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Abstract

This manuscript introduces the matrix exponential as a way of specifying
spatial transformations of the data. The matrix exponential spatial specifi-
cation (MESS) simplifies the log-likelihood, leading to a closed form maxi-
mum likelihood solution. The computational advantages of this model make
it ideal for applications involving large data sets such as census and real es-
tate data. The manuscript demonstrates the utility of the techniques by
estimating a model for housing prices across 57,647 census tracts. Amaz-
ingly, the MESS autoregression can take under a second to compute, despite
the large sample size.

JEL: C29, R15

KEYWORDS: spatial statistics, spatial autoregression, nearest neigh-
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1 Introduction

Recent technology has increased the ability to analyze data, but has si-
multaneously increased the amount of data available for analysis. Spatial
data technologies such as global positioning systems (GPS), geographic in-
formation systems (GIS), and address geocoding have created an explosion
in the size of these data sets. For example, commercial vendors sell data on
millions of housing sales across the US with address information that can
be easily geocoded using GIS software to produce very large spatial data
sets. Analysis of real estate transactions for even a single county may yield
more than one hundred thousand annual observations. Not surprisingly,
such data or functions of such data (e.g., regression residuals) exhibit a high
degree of spatial dependence (e.g., Bell and Bockstael (2000) and Pace and
Gilley (1997)). Although spatial location is important when analyzing these
data, direct estimation via maximum likelihood of spatial models requires
computation of a determinant involving an nxn matrix. Brute force imple-
mentations of maximum likelihood methods become prohibitively expensive
for these large data sets.

One approach to overcoming these problems was proposed by Kelejian
and Prucha (1998,1999) who set forth a generalized-moments (GM) esti-
mation technique. Bell and Bockstael (2000) compare this GM estimation
methodology to maximum likelihood methods concluding that GM estima-
tion may represent a low-cost means of obtaining estimates that are compa-
rable to those from maximum likelihood.

However, spatial maximum likelihood may not prove as difficult as ini-
tially thought. For the particular case of nearest neighbor spatial depen-
dence Pace and Zou (2000) provide a closed-form solution that produces
maximum likelihood estimates and illustrate their technique on samples
sizes of up to 500,000 observations. As an alternative approach also leading
to closed-form maximum likelihood estimates, this paper adapts the ma-
trix exponential covariance specification introduced by Chiu, Leonard, and
Tsui (1996). Specifically, this paper investigates the use of matrix expo-
nentials for spatially transforming the dependent variable. Amazingly, com-
mon ways of specifying the spatial transformation ensure the determinant
of the matrix exponential transformation identically equals 1, eliminating
the log-determinant term from the log-likelihood. Elimination of the log-
determinant term reduces maximum likelihood estimation to minimizing a
quadratic form subject to a polynomial constraint. Further, this minimiza-
tion problem has a unique, closed-form interior solution. Thus, maximum
likelihood for this specification reduces to a particularly tractable form of
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non-linearly constrained least squares.
This approach to spatial estimation which we label the matrix exponen-

tial spatial specification (MESS) possesses several outstanding advantages.
First, the matrix exponential spatial specification can exhibit an operation
count as low as O(n), the same as OLS. Second, the usual diagnostics and
other useful tools associated with least squares easily transfer to spatial
maximum likelihood estimation. Finally, the availability of the likelihood
greatly facilitates both classical and Bayesian inference (see LeSage 1997,
2000 for Bayesian variants of spatial models). Hence, users do not need to
adopt another inferential paradigm to overcome computational difficulties
arising during analysis of problems involving large samples.

To illustrate the efficacy of these techniques, the MESS is estimated using
nationwide housing data from 57,647 census tracts. Any individual MESS
autoregression takes under a second to compute. The ensemble of finding
the neighbors from the locational coordinates, calculating 203 spatial au-
toregressions (to estimate hyperparameters), and computing the likelihood
ratio tests associated with variable deletions takes under four minutes on a
600 Mhz PC compatible machine.

Section 2 provides the theory underlying spatial estimation with matrix
exponentials, section 3 applies the MESS model to US census tract data,
and section 4 summarizes the key results.

2 Closed form estimation of spatial dependence
using matrix exponentials

This section sets forth a unique interior optimal spatial transformation of
the dependent variable. Section 2.1 presents the MESS model based on
this spatial transformation, section 2.2 discusses the matrix exponential and
its computation in a statistical context and section 2.3 provides the closed
form solution that is based on the eigenvalues of a small matrix. Section 2.4
proves that the solution is both interior and unique, while section 2.5 illus-
trates hypothesis testing for the MESS model and section 2.6 details the
construction of diagnostic statistics.

