Understanding the Metropolis—Hastings Algorithm

Siddhartha Cus and Edward GREENBERG

We provide a detailed, introductory exposition of the
Mectropolis—Hastings algorithm, a powerful Markov chain
method to simulate multivariate distributions. A sim-
ple, intuitive derivation of this method is given along
with guidance on implementation. Also discussed are
two applications of the algorithrm, one for implementing
acceptance-rejection sampling when a blanketing func-
tion is not available and the other for implementing the al-
gorithm with block-at-a-time scans. In the latter situation,
many different algorithms, including the Gibbs sampler,
are shown Lo be special cases of the Metropolis—Hastings
algorithm. The methods are illustrated with examples.
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1. INTRODUCTION

In recent years statisticians have been increasingly
drawn to Markov chain Monte Carlo (MCMC) methods
to simulate complex, nonstandard multivariate distribu-
tions. The Gibbs sampling algorithm is one of the best
known of thesc methods, and its impact on Bayesian statis-
tics, following the work of Tanner and Wong (1987) and
GelMand and Smith (1990), has been immense as detailed
in many articles, for example, Smith and Roberts (1993),
Tanner (1993}, and Chib and Greenberg (1993). A con-
siderable amount of attention is now being devoted to the
Metropolis—Hastings (M-H) algorithm, which was devel-
oped by Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953) and subsequently generalized by Hastings
(1970). This algorithm is extremely versatile and gives
rise to the Gibhs sampler as a special case, as pointed out
by Gelman (1992). The M-H algorithm has been used
extensively in physics, yet despite the paper by Hastings,
it was little known to statisticians until recently. Papers
by Miiller (1993) and Tiemey (1994) were instrumental
in exposing the value of this algorithm and stimulating
interest among statisticians in its use.

Because of the usefulness of the M-H alogrithm, appli-
cations are appearing steadily in the current litcrature {see
Miiller (1993), Chib and Greenberg (1994}, and Phillips
and Smith (1994) for recent examples). Despite its obvi-
ous importance, howcver, no simple or intuitive exposi-
tion of the M—H algorithm, comparable to that of Casella
and George (1992) for the Gibbs sampler, is available.
This article is an attempt to fill this gap. We provide a
tutorial introduction to the algorithm, deriving the algo-
rithm from first principles. The article is self-contained
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since it includes the relevant Markov chain theory, is-
sues related to implementation and tuning, and empir-
ical illustrations. We also discuss applications of the
method, one for implementing acceptance—rejection sam-
pling when a blanketing function is not available, devel-
oped hy Tierney (1994). and the other for applying the
algorithm one “block at a time”” For 1he latler situation,
we present an important principle that we call the prod-
uct of kemels principle and explain how it is the basis of
many other algorithms, including the Gibbs sampler. In
each casc we emphasize the intuition for the method and
present proofs of the main results. For mathematical con-
venience, our entire discussion is phrascd in the context
of simulating an absolutely continuous target density, but
the same ideas apply to discrete and mixed continuous-
discrete distmibutions.

The rtest of the article is organized as follows. In
Section 2 we hriefly review the acceptance-rejection
{A-R) method of stmulation. Although net an MCMC
method, it uses some concepts that also appear in the
Metropolis—Hastings algorithm and is a useful introduc-
tion to the topic. Section 3 introduces the relevant Markov
chain theory for continuous state spaces, along with the
general philosophy behind MCMC micthods. In Section 4
we derive the M—H algorithm by exploiting the notion of
reversibility defined in Section 3, and discuss some impor-
1ant features of the algorithm and the mild regularity con-
ditions that justify its use. Section 5 contains issues related
to the choice of the candidate-gencrating density and guid-
ance on implementation. Scction 6 discusses how the algo-
rithm can be used in an acceptance-rejection scheme when
a dominating density is not available. This scction also ex-
plains how the algorithm can be applied when the variables
to be stmulated are divided into blocks. The final section
contains two numerncal examples, the first 1nvolving the
simulation of a bivariate normal distribution, and the sec-
ond the Bayesian analysis of an autoregressive model.

2. ACCEPTANCE-REJECTION SAMPLING

In contrast to the MCMC methods described be-
low, classical simulation techniques gencrate non-Markov
(usually independent) samples, that is, the successive ob-
servations are statistically independent unless correlation
is artificially introduced as a variance reduction device.
An important method in this class is the A-R method.
which can be described as follows:

The objective is to generate samples from the abso-
lutely continuous rarget density n(x) = f(x)/K, where
x € R4, f(x) is the unnormalized density, and K is the
{possibly unknown) normalizing constant. Let A(x) be a
density that can be simulated by some known method, and
suppose there is a known constant ¢ such that f(x) < ch{x)
for all x. Then, to obtain a random variate from (-},

e (*) Generate a candidate Z from #h(-) and a valuc u
from U(0, 1}, the uniform distribution on (0, 1).

The American Siatistician, November 1995, Vol 49, No. 4~ 327



o Ifu < f(Z)/ch(Z)
—return Z = y.
+ Else
—goto ().

