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GLMs, GAMs and GLMMs: an overview of theory
for applications in fisheries research

W.N. Venables∗, C.M. Dichmont

CSIRO, 233 Middle Street, Cleveland, Qld. 4163, Australia

Abstract

This paper provides an overview of the modelling process using generalized linear models (GLMs), generalized additive
models (GAMs) and generalized linear mixed models (GLMMs), especially as they are applied within fisheries research. We
describe the essential aspect of model interpretation and construction so as to achieve its correct application. We start with the
simplest models and show the progression from GLMs to either GAMs or GLMMs. Although this is not a comprehensive review,
we emphasise topics relevant to fisheries science such as transformation options, link functions, adding model flexibility through
splines, and using random and fixed effects. We finish by discussing the various aspects of these models and their variants, and
provide a view on their relative benefits to fisheries research.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The goal of a good model is to represent the process
t attempts to describe in as wide a range of the stim-
lus variables as possible without over-specification.
o fix ideas, lety be a quantitative response variable
nd assume for the moment thatx = (x1, x2, . . ., xp)

s a set of (initially) quantitative stimulus variables
riving the distribution ofy. Supposez is a standard
ormal random variable which captures a degree of
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stochastic behaviour. This is a model that says al
nothing about the process other than that it has
form:

y = f (x, z)

wheref is a function yet to be determined. We are go
to regard the random variablezas just another variabl
centred on zero. Suppose we have a particular poinx0,
where we would like the model to perform well (a
in some local region about it). Assuming the sys
is reasonably continuous and slowly varying, a nat
way of proceeding is to use a first order Taylor app
imation about the point (x0, 0) as a local approxim
tion. Re-writing the derivatives at the central poin
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coefficients in a familiar notation, this gives:

y = β0 +
p∑

j=1

βj(xj − xj0) + σz

which is a familiar linear regression model. If we want
the model to capture the behaviour in a larger region
about the central point, then it is natural to consider
extending the Taylor series to second order, giving an
expansion of the form:

y =

β0 +

p∑
j=1

βj(xj − xj0)

+
p∑

k=1

k∑
j=1

βjk(xj − xj0)(xk − xk0)




+

σ +

p∑
j=1

γj(xj − xj0)


 z + {δz2}

That is, we might go to a second-order polynomial
model with powers and linear× linear interactions. The
last two bracketed terms suggest, respectively, that we
might also expect that variance heterogeneity and non-
normality (mainly skewness and kurtosis) could start
to play an increasingly important role as we require our
model to apply in wider ranges. These are features of
real modelling situations.

An important, if simple, message to take from this
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mean–variance relationships. GLMs are also useful for
obviously non-normal data, such as binary data. The
log-likelihood surface must be reasonably quadratic in
a region about its maximum point for most parametric
inferential methods, such as (model based) standard er-
rors, confidence intervals and likelihood ratio tests, to
be reliable.

One can allow for curvature in the regression sur-
face, as above, by including polynomial terms. There
are other, often better ways, of gaining flexibility in
the regression surface such as using regression splines.
We discuss this issue of flexibility in Section4 first be-
cause it is important in itself and secondly because it
provides a natural introduction to generalized additive
models (GAMs).

Increasing the complexity of a regression model by
including additional terms will increase the accuracy
of the regression for the training data (the data used to
estimate the values for the parameters of the model),
but will also tend to decrease the accuracy of the model
when it is used for prediction. This is because the extra
complexity in the fitted model may actually be repro-
ducing randomness.1 This increased complexity can
also affect the reliability of interpretations of the fit-
ted model. The choice of the degree of complexity,
then, has to balance accuracy in the training data with
predictive accuracy or interpretative reliability. GAMs
represent an extension to GLMs that partially auto-
mates this choice. Local smoothers, including smooth-
ing splines, may be included in the regression function
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athematical view is that most regression models
trongly empirical and should only be expected to
ly in a limited region about some central point in
esign (orx-variable) space. This should explain w
ven when a regression line should logically go thro
he origin, it may be a better policy not to constrai
o do so if the origin is well outside the region in des
pace where observations are available. In the fish
ffort-standardization context then, we may be wil

o relax some logical constraints or boundary co
ions on the coefficients that we are estimating if
ata we have are far from the boundary and, if by d
o, we improve the performance of the standardiza
here it really matters, namely near the data itself
Generalized linear models (GLMs) attempt to

ommodate variance heterogeneity and asymm
on-normal behaviour by offering a range of dis
utional types that cover at least the more com
ut estimation is not by maximum likelihood. Rath
penalty term, which reflects the degree of smo

ess in the regression, is added to the log-likelih
nd this sum of terms is maximized. The rela
eight given to log-likelihood and penalty is usua
etermined by cross-validation. We discuss GAM
ection5.
Generalized linear mixed models (GLMMs), rep

ent a further and more fundamental extension o
nitial regression model. In the general terms outli
bove, they are best thought of as models where
re several independent places where a stochast
ent enters the model:

1 ‘Randomness is not the mere absence of pattern. Rando
an often show quite a definite pattern. The trouble is, next time
ompletely different pattern’ (A.T. James, personal communica
975).
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y = f (x, z1, z2, . . .)

where z1 ∼ N(0, σ2
1), z2 ∼ N(0, σ2

2), . . ., indepen-
dently. The unknown variances are often the quanti-
ties of interest and are usually known as thevariance
components. GLMMs often arise where the parame-
ters occur in natural groups. Instead of allowing each
parameter in the group to count as a separate parame-
ter, it may be natural to model them as being a sample
from some distribution, typically normal. In this case,
a group of parameters is replaced by a single variance
component and the number of parameters is reduced.
The price is we do not get, strictly speaking, an esti-
mate of the individual parameters but rather predictors
of them. In this respect they have a logical status more
like residuals than parameter estimates.

There is a link between GLMMs and GAMs. The
penalty imposed on the log-likelihood to ensure that
GAMs remain economical with their use of parameters
is analogous to the constraint imposed on the predictors
in GLMMs, requiring them to behave like a sample
from a specified distribution family. This often causes
the predictors to be less volatile and less ‘spread out’
than would be separate parameter estimates, an effect
known as ‘shrinkage’.

One of the most important benefits of using mixed
models is their capacity to ‘borrow strength’ from one
part of the data to another, thus often providing a more
realistic analysis of large fragmentary data sets, which
are the norm in fisheries research.
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Note that we are using the genericx for any known
function of the predictor variables, including the con-
stant function 1 that occurs in the intercept term. If the
stimulus variables are also stochastic, interest focuses
on the conditional distribution of the response given
the stimulus variables.

