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a b s t r a c t

In autologistic regression models employed in the analysis of species’ spatial distributions,

an additional explanatory variable, the autocovariate, is used to correct the effect of spa-

tial autocorrelation. The values of the autocovariate depend on the values of the response

variable in the neighbourhood. While this approach has been widely used over the last ten

years in biogeographical analyses, it has not been assessed for its validity and performance

against artificial simulation data with known properties. I here present such an assessment,

varying the range and strength of spatial autocorrelation in the data as well as the preva-
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lence of the focal species. Autologistic regression models consistently underestimate the

effect of the environmental variable in the model and give biased estimates compared to a

non-spatial logistic regression. A comparison with other methods available for the correc-

tion of spatial autocorrelation shows that autologistic regression is more biased and less

reliable and hence should be used only in concert with other reference methods.
1. Introduction

In 1996, Augustin et al. introduced a new approach to
addressing the problem of spatial autocorrelation in species
distribution data, which they termed autologistic regression
(see also Gumpertz et al., 1997). This approach, detailed below,
has quickly gained popularity among ecologists, as it pro-
vides an easy way to address a fundamental problem intrinsic
to spatial data. Examples for its application include mod-
elling the distribution of plant species (Wu and Huffer, 1997;
Huffer and Wu, 1998; He et al., 2003; Boll et al., 2005), insects
(Gumpertz et al., 2000; Dennis et al., 2002; Brownstein et
al., 2003), amphibians (Knapp et al., 2003), birds (Osborne et
al., 2001; Silva et al., 2002; Selmi et al., 2003; Mörtberg and
Karlström, 2005; Betts et al., 2006; Piorecky and Prescott, 2006)

and mammals (Mattson and Merrill, 2002; Edenius et al., 2003;
Teterukovskiy and Edenius, 2003). Outside ecology, autologis-
tic regression has been used in dental medicine (Kirkham et
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al., 2005), image analysis and remote sensing (Arbia et al.,
1999; Koutsias, 2003) and manufacturing of integrated circuits
(Ramirez and Taam, 2000). In a recent review, 8 out of 21 studies
that compared spatial and non-spatial models used autologis-
tic regression (Dormann, 2007).

Taking a closer look at the origin of autologistic regres-
sion shows that this method has been derived from statistical
background (Besag, 1974), but recently divided into two differ-
ent branches: that of auto-models more generally (which also
included autoregressive models, Haining, 2003) and autologis-
tic regression itself, mainly with applications in biogeography.
It is this latter version of autologistic models that I address
in this study, and which I assess for their validity. Validity, in
this case, refers to the quality of parameter estimates, i.e. the
usefulness of autologistic regression for statistical inference.
Two observations led me to investigate the general applica-
bility of autologistic regression: Since autologistic regression
is based on an explanatory variable being constructed from
thenon-independent values of a response variable one might
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uspect circularity in the method. Moreover, autologistic
egression as a method has not been tested on independent
rtificial data sets with known properties (but see Hoeting et
l., 2000 for an assessment of model fit with artificial data).
ddressing the latter deficit in this study, I want to explore

he robustness and performance of the autologistic regression
ased on simulated data.

. What is ‘autologistic’ regression?

he idea behind autologistic regression is to calculate an extra
xplanatory variable that captures the effect of other response
alues in the spatial neighbourhood. Neighbouring values are
xpected to be similar to the focal value for ecological reasons
uch as dispersal, which will lead to higher abundance of off-
pring near to the parent organism, or aggregative behaviour,
eading, e.g., to colonial breeding (Danchin et al., 2004).

Auto-models were initially developed for the analysis of
lant competition experiments (Mead, 1971; Ord, 1975) and
hen extended to spatial data in general (Besag, 1974). These
uto-models fit a statistical model that explains the focal
esponse (e.g. plant yield or plant presence) by the response
alues of its neighbours. Initially, only first-order neighbours
n lattice systems were the focus, but this constraint was later
elaxed. The resulting, general formulation of an auto-model
or a binary response variable would then be (Besag, 1974):

n
�i

1 − �i
= ˛ +

∑

j

ˇjiyj + εi, (1)

here �i is the probability of presence at location i, ˛ is the
odel intercept and ˇi,j is the coefficient that relates the

bserved occurrence y at location j to the predicted probability
n i, and εi is the binomially distributed error.