It is easily shown that the accepted valuc yis a random
varjate from (). For this method to be efficient, ¢ must
be carcfully selected. Because the expected number of
iterations of steps 1 and 2 to obtain a draw is given by e

the rejection method is optimized by setting
¢ =sup @
x h(x)
Even this choice, however, may result in an undesirably
large number of rejections.

The notion of a generating density also appears in the
M-H algorithm, but before considering the differences
and similarities, we turn to the rationale behind MCMC
methods.

3. MARKOV CHAIN MONTE CARLO
SIMULATION

The usual approach to Markov chain theory on a contin-
uous state space is to start with a transition kernel P(x,A)
forx € R4 and A € B, where B is the Borel o-field on .
The transition kernel is a conditional distribution function
that represents the probability of moving fromx to a point
in the set A. By virtue of its being a distribution function,
P(x,R%) = 1, where it is permitted that the chain can make
a transition from the point x to x, that is, P(x, {x}) is not
ncecessarily zero.

A major concern of Markov chan theor [see
Nummelin (1984), Billingsley (1986), Bhattacharya and
Waymire (1990), and, cspecially, Meyn and Tweedie
(1993)] is to determine conditions under which there exists
an invariant distribution 7* and conditions under which it-
erations of the transition kernel converge to the invariant
distribution. The invariant distribution satisfies

7= [ Pyt ds (1)

where 7 is the density with respect to Lebesgue measure
of ©* (thus 7 (dy) = m(¥)dy). The nth iterate is given by
POY(x, A) = fpu P D(x,dy)P(y,A), where POx, dy) =
P(x, dy}. Under conditions discussed in the following, it
can be shown that the nth iterate converges to the invariant
distribution as n — oc.

MCMC methods turn the theory around: the invariant
density is known (perhaps up to a constant multiple)—it is
7(-), the target density from which samples are desired—
but the transition kernel is unknown. To generate samples
from 7(-), the methods find and utilize a transition kernel
Pix, dy) whose nth iterate converges L0 (") for large n.
The process is started at an arbitrary x and iterated a large
number of times. After this large number, the distribu-
tion of the observations generated from the simulation is
approximately the target distribution.

The problem then is to find an appropriate P(x, dy).
What might appear to be a search for the proverbial necdle
in a haystack is somewhat simplified by the following con-
siderations. Suppose that the transition kernel, for some
function p(x, y), is expressed as

P(x,dy) = p(x,y) dy + r(x)b:(dy), (2)
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where p{x, x} = 0,8 (dv) = Tifx & dy and (otherwise, and
r(x) = 1 fgu plx, vydyas the probability that the chain re-
tnains at x. From the possibility that r(x) # 0. it should be
clear that the integral of p(x, ¥} over y is not nccessanly 1.

Now, if the function p(x, ¥) in (2) satisfies the reversibil-
ity condition (also called “detailed balance,” “microscopic
reversibility,” and “time reversibility™)

m{xplx, ¥y} = w(y)p(y, x), (3)

then (-} is the invariant density of P(x, -) (Tierncy 1994).
To verify this we cvaluate the right-hand side of (1):

'/'P(x,A)Tr[x) dv= / / p(x,\')dy] w{x) dx
S LA

+ / (AT (a) dx

= / / plx, y)m(x} dr] oy
a L.

+ / - FXw(x) dx

JA

= / ] p()»-,xm-')ded.v
JA L

+/r{x)ﬂ(.t}d.r

A

- f (4 () dy + f r(m(x) d
A A

= /‘:T()') ddy. 4)
Ja

Intuitively, the lefi-hand side of the reversibility condition
is the unconditional probability of moving from x to y,
where x is generated from #{-), and the right-hand side 15
the unconditional probability of moving from y to x, where
y is also generated from 7 (-). The reversibility condition
says that the two sides are equal, und the above result
shows that 7*(-) is the invariant distribution for P(:, -).
This result gives us a sufficient condition (reversibility)
that must be satisfied by p(x,y). We now show how the
Metropolis-Hastings algorithm finds a p(x, ¥} with this

property.

4. THE METROPOLIS-HASTINGS
ALGORITHM

As in the A-R method, suppose we have a density
that can generate candidates. Since we are dealing with
Markov chains, however, we permit thal density to de-
pend on the current state of the process. Accordingly,
the candidate-generating density is denoted g(x, y), where
[ g(x,y)dy = 1. This density is to be interpreted as saying
that when a process is at the point x, the density gencrates
a value y from g(x, y). If it happens that ¢(x, y) itself sat-
isfies the reversibility condition (3) for all x, y, our search
is over. But most likely it will not. We might find, for
example, that for some x, y,

m{x)g(x, y) > m{yg(y, x). (5)

In this case, spcaking somewhat Jooscly, the process
moves from x (0 v 100 often and from y to x too rarely.
A convenient way to correct this condition is to reduce the
number of moves (tom x to y by introducing a probability



oe(x, vy << 1 that the move is made. We refer to alx, v) as
the probahility of move. If the movc is not made, the pro-
cess again returns x as a value {rom the target distribution.
{Notc the contrast with the A-R method tn which, when
a y is rejected, a new pair (y, «) is drawn indcpendently
of the previous value of y.) Thus transitions from x to y