The linear model is perhaps the simplest and most
direct approach to modelling this situation. The model
is as follows:

y =
p∑

j=1

xjβj + ε = η + ε, where ε ∼ N(0, σ2)

that is, the mean of the response depends linearly on the
unknown coefficientsβj . The error term is then added
to this linear function. The fixed part of this equation,
represented here byη, is called thelinear predictor.
For our later purposes a slightly better way to write
this model is:

y ∼ N(η, σ2), where η =
p∑

j=1

xjβj

This emphasises that, in general, the error component
is not simply ‘added on’ to the linear predictor, but is
generated by the distribution of the response, in this
case normal. Generalization will allow more distribu-
tions for the response and more general connections
between the linear predictor and the mean of the re-
s
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. Ordinary linear models

‘Linear models form the core of classical statis
nd are still the basis of much of statistical pract
Venables and Ripley, 2002). This assertion is parti
larly true in quantitative fisheries research. Cons

he following general set-up:

There is a stochastic response variable of inte
sayy.
There are a number of candidate stimulus varia
(or functions thereof), sayx1, x2, . . ., xp (which may
be quantitative or qualitative).
How the distribution ofydepends on the fixed leve
of the stimulus variables at which it is observe
described.
ponse distribution.
We have the handy feature that the variablexj is ef-

ective in influencing the distribution ofy if, and only
f, βj 
= 0 because of the linearity in the unknown
ameters. This important feature is preserved in al
eneralisations of linear models we consider in thi

icle.
The above simplistic model is unrealistic for ma

pplications and the results may be misleading. E
ttempts to accommodate stochastic behaviour
esponse variable that is badly represented b
ormal, homoscedastic, additive error term wa

ransform the response. This was so that the
al model was at least approximately true in

ransformed scale. Although this can lead to p
ems in making inferences in the original scale, th
an usually be overcome. We can represent th
ollows:
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t(y) ∼ N(η, σ2), where η =
p∑

j=1

xjβj

wheret(·) is a suitably chosen one-to-one transforma-
tion.

A different approach is to use generalized linear
models, where some of the restrictive features of the
simple linear model are relaxed. As we shall see, both
approaches have their uses in practice.

3. Generalized linear models

The class of models known as generalized linear
models, or GLMs, was formally introduced byNelder
and Wedderburn (1972), but the idea is much older. The
techniques for fitting such models, for example, were
essentially complete inFisher (1954). The components
of a GLM are as follows.

• The problem is again to model the distribution of
a stochastic response variable,y, in terms of stimu-
lus variablesx1, x2, . . ., xp, or known mathematical
functions of them.

• The distribution of y depends on the stimulus
variables through a singlelinear predictor: η =∑p

j=1xjβj, where, in general, thexj ’s are known
functions of the stimulus variables, not necessarily
simply the variables themselves.

•

nto
nd.
rma-
se.

•
e

• ,

This distributional form can be shown to include the
normal, gamma, Poisson and binomial distributions, as
well as several others such as the beta, inverse Gaussian
and negative binomial (if the extra variance parameter
is known, see Section3.7). Note that the relationship
between the canonical parameter,θ, and the mean,µ,
will depend on the particular distribution, and the rela-
tionship betweenµandη is defined by the link function.

The theory of generalized linear models is con-
cerned with a unified theory of estimation and test-
ing. The standard reference isMcCullagh and Nelder
(1989), but there are many others (e.g. Chapter 7
of Venables and Ripley (2002)). GLMs have been
used extensively in fisheries science. Their most com-
mon application is standardization of abundance in-
dices based on commercial catch and effort data (e.g.
Kimura, 1981; Punt et al., 2001; Maunder and Punt,
2004) or survey data (e.g.Stef́ansson, 1996). However,
applications have also included estimating selectivity
of fishing gear (Myers and Hoenig, 1997), esti-
mating bycatch catch rates (e.g.Ortiz et al., 2000;
Ortiz and Arocha, 2004), estimating biological param-
eters such as growth (e.g.Bromley, 2000), and many
others.

The choices for link functions, transformations (for
error structure or zero data values) and model selec-
tion/complexity vary considerably in fisheries science,
often for the same data types and problem. These issues
are therefore discussed in further detail below.
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The mean ofy is related toη by a known function
called thelink function:

E[y] = µ = �−1(η), η = �(µ)

Note that the link function transforms the mean i
the linear predictor and not the other way rou
Hence it acts in the same direction as a transfo
tion of the response itself, from which the idea aro
The variance ofy is a function of the mean: Var[y] =
φv(µ)/A whereφ is a possibly unknown, positiv
scale parameter,A is a knownpriorweight, andv(µ)
is a known function ofµcalled thevariance function.
The distribution ofy has a density of known form
namely

fY (y; µ, φ)

= exp

[
A

φ
{yθ(µ) − γ(θ(µ))} + τ

(
y,

φ

A

)]
.1. The link function

The link function establishes the connection
ween the linear predictor,η, and the mean of th
istribution,µ. There is a so-called ‘natural link’ fo
ach distribution. The sense in which a link funct

s ‘natural’ is somewhat technical and such links
ot necessarily very ‘natural’ in practice. Some sam

nformation is lost if links other than the ‘natural lin
re used, but this is usually slight.

It is important to note that although the link functi
s in some senses similar to a transformation func
t only establishes a mathematical connection betw
arameters. A transformation function when applie
bservations may be intended to simplify the conn

ion between the mean and the response variabl
ay also achieve other goals such as to stabilize

ariance. See Section3.2. Some special cases are:
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(a) For the normal distribution, the natural link is the
identity link, η = µ, the variance function is con-
stant,v(µ) = 1, and the scale parameter is the
variance,φ = σ2, which leads to ordinary linear
models. These are sometimes artificially classified
into regression, analysis of variance (ANOVA) or
analysis of covariance (ANCOVA) models, based
on old computational practices.

(b) In the case of binomial data, where the response is
conventionally taken as the relative frequency,yi
= si /ai (wheres is the number of successes anda
the number of trials), the mean is a probability and
hence must lie between 0 and 1. The linear predic-
tor, on the other hand, is unbounded. Hence, the
link function must map the real line into the closed
interval [0, 1]. The natural link is the so-called
logistic or logit link: η = log(µ/(1 − µ)), µ =
eη/(1 + eη), but others are in common usage such
as the probit link:η = �−1(µ), µ = �(η), where
Φ is the standard normal distribution function. The
variance function has the formv(µ) = µ(1 − µ)
and the scale parameter is known,φ = 1. The prior
weight is the number of trials on which the ob-
servation is based,Ai = ai . The difference between
probit and logit links only becomes important if the
probabilities being estimated are either very small
or very close to unity, which typically require very
large-sample sizes for effective inference to be pos-
sible. The two links generally give very close to
equivalent results for intermediate probabilities.
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ear predictor. Therefore, the theory becomes only
approximate in this case, though adequate for most
applications. The exponential distribution is a spe-
cial case of the gamma distribution.

3.2. Connection with transformation models

The classical method of dealing with non-identity
connections between mean and linear predictor or
non-constant connections between mean and variance
has been to transform the response, i.e. the data are
transformed using some functiont(y) prior to being
analysed, so that some compromise between these two
potentially conflicting requirements is met (e.g.Quinn,
1985; Richards and Schnute, 1992). Historically, the
feature of having a consistent scale of variation has been
(rightly) considered more important than achieving a
simple connection between mean and linear predictor.
Achieving a consistent scale of variation has therefore
been given a degree of primacy when selecting a trans-
formation.