This is a basic autologistic model as used in many graphic
maging and remote sensing routines to identify and correct

issing or faulty data points (e.g. Arbia et al., 1999). In this
eneral formulation, several different ˇs are fitted, one for
ach neighbour (i.e. four in the case of a first-order neigh-
ourhood). All ˇjs become identical if isotropy is assumed.
hen used to correct missing or faulty data, the ˇjs are intially

stimated based on available data, then the fitted values are
ompared to the observed, and outliers or missing points are
eplaced by the fitted values. The procedure is then repeated
ith the new values, until convergence. Many statistical publi-

ations deal with efficient ways to estimate the parameters for
he final model, using pseudo-likelihood and various Markov
hain–Monte Carlo methods (see, e.g. Geyer and Thompson,
992; Besag and Green, 1993; Wu and Huffer, 1997; Huffer and
u, 1998; Pettitt et al., 2003; Friel and Pettitt, 2004).
More important to ecologists is the next step, namely to

ncorporate explanatory variables, such as climate variables
n the case of species distributions. This step expands the

odel from a basic autologistic model to an autologistic model
ith covariates. Then, the above formula (assuming isotropy)

ecomes:

n
�i

1 − �i
= ˛ + ˇs(yi) +

∑

k

�kxki + εi, (2)
7 ( 2 0 0 7 ) 234–242 235

where s(yi) is a function that summarises the y-values in the
neighbourhood of i (e.g. distance-weighted, see below) and xki

are the values for k different environmental variables used
to explain the occurrence of y in i. Although computation-
ally difficult, this model can be fitted by maximum likelihood
(Sherman et al., 2006).

Computation of the spatial term s(yi), known as the auto-
covariate, is straightforward in lattice data without missing
values. This spatial term, the autocovariate, is calculated only
once from the observed data and not changed during the
model estimation process. Augustin et al. (1996) proposed to
compute this term as a distance-weighted average of all cells
j in the neighbourhood:

aci = s(yi) =

∑

j�=i

wjyj

∑
wj

, with wj = d−l
ij

. (3)

The data point i itself is excluded from the calculation.
It is important to note here that there is no iterative re-
calculation of the spatial term s(yi) involved, in contrast to the
above-mentioned applications in image analysis or data sets
with incomplete observations (see, e.g., Huffer and Wu, 1998;
Hoeting et al., 2000).

Distance-weighting can be of different forms, i.e. dif-
ferent values for exponent l in Eq. (3). Most commonly,
l is set to zero, (giving equal weight to all neighbour-
ing cells), unity (inverse distance-weighted) or two (inverse
squared). As an alternative to distance-weighting, angle-
weighting has been used to model bark-beetle attacks
(Preisler, 1993). The size of the neighbourhood is found
by examining several and choosing the size that reduces
residual spatial autocorrelation most (e.g. Sanderson et al.,
2005).

The autocovariate thus derived is then added to the model
as additional explanatory variable (Eq. (2)). If one is also
interested in the model estimates for the intercept, then the
autocovariate should be standardised before incorporation
into the model (i.e. subtraction of the mean and division by
standard deviation, yielding an autocovariate with mean 0 and
standard deviation 1). In principle, there are no constraints on
the type of model to use the autocovariate with, but to date
mainly generalised linear models (GLMs: e.g. Augustin et al.,
1996, 1998; Betts et al., 2006; Boll et al., 2005), generalised addi-
tive models (GAMs: Knapp et al., 2003; Segurado and Araújo,
2004) and Bayesian frameworks (Hoeting et al., 2000; Osborne
et al., 2001; Riiali et al., 2001; He et al., 2003; Friel and Pettitt,
2004; Reese et al., 2005) have been used with autocovariates.
Many spatial models in a Bayesian framework are representa-
tions of a first-order autologistic regression (e.g. Högmander
and Möller, 1995; Hoeting et al., 2000; Haining, 2003; He et al.,
2003; Sherman et al., 2006). The main reasons for a Bayesian
framework are additional complications such as unknown
detection probabilities, unobserved sites, recorder bias, etc.
(Latimer et al., 2006). The above described autologistic regres-

sion approach can be seen as the first iteration of an iterative
fitting processes correcting for missing data and will yield esti-
mates that are robust for regular lattice data (Augustin et al.,
1996).
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Fig. 1 – Example for a distribution map used in the
simulations. Black represents presence, grey absence.
236 e c o l o g i c a l m o d e l l

In the following I will only discuss the autologistic model
in its simplest, and most commonly applied, form, i.e. accord-
ing to Eq. (2), with an optimised estimate of s(yi) and a single
parameter estimation for the autologistic covariate model.