2.1 Model

Consider estimation of models where the dependent variable y undergoes a
linear transformation Sy as in (1).
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Sy = Xβ + ε (1)

The vector y contains the n observations on the dependent variable, X
represents the nxk matrix of observations on the independent variables, S
is a positive definite nxn matrix, and the n-element vector ε is distributed
N(0, σ2In). The log-likelihood for the MESS model in (1) is,

L = C + ln|S| − (n/2)ln(y′S′MSy) (2)

where C represents a scalar constant and both M = I − H and H =
X(X ′X)−1X ′ are idempotent matrices. The term |S| is the Jacobian of
the transformation from y to Sy. Without the Jacobian term, S contain-
ing all zeros would lead to a perfect, albeit pathological, fit. The Jacobian
term penalizes attempts to use singular or near singular transformations to
artificially increase the regression fit.

We explore the use of the matrix exponential as defined by (3) in mod-
eling S,

S = eαD =
∞∑
i=0

αiDi

i!
(3)

where D represents an nxn non-negative matrix with zeros on the diagonal
and α represents a scalar real parameter. While a number of ways exist to
specify D, a common specification sets Dij > 0 for observations j = 1 . . . n
sufficiently close (as measured by some metric) to observation i. By con-
struction, Dii = 0 to preclude an observation from directly predicting itself.
If Dij > 0 for the nearest neighbors of observation i, D2

ij > 0 contains neigh-
bors to these nearest neighbors for observation i. Similar relations hold for
higher powers of D which identify higher-order neighbors. Thus the matrix
exponential S, associated with matrix D, can be interpreted as assigning
rapidly declining weights for observations involving higher-order neighbor-
ing relationships. That is, observations reflecting higher-order neighbors
(neighbors of neighbors) receive less weight than lower-order neighbors.

If D is row-stochastic, S will be proportional to a row-stochastic ma-
trix, since products of row-stochastic matrices are row-stochastic (i.e., by
definition Dι = ι and therefore D(Dι) = ι, and so on, where ι denotes a
vector of ones). The same holds true for any power of S, since the powers
are simply linear combinations of the powers of D, all of which are propor-
tional to a row-stochastic matrix. Row-stochastic spatial weight matrices,
or multidimensional linear filters, have a long history of application in spa-
tial statistics (e.g., Ord (1975)). The row-stochastic weight matrix has very

3



favorable numeric as well as statistical properties. For example, the prod-
uct of a row-stochastic weight matrix D and a random variable vector v
produces a vector of spatially local averages, Dv.

Chiu, Leonard, and Tsui (1996) proposed the use of the matrix expo-
nential and discussed several of its salient properties, some of which are
enumerated below:

1. S is positive definite,

2. any positive definite matrix is the matrix exponential of some matrix,

3. S−1 = e−αD,

4. |eαD| = etrace(αD).

The last property greatly simplifies the MESS log-likelihood. Since
trace(D) = 0 and by extension |eαD| = etrace(αD) = e0 = 1, the log-
likelihood takes the form: L = C − (n/2)ln(y′S′MSy). Therefore, maxi-
mizing the log-likelihood is equivalent to minimizing (y′S′MSy), the overall
sum-of-squared errors. Thus, one can interpret the search for an optimal S
as a search for a coordinate system (possibly oblique) which has the same
multidimensional volume as the orthogonal Cartesian coordinate system,
but yields a better goodness-of-fit among the variables (smaller y′S′MSy).

The MESS model in (1) is a bit more general than it appears. Let U
represent a matrix of observations on p non-constant independent variables
and let q be an integer large enough so that X approximately spans SU ,
but small enough so that X cannot span y. The design matrix X (assuming
full rank) could have the form (4).

X = [ι U DU . . .Dq−1U ] (4)

In this case, X approximately spans SU and thus the MESS model
based on (4) nests a spatial autoregression in the errors. Hence, a set of
linear restrictions on the parameters associated with the columns of X could
yield the error autoregression. The MESS model with X specified as in (4)
results in an estimate for α that does not depend upon the variance of the
errors, only the direction of these errors (Pace and Barry (1998)). This
allows the MESS model to effectively accommodate different structures for
the spatial lags of Y and U (Anselin (1988), p. 225-230). Hendry et al.
(1984) advocate estimation of this type of general distributed lag model
with subsequent imposition of restrictions that has been labeled the general
to specific approach to model specification.
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2.2 Computational considerations and comparisons

If the magnitude of the elements of the powers of D do not rise with
the power, the power series converges rapidly. Note, row-stochastic, non-
negative D can have a maximum of 1 in any row. Hence, the magnitude of
the elements in the powers of D does not grow with the power. Given the
rapid decline in the coefficients in the power series, achieving a satisfactory
progression with six or seven terms seems feasible.

Straightforward implementation of the definition of S by a power series
expansion truncated after q terms with Dq−1 as the highest degree term
would require O((q−2)n3) operations for dense D, as matrix multiplication
requires O(n3) operations for dense matrices. This would not be practical
and computing the matrix exponential using eigenvalues and eigenvectors
would also be impractical for sufficiently large dense matrices, since this
requires O(n3) operations.

If the graph of D is strongly connected, meaning that a path exists
between every pair of observations, then

∑n
r=1 ωiD

r will be dense (all non-
zeros) for positive ωi (Horn and Johnson, p. 361-362). Hence, S will be
dense. Computing S separately would thus require prohibitive amounts of
memory for large n. Fortunately, one does not need to compute S separately,
as S always appears in conjunction with y.1 This allows computation of Sy
in O((q− 1)n2) operations for dense D by sequential left-multiplication of y
by D to form n−element vectors, (i.e., Dy, D(Dy) = D2y, and so on).