The usual way of selecting a suitable transformation
has been based on the assumption that, within the im-
portant region of variation of the random variable, the
effect of a transformation can be captured adequately
by a simple local linear approximation at the mean, i.e.
if yhas a distribution with meanµ and varianceσ2(µ),
we want to find a transformation,t(y) that makes the
variance approximately constant. The linear approxi-
mation at the mean suggests that:

t
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(c) The natural link for the Poisson distribution is
log link: η = log(µ), µ = eη, the variance functio
is v(µ) = µ and, as in the case of the binomial d
tribution, the scale parameter is 1. Poisson mo
with log links are often calledlog-linear models
and are used for frequency data. Often freque
data that does not strictly have a Poisson distr
tion can be analysed as if it had using ‘surrog
Poisson models’ (see Chapter 7 ofVenables an
Ripley, 2002).

d) The gamma distribution has a natural linkη = 1/µ.
The variance function isv(µ) = µ2 and the scal
parameter,φ, is generally unknown. The natu
link is sometimes used in practice for the gam
distribution, but other links such as the log-l
are more common. Note that natural link for
gamma distribution does not map the range o
mean into the unbounded natural range of the
(y) ≈ t(µ) + (y − µ)t′(µ)

ence E[t(y)] ≈ t(µ) and Var[t(y)] ≈
t′(µ))2σ2(µ) = const. This rough argument leads
he variance stabilising transformation given by:

(x) ∝
∫ x du

σ(u)

hich suggests the square-root transformation
oisson-like data, the arcsine-square root transfo

ion for binomial-like data, and the log-transformat
or data with approximately constant coefficient of v
tion:σ(µ) ∝ µ.

Fishery data, for example catch rates, often h
he property that the standard deviation increases
he mean approximately proportionally (e.g.Punt e
l., 2000), that is the coefficient of variation is appro
ately constant. This may result from the fact that m
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factors that influence the model, including the random
term, do so multiplicatively. Thus the natural model has
the form:

y = exp


 p∑

j=1

xjβj + ε


 , where ε ∼ N(0, σ2)

A log transformation in this case exactly stabilises the
variance and produces an identity link between mean
and linear predictor in the transformed scale. Note
that non-positive observations cannot occur in such
a model, so if this is a feature of the data it must
be captured by some additional feature of the model,
or avoided by the unsatisfactory practice of adding a
‘small constant’ to all data before transforming (see
Ortiz et al., 2000). It is incorrect to add an arbitrary
value such as one to avoid the logarithm of zero. Fur-
ther discussion of this issue can be found inMaunder
and Punt (2004). By contrast, a normal model with log-
link would involve a model of the form:

y = exp


 p∑

j=1

xjβj


 + ε, where ε ∼ N(0, σ2)

corresponding to a non-linear regression with ho-
moscedasticity in the original scale. Although the esti-
mation of the mean parameters may be reasonable, the
inferences based on this model depend on whether the
variance is actually constant.
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Another way of handling data with a multiplicative
connection between mean and linear predictor and con-
stant coefficient of variation is to use a distribution from
the generalized linear family that has these properties,
such as the gamma distribution with a log link. Alter-
natively, one could use a quasi-likelihood model (see
Section3.5) with log link and variance functionv(µ) =
µ2. This approach has the advantage of working in the
original scale and thus, in principle, avoids the problem
of back transformation. This is an approach worth con-
sidering if inference in the original scale is paramount,
but it is not entirely equivalent to the transformation
approach.

Firth (1988) shows that even from an efficiency
point of view the gamma model may have some minor
advantages even if the lognormal model is the more
appropriate.Wiens (1999)provides a simple example
where the lognormal and gamma models lead to rad-
ically different outcomes, suggesting that the choice
between these two models can be quite important. In
our experience, the transformation approach is often
more realistic for catch rate data, particularly since the
gamma distribution has a much thinner upper tail than
the lognormal. Very fat upper tails are often a feature
of catch rate distributions. Another way of looking at
this is to note that the error term also acts multiplica-
tively on the response for the transformation model.
For the gamma model, the fixed factors do so, but
the error term, which is not simply added to the lin-
ear predictor in this case, does not. In the transformed
s er to
a
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Often, as in the case of catch rate data, interes
uses on estimates of the mean in the original s
imply transforming back to the original scale p
uces estimates of the median rather than the m
nd since the lognormal distribution is massively rig
kewed these are potentially highly negatively bia
stimates of the mean. A simple correction is to

ˆ 2/2 to the linear predictor before back-transform
ut this is also somewhat biased. Producing unbi
stimates of the mean of the lognormal distribu
as received much attention in other contexts.
f the earliest solutions to this problem is given
inney (1941)which produces the minimum varian
nbiased estimate using an argument similar to
lackwell–Rao theorem. Whether this degree of
uracy is needed in fishery applications is debata
owever, considering the usual roughness of the m
ls used in the first place.
cale, diagnostics are certainly simpler and easi
ppreciate.

.3. Estimation and inference in GLMs

Estimates of the regression coefficients for nor
inear models are obtained by least squares, and
f significance are generally conducted by com

ng the minimum sums of squares under different
otheses usingF-tests. Under the normal assumptio

hese tests, or more generally inference methods
exact’, in the technical sense that no approximat
re needed in their implementation. Generalized li
odels offer a very natural extension of this situa

n that:

The computations involved in finding the ma
mum likelihood (ML) estimates of the regress



W.N. Venables, C.M. Dichmont / Fisheries Research 70 (2004) 319–337 325

parameters are very like those for the normal case,
but must be applied iteratively to give successive ap-
proximations that converge to the ML estimates.

• The inference procedures use an analysis of deviance
technique, essentially the likelihood ratio statistic,
which essentially parallels theF-tests of normal the-
ory linear models, and to which these procedures
reduce in that case.

Generalized linear models therefore provide a uni-
form method of estimation and inference that is exact
for the normal case with the identity link. Estimation
is still exact maximum likelihood (ML) for theβ pa-
rameters in other cases, but the inference methods are
generally approximate, because the distribution theory
behind analysis of deviance tests is based on the large-
sample approximate distribution of the likelihood ratio
statistic. Various alternative test procedures exist (e.g.
the score test, Wald’s test and the likelihood ratio test)
which all coincide in the normal-identity case and are,
in this sense, exact only in that case.

Chapter 7 ofVenables and Ripley (2002)shows
that the ML estimate ofβ = (β1, β2, . . . , βp)T can be
found using the same computations as weighted re-
gression applied iteratively. Given an initial estimate
�̂0, of the linear predictors (which may be essentially
a link-transformed version of the observations, with
some prudent modifications), initial estimates for the
regression coefficients and variance weight function
can be calculated. The weighted regression computa-
t e
a e:

z

I l
m the
β

�

f er-
g

um
o
c

log L̂(φ) =
∑n

i=1

[
Ai

φ
{yiθ(µ̂i) − γ(θ(µ̂i))}

+ τ

(
yi,

φ

Ai

)]
(1)

Notice that maximising this function with respect to the
β parameters does not involve the second term (which
is constant with respect to theβ’s). Theφ parameter
only occurs as a constant multiplier in the first term
and hence the point at which the maximum occurs does
not depend onφ. This is why the ML estimate of the
β parameters may be found without knowledge of the
scale parameter. (This important fact partly explains
why the deviance is defined in the way that it is, as we
discuss in Section3.4.)

Eq.(1) is the profile likelihood for the scale param-
eterφ. In principle, the ML estimate of the scale pa-
rameter may then be found by maximising this quantity
with respect toφ, although other estimators are often
used, as we shall see.

