n. The
formal Laplace expansion for multidimensional integrals is given and used to construct
asymptotic approximations for high dimensional integrals. One example is considered
in which the dimension of the integral is O(n I 2) and the relative error of the unmodified
Laplace approximation is O (1). Nevertheless, it is possible to construct a valid asymptotic
expansion by regrouping terms in the formal expansion according to asymptotic order
in n.
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EXCHANGEABLE ARRAY; LAPLACE APPROXIMATION; POSTERIOR EXPECTATION;
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1. INTRODUCTION

In statistical work connected with Bayesian computations or mixture models, it is
frequently necessary to evaluate integrals of the form

[ expi-ng(n}ax o)

in which n is the sample size. In the standard asymptotic regime p is fixed as n — oo.
In the non-standard high dimensional limits considered here, p increases with n,
although usually at a diminished rate such as n'/2 or n!3, The examples that we
have in mind are primarily the computation of marginal distributions for random
effects models, examples of which can be found in Breslow and Clayton (1993),
McCullagh and Nelder (1989), section 14.5, or Wolfinger (1993). Similar calcula-
tions also occur in the computation of posterior expectations when the parameter
is high dimensional (Tierney and Kadane, 1986). Analytical expressions for such
integrals are available only in very rare cases, so it is natural to resort to
approximations. If all else fails, Monte Carlo methods can be used to produce num-
erical approximations. In this paper, however, we develop analytical approxima-
tions based on modifications to Laplace’s method.

It does not seem feasible at present to develop useful general theorems for approx-
imating arbitrary high dimensional integrals. As a compromise we develop a formal
multivariate expansion. The asymptotic order in n of terms in this expansion
depends on the structure of the derivative arrays and on the relationship between
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p and n. For certain high dimensional integrals an asymptotic approximation can
be developed by grouping together terms of similar asymptotic order. The example
in Section 4 shows how this can be done for a non-standard case in which
p = O(n"?). The main point of that example is that the correction term e,
ordinarily O(n~!) for integrals of fixed dimension, is in fact O(1) under the non-
standard limits considered. The multiplicative correction expe, yields an
approximation with relative error o(1), whereas the more common correction
factor, 1 + ¢, has relative error O(1). These conclusions are confirmed by a
numerical example in Section 5.

The discussion in Section 6 suggests that the unmodified Laplace approximation
is reliable provided that p = o(n!/?). Beyond that point it is necessary to exploit
peculiar characteristics of individual problems.

2. LAPLACE APPROXIMATION

We consider briefly the standard Laplace approximation to integral (1) in which
P is constant as n = oo and g is unimodal with a minimum at £. Outside any fixed
interval or open set containing £ the integrand is exponentially small and the integral
is likewise exponentially small. Consequently, for large n, the main contribution
comes from x-values in an 0 (1) neighbourhood of £. At this stage we seek a one-to-
one transformation x — u(x) such that g(x) — g(%) = 78”u? where 2” is the
second derivative at the minimum. The integral then becomes

exp{—-ng(®)} S exp(—ng”u*/2) J(u) du

where J(u), the Jacobian of the transformation, is 1 + O(u) in the neighbourhood
of the origin. This integral yields an asymptotic expansion in the form

-1/2
ng” 14, 1 J, Ty .
(21r) exp( —ng){l + 32" + S z") +...+ Gng" ) + O(n ‘)}

where J,/r! is the rth coefficient in the Taylor expansion of J(u«) about the origin.
In particular, J, = —8” /38" and

12J, = 5"2/g"* — 3g"/g".

See, for example, Bleistein and Handelsman (1986), p. 338, or Tierney and Kadane
(1986), p. 86.

The preceding expressions apply to the one-dimensional case but can readily be
extended to the multivariate case by a simple change of notation employing the
summation convention. The leading term, sometimes called the Laplace approxi-
mation, is

det(ng”/2w) ~2exp(—ng).
The first multiplicative correction term is 1 + ¢, where

1 . 1 . ..
€= = 51888 (3] + oo Ry (87878 [6] + 272427 (9]) )

and g7 are the components of the inverse matrix of second derivatives. For details
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of the derivation, see Barndorff-Nielsen and Cox (1989), section 6.2. Since the
-correction term above is formally identical with the Bartlett adjustment for full
exponential family models, the computational techniques described by Cordeiro
(1983, 1987) or McCullagh and Nelder (1989), section 15.3, which avoid multi-
dimensional arrays, can be adapted.