For sparse D, that would result from a spatial weight matrix based on
nearest neighbors computed using Delaunay triangles, or a sparse covari-
ance structure based on the spherical variogram, the number of operations
required to compute Sy declines dramatically.2 The number of operations
required drops to O((q−1)n 6=0), where n 6=0 denotes the number of non-zeros.
For the nearest neighbor spatial weight matrix approach with m non-zero
entries in each row, the operation count associated with computing Sy would
decline to O((q − 1)mn). This results in an operation count for computing
Sy in nearest neighbor specifications of D that is linear in n.

To illustrate this computation approach in detail, we define the nxq
matrix Y comprised of powers of D times y in (5).

1Sidje (1998) has also used this as a point of departure in the computation of matrix
exponentials. In addition, Sidje provides other algorithms for computing the matrix expo-
nential right multiplied by a vector. Finally, Sidje provides software implementing these
algorithms in both Matlab and Fortran 77.

2Myers (1997, p. 276) indicates the spherical model is the one most often used in
geostatistical practice. See Barry and Pace (1997) for more about the use of sparsity with
the spherical model.
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Y = [y Dy D2y . . .Dq−1y] (5)

Note that, this simple form of sparse matrix-vector multiplication can be
implemented without explicit use of sparse matrix multiplication algorithms.
Given a list of m neighbors for observation i (i.e., (i, j1), (i, j2), . . . , (i, jm))
and given equal weights for the neighbors, the product Dy for observation i is
merely (yj1 + yj2 + . . .+ yjm)/m. That is, the sparse matrix-vector products
needed to compute Y in (5) require only indexing and addition, two of
the fastest operations possible on digital computers. This means that the
MESS model can be implemented in a variety of computing languages such
as FORTRAN or C, and various statistical software environments. In fact,
to demonstrate the feasibility of estimating MESS using standard software
we coded the estimator in Fortran 90 as well as in Matlab. Employing a
compiled language (Fortran 90) plus using indexing as opposed to sparse
matrices increased the speed by more than 6 times.

We provide a comparison of maximum likelihood estimates and the time
required to solve the MESS model and a traditional spatial autoregressive
model (SAR) taking the form: y = ρWy+Xβ+ε, with a spatial weight ma-
trix based on 30 nearest neighbors making it an asymmetric row-stochastic
matrix. These comparative results were based on a dependent variable rep-
resenting housing prices across 57,647 census tracts along with five explana-
tory variables described in section 3. This comparison makes the point that
the parameter estimates for β in traditional spatial econometric models as
well as inferences regarding the magnitude and significance of these parame-
ters can be replicated using the MESS model. In this application the MESS
model took the form: Sy = Xβ + ε, where the explanatory variables matrix
X was not transformed for comparability with the SAR model.

The estimates from both models are presented in Table 1 along with
computed deviances that would be used to draw inferences about the sta-
tistical significance of each variable. These deviances reflect the change in
the log likelihood arising from sequential deletion of each variable from the
model.

From the table we see that the parameter magnitudes are very similar
from both models. Since the model is in log form, the coefficients can be
interpreted as the percentage change in housing prices that would result
from a one percent change in the explanatory variables. The deviances
would produce the same inferences regarding the significance or lack thereof
for all variables. (In this case, all of the explanatory variables are significant
at the 0.01 level.)
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Table 1: A Comparison of estimates from SAR and MESS models

Variables SAR Model† MESS Model
ln(Land Area) -0.0152 -0.0188
Deviance 1142.64 1394.59
ln(Population) 0.0189 0.0233
Deviance 132.87 177.70
ln(Per Capita Income) 0.4613 0.4786
Deviance 31229.72 23987.24
ln(Age) -0.0685 -0.0689
Deviance 1213.15 1097.93
Intercept -1.6861 -1.3492
Deviance 3464.33 1945.65
Time (in seconds) Matlab 2414.92 3.36
Time (in seconds) FORTRAN 90 — 0.536
n 57,647 57,647
k 5 5

The table also shows a timing comparison for computing estimates using
the two methods, where we see a dramatic improvement in speed associ-
ated with the MESS model which is over 1,000 times faster than the more
traditional SAR model. This speed gain was obtained in Matlab. The For-
tran coding accelerated this already fast implementation by over a factor of
6.3 In section 2.5 we motivate that the computational speed of the MESS
model allows quick hypothesis testing of alternative specifications for the
functional form taken by the spatial weight matrix, as well as more tradi-
tional specification tests used in regression models. These testing methods
are illustrated in an application presented in section 3.

2.3 Closed form solution of the estimated parameters

We define the diagonal matrix W containing part of the coefficients of the
power series as shown in (6).