The large-sample estimate of the variance matrix of
theβ parameters is then:

Var[�̂] = φ̂(XTŴX)
−1

Tests on individualβ coefficients using the standard
test statistic:

zi = β̂i − βi0√
φ̂(XTŴX)

−1
ii

a hy-
p the
l lin-
e with
w nse,
g nat-
u om-
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ion uses a constructedworking vector zas the respons
nd iterative weights given by the following formula

0i = η0i + yi − µ0i

dµ0i/dη0i

, w0i = Ai

v(µ0i)

(
dµ0i

dη0i

)2

f X is then×pdesign matrix andW0 then×ndiagona
atrix of weights, then the next approximation to
and linear predictor vectors are:

ˆ
1 = (XTW0X)

−1
XTW0z0, �̂1 = X�̂1

rom which iteration can usually proceed to conv
ence.

This iterative scheme attempts to find the maxim
f the log-likelihood function, which, givenφ, may be
omputed at any step as:
s approximately standard normal under the null
othesis are called Wald’s tests. In fact, most of

arge-sample inference procedures in generalized
ar models can be deduced by using the analogy
eighted linear regression. In this very practical se
eneralized linear models offer a unified and very
ral extension of linear least squares that is both c
utational and inferential.

.4. The deviance, its definition and its uses

Many authors claim that the quantity called the
iance in generalized linear models is−2 times the
aximum log-likelihood’. This is not strictly correc
nd for some GLMs it is actually false and mislead

To give a precise definition of the deviance
LMs we need first to give a definition of asaturated
odel. This is a model with as many mean parame
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as there are observations. In this case we may take the
components of the mean vector as the parameters and it
is easy to see that the ML estimates are the observations
themselves: ˆµi = yi. We will denote the maximum of
the log-likelihood function under the saturated model
as:

log L̂S(φ) =
∑n

i=1

[
Ai

φ
{yiθ(yi) − γ(θ(yi))}

+ τ

(
yi,

φ

Ai

)]
(2)

Notice that any model we may specify for the means,
that is any design matrixXwe may propose, specifies a
model that is nested within the saturated model. To see
this, note that that any model imposing a restriction on
the mean vector through a real design matrixXmustbe
a special case of the saturated model, which imposes
no restrictions at all. The maximized log-likelihood for
any real model, then, cannot exceed that for the satu-
rated model.

Temporarily assumingφ is known (as it is for bi-
nomial and Poisson cases, but usually not otherwise)
the likelihood ratio statistic for testing some specific
model, sayM, within the saturated model is then found
by subtracting Eq.(1) from Eq.(2) and multiplying by
2:

χ2 = 2(logL̂S(φ) − log L̂M(φ))

1
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of deviance residuals, an important diagnostic tool to
which we return below.

3.4.1. Distribution of the deviance; tests of fit
For the normal case, the expression for the deviance

is the residual sum of squares:

DM =
n∑

i=1

(yi − µ̂i)
2

and hence for the identity link this quantity does have a
distribution proportional to the chi-squared:DM/φ ∼
χ2(n − r), exactly. This leads to the usual ‘variance
component’ estimate of the scale parameter:

φ̃ = DM

n − p

which for the normal case is the usual restricted maxi-
mum likelihood (REML) estimate of the variance, usu-
ally denoted byσ2. REML estimation can be viewed as
maximum likelihood estimation, but using a likelihood
based on functions of the data which have a distribu-
tion depending only on the parameter of interest, in this
caseσ2. In this sense, the likelihood is ‘restricted’, and
the resulting estimate is usually closer to unbiased than
the strict ML estimate, while retaining high efficiency.

The distributional properties of̃φ are virtually un-
known for the gamma and inverse Gaussian cases.
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=
φ

i=1

Ai[{yiθ(yi) − γ(θ(yi))}

− {yiθ(µ̂i) − γ(θ(µ̂i))}] def.= DM

φ
(3)

he quantityDM so defined is the deviance for mo
. Thus, the deviance may be defined as ‘the lik
ood ratio statistic for testing any specific model wit

he saturated model, assuming the scale parame
nown and has the value 1’. The assumption is
mportant. The assumption is met for the binomial
oisson distributions and the deviance is then mer

e-located version of−2 logL̂, but for the normal an
amma distributions the assumption is usually not
nd the deviance is not directly related to a likelih
atio statistic at all.

The quantity inside the summation sign on the m
le expression of Eq.(3) is calledthe deviance incre
ent. These quantities in turn lead to the definit
evertheless, if a fitted model for a distribution w
known hasDM/φ � n − p, the data is said to b

overdispersed’ with respect to the assumed distr
ion. Similarly if we haveDM/φ � n − p the data ar
underdispersed’. This is less common, but can hap
or example, with binomial data when models have
imated probabilities close to 0 or 1. The variance c
onent estimate ofφ is very unreliable for some class
f data such as binary data or gamma data with va
lose to zero, and a different estimator is used base
he Pearson chi-squared statistic (see Section 4.4
cCullagh and Nelder (1989)). In these cases, a vie
n whether the data are ‘overdispersed’ or ‘unde
ersed’ relative to the assumed model should be b
n this alternative estimator.

The assumptionφ = 1 holds for the binomial an
oisson cases, and the deviance is often used as a

test of fit’, using the approximation ,
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with large values leading to rejection.2 However, this
approximate distribution has to be treated with some
caution. It cannot be directly justified on the grounds
of large-sample likelihood ratio theory. That theory per-
tains to testing one hypothesis within another, both of
which have fixed degrees of freedom as the sample size
increases. As the sample size increases the number of
degrees of freedom associated with the saturated model
by definition also increases, thus negating the assump-
tion.

For the distribution of the deviance to be approx-
imately chi-squared, a sufficient condition is that the
distribution of the observations from which it is com-
puted must become nearly normal. Thus, for the bino-
mial case, we might then expect the distribution of the
deviance, and hence the customary test of fit, to become
approximately correct if the number of observations
remains constant but the sizes of each of the numbers
of trials, what we have called theai ’s above, increases.
This is because by the central limit theorem each obser-
vation will become more nearly normally distributed.
However, for the case of logistic regression with binary
data, increasing the number of observations in general
has an unknown effect on the distribution of the de-
viance. The approximate distribution theory will then
usually not apply.

If a test of fit is required in the binomial or Poisson
cases, a better proposal is to fit an enclosing model
that includes all contemplated models as special cases
a s of
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Whenφ is not known, the usual approximation uses
anF-statistic. In this case the usual (but in some cases,
somewhat speculative) approximation is:

again with large values leading to rejection. For the
normal-identity case this is an exact result. For the nor-
mal case with non-identity links, the behaviour of this
test statistic is not completely known. However, the ap-
proximation is usually assumed to be reasonably good,
provided the model is not too non-linear. For other cases
whereφ is unknown, such as the gamma, the behaviour
of this test statistic is not well known.

3.5. Quasi-likelihood

Generalized linear models offer considerable flex-
ibility in modelling. The link function can be used to
specify a non-linear connection between the linear pre-
dictor and the mean, and the distribution itself can be
used to specify the variance function, that is, the con-
nection between the variance and the mean. As we saw
in Section3.2, with transformations of the response it-
self, a single transformation had to be used to try to
achieve both of these features, and the result was in-
evitably something of a compromise.

The estimation procedure and approximate infer-
ence methods presented above do not require the dis-
tribution to be stated explicitly, but rather rely on a
n
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nd to test any given model within it. The degree
reedom associated with the enclosing model sh
e relatively small compared with the sample size

Likelihood ratio theory suggests that even if
eviance itself is not approximately chi-squared

ributed, scaled differences of deviance (between fi
odels with relatively low degrees of freedom co
ared ton) will have approximately chi-squared dist
utions. Thus ifM andM0 are two fixed models wit
andp0 degrees of freedom, andM0 is nested within
, implying p0 < p < n, andφ is known, then unde

easonably general conditions:

if M0 is true. This provides the usual likelihood ra
est.