The preceding line of development seems to be the most persuasive for
establishing rigorously the asymptotic nature of the Laplace approximation. How-
ever, to develop an extended series expansion a more streamlined method is
required.

3. BIPARTITIONS AND MULTIVARIATE EXPANSIONS

Let X be a p-dimensional random variable with components X, ..., X? having
finite moments of all orders. In a slight departure from the notation of McCullagh
(1987) the joint cumulants and joint moments are denoted as follows:

k' = E(X'); k¥ = cov(X’, X7) = cum,(X’, X’); k7% = cumy(X*, X/, X*);
kW = E(X'X7) = k¥ + k'’ kWK = E(X'XIX*) = k¥ + kVkk[3] + k'x/k*.

It is convenient in this section to adopt the convention whereby any array with
bracketed indices is defined to be the sum over all partitions of those indices of
products of the related arrays with unbracketed indices. Thus, for instance, @,
is defined to be

Aijkn) = Qijki + aijka[[4] + a,-jak,[3] + a,-jaka,[6] + a;a;aga,

the sum over all 15 partitions of four indices of products of arrays with unbracketed
coefficients. A consequence of the notation is that the ks with bracketed indices
denote moments; without brackets they denote cumulants.

Consider now the moment-generating function defined by the expected value of
the expansion

M = Eexp(a; X’ + a; X'X/2! + ap X' X'X*/3! + ...),

which employs the usual implicit summation convention. We proceed formally
ignoring all questions of convergence. From the relationship between moment-
generating functions and cumulant-generating functions, we have

M= E(l + a[,']Xi + a[u]XlXj/Z! + a[ijk]XinXk/3! + a[,:jkI]XinXle/4! + .. .)
=1+ a[,']K[i] + a[ij]K[ij]/Z! + a[,'jk]K[ijk]/3! + a[ijk”l([ijkl]/4! +....

In the term of order m, involving m dummy indices, a; . ;, is the sum over the
partition lattice &, of products of coefficients @ with unbracketed indices.
Likewise, the moment «!% --- inl js the sum over &, of cumulant products, one
cumulant for each block of the partition. Thus the complete term of algebraic order
m in the expansion of M is a sum over £, X &, of coefficient products multiplied
by cumulant products, each bipartition occurring exactly once.

Now, M is the joint moment-generating function of the variables X', X'X7,
XXXk ..., and K = logM is the joint cumulant-generating function of these
same variables. Consequently K has a formal expansion similar to that for M in
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which the term of order m is a sum over &, x 4,, but omitting bipartitions that
are not connected (McCullagh (1987), p.59). In symbols,

logM = Z — Z D1 Gy .. GuKT L k%, 3)
m21 m! P=p|...|lpp Q=ai| ... |ax
PvQ=1

where P is a partition of m indices into » < m blocks, Q is a partition of the same
indices into x < m blocks and the coefflclent is 1 if the least upper bound of P and
Q is maximal. In other words, all bipartitions (P, Q) are included in the expansion
for M, but only connected bipartitions appear in the expansion for log M. Otherwise
the two expansions are formally identical.

3.1. Application to Laplace Approximation
Consider the formal Laplace approximation to the integral

M= XR,exp{—g(x)}dx

in which g has derivatives of all orders and is unimodal with a minimum at the origin.
In the usual asymptotic development outlined in the preceding section, the sample
size appears explicitly as a multiplicative factor in the exponent. Here, however,
we ignore n but bear in mind that g and its derivatives may be O(n) where »n is
some parameter to be considered large. The integrand may be factored as follows:

M = exp{—g(0)} S exp ( —18;xx’) exp ( —guxx'x*/3! — guuxx/x*x'/4! — ...)dx

= |g”/2x| " "*exp{—g(0)} Eexp ( — g X' X' X*/3! — g X' X'X*X'/4! — . ..).