3The use of an asymmetric 30 neighbor spatial weight matrix poses a substantial com-
putational challenge to computing the log-determinant term used in maximum likelihood.
The times reported in Table 1 could be improved to around 400 seconds by using sym-
metric spatial weight matrix. The times would improve further if fewer neighbors were
used or if the Monte Carlo Log-determinant estimator proposed by Barry and Pace (1999)
were employed to compute the SAR estimates.
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W =


1/0!

1/1!
. . .

1/(q − 1)!

 (6)

In addition, we define the q-element column vector v shown in (7) that
contains powers of the scalar real parameter α, |α| < ∞.

v = [1 α α2 . . . αq−1]′ (7)

Using (5), (6) and (7), we can rewrite Sy as shown in (8).

Sy = Y Wv (8)

Premultiplying Sy by the least-squares idempotent matrix M yields the
residuals e, allowing us to express the overall sum-of-squared errors as in
(9),

e′e = v′W (Y ′M ′MY )Wv = v′W (Y ′MY )Wv = v′Qv (9)

where Q = W (Y ′MY )W . The matrix MY represents residuals from regress-
ing the dependent variable and the spatial lags of the dependent variable
on the independent variables X. Multiplying MY by a vector φ results in
a linear combination of these residuals, MY φ. Hence, the sum-of-squared
errors associated with this vector equals (MY φ)′(MY φ) = φ′(Y ′MY )φ. If a
linear combination of the residuals, MY φ produces a zero vector (columns
of MY are not linearly independent), then φ′(Y ′MY )φ = 0 and Y ′MY
is positive semidefinite in this case, since the product cannot be negative.
This seems unlikely to arise in practice, so we assume the regression resid-
uals MY are linearly independent so that MY is nonsingular. In this case,
φ′(Y ′MY )φ > 0 and (Y ′MY ) is positive definite. Given this, both W and
(Y ′MY ) are symmetric positive definite matrices, so Q must be congruent
to (Y ′MY ) and have the same number of positive eigenvalues as (Y ′MY )
by Sylvester’s law of inertia (Strang(1976, p. 246)). Since (Y ′MY ) is a
symmetric positive definite matrix, Q will have all positive eigenvalues and
must be a symmetric positive definite matrix (Horn and Johnson (1993), p.
402).

The overall sum-of-squared errors v′Qv is a 2q − 2 degree polynomial
in the variable α. The coefficients in the polynomial are the sum of all
terms appearing in Q associated with each power of α. The number of
coefficients of a 2q − 2 degree polynomial equals 2q − 1 due to the constant
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term (coefficient associated with the degree 0). Specifically, the coefficients
c, a 2q − 1 element column vector are shown in (10),

ct−1 =
q∑

i=1

q∑
j=1

QijInd((i + j) = t) (10)

where Ind() is an indicator function taking on values of 1 when the condition
is true. The terms associated with the same power of α have subscripts i, j
that sum to the same value. For example, αiαj = αt when i + j = t,
which means that each coefficient ci is the sum of the elements along the
antidiagonals of Q. This allows us to rewrite v′Qv as the 2q − 2 degree
polynomial P (α), shown in (11).

P (α) =
2q−1∑
i=1

ciα
i−1 = v′Qv (11)

To find the minimum of the sum-of-squared errors, we differentiate the poly-
nomial P (α) in (11) with respect to α, equate to zero, and solve for α as
shown in (12).

dP (α)
dα

=
2q−1∑
i=2

ci(i− 1)αi−2 = 2v′Q

(
dv

dα

)
= 0 (12)

The derivative dP (α)/dα is a degree 2q − 3 polynomial and thus has
2q − 3 possible roots. The problem of finding all the roots of a polynomial
has a well-defined solution. Specifically, the roots equal the eigenvalues of the
companion matrix associated with the polynomial (Horn and Johnson (1993,
p. 146-147)).4 Computation of the eigenvalues requires O(8q3) operations
in this case and does not depend upon n. Thus, the maximum likelihood
estimates have a closed-form solution in terms of the eigenvalues of a small
matrix.

2.4 Uniqueness of the solution

To narrow the possible number of solutions, we turn to the second order
conditions. Positive definite Q would usually prove sufficient for an interior
solution, but the vector v embodies a polynomial constraint. Therefore, we
elaborate on the second order conditions taking into account the constraints

4Other methods also exist for finding the roots of polynomials. See Press et al. (1996,
p. 362-372) for a review of these.
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imposed by the structure of v. Consider the second derivative of the sum-
of-squared errors with respect to α shown in (13).

d2v′Qv

dα2
=

2q−1∑
i=3

ci(i− 1)(i− 2)αi−3 = 2

[
(
dv

dα
)′Q(

dv

dα
) + v′Q(

d2v

dα2
)

]
(13)

The first term inside the brackets is positive because it represents a
positive definite quadratic form. We can rewrite the second term in brackets
as shown in (14),

v′Q

(
d2v

dα2

)
= v′(QA)v (14)

where A equals,

A =
(

1
α2

)


0
0

(i− 1)(i− 2)
. . .