3. Methods

I used two steps to assess autologistic regression models. In a
first step, I analysed if autocovariates may produce spurious
results, i.e. compensate for spatial autocorrelation although it
is absent (leading to a type II error). The second step is based
on realisations of data sets with known properties and spatial
autocorrelation in the error. Thereby I test how well autologis-
tic regression estimates the true parameters used to generate
the distribution data.

3.1. Autologistic regression on random data without
spatial autocorrelation

I generated a spatial realisation of 2500 cells of value 0 in a
square lattice and randomly assigned a value of 1 to 25% of
these cells. Next, I constructed an autocovariate for this data
set, with neighbourhood sizes ranging from 1 to 30 cells. I
then ran 30 basic autologistic models on these data (one for
each neighbourhood size) and selected the one which reduced
residual spatial autocorrelation most. This whole procedure
was replicated 1000 times. Estimated coefficients at the link-
scale were tested against 0 using a t-test.

3.2. Autologistic regression on spatially autocorrelated
data

3.2.1. Generating artificial distribution data
This simulation analysis aimed to investigate the consistency
of autologistic regression. To this end, I manipulated four fac-
tors that may affect regression analysis and then compared
the performance of autologistic regression with ordinary logis-
tic regression. The four factors are: (1) the strength of spatial
autocorrelation, (2) the range of spatial autocorrelation, (3)
prevalence and (4) the strength of the relationship between the
response and the predictors, by adding unstructured noise.

The artificial data shall represent some virtual species
inhabiting an island, and whose distribution is entirely depen-
dent on precipitation. The size of the island (i.e. the number
of cells) is 1108. Fig. 1 illustrates one example for the distri-
bution data analysed. I will refer to the explanatory variable
as ‘rain’ and an additional, spurious explanatory variable as
‘djungle’. The data were constructed using a pre-defined func-
tional relationship between the response variable (y) and a
predictor variable: E(y) = g−1(3 − 0.003rain), where g(·) is the
logistic link function.

Spatial autocorrelation was introduced to the data as spa-
tially autocorrelated errors. The process (detailed in below)
entails three steps: first, the distance between all grid cells
was calculated (“distance matrix”). This forms the basis for
a second matrix ( �̋ ), in which the distance is non-linearly
transformed (to reflect the decay of importance with distance).
Finally, the contribution of each point to the error at each other
point is calculated by means of a weights matrix derived from
Parameters for this simulation are: strength = 0.5,
range = 0.625, prevalence = 0.5 and noise = off. The
correlogram for this species is depicted in Fig. 2, solid line.

�̋ . These errors are then simply added (which, in mathemati-
cal terms, is a matrix multiplication of a non-correlated error
vector with the weights matrix).

More specifically, a weights matrix �W was used to weight
random noise according to the distance between data points.

Let �D = (dij) be the (Euclidean) distance matrix of distances

between the cells i and j. Then �̋ = (ωij) is a matrix defined
as ω = e−range dij , with ‘range’ as a parameter controlling the
range of spatial autocorrelation (see below). I can now calcu-

late the weights matrix �W (by Choleski decomposition) from

�̋ = �WT �W. Hence the error in the above relationship between
�y and ‘rain’ is �ε = �W��, with �� ∼ N(0, �). The thereby produced
error term �ε was used to generate an occurrence probability
pi for each location i: pi = qi + qi(1 − qi)εi. This was then trans-
lated into binary responses yi so that (1/N)

∑N

i
yi = prevalence.

The strength of spatial autocorrelation was manipulated
by the standard deviation of the normal distribution (�) from
which the error �� was drawn. This error vector, �ε, was then
re-scaled to standard deviation of 1, eliminating different
absolute values of the error term but maintaining the degree
of spatial similarity. Large values for the standard deviation
meant that little of the error was contributed by spatially auto-
correlated error, while low standard deviation led to a high
level of spatial autocorrelation in the error. Strength, in the
form of standard deviation of the normal distribution that the
errors were sampled from, was varied over six steps (low to
high strength of spatial autocorrelation: 8, 4, 2, 1, 0.5, 0.25).