In the notation of the preceding section, X is jointly normal with inverse covariance
matrix g”, so all cumulants are 0 except for those of order 2. All coefficient arrays
of order 1 and 2 are also 0. It follows then from equation (3) that

logM = —g(0) — —log{det( )} + 2 >, (=1)g, ...g,8% ... 8"
gzmx-QZm

PvQ= O]
in which P = p,|...|p, is a partition of 2m indices into » blocks each of size 3
or more and Q = ¢q,|...|q, is a partition of the same indices into m blocks of

size 2. In equation (4), p; is a set of indices, g, is the associated array of partial
derivatives and g7 is the inverse matrix of second derivatives at the origin.

The usual asymptotic order for fixed p of the term corresponding to the bipartition
(P, Q) is O(n*~ ™) regardless of whether the bipartition is connected. The standard
Laplace expansion is obtained in logarithmic form when terms in equation (4) are
grouped by asymptotic order. Alternatively, a multiplicative correction can be obtained
by including disconnected bipartitions and grouping by asymptotic order. In either
case, the first adjustment term, of order O(n~!), includes three bipartitions of type
(4, 2% and 150 of type (32, 2°) split into two distinct subtypes as shown in equation
).

The discussion leading up to equation (4) assumes that the Taylor expansion takes
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place at the point that minimizes g. Although this choice is usually desirable to achieve
good numerical accuracy using few terms, it is not necessary in the development
of the formal series expansion. In fact, it is sometimes convenient in applications to
expand g about a point near but not exactly equal to the minimum point. In symbols,
we write

g(x) = h(x) + e(x)

where A is a quadratic approximation to g in the neighbourhood of the minimum,
and ¢ has first and second derivatives that are small at the point of expansion. Then
the formal expansion about an arbitrary point is

o= -0~ S o)) + B B 7
92mxg2m
PVQ=1 5)

where ¢, are the partial derivatives of e of order |p;| and h% are the components
of the inverse second-derivative matrix of 4. Since the first and second derivatives
of e are not exactly 0, the block sizes of the partition P are unrestricted in equation
(5). The grouping of terms in equation (5) to form an asymptotic expansion now
depends critically on the magnitude in n of the first two derivatives of e.

The main purpose of developing the formal expansions (4) and (5) is not so much
to carry Laplace approximation out to higher order under standard asymptotic
conditions but to use it under non-standard conditions in which a non-standard
reordering of the terms may be called for. In particular, our expansion is formally
correct even when the dimension of the integral is equal to n. Whether it is then
possible to group terms in a useful manner with appropriate asymptotic behaviour
as n— oo is a problem to be examined in each case.

4. APPLICATION

4.1. Exchangeable Binary Array Model
Let Y; be the components of a binary random array of order r x ¢ whose joint
distribution is generated as follows. Conditionally on the values of row and column
effects o; and B;, the components of Y are independent with probabilities =
satisfying the linear logistic model

loglt('lr,-j) =u+o;+ Bj. (6)
The row and column logistic effects are taken to be independent and normally

distributed random variables with variances o2 and o2 respectively. The uncondi-
tional joint probability of the observations y; is then proportional to

a;’a,,“LSBexp {p,y.. + Zaiyi. + Zﬂjy.j - K(a®B) — aTa/202

- BB/ 20%} d8da )

where the dot subscript denotes summation and K(a @ B) = Llog{l + exp(u +
o; + B;)} is the conditional cumulant function. This joint distribution is row
exchangeable and column exchangeable.

In this example the number of ‘observations’ is r X ¢ whereas the dimension of
the integral in expression (7) is r + ¢. Our asymptotic approximation is based on
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a formal limit in which r = ¢ = o, so the dimension of the integral increases at a
slower rate than the number of observations.

Although the integral arising in expression (7) is in some ways rather special, its
form is not limited to exchangeable binary arrays. In fact, if the components Y
are conditionally independent in a natural exponential family model whose canonical
parameter satisfies model (6), then the unconditional distribution has exactly the
form (7), with cumulant function appropriate to the exponential family in question.
Such a formulation makes sense only if the canonical parameter space coincides with
R" x R°.