(q − 1)(q − 2)

 . (15)

The minimum value of α depends on the eigenvalues of v′(QA)v. Note
that Q is positive definite and the real diagonal (and thus Hermitian) matrix
A in (15) has two zero and (q − 2) positive eigenvalues. Horn and Johnson
(1993, p. 465) state in Theorem 7.6.3 that the product of a positive definite
matrix Q and a Hermitian matrix A has the same number of zero, positive,
and negative eigenvalues as A. Hence, QA must have two zero and (q − 2)
positive eigenvalues. Therefore, v′(QA)v is positive semidefinite implying
that v′QAv has a minimum value of 0. Since the first term in brackets in
(13) always has a positive value, the entire expression in (13) has a positive
value and thus v′Qv is positive definite and strictly convex in α. Hence, if
an interior solution exists to the first order conditions, it must be unique.

There exists an interior solution to the first order conditions. To see this,
examine the highest degree term in P (α), from (11) shown in (16).

Tmax =
α2(q−1)[y′D′(q−1)MD(q−1)y]

(q!)2
(16)

The term in brackets is the contribution to the overall sum-of-squared er-
rors from the last term in the truncated Taylor’s series and must be positive.
Since α2(q−1) is even in α, only the magnitude and not the sign of α matter
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for this result. Since lim|α|→∞Tmax → ∞, implies lim|α|→∞v′Qv → ∞,
there exists an interior solution to the first order conditions.

In conclusion, there exists a unique interior real α, say α?, that minimizes
the sum-of-squared errors and maximizes the MESS likelihood. Such unique
optima are rare in spatial statistics. See Warnes and Ripley (1987) and
Mardia and Watkins (1989)) for a discussion of the potential multimodality
of the likelihood. The MESS unique closed-form optimum solution not only
reduces computational time, but also increases the confidence users have in
the numerical quality of the estimates.

2.5 Quick hypothesis testing

Efficient computation of likelihood ratio tests requires updating the sum-of-
squared errors matrix Q without recomputing the actual regressions. Let
B̂ = (X ′X)−1X ′Y denote the k by q matrix of estimates from the regression
of Y on X and let Ê = Y − XB̂ denote the n by q matrix of errors from
the regression. Expression (17) shows the restricted least squares estimate
for B̃j , (j = 1 . . . q),

B̃j = B̂j + (X ′X)−1R′(R(X ′X)−1R′)−1(r −RB̂j) (17)

where r is a h by 1 vector, R denotes a h by k matrix, and h is the number
of hypotheses imposed.5

Let ∆Bj in (18) denote the change in the restricted least squares esti-
mates versus the unrestricted estimates for the jth regression.

∆Bj = B̃j − B̂j = (X ′X)−1R′(R(X ′X)−1R′)−1(r −RB̂j) (18)

The inner product of any two vectors of restricted regression errors ap-
pears in (19).

Ẽ′
j1Ẽj2 = (Y −XB̃j1)′(Y −XB̃j2) = (Êj1 −X∆Bj1)′(Êj2 −X∆Bj2) (19)

where Ẽj1, Ẽj2 represent the vectors of restricted regression errors and j1, j2 =
1, . . . , q. Expanding (19) yields (20).

Ẽ′
j1Ẽj2 = Ê′

j1Êj2 + (∆Bj1)′(X ′X)(∆Bj2) (20)
5See Gentle (1998, p. 166) for the standard restricted least squares estimator as well

as some other techniques for computing these estimates.
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where two of the possible terms vanish due to the enforced orthogonality
between the residuals and the data in least-squares. One can further expand
the second term (∆Bj1)′(X ′X)(∆Bj2) from (20).

(∆Bj1)′(X ′X)(∆Bj2) = [(r −RB̂j1)′(R(X ′X)−1R′)−1R(X ′X)−1]
· (X ′X)[(X ′X)−1R′(R(X ′X)−1R′)−1(r −RB̂j2)]

Fortunately, many terms in the above expression cancel which leaves a simple
expression in (21) for the increase in error arising from restrictions.

(∆Bj1)′(X ′X)(∆Bj2) = (r −RB̂j1)′[R(X ′X)−1R′]−1(r −RB̂j2) (21)

Finally, define the q by q matrix of cross-products of restricted least-
squares regressions as Ẽ′Ẽ with j1, j2th element Ẽ′

j1Ẽj2 and therefore the
restricted sum of squared errors, QR = W (Ẽ′Ẽ)W .

Computation of the unrestricted regressions means the quantities B̂j

and the Cholesky factors (even if computed from the QR algorithm) of X ′X
are already known. However, [R(X ′X)−1R′]−1 requires O(h3) operations
for its decomposition. Typically, h will be small. Testing for the effect of
the deletion of a single variable means h equals 1 and for a variable and
its associated lags h equals 1 plus the number of independent variable lag
terms. Since computing the increase in errors from the restrictions requires
O(h3) operations and resolving the first order conditions requires O(8q3)
operations, deviance (i.e., likelihood ratio) tests do not depend upon n and
thus require very little time.