The range of spatial autocorrelation r, i.e. the distance over
which spatial autocorrelation is detectable, was also varied in
six steps, from short- to far-distance autocorrelation. Spatial
autocorrelation (SAC) decreased exponentially with distance
d according to the function SAC ∼ e−range d. Range took the

values 0.0625, 0.125, 0.25, 0.5, 1 and 2. The larger the value, the
shorter the range of spatial autocorrelation.

To simulate models for differently common species, I
altered the prevalence in five steps (0.05, 0.1, 0.25, 0.5, 0.75).
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autocorrelation affected the non-spatial model particularly
strongly, while this effect petered out as the range increases.
However, in all cases was the coefficient estimate of the spatial
model worse than that of the non-spatial.

Fig. 2 – Effect of autocovariate on spatial autocorrelation in
e c o l o g i c a l m o d e l l i n

thereby evaluated if autologistic regression is equally valid
or rare and common species.

Finally, to see how the strength of the environment–
pecies-relationship affects the autologistic regression, I also
aried the degree of determination by adding unstructured
oise. For model runs with unstructured noise, I added ran-
om values from a normal distribution with mean = 0 and
tandard deviation = 0.5.

All four factors (strength, range, prevalence and noise) were
ombined in a factorial experiment, yielding 6 × 6 × 5 × 2 =
60 different species distribution realisations. Each realisation
ielded a value for each cell. Thresholds of which values to
ode as 0 or 1 were selected according to the prevalence value
or this realisation.

.2.2. Analysing simulated distributions
ach realisation was analysed with a non-spatial model (i.e. a
eneralised linear model with binomial error containing ‘rain’
nd ‘djungle’ as explanatory variables) and a set of spatial
odels. Autocovariates for 30 different ranges (from 1 to 30

ells distance) were calculated. An autologistic regression, i.e.
GLM plus the autocovariate, was performed for all 30 spa-

ial models separately. Then, the residuals of all these spatial
odels were compared and the one with the lowest spatial

utocorrelation was selected.
Spatial autocorrelation was calculated as Global Moran’s

(Fortin and Dale, 2005) up to a distance of 20. For com-
utational reasons, the selection of the best performing
eighbourhood was based on the area under the correlo-
ram of residuals (until distance class 20), rather than Global
oran’s I.

Based on the residuals of the non-spatial model, I
alculated the realised strength and range of spatial autocor-
elation, which differed from the intended due to the random
oise in the realisations and the way the different factors

nteracted with one another (e.g. range and strength). Range
as calculated as that distance class where the correlogram

ntercepted with the x-axis. Strength was quantified by the
lobal Moran’s I index up to a distance of 20. These realised
trengths and ranges were then used in the analysis of coeffi-
ient estimates, rather than the parameters used to set up the
rtificial data.

All simulations and analyses were carried out using the
oftware R, Version 2.3.0 (Team, 2004), with the additional
ackages spdep, ncf, splancs and MASS.

. Results

.1. Random pattern and autologistic regression

stimates for the autocovariate were close to, but signifi-
antly different from, the expected value of 0 (approximately
ormally distributed with mean ±S.D. = −0.0296 ± 0.062;

-test: P < 0.001; intercept = −1.100 ± 0.0017, P < 0.001). This
ed to a consistent underestimation of the intercept (i.e. the

rue mean) of the occupancy. Moreover, the estimate for the
ntercept was strongly negatively skewed (skewness = −2.98,
urtosis = 12.4), indicating that in several occasions it was
ery biased.
7 ( 2 0 0 7 ) 234–242 237

In all 1000 runs the estimate for the intercept (i.e. the
mean) from the autologistic regression was lower than that
of the non-spatial, true model (ranging from 0.247 to the true
0.250). Since the bias was usually small (albeit consistent), the
deviance attributable to the autocovariate was always below
1%.

4.2. Autologistic regression on artificial distribution
data

4.2.1. Removal of residual spatial autocorrelation
Autocovariate regression effectively removed spatial autocor-
relation in the residuals (Fig. 2), independent of the parameter
sets used to create the correlative signature. In contrast, resid-
uals from the non-spatial model show essentially the same
pattern as the raw data (data not shown).

4.2.2. Parameter estimation
Most important in the assessment of the validity of autoco-
variate regression is the ability of this method to correctly
estimate the true parameter for the explanatory variable ‘rain’
in the artificial data.

Range, prevalence and unstructured noise impacted the
difference between spatial and non-spatial models (interac-
tions significant: see Table 1).