4.2. Asymptotics and Derivatives

Since K is convex, the exponent in expression (7) is concave with a unique maximum.
However, the observations are not identically distributed so the sample size does
not enter explicitly as a multiplicative factor as in integral (1). To make the formal
connection with expression (1), therefore, we take r = ¢ and incorporate the sample
size (n =r?) into the function g. In other words, x = (o, 8) and —g is the
exponent in expression (7). The partial derivatives of g of order 3 and higher are
the derivatives of K, which are the joint conditional cumulants of (Y., Y.;). In
the cumulant array of order s + ¢ the only non-zero elements are the r + ¢ ‘diagonal’
elements «,.,(Y;.) and «,.,(Y.;), and the two-component ‘mixed’ cumulants
ke (Yi., Y.;) = k54 ,(Y};). The r + ¢ diagonal elements are O(r); the 2rc non-zero
off-diagonal elements are O(1) in the formal limit considered here.

A slight complication arises from the fact that £ Y;. — I Y, is identically 0. The
(r + c)-component vector J = (1,, —1.) lies in the null space of each cumulant
tensor of order 2 and higher. For example, K,;.;J¢ = 0 for all a, b and c. The
second-derivative matrix has the partitioned form

_,_[diag{v;.} Vv ;0
" __ ” 1= 1 a
g'=K"+1L ( pT diag{V.,-}>+(o ;!

where V = {V;} is the array of conditional variances, and I, and I, are the
covariance matrices of o and 3, here assumed to be multiples of the identity matrix.
Ordinarily, to justify the Laplace formula as an asymptotic approximation it is
necessary to show that g” is large in the sense that n~'g” or r~!g” has a positive
definite limit. Clearly, such an approach cannot work in our case because the dimension
of g” increases without limit. Also, at least one of the eigenvalues of g” is O(1),
which further complicates the asymptotic analysis. To see this, consider the case
0, = 0, = 0. Then J is an eigenvector of g” with eigenvalue o~2. All eigenvectors
orthogonal to J correspond to non-trivial contrasts of the row and column totals
and therefore have eigenvalues of order O(r).

The formal asymptotic argument proceeds as follows. First, g” > K” in the sense
that the difference g” — K” = L' is positive definite with eigenvalues that are
O(1). Second, in all scalars of the type (2), g” may be replaced by K” without
affecting the asymptotic order. Finally K” may be replaced by K” + AJJT without
affecting the numerical value. This augmented matrix is positive definite for A > 0.
Equivalently, scalars of the type (2) are unaffected by the choice of generalized
inverse provided that all cumulant arrays have a common null space. It is convenient
here to choose A = V, the mean of Vj, in which case all eigenvalues of the
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augmented matrix are strictly O(r). For determining the asymptotic order of
various scalars, therefore, it is sufficiently good to proceed as if g” = rl,,. For
serious numerical approximation, however, it is essential to use the exact matrix
g” or a good approximation thereof.

The asymptotic order of the first scalar in equation (2) is determined as follows:

ij o ki -2 ijs ki
888" ~ r~*Kiy,6Y6
-2 —2\ ¥
~ 723 K + 17220 Ky
i i

~ 1?4/1‘ + Kzz,

in an obvious notation showing that this scalar is O(1) and not O(n~!) as in the
standard version of the Laplace expansion. Note that K,, the average of the
diagonal elements, is O(r). Similar investigations for the remaining scalars in
equation (2) show that both are O(1). For example the final scalar is

8i8rst8U8Y 8" ~ r Ky K, 676%75*

_ _ %* _ *
~7r 3ZK,2" + 2r 3 z KmKIJJ + r 32 Kiinjk/ﬂ
i ij ijk
where I* denotes summation over distinct values of the indices. The first sum
involves 2r terms of order O(r?); the second involves roughly r? terms of order
O(r); the third involves 2r? terms of order O(1). All three expressions are O(1).