2 The symbol� is used to mean ‘is approximately distribu
s’.
umber of functions to be specified. These are:

the link function,l(·), which connects the mean
the linear predictor, and conversely;
the variance function,v(µ), which specifies th
mean–variance relationship up to proportionalit
the deviance increment, which is only required a
inferential rather than the estimation stage.

This realisation ledWedderburn (1974)to introduce
he notion of a quasi-likelihood model, which is o
artially parametric in that it only requires these th

ngredients to be specified rather than a fully param
odel.
Quasi-likelihood models (seeGodambe and Heyd

1987)for a comprehensive treatment) can be sh
o have various optimality properties regardless o
recise underlying distribution (e.g.Firth, 1987). Us-

ng quasi-likelihood models with the same link a
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variance function as the binomial or Poisson distri-
butions produces the same estimates as for those dis-
tributions, but can be used with the scale parameter
assumed unknown and estimated. These are sometimes
called quasi-binomial or quasi-Poisson models. One
way of allowing for overdispersion in inferences is
to use a quasi-deviance to estimate a scale parame-
ter. This device is closely related to one of the earli-
est ways of dealing with overdispersion (e.g.Finney,
1971).

Most software implementations of GLMs allow
quasi-likelihood models to be specified in a straight-
forward way. For example, both S-PLUS and R allow
a family argument in the GLM fitting function that
may be used to specify a quasi-likelihood model in
terms of the link and variance functions. R also has
quasi-binomial and quasi-Poisson families that spec-
ify binomial- and Poisson-like ‘distributions’, but for
which the scale parameter is assumed unknown and is
estimated. The fact that no known discrete distribution
has these properties is not an impediment to the non-
parametric optimality properties still enjoyed by the
estimation and inference procedures associated with
quasi-likelihood methods.

3.6. Diagnostics and possible problems

Most of the diagnostic techniques for discovering
problems with linear models can be applied fairly di-
rectly when using generalized linear models, with some
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all reduce to the same value for ordinary linear models,
as might be expected.

Perhaps the most widely used definition of resid-
uals for generalized linear models is the so-called
‘deviance residuals’ as introduced inMcCullagh and
Nelder (1989). The deviance residual for an observa-
tion is defined as the signed square-root of the deviance
increment for that observation, where the sign is that of
yi − µ̂i. Hence, just as the squares of the residuals in
a linear model add to the residual sum of squares, the
squares of the deviance residuals add to the deviance
in a generalized linear model.

No definition of residuals is completely satisfactory
for some classes of data. These include binary data
and other frequency data with small numbers. In these
cases, diagnostic investigations have to rely on other
methods more specific to the particular problem (see,
for example,Cox and Snell (1968)andLaird (1996)).

Discreteness in the data is not a particular problem
for much of the machinery of inference using general-
ized linear models. Likelihood ratio tests, for example,
rely on the likelihood being approximately quadratic
in a sufficiently wide region about the maximum. Al-
though there can be some problems with binomial
models (e.g. the Hauck–Donner effect—Venables and
Ripley (2002), p.197ff) this affects the convergence of
the estimation process and Wald’s tests more than like-
lihood ratio tests.

3.7. Overdisperson and model extensions
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aveats (e.g.Williams, 1987; Fox, 1997). The discov
ry of points of high leverage should use a proje
atrix that takes into account the weights at the fi

tage of iteration, but otherwise the technique is ide
al to the ordinary linear regression case. This fea
s automatically included in the facilities provided
he R software function ‘influence.measures’, to wh
eaders may refer for additional examples (R Develop-
ent Core Team, 2003).
Residual plots are also useful in most cases. Plo

orted residuals against normal scores and again
ndividual predictor variables or the fitted values
inear predictor values) are often used (e.g.Ortiz and
rocha, 2004) and should generally behave simila

o those for normal data. The residuals themselve
ot uniquely defined and the S-PLUS and R softw
ystems, for example, both allow four possible de
ions of residual for generalized linear models. Th
We have already discussed overdispersion as
ential problem with binomial- and Poisson-like da
n alternative to using quasi-likelihood models is
xtend generalized linear models to incorporate
ra components of variation which account for
ncreased dispersion. Technically this makes them
ralized linear mixed models (GLMMs) of a kind
ubject to which we return below.

There is a considerable literature on this appro
ith Williams (1982)one of the earliest papers on
inomial. One approach is to assume a two-stage m
f the form:

i|πi ∼ B(ni, πi), πi ∼ B(δ, γ)

he marginal distribution ofyi is then beta-binomia
nd the extra variation induced by the beta compo
the secondB above) induces the extra dispersion
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the model relative to the binomial (the firstB) alone.
Williams (1982)also describes two other possible ap-
proaches.

Another distribution often used for frequency data
overdispersed relative to the Poisson is the negative
binomial distribution (e.g.Bannerot and Austin (1983)
for catch rate data). This may also be specified using a
two-stage formulation, namely:

yi|zi ∼ Po(µizi), zi ∼ Γ (θ, θ)

The mixing gamma distribution hasE[zi ] = 1 and
Var[zi ] = 1/θ so the distribution ofyi approaches the
Poisson again asθ → ∞, i.e. as the mixing variable
becomes constant. It is also easy to see by conditional
expectation and conditional variance arguments that:

E[yi] = µi, Var[yi] = µi + µ2
i

θ

The distribution has variance which is quadratically
related to the mean rather than linearly as in the Pois-
son and quasi-Poisson cases for small values ofθ. The
marginal distribution ofyi is given by:

f (yi; µi, θ)

= Γ (yi + θ)

Γ (θ)yi!

θθµ
yi

i

(θ + µi)θ+yi
, yi = 0, 1, 2, ...

which, if θ is known, conforms to the generalized lin-
ear model distributional form. In waiting time data this
occasionally is the case, but, in general,θ will be un-
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extremely poor behaviour elsewhere. Within the gen-
eralized linear modelling family, one way around this
is to use a link function in the model that incorporates
some non-linear behaviour. For example, the mean of
a binomial proportion can only lie between 0 and 1; the
link function ‘wraps’ the linear predictor into this finite
range. Another way to extend the range of applicability
of a model is to use a genuinely non-linear regression,
which takes the model outside the generalized linear
modelling family.

Remaining within the GLM family, this obstacle
can sometimes be overcome by using a family of
functions that can adapt to the local behaviour of
the regression function almost independently in sev-
eral regions at once. One such family is the spline
family.

Spline functions (e.g.de Boor, 1978) are piece-
wisepolynomials, usually over a finite range. At the
‘knots’, the points where the polynomial pieces join,
the function is constrained to remain continuous and
smooth. At the ends of the range (the ‘boundary knots’),
a further constraint is applied to identify the func-
tion. For example, so-called ‘natural cubic splines’
are piecewise cubic polynomials with continuous first
derivatives at the knots and constrained to be linear
outside the boundary knots. The two important prop-
erties of splines from a data analysis point of view
are.
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nown. Thus, the model may be fitted by adapting
terative scheme to accommodate the extra param
see Chapter 7 ofVenables and Ripley (2002)for a
ore complete discussion, including examples).