(y # x) are made according to

pua(x, ¥) = glx, y)odx, ¥, X#£Y,

where a(x, ¥) is yet to be determined,

Consider again inequality (5). It tells us that the move-
ment from y 1o x is not made often cnough. We should
therefore define a{y,x) to be as large as possible, and
since il is a probability, its upper limit is 1. But now the
probability of move a(x, y) is determined by requiring that
punlx, ¥) satisfies the reversibility condition, becausc then

7(X)g(x, Y)olx,y) = 7(¥)g(y, )aly, x)
= m(¥)g(y, x)- ()]

We now sec that oy, y) = w(¥g(y,x)/m(x)g(x, y). Of
course, if the inequality in (5) is reversed, we set a(x, y) =
1 and derive o v, x) as above. The probabilitics o(x, y) and
oy, x) are thus introduced to ensure that the two sides of
(5) are in balance or, in other words, that pyn(x, ¥) satis-
fies reversibility. Thus we have shown that in order for
punlx, ¥) to be reversible, the probability of move must be
set to

olx, y) = min[m"—”, 1] . ifroglny) > 0
m{x)g(x, y) _
=1, otherwise.
To complete the definition of the transition kernel for
the Metropolis—Hastings chain, we must consider the pos-
sibly nonzero probability that the process remains at x. As

defined above, this probability is
rx)=1- A L qx,y)alx, y)dy.

Consequently, the transition kernel of thec M—H chain, de-
noted by Puy(x, dy), is given by

Pun(x, dy) = g(x, y)alx, y) dy
+ [1 - fj{ ) g(x, Y)olx, y}dy | 6.(dy),

a particular case of (2). Because pmu(x, ¥} is reversible by
construction, it follows from the argument in (4) that the
M-H kernel has w(x) as its invariant density.

Several remarks about this algorithm are in order. First,
the M—H algorithm is specified by its candidate-generating
density g(x, y) whose selection we take up in the next sec-
tion. Second, if a candidate value is rejected, the current
value is taken as the next item in the sequence. Third,
the calculation of a(x, y) does not require knowledge of
the normalizing constant of (-} because it appears both in
the numerator and denominator. Fourth, if the candidate-
generating density is symmetric, an important special case,
g(x,¥) = q(y,x) and the probability of move reduces to
7(y)/7(x); hence, if 7(y) = n(x), the chain moves to y;
otherwise, it moves with probability given by m(y)/7(x).
In other words, if the jump goes “uphill,” it is always ac-
cepted; if “downhill,” it is accepted with a nonzero proba-
bility. [See Fig. 1 where, from the current point x, a move
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Figure 1. Calculating Probabiiities of Move With Symmetric
Candidate-Generating Function (see lext).

to candidate y, is made with certainly, while a move to
candidate y, is made with probability m(y.}/7{(x}.] This
is the algorithm proposed by Metropolis et al. (1933). In-
terestingly, it also forms the basis for several optimization
algorithms, notably the method of simulited annealing.

We now summarize the M—H algorithm in algorithmic
form initialized with the (arbitrary) value x®:

» Repeatforj=1,2,..., N
o Generate y from g(x, -} and u irom U0, 1}.
o If u < oz y)
—set xH# =y,
e LElse
et XU = 40D,
e Return the values {xV, x@, .., XV}

As in any MCMC method, the draws are regarded as a
sample from the target density w(x) only after the chain has
passed the transicnt stage and the effect of the fixed starting
value has become so small that it can be ignored. In fact,
this convergence to the invariant distribution occurs under
mild regularity conditions. The regularity conditions re-
quired are imreducibility and aperiodicity [sce Smith and
Roberts (1993)]. What these mean is that, if x and y are in
the domain of 7(-), it must be possible to move from xto dy
in a finite number of iterations with nonzcro probabiiity,
and the number of moves required 1o move from x to dyis
not required to be a multiple of some integer. These con-
ditions are usually satisfied if g(x, ¥} has a positive density
on the same support as that of w(+). Ttis usually also satis-
fied by a g(x,y) with a restricted support (e.g., a uniform
distribution around the current point with finite width).

These conditions, however, do not determine the rate of
convergence [see Roberts and Tweedic {1994)], so there
is an empirical question of how large an initial sample
of size ng (say) should be discarded and how long the
sampling should be run. One possibility, due to Gelman
and Rubin (1992), is to start multiple chains from dis-
persed initial values and compare the within and between
variation of the sampled draws. A simple heuristic that
works in some situations is to make sy and N increasing
functions of the first-order serial correlation in the output.
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This entirc area, however, is quite unsettled and is being
actively researched. For more detatls the rcader should
consult Gelman and Rubin (1992) and the accompanying
discussion.