4.3. Modified Laplace Expansion

The results of the preceding section show that the standard Laplace formula does
not provide a valid asymptotic approximation with relative error o(1) for integral
(7). We now seek a modification of the Laplace expansion by making use of the
formal expansion (4). The general idea is to regroup in decreasing asymptotic order
the scalars that appear in that expansion and to truncate the resulting series at an
appropriate point.

The terms of algebraic order 2m in expansion (4) are in one-to-one corres-
pondence with connected bipartitions (P, Q) of 2m indices with P = p,|...|p,
and Q = q|...|qn satisfying |p;| >3 and |g;| = 2. In other words, Q is a 2™-
partition, and P has blocks of size not less than 3. For each such bipartition, it is
required to determine the asymptotic order in n, or in r = n'/2, of the scalar

K, ...K,g"...gn ®

bearing in mind that such an expression involves implicit summation over (2r)%"
terms.

In the context of integral (7), the arguments presented in the preceding section
show that, as regards asymptotic order in n, we may take each superscripted g to
be g? = rI,,. Each of the 2r diagonal elements in expression (8), for which all
2m indices are equal, is therefore O(r*~™), giving a diagonal contribution of
order O(r*~™*1). The off-diagonal elements for which the 2m indices take on
exactly two distinct values are O(r*~™~!) at most, again giving a contribution of
order O(r*~™*1!). By extension, the off-diagonal elements for which the indices
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take on k < » + 1 distinct values are O(r**!~%-™), but there are O(r*) such
terms giving a total contribution of order O(r*~™*!). If the indices take on more
than » + 1 distinct values, connectivity of the partitions implies that one of the Ks
must have three distinct subscripts. Such terms are necessarily 0 by the argument
given in the preceding section. Thus the asymptotic order in n of the scalar
corresponding to the connected bipartition (P, Q) is O(r*~™*!). The value of
any scalar on a disconnected bipartition is equal to the product of lower order
scalars over the connected components of the bipartition. Bipartitions that are not
connected generally give rise to scalars that are O(1). Thus, truncation of the
expansion for log M in equation (4) gives a valid asymptotic approximation, but
truncation of the series expansion for M does not.

An asymptotic expansion for the logarithm of integral (7) can therefore be
obtained by grouping together bipartitions from equation (4) in descending order
of v — m + 1. The usual approximation with multiplicative correction (2) for the
integral is therefore not asymptotically correct in the limit considered here. Instead,
the correct leading term in the Laplace approximation has the exponential form

det(2”/2w) " 2exp(—§ + €) )

where
1. . O A g kras
€= — —’21gijklgjgkl[3] + 7‘2’gijkgrst(g grgh (6] + gughev[9]).

The zero-order ‘correction term’ exp e, is equivalent to 1 + ¢, under standard limits
but differs by O(1) under the non-standard limits considered here. The error term
in the exponent of expression (9) is O(r~'), or O(n~1?).

5. NUMERICAL EXAMPLE

We consider the problem of evaluating integral (7) on the 10 x 10 binary array
shown in Table 1. For u = o, = g, = 1, the ‘exact’ value obtained by simulation is
(27)"%exp(—72.2938 + 0.0032). The uncorrected Laplace approximation gives
(27)"%exp(—72.6796), whereas formula (9) with the ‘zero-order correction’ gives
(27)'° exp(—72.2612). The zero-order correction term in this example is equal to
exp 0.4184 = 1.520, or 0.837 in twice-log-likelihood units. The zero-order correction
reduces the logarithmic error of the Laplace approximation from —0.386 to 0.0326,

TABLE 1
10 x 10 binary array for the

example
1111011101
0010101100
0111111111
1010110111
0010111111
1001110010
1000010011
1100011010
1010101100
1111011000
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a slight overcorrection. The multiplicative 1 + ¢, correction reduces the error to
—0.0363, a slight undercorrection, but not markedly inferior to the exponentiated
correction.

More extensive numerical investigation reveals that ¢, depends more on the
values of o, and o, than on u. For p =1, and for several values of o = g, = 0,
Table 2 compares the various Laplace approximations for the log-likelihood with
the value obtained by simulation. The column labelled ‘Laplace’ is the estimated
error in the logarithm of the approximation to integral (7). It is readily apparent
that ¢, varies appreciably with ¢, even over the range of statistical interest.
Further, the exponentiated correction (additive on the log-likelihood scale) generally
overcorrects, whereas 1 + ¢, undercorrects, at least in this example in which ¢, is
positive. Although there is little to choose between the two corrections for ¢ < 1,
the exponentiated correction is clearly superior for large o where the correction is
greatest.