. Achieving flexibility in the linear predictor;
oving to GAMs

We have noted above that including polynom
erms in the linear predictor is a natural way of
arging the region within which an empirical regr
ion relationship may be useful. This is analogou
ncreasing the number of terms in an approxima
aylor series to an unknown function. A problem w
olynomials, in mathematical terms, is that the loca
aviour determines the global behaviour. Often g
ehaviour in one region is bought at the expens
known basis functions, analogous to the power te
used to define polynomials, and hence may be fi
with no more difficulty than polynomials.
They are more flexible than, say, polynomials or
monic functions. This is because being piecew
functions with discontinuous higher derivatives
the knots their local behaviour at a point does
entirely determine their global behaviour, i.e. th
can ‘adapt’ to local conditions almost independe
in several parts of their range.

One price that has to be paid for this less rigid
aviour relative to high-order polynomials is in the

erpretability of the coefficients. Spline regressions
ost easily appreciated graphically through the
icted or fitted values in the regression rather

hrough the values for their coefficients. In testin
pline model the entire block of terms should ei
e in the regression or out; in general it makes l
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Fig. 1. An artificial example showing the true regression function (solid), the natural spline regression approximation with 10 degrees of freedom
and knots atx = −8, −6, . . ., 6, 8 and boundary knots atx = −10, 10 (dashed) and a polynomial regression, also with 10 degrees of freedom
(dotted).

sense to consider the separate significance of individ-
ual terms.3

Fig. 1 shows an artificial example of a regression
in one variable that is almost constant for much of
its range but with a ‘hump’ in one region. The true
function is a standard normal density over the region
(−10, 10) and there are 501 evenly spaced observa-
tions. The (artificial) data are shown in the top left panel
and in the top right panel the true function is plotted
together with the least squares estimates of a polyno-
mial and a natural spline regression, both of which use
10 degrees of freedom. The polynomial fails to cap-
ture the behaviour of the regression virtually every-
where, whereas the natural spline does a reasonable
job. In particular, the polynomial fails spectacularly at
the ends of the range; the natural spline would not fare
that much better for extrapolation very far from the ends
of the range, but is certainly more stable. The only way
we know of achieving stable extrapolation would be
to fit a non-linear regression of the true form, namely
y = exp(β0 + β1x + β1x

2) + ε, which has a mean that
is a non-linear function of the unknown parameters.
This is a non-linear regression, but the non-linearity
can be captured by a log-link, thus remaining within
the generalized linear model family. The fitted model

3 To construct a nested sequence of natural cubic spline models
in one variable of increasing complexity, the knot sequences have to
be nested in the obvious sense. The complexity could be increased in
this way and the testing theory would be entirely analogous to testing
p ware
o

and the true regression curve virtually coincide in this
case, but it does require that the data analyst knows the
true form of the regression.

One of the earliest papers on spline regressions
(Boneva et al., 1970) suggested using them for ex-
ploratory purposes and this is still possibly their most
effective use. Most statistical software platforms that
provide generalized linear model fitting facilities now
provide for spline regression, usually with a choice of
‘natural’ or ‘B-spline’ bases. The distinction between
these lies in the identification constraint imposed at the
ends of the range, but for most regression purposes the
two bases are virtually equivalent.

4.1. Cross-product terms

When there are several predictor variables, it is com-
mon practice to fit independent spline terms in each, at
least during exploratory analyses:

η = β0 + s(x1, β1) + s(x2, β2) + · · · + s(xp, βp)

(where, despite notational appearances, allβ’s occur
linearly). The individual terms are then easy to plot
against the variable on which they depend, and usu-
ally easy to interpret. This presumes that the linear
predictor can be so written, however, and that cross-
product terms between different variables are not re-
quired. Unfortunately this is not necessarily the case
in practice. The estimates of the ‘main effects’ (here
s ss-
p

olynomial models of increasing degree. However, we are not a
f this being done commonly in practice.
pline) terms can be very misleading if important cro
roduct terms are omitted.
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Including cross-product terms greatly complicates
the interpretation, and analysts are often loathe to in-
clude such terms for this reason. There is no easy solu-
tion to this, however, and the analyst has a responsibility
to address this issue seriously.

One general way around this problem can be to
choose variables in such a way that one would not
expect, a priori, interactions among them to be very
large. For example, it may be tempting to choose ad-
ditive spline terms in latitude and longitude for mod-
els where graphical location is an important predictor.
However, for a coastal fishery it may be more natural to
take the distance along the coastline as one geograph-
ical co-ordinate and distance from the coastline out to
sea as the complementary co-ordinate (Venables and
Dichmont, 2004). If the GLM is describing, for ex-
ample, fish abundance measures, it is easy to envisage
situations where the latitude and longitude predictors
are strongly interacting, but alternative geographical
predictors are not.

5. Generalized additive models

Spline regression models can be parametrically very
expensive and easily lead to over-fitting. Generalized
additive models address this problem by deliberately
fitting a model with a large number of parameters, but
compensating for this by estimating them using a pe-
nalized likelihood, with the balance between likelihood
a
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is, however,Agnew et al. (2003)where a combined
GLM/GAM of parasite abundance inMicromesistius
australiswas modelled as a binomial GAM on the pres-
ence/absence component and infection intensity was
modelled using a simple GLM.

A generalized additive model (Hastie and Tibshi-
rani, 1990) is a generalized linear model that allows an
extended form of linear predictor, namely:

η = β0 + f1(x1) + f2(x2) + · · · + fp(xp)

where thefi(xi) terms may well involve unknown pa-
rameters, but these are suppressed in the notation.
The fi(xi) terms are, in general, ‘local smoothers’,
meaning they may be explicit functions or they may
be, for example, ‘loess’ terms, which are more like
prescriptions for achieving a local approximation by
weighted averaging of near neighbours than explicit
function definitions. One common choice is the so-
called ‘smoothing splines’, which are splines with
knots at each distinct value of the variable. If the esti-
mation were not penalized, ‘smoothing splines’ would
interpolate the data. The use of smoothing splines
in regression is discussed comprehensively inWahba
(1990).

In addition to local smoother terms, generalized
additive models may contain other terms with fixed
degrees of freedom such as polynomials, harmonic
terms or ordinary splines. These are omitted from
the discussion here for simplicity. They enter the
l bed
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nd penalty chosen by cross-validation.
The use of GAMs in fisheries science is much

ommon that GLMs, but their use has increased
tantially over the last decade. Many scientists are
ng GAMs instead of GLMs, and, as a result, the m
ommon use in fisheries science is similar to tha
LMs, namely standardization of abundance data
alsh and Kleiber, 2001). Most studies use a com

ination of commercial and/or survey data toge
ith geographic and environmental variables for
erstanding and predicting abundance (e.g.Borchers
t al., 1997; Bigelow et al., 1999; Denis et al., 20
rynjarsd́ottir and Stef́ansson, 2004), stock or specie
tructure (e.g.Cardinale and Arrhenius, 2000; Venab
nd Dichmont, 2004) or distribution (e.g.Wright et al.,
000).

Rarely does one find that a mixture of GLMs a
AMs has been used in the same study. One exa
ikelihood but not the penalty terms to be descri
elow.

The comments on cross-product terms made in
ion 5.1 still apply: it is assumed that the analyst
hosen thex-variables in such a way that cross-prod
erms are not likely to be important relative to the te
n each single variable that remains. If this is po
le, it implies that the effect of each variable on
esponse is summarised by thefi(xi) term which in-
ludes it. This makes interpretation of the model
tively easy.