5. IMPLEMENTATION ISSUES:
CHOICE OF g(x,y)

To implement the M-H algorithm, it is necessary that a
suitable candidate-generating density be specified. Typi-
- cally, this density is selected from a family of distributions
that requires the specification of such tuning parameters
as the location and scale. Considcrable recent work is be-
ing devoted to the question of how these choices should
be made and, although the theory is far from complete,
cnough is known to conduct most practical simulation
studies.

One family of candidate-gencrating densities, that ap-
pears in the work of Metropolis et al. (1953), is given
by g(x,y) = qi{y — x), where q,(-) is & multivariate den-
sity [see Miiller (1993)]. The candidate y is thus drawn
according to the process y = x + z, where z is called the
increment random variable and follows the distribution g,
Because the candidate is equal to the current value plus
noise, this case is called a random walk chain. Possible
choices for g include the muliivariate normal density and
the multivariate- with the parameters specified according
to the principles described below. Note that when gy is
symmetric, the usual circumstance, q1{(z) = q1(—2); the
probability of move then reduces to

alx,y)= min{z(—ﬂ, ]}.
7(x)
Asmentioned earlicr, the same reduction occurs if glx, y) =
q(y, x).

A second family of candidate-gencrating densities is
given by the form g(x,y) = g2(y) [see Hastings (1970}
In contrast to the random walk chain, the candidates are
drawn independently of the current location x—an inde-
pendence chain in Tiemey's (1994) terminology. As in
the first case, we can let g; be a multivariate normal or
multivariate-¢ density, but now it is necessary to specify
the location of the generating density as well as the spread.

A third choice, which seems to be an efficient solu-
tion when available, is to exploit the known form of 7(-)
to specify a candidate-generating density [sce Chib and
Greenberg (1994)). For example, if w(f} can be written as
(1) oc P(h(r), where h(f) is a density that can be sam-
pled and (¢} is uniformly bounded, then set g{x, ¥} = A(¥)
(as in the independence chain) to draw candidates. In this
case, the probability of move requires only the computa-
tion of the 1 function (not & or k) and is given by

afx,y) = min{ :Zg)), 1 } .

A fourth method of drawing candidates is touse the A-R
method with a pseudodominating density. This method
was developed in Tierney (1994), and because itis of inde-
pendent interest as an M-H acceptance—rejection method,
we explain it in Section 6.1.

A fifth family, also suggested by Tierney (1994), 15
represented by a veclor autorcgressive process of or-
der 1. These autoregressive chains are produced by letting
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y=a+B{x -a)+z, wherey 1% a vector and B 1s a matrix
(both conformable with x) and z has ¢ as its density. Then,
g(x,yy = gly —a - Blx — a}). Setting B = —1 produces
chains that are reflected about the point @ and is a sim-
ple way to induce negative correlation hetween successive
clements of the chain.

We now return to the critical question of choosing the
spread, or scale, of the candidate-generating density. This
is an important matter that has implications for the et-
ficiency of the algorithm. The spread of the candidate-
generating density affects the behavior of the chain in at
least two dimensions: one is the “acceptance rate” (the
percentage of times a move 10 4 new point is made), and
the other is the region of the sample space that is covered
by the chain. To sce why, consider the situation.in which
the chain has converged and the density is being sampled
around the mode. Then, if the spread is extremely large,
some of the generated candidates will be far from the cur-
rent value, and will therefore have a low probability of
being accepted (because the ordinate of the candidate is
small relative to the ordinale near the mode). Reducing
the spread will correct this problem. but if the spread is
chosen too smatl, the chain will take longer to traverse the
support of the density, and low prohability regions will be
undersampled. Both of these situations are likely to be
reflected in high autocorrelations across sample values.

Recent work by Roberts, Gelman, and Gilks (1994) dis-
cussed this issuc in the context of ¢, (the random walk pro-
posal density). They show that if the target and proposal
densities are normal, then the scale of the latter should be
tuned so that the acceptance rate is approximately .45 in
one-dimensional problems and approximately .23 as the
number of dimensions approaches infinity, with the op-
timal acceptance rate being around .25 n as Jow as SEX
dimensions. This is similar lo the recommendation of
Miiller (1993), who argues that the acceptance rate should
be around .5 for the random walk chain.

The choice of spread of the proposal density in the
case of g, (the independence proposal density) has also
come under recent scrutiny. Chib and Geweke [work in
progress] show that itis important to ensure that the tails of
the proposal density dominate those of the target density,
which is similar to a requirement on the importance sam-
pling function in Monte Carlo integration with importance
sampling [see Geweke (1989)]. It is important to mention
the caveat that a chain with the “optimal” acceptance rate
may still display high autocorrclations, In such circum-
stances it is usually necessary to try a different family of
candidate-generating densities.

6. APPLICATIONS OF THE M-H ALGORITHM

We hope that the reader is now convinced that the
M-H algorithm is a useful and straightforward device with
which to sample an arbitrary multivariate distribution. In
this section we explain two uses of the algorithm, one
involving the A-R method, and the other for implement-
ing the algorithm with block-at-a-time scans. Tn the latter
situation many different algorithms, including the Gibbs
sampler, are shown to arisc as special cases of the M—H
algorithm.