Model estimates for ‘rain’ differed greatly between the
spatial and the non-spatial model (Fig. 3). Short-range spa-
tial autocorrelation led to equally poor estimation of the
rain-coefficient. As range increases, the non-spatial model
approaches the true value of −0.003, while the ‘rain’-effect
of the spatial model moved closer to 0. Short-range spatial
the residuals. Black lines are correlograms from non-spatial
residuals, grey lines from autocovariate regression. Solid
and hatched line differ in strength but not in range of
spatial autocorrelation.
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Table 1 – Analysis of variance of the influences on
estimating the coefficient of ‘rain’. ‘Spatial’ codes for the
difference between spatial and non-spatial models;
‘Moran’ refers to the strength of spatial autocorrelation.
Interactions with ‘spatial’ point at effects specifically
influencing autologistic regression results

Term d.f. SS F P

Spatial 1 35.4E−05 512.00 <0.001
Range 1 0.76E−05 11.10 <0.001
Moran 1 0.86E−05 12.50 <0.001
Noise 1 1.57E−05 22.70 <0.001
Prevalence 1 4.76E−05 68.90 <0.001
Spatial:range 1 2.32E−05 33.60 <0.001
Spatial:noise 1 0.85E−05 2.20 <0.001
Spatial:prevalence 1 2.28E−05 32.90 <0.001

Fig. 4 – Coefficient estimates for ‘rain’ for spatial and
non-spatial models, depending on the prevalence of a
Moran:noise 1 0.38E−05 5.44 <0.05
Moran:prevalence 1 1.28E−05 18.50 <0.001
Residuals 709 49.0E−05

A similar pattern emerged for the effect of prevalence
(Fig. 4): spatial models consistently underestimated the true
effect of ‘rain’. There was little effect of prevalence on these
estimations. Non-spatial models were severely impacted by
the prevalence of species, only estimating the effect of ‘rain’
correctly for very high prevalences.

Changing the strength of the environment–response-

relationship by adding unstructured noise altered parameter
estimates for ‘rain’ only marginally in the autocovariate
regression models (Fig. 5). Non-spatial estimates were fur-
ther off the truth when unstructured noise was added. These

Fig. 3 – Coefficient estimates for ‘rain’ for spatial and
non-spatial models, depending on the range of spatial
autocorrelation across the 360 simulations. Line at
y = −0.003 marks the true value of the coefficient. Boxes
give first and third quartile, whiskers extend to the entire
range of values. Non-overlapping notches are indicative of
significant differences of the median (solid line in the
boxes). Non-spatial models were set off slightly for better
graphical representation.
species. Line at y = −0.003 marks the ‘true’ coefficient. See
Fig. 3 for further details.

results show that the expectation of worse estimates in noisier
data only holds for the non-spatial model. The autocovariate
regression was able to capture some of the additional noise.

In addition to the above-mentioned interactions with the
spatial/non-spatial model approach, several other effects were
significantly affecting the model for ‘rain’-estimates (Table 1).
Since they impacted the spatial as well as the non-spatial

model, I will not explore them at length. It may suffice to
mention that the strength of spatial autocorrelation (effect
‘Moran’) significantly effected parameter estimation, with

Fig. 5 – Coefficient estimate for ‘rain’ for spatial and
non-spatial models, depending on the additional presence
of spatially uncorrelated noise. Line at y = −0.003 marks
the ‘true’ coefficient. Error bars represent ±1 standard error.
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tronger autocorrelation yielding better (i.e. closer to the truth)
stimates for ‘rain’. This effect is slightly reduced when addi-
ional noise is added (Moran:noise interaction).

Also important is the error attached to the coefficient esti-
ate. Since spatial autocorrelation leads to non-independent

bservations and hence to inflated degrees of freedom, a
ethod correcting for SAC should have larger standard errors

or the coefficient estimates than a non-spatial model. Across
he 360 simulations, non-spatial standard errors for ‘rain’ were
lways lower than those of the autocovariate model (mean =
.31 × 10−4 versus 4.26 × 10−4). The same holds true for the
rrors on ‘djungle’-estimates (1.56 × 10−2 versus 1.85 × 10−2).
s a consequence, the spurious effect of ‘djungle’ was more
ften significant (P < 0.05) in the non-spatial model than in
he spatial one (24 versus 16 cases, which is 6.7% versus
.4%). Thus, the non-spatial models wrongly detected an effect
f ‘djungle’ slightly more often than would be expected by
hance alone (i.e. 5%). The flip-side of the better performance
f the autologistic regression with respect to spurious effects

s that it is also more conservative with respect to true effects.
n the 360 simulations, the non-spatial model detected a ‘rain’-
ffect in 337 cases, compared to only 217 for the autologistic
egression (i.e. false negatives in 10% versus 40% of all simu-
ations).