One advantage of the likelihood-based MESS methodology noted in the
introduction is the ability to accommodate Bayesian extensions. An in-
teresting point here is that Bayesian logic emphasizes the fact that the
significance level should be a decreasing function of sample size. As the
sample size grows, the Bayes factor region of rejection is a function of sam-
ple size, in contrast to the usual classical region which is held constant
and independent of sample size. This distinction may be important for
very large models of the type discussed here. The Bayes factor in favor of
hypothesis i relative to hypothesis j is simply the ratio of the marginal like-
lihoods fi(Y )/fj(Y ), where computation of the marginal likelihood requires
fi(Y ) =

∫
fi(Y |Bi)f(Bi)dBi, where f(Bi) denotes the prior distribution.

Leamer (1978,1983) discusses these issues.
This suggests that efficient computation of the likelihood made possible

by the matrix exponential specification may enable Bayesian approaches to
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hypothesis testing that allow the level of significance to vary with the sample
size. Since the rejection region shrinks as the sample size grows, Bayesian
testing procedures should lead to more parsimonious specifications in cases
involving large sample sizes.

2.6 Spatial diagnostics

Christensen, Johnson, and Pearson (1992), Haining (1994), and Martin
(1992) have investigated various aspects of diagnostics for spatial models.
For the models which employ some form of estimated variance-covariance
matrix Ω(θ) parameterized by a vector of parameters θ, estimating the model
via maximum likelihood equates to estimating a model where both sides have
been transformed (i.e., Ω−1/2(θ)y = Ω−1/2(θ)Xβ + ε ). If the desire is to
find leverage points with the transformed independent variables, this be-
comes difficult since the transformation depends upon y. Fortunately, the
right hand side of the MESS model in (1) does not involve parameters in the
formulation of X, so one can employ standard leverage statistics (avoiding
one of the problems Martin (1992) examined). Since minimizing the overall
sum-of-squared errors maximizes the likelihood, one can easily modify some
of the useful diagnostics commonly employed in regression. Let Z = MY W
(hence Q = Z ′Z ), let zi = (Z ′

ij , j = 1, . . . , q), a q by 1 vector, and let
Q(i) represent Q when deleting the ith observation. Applying the standard
regression results for one-out sum-of-squared errors (e.g., Christensen (1996,
p. 345)), produces (22).

Q(i) = Q− ziz
′
i

(1−Hii)
(22)

Using the same quick mechanism for finding the roots of polynomials leads to
a sequence of one-out autoregressive parameters α(i) and one-out deviances.
As well-known, each of these would correspond to the deviance associated
with including a variable with 1 in the ith row and zeros in all other rows
(Christensen (1996, p. 348)).

Note, the case deletion diagnostics just consider the direct effect of a
particular observation and do not account for their role in the transformation
of the other observations. Naturally, one could delete blocks of observations
and remove the observation itself, the observations it neighbors, and so forth
(e.g. Christensen (1996, p. 348)).
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3 An application to US census tracts

This section applies the MESS model proposed in section 2 to census tract
housing prices for the continental US. Section 3.1 discusses the construction
of the dataset from the US Census data, section 3.2 describes the MESS
model specification and details of the spatial transformation, section 3.3
discusses the MESS estimates and inference, and section 3.4 presents diag-
nostic information.

3.1 Data

The deciennial census provides a comprehensive set of data on demographic
and economic conditions across a wide array of geographical units. One of
the most disaggregated and useful geographical units is the census tract, of
which 60,804 exist within the Continental US in the 1990 Census. Unfor-
tunately, not every tract provides every data field due to privacy and other
constraints. Restricting the final data set to observations with complete
data resulted in 57,647 observations on the median price of housing (Price),
median per capita income (Income), median year built (Age), population
(Pop), the tract’s land area (Area), as well as the latitude and longitude of
the centroid of the tract. The constructed variable Age equals 1990 less the
median year constructed and was strictly positive.

3.2 Model

The overall transformed MESS model of housing prices appears in (23).

S(α)ln(Price) = β1 + β2ln(Area) + β3ln(Pop) + β4ln(Income) + β5ln(Age)
+ β6Dln(Area) + β7Dln(Pop) + β8Dln(Income)
+ β9Dln(Age) + ε (23)

where ln denotes logarithm and D is a row-stochastic spatial weight matrix.
Construction of D first requires finding the nearest neighbors for each

observation. One can use several algorithms for this, but all require at least
O(n · ln(n)) operations for points on a plane (Eppstein, Paterson, and Yao
(1997)). A Delaunay triangle based method was used here to compute the
m nearest neighbors.

A set of individual neighbor matrices D1, D2, . . . , Dm, was formed where
D1 represents the closest previously sold neighbor (shortest distance), D2

represents the second previously sold neighbor (second shortest distance)
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and so on. These very sparse matrices have a 1 in each row and contain
zeros elsewhere.

The overall spatial matrix D was constructed based on the individual
neighbor matrices Di using (24).

D =
∑m

i=1 ρiDi∑m
i=1 ρi

(24)

In (24), ρi weights the relative effect of the ith individual neighbor matrix,
so that S depends on the parameters ρ as well as m in both its construction
and the metric used. Thus (24) imposes an autoregressive distributed lag
structure on the spatial variables. By construction, each row in D sums to
1 and has zeros on the diagonal.