TABLE 2
Log-likelihood approximations compared with Monte Carlo simulations for various values of
0, = op With p = 1

o Monte Carlo resultst € Estimated error in approximation
Log-likelihood Standard error Laplace Laplace + ¢ Laplace + log(1 + ¢y)

0.25 -70.5109 0.0002 0.0091 -0.0092 -0.0002 -0.0002
0.50 —70.0090 0.0009 0.1062 -0.1024 0.0038 -0.0015
0.75 —170.7847 0.0018 0.2682 -0.2509 0.0173 -0.0133
1.00 —72.2938 0.0032 0.4184 -0.3858 0.0326 —0.0363
1.50 —75.9453 0.0048 0.6349 -0.5901 0.0448 —0.0985
2.00 -79.5089 0.0087 0.7680 -0.7320 0.0360 -0.1622
3.00 —85.6111 0.0104 0.9071 -0.8525 0.0547 -0.2069
5.00 —94.3584 0.0162 1.0054 —0.9497 0.0557 —0.2538

tBased on 50000 integrand evaluations.

TABLE 3
Log-likelihood approximations compared with Monte Carlo simulations for a (20 x 20)-table for
various values of o, = ap with p = 1

o Monte Carlo resultst € Estimated error in approximation
Log-likelinood Standard error Laplace Laplace + ¢ Laplace + log(1 + €g)

0.50 —244.2616 0.0016 0.2228 —0.2159 0.0069 —-0.0148
0.75 —228.9482 0.0031 0.4056 —0.3896 0.0160 —0.0491
1.00 -221.7176 0.0055 0.5576 —0.5416 0.0160 —0.0984
1.50 —217.6652 0.0085 0.7960 —0.7546 0.0414 -0.1690
2.00 —218.9059 0.0126 0.9746 —0.9080 0.0667 -0.2276
3.00 —225.3109 0.0183 1.2329 -1.1210 0.1119 -0.3177
5.00 —238.6189 0.0371 1.6165 —1.3664 0.2502 —0.4045

tBased on 50000 integrand evaluations.
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Similar calculations are given in Table 3 for a 20 X 20 binary array in which the
marginal totals are moderately dispersed as shown below:

yi. = (11, 17,16, 13, 10, 17, 6, 12, 10, 10, 15, 5, 16, 10, 6, 11, 12, 16, 12,
10),

y;= (17, 4,18,11, 10, 15,13, 4,16,18, 9, 7, 9,20, 11, 12, 4, 6, 20,
1).

A consequence of this excess dispersion is that the estimate of o is around 1.5. The
overall picture is that ¢, is not negligible. Even by the standards of approximation
required for applied statistics, it varies substantially over the region of interest.
Although it overcorrects, the exponentiated correction is clearly superior to the
(1 + ¢y)-correction. The accuracy of both approximations decreases for very large
values of o and for tables with highly dispersed marginal totals. For the values
considered here, the error in the modified Laplace approximation is comparable
with the Monte Carlo standard error based on 2000 integrand evaluations.

Even though the dimension of the integrals in Table 3 is twice the dimension in
Table 2, the errors in the modified approximation are larger for the higher
dimensional integrals, in apparent contradiction of the claim made in Section 4. The
reason for this is that the error in the new approximation depends on the variability
of the observed marginal totals, {y;., y.;}. The marginal totals for the integrals in
Table 3 are considerably more dispersed than those in Table 2. To check on the
asymptotics, we generated a 25 x 25 binary array with o, = 0, = 0.5 and evaluated
integral (7) for o, = 0, = 1 on a nested sequence of square subtables with sizes
ranging from r = 3 to r = 25. The variability of the marginal frequencies is thereby
kept constant, at least in a probabilistic sense. The error in the approximate log-
likelihood based on the modified Laplace formula (9) increased to a maximum of
0.0267 + 0.0012 at r = 10, thereafter decreasing to 0.0182 + 0.0019 at r = 25. The
value of ¢, increased with » from 0 to 0.411 at r = 10 and 0.695 at r = 25.