6.1 An M-H Acceptance-Rejection Algorithm

Recall that in the A—R method described earlicr, a con-
stant ¢ and a density A(x} are necded such that ch{x}
dominates or blankets the (possibly} unnormalized target
density f(x). Finding a c that does the trick may be dif-
ficult in some applications; moreover, if f(x) depends on
parameters that are revised during an iterative cycle, find-
ing a new value of ¢ for each new sct of the paramecters
may significantly slow the computations. For these rea-
sons it is worthwhile to have an A-R method that does not
require a blankcting function. Tiemey's (1994) remark-
able algorithm does this by using an A-R stcp o generale
candidates for an M—H algorithm. This algorithm, which
seems complicated at first, can be derived rather easily
using the intuition we have developed for the M-H algo-
rithm.

To fix the context again: we are interested in sampling
the target density w(x), n{x) = f{x) /K, where K may be
unknown, and a pdf i{-) is available for sampling. Suppose
¢ > 0 is a known constant, but that f(x) is not necessarly
less than ch(x) for all x; that is, ci(x) does not necessarily
dominate f(x). It is convenient to define the set C where
domination occurs:

C = {x: f(x) < ch(x)}.

In this algorithm, given X = x, the next value x™*" is
obtained as follows: First, a candidate value z is obtained,
independent of the current value x, by applying the A-R
algorithm with ch(-) as the “dominating” density. The A—
R step is implemented through steps | and 2 in Section 2.

What is the density of the rv y that comes through this
step? Following Rubinstein (1981, pp. 45-46), we have

g(yy=P(y | U < f(Z)/ch(Z))
_ PWU < f@)HZ) | Z=) x h(y)
Pr(U < f(2)/ch(Z)) '
But because P(U < f(Z)/ch(Z) | Z = y) = min{f(y}/
ch(y), 1}, it follows that

_ min{f(y)/ch(y), 1} x h(3)
d H

g(¥)

where d = P(U < f(Z)/ch(Z)). By simplifying the nu-
merator of this density we obtain a more useful represen-
tation for the candidate-generating density:

g(y) =f(yY/ed, HyeC
= h(y)/d, ify ¢ C. N

(Note that there is no need to write g(x,y) for this density
because the candidate y is drawn independently of x.)

Because ch(y) does not dominate the target density in
C* (by definition), it follows that the target density is not
adequately sampled there. See Figure 2 for an illustration
of a nondominating density and the C region. This can be
corrected with an M-H step applied to the y values that
come through the A-R step. Since x and y can cach be in
C or in C°, there are four possible cases: (2)x € C,y € C;
(b)and (©)x ¢C,ye Corx€ C,y¢ Ciand(d) x ¢ C,
y ¢C.

The objective now is to find the M—H moving proba-
bility c(x, ¥} such that g(y)odx, y) satisfies reversibility.

T

| ¢ & |

Figure 2. Acceplance-Refection Sampling With Pseudodominat-
ing Density chix).

To proceed, we derive a(x, y) in each of the four pussible
cases given above. As in (2}, we consider m(xg( v) and
m(y)g(x) [or, equivalently, f{x)g(y) and f(y)g(a}] 10 see
how the probability of moves should be defined to ensure
reversibility. That is, we need 1o find afx, y) and ol y, x)
such that

Fg(Wadx, y) = f(vglx)ay, x)
in each of the cases (2)—(d}, where g( v} is chosen from (7).

Case(a): x € C, y € C. Inthiscuseitiseasy (o verify

that f(x)g(y) = fx)f{y)/cd s equal to f(y)q(x). Accord-
ingly, setting a{x, ¥) = a(y,x} =1 sutisfies reversitlity.

Cases (b) and (c}: x ¢ C,y € Corx & C,y ¢ C.
In the first case f(x) > ch(x), or h{x) < J{x)/e, which
implics {on multiplying both sides by f(y) fd} that

S(yh(x) < SO (x)

d ed
or, from (7), f(¥)g(x} < f(x)g(y). We now sce that there
are relatively too few transitions from y to x and too many
in the opposite direction. By setting c(y,x} = 1 the first
problem is alleviated, and then a(x, ¥} is determined from

Ffhx) ()

7 - ox, y ]
which gives afx, y) = ch(x)/f(x). fx € T,y & C, reverse
the roles of x and y above to find that ax,y) = 1 and

oy, x) = ch()/f(y).

Case (d): x ¢ C,y ¢ C. In this case we have
fg(y) = fh(y)/d and f(¥)g(x} = f(y)a(x)/d, and
there are two possibilities. There are too few transitions
from y to x to satisfy reversibility if

FOoh(y)

g > f(y)g(x).

In that case set oy, x) = 1 and determine a{x, y) from

flhr(y) _ f(ythix)
Of(x: }') d - -—([—— [
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which tmplics

S }
FORY )
If there are too few transitions from x to y, just interchange
x and y in the above discussion.