.1. Estimation with penalties

If L is the likelihood function (initially assuming th
cale parameter has a known value of 1), estima

s achieved by minimising the penalized negative
ikelihood:
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−logL +
p∑

j=1

λj

∫
(f ′′

j (xj))2 dxj

where first term measures the closeness of the fit to
the data and the second term measures the degree of
‘roughness’ in the regression function. Theλj ’s are
‘tuning’ constants that effect the trade-off between ac-
curacy and smoothness, and are generally chosen by
cross-validation. The fitting process is fully described
in Hastie and Tibshirani (1990).

5.2. Discussion of GAMs

In our view, generalized additive models, if the prob-
lem of cross-product terms can be satisfactorily settled
a priori, can be a powerful exploratory tool highlight-
ing unexpected behaviour of some variables in their
influence on the distribution of the response. However,
they come at a relatively high cost. While the interpre-
tation of the results may be relatively simple, at least
graphically, any formal inference procedure, such as
hypothesis tests or even obtaining confidence intervals
for the fitted values, can be somewhat problematical.
It is even possible for the deviance to increase in some
cases if additional terms are added to the model, lead-
ing naive analysts to arrive at notional chi-squared test
statistics that are negative. This apparently anomalous
behaviour is resolved by noting that the fitting process
does not minimize the deviance but rather the penalized
deviance and the tuning constants may easily change
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with the approximate inference procedures usually sug-
gested.

6. Generalized linear mixed models

6.1. Mixed models

Before describing GLMMs we find it useful to
present an artificially simple example based on ordi-
nary mixed models. Consider perhaps the simplest of
all possible linear models, that of a single mean:

yi = µ + εi

If we do not specify this model any further and re-
gard all unknowns as parameters, there are more param-
eters than observations, namelyµ, ε1, ε2, . . . , εn. If we
identify the problem by imposing some constraint, for
example,

∑n
i=1εi = 0, then the model is saturated and

the parameters are merely a different way of presenting
the full data set and nothing is achieved. If, on the other
hand, we extend the model in the usual way by requir-
ing thatεi ∼ N(0, σ2), independently, then the number
of parameters condenses to two:µ andσ2, with esti-
mates ¯y ands2 = 1/n − 1

∑n
i=1(yi − ȳ)2 and the sta-

tus of the differences, or residualsε̂i = yi − ȳ changes
from parameter estimates to ‘predictors’ of the value
of the unobserved variable. In this sense, all sensible
models are ‘mixed’ models in that they have systematic
and random components. It is more usual, however, to
r ore
t

ar
m .

6

ral-
i ear
p for-
m ous
v

y

N ts,
f e
onsiderably between any two models, implying a
erent trade-off.

In fisheries research, the added flexibility
eneralized additive models over, for example, g
ralized linear models with fixed spline, or even po
omial terms may sometimes be necessary, but in
xperience this is uncommon. We find that most
lications in fisheries research are adequately han
y a judicious use of spline and polynomial ter
or harmonic terms if the function has a known
iod), and the stable and relatively straightforw
nference procedures that this allows is a highly
ortant bonus. This is not to say that generalized a

ive models might not be used for exploratory purpo
rior to an analysis. In some cases, the extra flexib
f, say, smoothing splines with penalized estima
ay really not be adequately replaced by fixed k

plines, but in this case we urge users to be cau
eserve this description for the situation where m
han one random term enters the model.

Robinson (1991)provides a good reference on line
ixed models and best linear unbiased prediction

.2. GLMMs proper

Generalized linear mixed models are like gene
zed linear models but some of the terms in the lin
redictor are random variates. The model may be
ally described conditionally as (now using an obvi

ector notation):

|� ∼ GLM(η, φ),

where η = Xβ + Z� and � ∼ N(0, Σ(θ))

ote that the design matrix is expressed in two parX
or the fixed effects andZ for the random effects. Th
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random effects,ζ, need not be multivariate normally
distributed, but this is the common practice. Since the
random effects are not observed, the true likelihood
is based on the marginal distribution ofy, which, in
principle, can be obtained by integration. For a more
extensive discussion of this possibility and its practi-
cal limitations, see Chapter 7 ofVenables and Ripley
(2002). The marginal density ofy is:

fY (y; β, φ, θ) =
∫

fY |ζ(y|ζ; β, φ)gZ(ζ; θ) dζ

where the integral over the multivariate distribution of
the random effects is generally not tractable.

This rather formal definition can obscure both the
simplicity of the method and its flexibility to cap-
ture real features of an actual situation. For exam-
ple, random effects will usually be nested at differ-
ent levels, such as ‘between areas’ and ‘between ves-
sels within areas’, assuming areas can be modelled as
random. For example,Lai and Helser (2004)model
growth data where individuals are nested within survey
strata.

Also, longitudinal data will normally capture
‘within vessel, between times’ variation either with
an explicit correlation structure or by assuming an
additive random vessel effect. In other cases, we
may have random slope and intercept terms, which
will normally be correlated, where the individual ran-
dom regression lines occur, say, within vessel over
time.
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Several closely related approximate procedures are
now most often known as ‘penalized quasi-likelihood’
methods.Schall (1991)used the iterative weighted
linear regression analogy, and suggested an estima-
tion scheme for GLMMs that amounted to an iterative
weighted version of fitting linear mixed effects mod-
els. Breslow and Clayton (1993)developed a similar
method using the Laplace method for approximating
the multiple integral involved. This latter method and
their term, PQL, is now perhaps the most commonly
used method, although others are gaining in popularity
(see alsoWolfinger and O’Connell (1993)). Some soft-
ware is becoming available that uses numerical integra-
tion or Markov Chain Monte Carlo (MCMC) methods.
See, for example, the GLMMGibbs and lme4 pack-
ages in R. For a very different approach, based on
the EM algorithm, seevan Dyk (2000)and references
therein.

6.3. GLMMs: a generalized example

The implications of using GLMM are probably best
conveyed by a concrete, but generalized, example. In
many fisheries, the catch is a combination of several
species. However, because of the substantially differ-
ent biology of the species, separate stock assessments
are needed for each species in the catch. Survey or
observer data, even though very patchy in distribution
and time, can be used to gain information on the relative
s nd at
d lem
o of
t oup.
( -
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Estimation in GLMMs is still a research topic, b
everal approximate techniques are now (still so
hat cautiously) gaining acceptance.Diggle et al

1994) and Laird (1996) summarise the theory a
ther issues related to GLMMs in the context of lon

udinal data, a common context in which mixed m
ls arise. Longitudinal data are cases in which se
easurements are made on the same experimenta

e.g. vessels) over time. The fact that the same v
s used normally induces correlations among the
ervations, which are important for the model to c
ure. One very effective way of achieving this is
ttribute a random effect to each vessel, implyin
LMM. The use of GLMMs in fisheries science ne
rtheless remains fairly rare with only a few examp

n the mainstream fisheries literature (e.g.Cooke, 1997
quires and Kirkley, 1999; Olsen, 2002; Brandão et al.
004).
pecies proportions in the catch in different areas a
ifferent times of the season. We consider the prob
f building a GLMM for predicting the proportion

he catch, by weight, of a species within a catch gr
A specific example is described inVenables and Dich
ont (2004).)
The observations driving the model are the t

eights,T, of catch in survey trawls, and the prop
ions of the weight for one of the species,y. Although
he proportions are not binomially distributed, it is r
onable to consider a quasi-likelihood model that
mean and variance function similar to the binom
ence, ifµ is the true proportion, we propose a qu
inomial model of the form:

∼ quasi-binomial

(
µ = eη

1 + eη
, Var[y] = µ(1 − µ)

T/φ

)

(where here, ‘∼’ means ‘is modelled as’). The va
bles available for the linear predictor include fine-
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large-scale spatial coordinates, fine- and large-scale
time, periodic time, and geographical variables such
as depth and sediment type. In the specific example re-
ferred to above, the final model contained a mixture of
spline terms, a linear term, four harmonic terms and an
interaction term. There were also two random terms,
which convert the model from a GLM into a GLMM.
These were random increments for:

1. the season in which the survey took place, and
2. the stock region within each season.