Monte Carlo simulations were carried out by generating multivariate normal
random variables with mean (&, §) and inverse covariance matrix equal to g”,
the second derivative of the exponent in equation (3). This procedure ensures that
the ratio of the integrand to the normal density is nearly constant in the centre.
The integral is estimated by the average value of this ratio, and variability is thus
kept to a minimum. Effectively, the Monte Carlo procedure mimics by simulation
the steps that are approximated by expansion and integration in the modified
Laplace formula. Monte Carlo simulation has the advantage over asymptotic meth-
ods that greater accuracy can be achieved by increasing the number of simulations.
However, despite the precautions taken here to improve the efficiency of the
simulation, roughly 100 modified Laplace approximations could be computed in the
time devoted to one Monte Carlo simulation with 4000 integrand evaluations.

6. POSTERIOR EXPECTATIONS FOR EXPONENTIAL MODELS

Let /(B; y) be the log-likelihood for the p-dimensional parameter 3 based on data
y. Our asymptotic development is such that y has n independent components, not
necessarily identically distributed, and that p = o(n) but not necessarily small. For
definiteness, assume that the log-likelihood has the exponential family form

[(B; y) = ¥ — K(0) = yXB — K(XB),
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where the observation-specific canonical parameters satisfy the regression model
0 = XB for some model matrix X of order n x p.
In a notation closer to that of Section 3, let g be the function

g(B) = —yXB + K(XB) + e(B)

in which e = O(p) and all its partial derivatives are O(1) as p = o. For statistical
applications exp{—e(B)} is the product of the prior and that function of the
parameter whose posterior expectation is required. For a slightly different statistical
interpretation of a similar integral, see Wong and Li (1992). The partial derivatives
of g take the form

&rs = ZA,irXisKZi + €rss
i
grst = E‘YirXis)(itKi!i + €rst
i

and so on, where «,; is the rth cumulant of Y;. Under typical limiting conditions
on the matrix X, the components of these arrays are O(n), but it should be borne
in mind that the arrays themselves are of order p?, p3, ... in terms of the number
of components. For example, if the rows of X are formally independent and
identically distributed random variables with zero mean, covariances A,, higher
order cumulants A, ... then

&s = oA {1 + O(n~h)}
grst = nK3Arst{l + O(n_l)}: (10)
Erstu = K4 (Aot + A A, [31) {1 + O(n™1)}

under the simplifying assumption that the higher order cumulants of Y are
approximately constant. Whatever the mechanism generating the matrix X, we
assume that the derivatives of g behave according to conditions (10). Without loss
of generality we may take g, = né,: this can be achieved by linear transformation
of the columns of X.

The scalar g,,,g” g™ is easily seen to be of order O(p?/n) since it involves
summation over p? terms each of order O(n~!). By the same argument, the
scalars g g,«8"8”g" and g;g.,8"g¥g" are of order O(p3/n). In general, a
bipartition (P, Q) in expansion (4) has asymptotic order O(p™n”~"™). Since
3v» < 2m, those bipartitions of type (3”, 2) have asympotic order O(p™n~™"3).
Thus if p = o(n'?) the standard Laplace formula has relative error o(1): the
correction term in expression (9) is O(p3/n) and does generally improve the
approximation. If n~*p /0 neither the standard Laplace formula nor the modi-
fied version (9) is asymptotically valid under the limiting conditions (10).

A posterior expectation is the ratio of two rather similar integrals. Under stan-
dard conditions the errors in the two Laplace approximations tend to cancel, so that
the error in the ratio is typically smaller than the errors in the individual integrals
(Tierney and Kadane, 1986). There is reason to expect the same phenomenon to
occur here, but we have not investigated the extent of such cancellation under non-
standard limits. It is conceivable that the relative error in the ratio might in some
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circumstances be o(1) even when the relative error in the individual integrals is
o(1).
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