We thus see that in two of the cases, those wherex € C,
the probability of move to yis I, regardless of where y lies.
To sumimarize, we have derived the following probability

of move to the candidates y that are produced from the
- A-R step:

o Let C1 = {f(x) < ch(X)}; and C2 = {f(y) < ch(y)}.
» Generate « from U(0, I} and
—if Cl=1,thenletax=1;
—if Cl1 =0 and C2 = 1, then let a = (ch(x)/f(x));
——if C1 = 0 and C2 = 0, thenlet & = min{(f(y)a(x)/
FR(N, I}
e lfu<a
—return v.
e Else
—return x.

a{x,y) = min {

6.2 Block-at-a-Time Algorithms

Another interesting situation arises when the M-H al-
gorithm is applied in turn to subblocks of the vector x,
rather than simultaneously to all elements of the vector.
This “block-at-a-time” or “variable-at-a-time” possibility,
which is discussed in Hastings (1970, sec. 2.4), often sim-
plifies the search for a suitable candidate-generating den-
sity and gives rise to several interesting hybrid algorithms
obtained by combining M—H updates.

The central idea behind these algorithms may be il-
lustrated with two blocks, x = (x;,x;), where x; € R,
Suppose that there exists a conditional transition kernel
Pi(x1,dy, | x2) with the property that, for a fixed value
of xz, mpp(- | x2) 1s 1ts invariant distribution (with density
m1a(- | x2)), that is,

mldyr | x2) = /Pl(xhd}’i [ )00 | x2)dx. (8)

Also, suppose the existence of a conditional transition ker-
nel Py(xs, dya | x1) with the property that, for a given x;,
EMe | x1) is its invariant distribution, analogous to (8).
For example, Py could be the transition kernel generated
by a Metropolis—Hastings chain applied to the block x;
with x, fixed for all iterations. Now, somewhat surpris-
ingly, it turns out that the product of the transition kernels
has #(x;,x;) as its invariant density. The practical sig-
nificance of this principle (which we call the product of
kernels principle) is enormous because it allows us to take
draws in succession from each of the kernels, instead of
having to run each of the kernels to convergence for every
value of the conditioning variable. In addition, as sug-
gested above, this principle is extremely useful because it
is usually far easier to find several conditional kernels that
converge to their respective conditional densities than to
find one kernel that converges to the joint.

To establish the product of kernels principle it is nec-
essary to specify the nature of the “scan” through the
elements of x (Hastings mentions several possibilities).
Suppose the transition kernel Py(-, - | x;) producesy; given
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x, and xz, and the transition kernel Py(-,- | yi) generates
y, given x; and yy. Then the kernel formed by multiplying
the conditional kernels has 7*(-, -} as its tnvariant distri-
bution:

_[/ P(x,dy) | )Po(xp, dyy | yi)m(xy, x2) dxy dxs

. f Pa(xa, dvz | 1) [ / Purnydys | x2)mp(x ixz)dxl]

* w3 (x2) dxy
= /Pz(xz,dh | yOmija(dys | xa)ma(xy) dxs

*(d
= _[Pz(xz,d)’z |J’l)m“(xz7|rz}£;)27)rl( "

= 7y {dyr) /Pl(xladYZ | yidmap(xz | y1) dxy

= m{dy)mg(dyz | y1)
= "T*(dyhdyz)v

where the third line follows from (8), the fourth from Bayes
theorem, the sixth from assumed invariance of P;, and the
last from the law of total probability.

With this result in hand, several important special cases
of the M-H algorithm can be mentioned. The first special
case is the so-calted “Gibbs sampler.” This algorithm is
obtained by letting the transition kernel P {x;,dy, | x;) =
Tipldy | x2), and Py, dyz | y1) = 73, (dy, | 1), that
is, the samples are generated directly from the “full con-
ditional distributions.”” Note that this method requires that
it be possible to generate independent samples from each
of the full conditional densities. The calculations above
demonstrate that this algorithm is a special case of the
M-H algorithm. Alternatively, it may be checked that the
M-H acceptance probability a(x,y) = 1 for all x, y.

Another special case of the M—H algorithm is the so-
called “M-H within Gibbs” algonthm (but see our com-
ments on terminology below), in which an intractable full
conditional density {say my2(y1 | x2)] is sampled with the
general form of the M—H algorithm described in Section 4
and the others are sampled directly from their full condi-
tional distributions. Many other algorithms can be sim-
itarly developed that arise from multiplying conditional
kemels.

We conciude this section with a brief digression on ter-
minology. It should be clear from the discussion in this
subsection that the M-H algorithm can take many different
forms, one of which is the Gibbs sampler. Because much
of the literature has overlooked Hastings’s discussion of
M-H algorithms that scan one hlock at a time, some un-
fortunate usage (“M--H within Gibbs,” for example) has
arisen that should be abandoned. In addition, it may be de-
sirable to define the Gibbs sampler rather narrowly, as we
have done above, as the case in which all full conditional
kemels are sampled by independent algorithms in a fixed
order. Although a special case of the M—H algorithm, it is
an extremely important special case.

wa(xo) dxy

7. EXAMPLES

We next present two examples of the use of the M-H
algorithm. In the first we simulate the bivariate normal
to illustrate the effects of various choices of g(x,y); the



second example illustrales the value of setting up blocks
of variables in the Bayesian posterior analysis of a second-
order autoregressive lime series model.