The use of the individual neighbor matrices greatly speeds up investiga-
tion of the sensitivity of the results to different forms of D. Constructing
the individual neighbor matrices requires some computational expense, with
the set of 30 used here taking 96.7 seconds computational time. However,
reweighting the individual matrices using (24) requires very little time.

3.3 Estimated parameters and deviances

Relative to a simple aspatial model of housing prices (i.e., α = β6−9 = 0),
the unrestricted log-likelihood rises from -266,505.2 to -228,850.4, a deviance
of 75,309.6. Relative to a model with spatial independent variables, but no
spatial transformation of the dependent variable (i.e., α = 0), the deviance
is 64,450.6. Controlling for some of the spatial dependence reduces the
deviances associated with deletion of the independent variables and their
spatial lags for three out of the four basic variables (i.e., β2 = β6 = 0, β3 =
β7 = 0, β4 = β8 = 0) relative to the corresponding deletions of the indepen-
dent variables in the aspatial model (i.e., β2 = β3 = 0, β4 = 0 ). For the age
variable, the deviance associated with deletion (i.e., β5 = β9 = 0 ) actually
rises relative to the aspatial model (i.e., β5 = 0 ).

The interpretation and inferences based on estimated parameters from
the aspatial and MESS models are quite different. For example, estimates
from the aspatial model suggest that increasing income of a tract by 1%
would lead to a 1.08% increase in median housing prices in the tract. Im-
plicitly, the aspatial model allows for individuals with higher incomes to
both purchase a larger house and to locate in a different neighborhood. For
the MESS model where the characteristics of neighboring tracts is held con-
stant, increasing the income of a tract by 1% would lead to only a 0.68%
increase in median housing prices in the tract relative to median prices in
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surrounding tracts. This result is consistent with the economic construct of
externalities (e.g., Bogart (1998, p. 216-218)).

The optimal number of neighbors was 30 (m = 30) and the optimal rate
of geometric decline with order was 0.9 (ρ = 0.9 ), and α was -1.67. All
of the deviances associated with perturbations in these choices were highly
significant.

It took slightly under 16 minutes on a 600 megahertz Pentium III com-
puter running Matlab 5.3 to estimate the MESS model for each of the 203
cases defined by the grid over values of m = 2 . . . 30 and ρ = 0.25, 0.5, 0.75,
0.85, 0.90, 0.95, 1.0, implying that each regression took under 5 seconds.
The Fortran 90 routines took only 132 seconds to perform the same com-
putations. The speed gain from using Fortran 90 makes searches over these
parameters rather easy. Figure 1 shows the profile log-likelihoods across
these combinations of m and ρ (scaled by subtracting the maximum log-
likelihood). Quick computation of the estimator allowed for the optimiza-
tion of the transformation with respect to three parameters (m, ρ, α ) despite
the large size of the problem. Hopefully, such flexibility will approximate
the true transformation.

3.4 Spatial diagnostics

As discussed earlier, the MESS model can employ standard leverage statis-
tics, unlike many spatial models. Figure 2 identifies tracts that have the
lowest and highest (one-half percentile) degrees of leverage on a map of the
US. Note the clustering of high leverage points along the southeast coast of
Florida, the coast of California, and in scattered interior points in the west-
ern US. Conversely, low leverage points seem concentrated in Pennsylvania,
North Carolina, and in some of the major cities.

Truly random outliers should reduce the degree of estimated spatial de-
pendence, so case deletion estimates of the autoregressive parameter may
provide interesting results. Examination of the one-out autoregressive es-
timates, α(i), shows some striking features. For example, the range of is
extremely small (min(α(i))=-1.6744, max(α(i))=-1.6726).

If the estimated spatial dependencies showed a spatial pattern, this might
suggest possible ways of improving the spatial dependencies component of
the model. Figure 3 illustrates the lowest and highest percentile of the
one-out autoregressive parameters plotted against latitude and longitude.
The smallest α(i) indicate where the degree of spatial dependence increased
(α(i) became more negative) upon deletion of the ith observation. These
observations exhibit weaker spatial dependence with their neighbors than
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the typical observation. From the figure, we see some regular patterns.
For example, the southeast coast of Florida has a number of tracts whose
deletion increases the degree of estimated spatial dependence. This may
indicate the need for a variable measuring contiguity with the ocean.

In contrast, the largest α(i) indicate that the degree of spatial dependence
decreased (α(i) became more positive) upon deletion of the ith observation.
For these observations we see stronger spatial dependence with neighbors
than that associated with the typical observation. Almost all of these large
α(i) values occur in urban areas. It required less than 5 minutes to compute
the MESS spatial diagnostics presented here, despite the large number of
observations used in our example.