The analysis of the estimates for ‘djungle’ showed that
hese estimates were not influenced by the type of model.
ather, species prevalence and the interaction of range and
oise were significantly affecting the estimates for ‘djungle’.
ince also the overall fit of the ANOVA-model was rather
oor (adjusted R2 = 0.025), this analysis was not revealing with
espect to the focus of the study.

. Discussion

.1. Parameter estimates based on autologistic
egression

he results of this study show that autologistic regression
eads to a consistent underestimation of the true parame-
ers. This finding is corroborated by the regression coefficients
eported by Klute et al. (2002), who compared autologistic
egression to a non-spatial GLM when analysing woodcock
ccurrences. Their six regression parameters were all lower

on average by 30%) in the autologistic version of the model.
bviously, it is impossible to guess how much of this is a

rue effect due to reduced spatial autocorrelation in the resid-
als or due to the bias that the autocovariate introduced.
ithout giving details on the coefficients, also Segurado et

l. (2006) report on a slight ‘overcompensation’ effect of their
utocovariate. However, in two different studies the opposite
ffect was observed: for two bird species (Capercaillie and Hazel
rouse) the coefficients to the four environmental variables in
he respective autologistic models were higher (Mörtberg and
arlström, 2005), while for blackbird occurrences in African
asis the first principle component axis received higher weight
n the autologistic model (Selmi et al., 2003). Again, since the
rue values are unknown it is impossible to judge whether the
patial model is actually better. Finally, in the multi-species
tudy by Chou and Soret (1996) the final models differed con-
7 ( 2 0 0 7 ) 234–242 239

siderably as a consequence of incorporating an autocovariate.
Thus while the impact on parameter estimates was consistent
with the present study (slight reduction in absolute parameter
values), their study additionally shows how the autocovariate
affects model selection.

The way spatial autocorrelation influences the accuracy of
coefficient estimates (i.e. standard errors) has implications for
statistical inference and model selection. I found that the non-
spatial models identified the true effect of rain in over 90% of
cases, while the autologistic model only about 60%. Not only
would we thus infer that rain was unimportant in a large num-
ber of data sets, but also would this effect be deleted when
employing model simplification (Crawley, 2002). A predictive
model based on this analysis would hence not contain the
truly driving variable. On the other hand, based on the non-
spatial model one would regard ‘djungle’ as relevant in about
7% of cases, slightly more than the 5% expected from the prob-
ability threshold of 0.05. I hence conclude that the wrongful
omission of ‘rain’ in the spatial model is a more serious issue
than the wrongful inclusion of the spurious ‘djungle’-effect in
the non-spatial model.

Spatial autocorrelation causes the problem of inflated
degrees of freedom: because data are not independent of each
other, but are treated that way in non-spatial models, the are
less effective degrees of freedom (Legendre, 1993). After an
analysis of spatial data, residuals should always be checked for
spatial autocorrelation; if spatial autocorrelation in the resid-
uals is detected, spatial models should be used to avoid spatial
pseudo-replication (Fortin and Dale, 2005; Dormann, 2007). A
recent study showed that coefficients may be inverted by spa-
tial autocorrelation (Kühn, 2007), demonstrating the need for
spatial models.

Although care was taken to create artificial data in a
controlled way, the data analysed in this study will not be uni-
versally representative of species distribution data (Hoeting
et al., 2000). This potential shortcoming does not invalidate
the assessment in the present analysis, since it does show in
any case that the basic autologistic model employed so fre-
quently in the ecological literature may be biased. As we have
no known true parameters under real-world conditions, this
study at least casts doubt on its universal validity. More exten-
sive, and perhaps more realistic, distribution patterns could
address this issue. In particular, real data analyses often suf-
fer from the problem that not all ‘true’ determinants of the
response variable are quantifiable. It is unknown, how spa-
tial autocorrelation resulting from spatial dependence on an
unknown explanatory variable may affect autologistic regres-
sion. The difference to the present study is that the spatial
interdependence is not only in the error term, but also in some
latent variables. However, the 360 different data sets employed
here represent a fair range of distribution patterns not expli-
cable as random number artefacts.