7.1 Simulating a Bivariate Normal

To illustrate the M-H algorithm we consider the simu-
lation of the bivariate normal distribution Nz (u, ¥3), where
4 = (1,2 is the mean vector and ¥ = (g;):2 x 2 is the
covariance matrix given by

$= (; ;”)

Because of the high correlation the contours of this dis-
tribution are “cigar-shaped,” that is, thin and positively
inclined. Although this distribution can be simulated di-
rectly in the Choleski approach by letting v = p + P'u,
where & ~ Ny(0,1) and P satisfies PP = %, this
well-known problem is useful for illustrating the M-H
algorithm.

From the expression for the mullivariate normal den-
sity, the probability of move (for a symmetric candidate-
generating density) is

exp 30— W'E 'y - p)]
exp [~ 20— pyS- -] |7
xy€e R (9

afx,y) = min{

We use the following candidate-generating densities, for
which the parameters arc adjusted by experimentation to
achieve an acceptance rate of 40% to 50%:

1. Random walk generating density (y = x + z}, where
the increment random variable z is distributed as bivariate
uniform, that is, the ith component of z is untform on the
interval (—§;,4,). Note that §; controls the spread along
the first coordinate axis and &, the spread along the second.
To avoid excessive moves we let &, = .75and 6, = 1.

2. Random walk generating density (¥ = x + z} with
z distributed as independent normal N,(0, D), where D =
diagonal(.6, .4).

3. Pseudorejection sampling generating density with
“dominating function” ch(x) = c(2m)~"{D]|~"/? exp{—3
(x — ) D{x — )], where D = diagonal(2,2) and ¢ = .9.
The trial draws, which are passed through the A-R step,
are thus obtained from a bivariate, independent normal
distribution.

4. The autoregressive generating density y = & — (x —
) + z, where z is independent uniform with & = 1 = &,.
Thus values of y are obtained by reflecting the current
point around p and then adding the increment.

Note that the probability of move in cases 1, 2, and 4 is
given by (9). In addition, the first two generating densities
do not make use of the known value of u, although the
values of the §; are related to X. In the third generating
density we have set the value of the constant ¢ to be smaller
than that which leads to true domination. For domination
it is necessary to Jet all diagonal entries of D be equal to
1.9 (the largest eigenvalue of L) and to set ¢ = +/|D|/|>]
[see Dagpunar (1988, p. 159)}.

Each of these four candidate-generating densities repro-
duces the shape of the bivariate normal distribution being

simulated, although overall the best result is obtained from
the fourth generating density. To illustrate the character-
istics of the output, the top panel of Figure 3 contains
the scatter plot of N = 4,000 simulated values from the
Choleski approach and the bottom panel the scatter plot
of N = 6,000 simulated values using the fourth candidate-
generating density. More observations are taken from the
M-H algorithm to make the two plots comparable. The
plots of the ouiput with the other candidate-generating
densities are similar to this and are therefore omitted. At
the suggestion of a referee, points that repeat in the M—H
chain are “jittered” to improve clarity. The figure clearly
reveals that the sampler does a striking job of visiting the
entire support of the distribution. This is confirmed by the
estimated tail probabilitics computed from the M-H out-
put for which the estimates are extremely close to the true
values. Details arc not reporicd 1o save space. '

For the third generating density we found that reduc-
tions in the elements of D led 1o an crosion in the number
of times the sampler visited the tails of the distribution.
In addition, we found that the first-order serial correlation
of the sampled values with the first and second candidate-
generating densities is of the order .9, and with the other
two it is .30 and .16, respectively. The high serial cor-
relation with the random walk gencrating densitics is not
unexpected and stems from the long memory in the can-
didate draws. Finally, by reflecting the candidates we see
that it is possible to obtain a beneficial reduction in the
serial correlation of the output with little cost.

7.2 Simulating a Bayesian Posterior

We now illnstrate the use of the M—H algorithm to sam-
ple an intractable distribution that arises in a stationary
second-order autoregressive [AR(2)] time series model.
QOur presentation is based on Chib and Greenberg (1994),
which contains a more detailed discussion and results for
the general ARMA( p, g) model.

For our illustration, we simulated 100 observations from
the modet

Y = ¢1)’:—l +¢’2)’:-2 + €, r= l! 2) LRI 100) (IO)

where ¢y = 1, ¢, = — .5, and ¢, ~ N(0,1). The values
of ¢ = (¢, ¢) lie in the region § C R* that satisfies the
stationarity restrictions

$1+¢2 < L; —dr+dr < 15 By > ~1.