4 Conclusion

Maximum likelihood estimation based on the matrix exponential spatial
specification (MESS) introduced here was shown to be computationally su-
perior to most spatial estimators, requiring O(n) operations (the same as
OLS) conditional upon formation of the spatial weight matrix and as low
as O(nlog(n)) for the formation of the spatial weight matrix. When used
in conjunction with common approaches to specifying spatial influences, the
MESS results in a situation where the log-determinant term in the spa-
tial likelihood function vanishes. The matrix exponential spatial specifica-
tion provides an unusual situation (in spatial problems) where non-linear
least-squares and maximum likelihood methods yield the same estimates. A
simplification of the log-likelihood stemming from use of the matrix expo-
nential spatial specification produces a situation where a unique closed-form
solution for the estimates exists. This unique closed form solution greatly
accelerates computation.

As an illustration of the speed gained through the use of these techniques,
it took only 3.36 seconds using Matlab to compute a spatial autoregression
involving 57,647 observations. We also demonstrated that the estimates for
the parameters β from the MESS model were almost identical to those from
a spatial autoregressive (SAR) model and the inferences were identical, while
the MESS model’s computational speed was over 1000 times faster than the
more traditional SAR model. Afortiori, the Fortran code ran 6 to 7 times
faster than the Matlab code for the 57,647 observation census dataset. In
other experiments (not reported here) we found that the MESS model when
specified with spatially lagged explanatory variables produces estimates and
inferences similar to those from the spatial Durbin model introduced in
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Anselin (1988).
This speed, along with the simpler MESS log-likelihood, facilitates max-

imization over a host of spatial parameter settings that can be used to vary
the nature and extent of spatial influences in the model. The application
by Bell and Bockstael (2000) provides a compelling motivation for this type
of exploration. It may also enable Bayesian model selection criterion to be
used in place of traditional likelihood ratio tests which would allow the re-
jection regions to vary with the sample size. This may have the potential to
produce more parsimonious global model specifications because the rejec-
tion regions would narrow with larger sample sizes. Recent literature in the
area of ‘Bayesian model averaging’ suggests that another potential role for
Bayesian methods may be to produce a single posterior model that averages
over alternative specifications associated with alternative spatial parameter
settings. This would greatly facilitate reporting of results that are not con-
ditional on a particular setting for decay in spatial weights, or number of
neighbors employed. A final point is that the simpler MESS log-likelihood
may make it an easier model to use in theoretical derivations needed to
produce Bayesian and other spatial econometric extensions.

The computational advantages of the MESS should prove useful in solv-
ing a number of problems that arise in application of spatial econometric
analysis. First, the MESS should provide an easily calculated benchmark
against which to gauge the performance of other spatial estimators. In other
words, MESS can serve as a more sophisticated null hypothesis than the typ-
ical assumption of spatial independence. In addition, since MESS provides a
unique optimal estimate, it could help identify when another more complex
model has become trapped in a local optima.

Second, the computational efficiency for large problems means that the
MESS model can serve as a global description for very large data sets. Such
global descriptions can help identify smaller regions where it may be of in-
terest to apply more computationally costly techniques for analysis. Policy
decisions often require global descriptions, so a collection of regional de-
scriptions based on smaller subsets of the data set may not serve the desired
purpose. This could become particularly important with the pending release
of the year 2000 Census that will contain nearly 250,000 observations at the
block-group microlevel.

A third area of applications opened up by this approach is computation
of diagnostic statistics that have traditionally been problematical in the
maximum likelihood spatial estimation setting. We provided a brief demon-
stration of the application of these statistics, but the potential of these
diagnostics in large sample problems represents a relatively unexplored area
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for future research.
Another area where the MESS method could be useful is Monte Carlo

experiments. Research examining the performance characteristics of alter-
native spatial estimation methodologies has been limited to relatively small
data sets because of the computational burdens. Since both simulation and
estimation proceed rapidly in the case of the MESS, this should facilitate
Monte Carlo experiments based on larger, more realistic data sets.
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Table 2: Spatial and Aspatial Regression Models

Variables Aspatial Model Spatial Model
Intercept 1.224 -0.151
ln(Land Area) -0.085 -0.003
Dln(Land Area) -0.017
Deviance 9,379.1 1,218.8
ln(Population) 0.115 0.022
Dln(Population) 0.030
Deviance 1,358.6 366.6
ln(Per Capita Income) 1.084 0.677
Dln(Per Capita Income) -0.463
Deviance 43,355.2 29,764.3
ln(Age) -0.127 -0.138
Dln(Age) 0.127
Deviance 1,175.2 2,289.5
m (# of neighbors) 30
Deviance (m=29) 2.72
ρ (geometric decay) 0.90
Deviance (ρ=0.95) 612.82
Deviance (ρ=0.85) 1240.52
α (autoregressive parameter) -1.673
Deviance (α = 0) 64,450.6
n 57,647 57,647
k 5 12
Maximum Log-likelihood -266,505.2 -228,850.4
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Figure 1: Scaled Log-likelihood vs. Number of Neighbors across Differing ρ
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Figure 2: US Census Tract Locations with Smallest (O) and Largest (∆)
Leverage Observations Identified
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Figure 3: US Census Tract Locations with Largest (O) and Smallest (∆)
Delete-1 α Identified
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