5.2. Ecological information in autologistic regression?

It has been argued (e.g. Sanderson et al., 2005) that the opti-

mum neighbourhood size of the autocovariate may be a useful
indicator of the range of the ecological process causing spa-
tial autocorrelation (such as dispersal, homerange size, etc.). I
investigated this idea with the simulations: There was only a
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weak and moreover negative correlation between the realised
range of spatial autocorrelation in the artificial data and the
optimum neighbourhood size for the autocovariate (across
all 360 simulations: Pearson’s r = −0.33, P < 0.001; correlation
with the intended range was even weaker). This indicates that
the mechanism producing the spatial autocorrelation was not
captured by the autocovariate and inference from the opti-
mum neighbourhood size of the autocovariate to the spatial
dimension of the underlying mechanism may be poor also in
real data.

Van Teeffelen and Ovaskainen (2007), in a recent paper,
used autologistic regression to analyse the causes of aggrega-
tion pattern in simulated data. They calculated autocovariates
in different ways and found that they were affected differently
for different causes of aggregation. Their study shows at least
that the range of best-fitting autologistic models was in many
cases not matching the spatial scales of aggregation processes.
Only by comparing different model approaches were they able
to recover the simulation process from the data.

5.3. Alternative methods to correct for spatial
autocorrelation in binary lattice data

In a recent overview, Dormann et al. (2007) review several
alternative methods to correct for spatial autocorrelation in
ecological data. For binary data such as here, four other meth-
ods were mentioned in addition to autologistic regression

(sorted in ascending order of computer runtime): general esti-
mating equations (GEE: Carl and Kühn, 2007), mapping of
eigenvectors (ME: Dray et al., 2006; Griffith and Peres-Neto,
2006; Tiefelsdorf and Griffith, 2007), spatial generalised linear

Fig. 6 – Estimates for the coefficients of ‘rain’ and ‘djungle’
across the 360 different simulations. The polygon depicts
the convex hull (all estimates are within this polygon) and
the dot represent the grand mean for each method (point of
gravity of the polygon). GEE and GLMM share the same
point of gravity. Dashed line refers to GEE, solid to GLMM.
ME refers to mapping of spatial eigenvectors as
implemented in R.

r
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mixed models (GLMM: Breslow and Clayton, 1993; Gotway and
Stroup, 1997) and spatial Bayesian models (e.g. Latimer et al.,
2006). For comparison with the autologistic results I employed
the first three (Bayesian models using Gaussian random fields
did not converge on the artificial data: S. Bierman, personal
communication).

As Fig. 6 shows, the estimates for ‘rain’ and ‘djungle’ dif-
fer substantially between the different models. It shows an
obvious shift towards 0 for the autologistic regression and
an opposite trend for ME. ME also produced the by far most
variable parameter estimates. GLMM, GEE and the non-spatial
model differed only marginally, with the spatial GLMM and
GEE slightly less prone to underestimating the effect of ‘rain’.
Estimates for ‘djungle’ were virtually identical. Overall, these
results indicate that none of the four spatial models (autol-
ogistic, ME, GEE and GLMM) provide a consistently improved
estimate over the non-spatial model for these specific data.

6. Conclusion

This study shows that basic autologistic regression, as
employed in the ecological literature on species distribution
analyses, suffers some severe drawbacks, most importantly
potentially strongly biased estimation of model parameters.
Since alternative methods to correct for spatial autocorrela-
tion are available, autologistic regression should only be used
when backed-up by another method, to ensure that parameter
estimates are not influenced unduly.
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Kühn, I., 2007. Incorporating spatial autocorrelation may invert
observed patterns. Divers. Distrib. 13, 66–69.

Latimer, A.M., Wu, S., Gelfand, A.E., Silander, J.A., 2006. Building
statistical models to analyze species distributions. Ecol. Appl.
16, 33–50.

Legendre, P., 1993. Spatial autocorrelation: trouble or new
paradigm? Ecology 74, 1659–1673.

Mattson, D.J., Merrill, T., 2002. Extirpations of grizzly bears in the
contiguous United States, 1850–2000. Conserv. Biol. 16,
1123–1136.

Mead, R., 1971. Models for interplant competition in irregularly
distributed populations. Stat. Ecol. 2, 13–32.
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