Following Box and Jenkins (1976), we express the (exact
or unconditional) likelihood function for this model given
the n = 100 data values ¥, = (y1,¥2,...,¥.) as

l(¢, 0'2) = \It((#,’ 0.2) % (0’2)*("*2)/2
1 ¢ )
X exp [_202 ;(J’: - w,qﬁ)z] . (1)

where w, = (y.1,¥-2) .

U(p,0%) = (a2 V! 2exp [—2%‘21’5‘/“ Yz] (12)

is the density of Y = (y1,72),

1 1 - ¢4 —@1(1 + ¢h2)
Y ‘(—¢1(1+¢2) -2 )

The American Statistician, November 1995, Vol. 49, No. 4 333



Figure 3. Scaller Flots of Simulated Draws. Top panel: Generated by Choleski approach. Bettom panel: Generated by M-H with reflection

candidate-generating density.

and the third term in (11) is proportional to the density of
the observations (ys, - - ., ¥a) given ¥a.

If the only prior information available is that the process
is stationary, then the posterior distribution of the param-
eters is

7(d, 07 | Ya) ox U, e € S,

where I{¢ € §]is 1 if ¢ € S and 0 otherwise.

How can this posterior density be simulated? The an-
swer lies in recognizing two facts. First, the blocking
strategy is useful for this problem by taking ¢ and o’ as
blocks. Second, from the regression ANOVA decomposi-
tion, the exponential term of (11) is proportional to

exp |- 55200 — DG - B,
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where a =G 13 (wy)and G = Z;‘:_ni(v&w:). This is
the kemel of the normal density with mean ¢ and covari-
ance matrix o2G ™. These observations immediately lead
to the following full conditional densities for 0% and ¢:

1. The density of o given ¢ and Y, is inverted gamma
with parameters n/2 and Y2V~ 'Y2 + 300y — W)
2. The density of ¢ given o and ¥, is

7(® | Yay02) o U($,0%) % {fuel($ | ¢, 07G )¢ € S},
(13)

where f,or is the normal density function.

A sample of draws from 7(¢?, ¢ | ¥} can now be ob-
tained by successively sampling ¢ from m(¢ | ¥,,0%), and
given this value of ¢, simulating ¢* from w(o? | Yo, @)
The latier simulation is straightforward. For the former,



Table 1. Summaries of the Posterior Distribution for
Simutated AR(Z) Model

Posterior

Param. Mean Num. SE SD Median Lower Upper Corr

P 1044 002 .082 1.045 .882 1.203 .133
do — 608 001 .08 —610 —763 —.445 109
a2 1160 003 170 1143 877 1544 020

because it can be shown that |V ~1|"/2 is bounded for all
values of ¢ in the stationary region, we gencrate candi-
dates from the density in curly braces of (13), following
the idea described in Section 5. Then, the valuc of ¢ is
simulated as: At the jth iteration (given the current value
o2, draw a candidate ¢'7*" from a normal density with
mean ¢ and covariance 722G~ if it satisfics stationarity,
mave 1o this point with probability

) qj((f)(ﬁl)’ J?(i))
ol S5 )

and otherwise set ¢'*1 = ¢! where T(-,-} is defined in
{(12). The A-R method of Scction 2 can also be applied
to this problem by drawing candidates ¢**! from the nor-
mal density in (13) until U < T(¢V*D, o>, Many draws
of ¢ may be necessary, however, before one is accepted
because (¢, 72) can become extremely small. Thus the
direct A-R method, although available, is not a competi-
tive substitute for the M—H scheme described above.

In the sampling process we ignore the first ny = 500
draws and collect the next N = 5,000. These are used
to approximate the posterior distributions of ¢ and o’
It is worth menticning that the entire sampling process
took just 2 minutes on a 50 MHz PC. For comparison we
obtained samples from the A-—R method, which took about
4 times as long as the M-H algorithm.

The posterior distributions are summarized in Table 1,
where we report the posterior mean (the average of the
simulated values), the numerical standard error of the pos-
terior mean (computed by the batch means method), the
posterior standard deviations (the standard deviation of
the simulated values), the posterior median, the lower 2.5
and upper 97.5 percentiles of the simulated values, and
the sample first-order serial correlation in the simulated
values (which is low and not of concern). From these re-
sults it is clear that the M—H algorithm has quickly and
accurately produced a posterior distribution concentrated
on the values that generated the data.

8. CONCLUDING REMARKS

Our goal in this article is to provide a tutorial expo-
sition of the Metropolis—Hastings algorithm, a versatile,
efficient, and powerful simulation technique. It borrows
from the well-known A-R method the idea of generating
candidates that are either accepted or rejected, but then
retains the current value when rejection takes place. The
Markov chain thus generated can be shown to have the
target distribution as its limiting distribution. Simulat-
ing from the target distribution is then accomplished by

runming the chain a large nimber of fnes. We provide
a simple, intuitive justification tor the form wken by the
probability of move in the M—H algorithm by showing its
relation to reversibility. We also discuss implementation
issues and two applications, the M-H acceptance rejection
algorithm and the use of the algorithm in block-at-a-time
setting. Finally, the procedures are illustrated with two
examples.

[Reveived April 1994, Revised Janwary 1995.]
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