These, respectively, allow for changes among sea-
sons, and differences among stock regions within
seasons, not otherwise captured by the model. They
introduce two additional components of variation into
the model. More importantly, they induce correlations
among observations at two levels, namely within the
same stock region and season, and within the same sea-
son. These may be important in allowing for unmea-
surable factors influencing the proportions that need
to be included in this surrogate way to enable the ef-
fect of other factors to be estimated accurately. If these
random terms (technically a random main effect and
a random interaction) were estimated as fixed effects,
there would be two main differences:

1. the number of parameters in the model would
be greatly increased, possibly leading to over-
parameterization and, more importantly,

2. the fixed effect model would not allow any future
iven
the
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sea-
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poses. This is the rule rather than the exception in fish-
eries research in our experience. The data sets are often
very unbalanced and even the experimental protocols
are changing as time proceeds in perhaps subtle and un-
known ways. All these possibilities point to modelling
the situation using random terms.

7. Summary

This overview of theory has not attempted to be
comprehensive but has instead tried to focus on issues
that we find are perennial in fisheries research.

We began with a view of the mathematical genesis
of a linear model that we hope made it clear that most
linear models are empirical and local in practice, in the
sense that they are not expected to perform well out-
side a restricted domain centred on the observations.
With a first-order model, ordinary least-squares nor-
mal theory models might be adequate, at least for a
continuous response variable. We might expect that in-
teractions among predictors, curvature terms, variance
heterogeneity and non-normality will start to play an
increasingly important role as the domain of applica-
bility is extended.

If the simple assumptions underlying the normal as-
sumption are not met (well enough), one way of cor-
recting the situation is to transform the response. The
goal of a transformation has classically been to stabilise
the variance. Even so, a transformation will also change
t the
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prediction, because, to make a prediction for a g
future fishing season, we would need to know
unique increment for the season, as well as
unique increments of the stock areas within the
son.

The random terms do not contribute to the fixed
f the mean, but the variance components assoc
ith them will inflate the tolerance intervals associa
ith predictions in an appropriate way.
The property that random terms have of induc

orrelations among the observations is possibly
ost important effect of a mixed effects model, as t
llow a measure of data integration to take place in
nalysis, the so-called ‘borrowing strength’ prope
his is particularly important in situations where
ata set has not been collected for the primary pur
t hand, but has been drawn together from histo
ata sets that were originally collected for other p
he relationship between the linear predictor and
ean as well as possibly promote overall normality

educing skewness and kurtosis. Transforming th
ponse may even complicate things if it is neces
o make inference on the mean of the untransfor
cale.

Extending the region of applicability of the mod
ay involve including higher-degree polynomial ter

n the predictor variables, as suggested by the
or series analogue. Other ways of doing this are
lly preferable. In particular, regression splines o
simple way of modelling the dependence of
ean on a predictor variable that offers greater

al flexibility. There is still the need, however, eith
o include cross-product terms or to choose pred
ariables in a way that would minimise the need
uch terms. This requires an intimate knowledge o
ontext.
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Generalized linear models offer a way of modelling
in the original scale, but effectively of accommodating
a greater range of (a) links between linear predictor and
mean and (b) forms of dependence of the variance on
the mean, than is possible under simple normal theory.
Inference methods in generalized linear models mainly
use the concept of the deviance, which is somewhat
like −2 × log-likelihood, but differs in some essential
respects.

Quasi-likelihood models form a non-parametric ex-
tension of the idea. They only require a link function,
variance function and deviance increment to be sup-
plied and the analysis can proceed even without formal
identification of an underlying distribution.

Generalized additive models offer a way of gaining
extra flexibility in the linear predictor while automat-
ically controlling the parametric complexity. GAMs
allow the linear predictor to include local smoothers
as terms. These then entail an estimation procedure
that differs from maximum likelihood in that a penal-
ized likelihood is maximized, where the penalty uses
a measure of roughness in the fitted surface. The tun-
ing parameter that determines the compromise between
fit and roughness is often chosen by cross-validation.
These methods offer a powerful exploratory tool in fish-
eries research, but we have seen few occasions when
using appropriately chosen fixed spline terms in the re-
gression is not sufficient. There is also, in practice, a
strong incentive to ignore cross-product terms in the
linear predictor, because to do so makes the interpre-
t ro-
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Mixed effects models offer an important way of us-
ing models that are flexible but at the same time have
their parameterization strongly controlled. Typically a
group of related parameters enters the model as a sin-
gle random term. The model now focuses not on the
separate parameters as would be the case for the fixed
effects model but on the variance component, that is,
the variance of the distribution from which the pa-
rameters are assumed to come. The estimation pro-
cedure generally produces ‘predictors’ (often called
‘best linear unbiased predictors’, or BLUPs) of the
individual values, although they now have a differ-
ent logical status from separate parameter estimates.
They are, in fact, somewhat analogous to residuals.
The BLUPs of the random effects, like the (condi-
tional) residuals, can be subjected to a range of di-
agnostics such as normal QQplots since the random
effects are assumed to be normally distributed in the
GLMM. Detection of atypical values of the random
effects may also be possible using scatterplots of the
BLUPs which include their approximate confidence
bounds.

In modelling key parameters as random, mixed ef-
fects models have the capacity to ‘borrow strength’
from different parts of the data set and produce pre-
dictors of the individual terms that usually show some
‘shrinkage’ towards the general mean, which is seen
as natural and reasonable. In other words, the predic-
tors are often much more stable than individual pa-
rameter estimates would be, because those use more
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e the
d turn
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ation much simpler and the software facilities p
ided almost encourages this omission. In our view
voidance of cross-product terms is a trap. There
trong requirement for the user of GAMs first to cho
ariables where the need for cross-product terms i
ikely to be strong (or to include such terms in

odel). This is usually not easy and requires som
ight into the context.

Generalized linear mixed models are a powe
xtension of GLMs. The linear predictor now co
ains both fixed and random terms. The mode
ithin the GLM family conditional on the rando

erms, but marginally (i.e. unconditionally), it usua
s not. Estimation in GLMMs is still a research top
nd the currently available methods all use some
roximation to the multiple integral that defines
arginal distribution in a way that avoids its expl

valuation.
nformation in the data. This property makes mi
ffect models very effective in situations where
ata are very unbalanced or fragmentary, which in
an result if the data set itself has been put toge
rom historical data sets originally collected for ot
urposes.

cknowledgements

The authors wish to thank André Punt and Yong
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