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Copulas: concepts and novel applications

Summary - A bivariate copula can be statistically interpreted as a bivariate distribution
function with uniform marginals. Sklar (1959) argues that for any bivariate distribu-
tion function, say H with marginals F and G, there exists a copula functional, say C,
such that

H[x, y] = C[F[x], G[y]] ,

for (x, y)T in the support of H. What is to presented is a self-contained review,
mainly from a statistical point of view, of the concept of copulas vis-a-vis multivariate
distributions and dependence and to motivate their utility via a number of applications
to the design of clinical trials, microarray studies with survival endpoints and the
analysis of dependent Receiver Operator Curves (ROC).
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1. Introduction and problem setting

1.1. Introductory remarks

The goal of this paper is to present a self-contained review of the con-
cept behind copulas vis-a-vis multivariate distributions and dependence with a
view mainly towards biostatistical applications. To keep the presentation both
readable as well as manageable in volume, with some notable exceptions, most
technical, whether of complicated or trivial nature, have been omitted. Instead,
a representative, although by no means exhaustive, list of references has been
provided. For notational simplicity and clarity, we have focused our attention
to bivariate distributions, although the bulk of the material, more often than
not, trivially extends to higher dimensions. We will begin by introducing the
notion behind a copula including a number of key examples. We will continue
by outlining estimation techniques. Thereafter, we will introduce additional key
properties and useful ideas related to copulas. Finally, we will motivate the
utility of the presented material by considering a number of applications.
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1.2. Motivational examples

The concept of copulas in relation to multivariate distributions and depen-
dence can be motivated in many different ways. We have chosen to motivate
these relationships through the following two standard examples of bivariate
distributions. It is a matter of simple algebra to exhibit that any bivariate nor-
mal distribution function H, with marginals F and G, both univariate normal
distributions, and correlation coefficient θ ∈ [−1, 1], is expressible as

H[x, y] = CN[F[x], G[y], θ ] , (1)

where

CN[u, v] =
∫ �−1[u]

−∞

∫ �−1[v]

−∞

1

2π
√

1 − θ2
exp

[
− x2 − 2θxy + y2

2(1 − θ2)

]
dxdy , (2)

and �[z] = 1√
2π

∫ z
−∞ exp[− 1

2 a2]da denotes standardized univariate normal dis-
tribution function. Similarly, a bivariate exponential distribution (see for exam-
ple Gumbel (1960)) H, with marginals F and G, both univariate exponential
distributions, and association parameter θ ∈ [0, 1] is expressible in the form

H[x, y] = CE[F[x], G[y], θ ] , (3)

where
CE[u, v, θ ] = 1 − u − v + uve−θ log[u] log[v] , (4)

for (u, v) ∈ [0, 1]2. Needless to say, we have not presented anything new about
these standard examples of bivariate distributions. The key point, however, to
note here is that in both of these examples, the joint distribution functions
were expressible as functions of their respective marginals, F and G, and a
finite-dimensional θ which controls the degree of dependence between the two
components of the distribution. There are more general bivariate distributions,
most notably the family of bivariate elliptical distribution, which yield them-
selves to this form. The functions CN in (2) and CE in (4) couple the joint
distribution to their respective marginals and as such have been aptly named
copulas. It turns out that there is a rich family of copulas that lend bivariate
distributions to the aforementioned form. Most of the concepts to be presented
will easily generalize to higher dimensions. However, to keep the notation sim-
ple and more manageable, we will mostly limit our attention to the bivariate
case.

Remark 1. Throughout this presentation, H will denote the target bivariate
distribution function with marginals F and G respectively. The supports of
these marginals are to be denoted by F and G which belong to spaces F and
G respectively. The corresponding bivariate and marginal survival functions are
denoted by H, F and G respectively.
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1.3. Axiomatic definitions

A copula can be defined from both axiomatic and statistical points of
view. Although, the emphasis in this exposition will focus on the statistical
perspective, for the sake of completeness and those interested in more technical
definitions, we will present axiomatic definitions for bivariate distributions and
copulas. As such, this section may be skipped by those primarily interested
in statistical applications of copulas. A bivariate distribution function can be
axiomatically defined as follows.

Definition 1 [Bivariate distribution]. A mapping H := F × G → [0, 1], where
F, G ⊂ R, is a bivariate distribution function if it satisfies the following three
conditions:

1. H[x, −∞] = H[−∞, y] = 0, for all x ∈ F and y ∈ G.
2. H[+∞, +∞] = 1.
3. H[x2, y2]−H[x1, y2]−H[x2, y1]+H[x1, y1]≥ 0 for every (x1, y1)

T, (x2, y2)
T ∈

F × G satisfying x1 ≤ x2 and y1 ≤ y2.

Axiomatically, a copula can be defined as follows.

Definition 2 [Copula]. A (two-dimensional) copula C is a mapping from [0, 1]×
[0, 1] (the unit square) onto [0, 1] (the unit interval) which satisfies the following
three conditions:

1. C[u, 0] = C[0, u] = 0 for every u ∈ [0, 1];
2. C[u, 1] = C[1, u] = u for every u ∈ [0, 1];
3. C[u2, v2] − C[u1, v2] − C[u2, v1] + C[u1, v1] ≥ 0 for every u1, u2, v1, v2 ∈

[0, 1] satisfying u1 ≤ u2 and v1 ≤ v2.

A trivial example of a copula is the function defined as

CI[u, v] = uv , (5)

for (u, v)T ∈ [0, 1]2, which is often called the independence copula for reasons
that will become clear later on. The picture that comes to mind, by virtue
of this definition and perhaps by using figure 1 as a visual aid, is that of a
surface bounded within the unit cube which is tied down along the two axes
in the first quadrant. This surface is non-decreasing as imposed by the above
inequality, which often referred to as the rectangle inequality (a generalization
of the triangle inequality for real numbers to R

2).
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Figure 1. Surface plot of the independence copula CI[u, v] = uv for (u, v)T ∈ [0, 1]2.

In light of definition (1), a copula, as defined by (2), is a bivariate distri-
bution function with uniform marginals. This will yield a statistical definition
for a copula which will be provided in a formal manner shortly.

1.4. Copulas and multivariate distributions

The first order of business is to formally establish the relationship between
copulas and bivariate distributions. To that end, we will present a result that
has generally been attributed to Sklar (1959), who argues that any given bi-
variate distribution function is expressible as copula of its marginals. A formal
presentation is provided next.

Theorem 1. Given is a distribution function, say H, with marginals marginals F
and G. There exists a function C satisfying the properties of definition (2), namely
a copula, such that

H[x, y] = C[F[x], G[y]] , (6)

for every (x, y)T ∈ F × G. Furthermore, if the marginals F and G are both
continuous, then representation (6) is unique. Conversely, given any copula
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function, say C̃, and any pair of continuous univariate distribution functions, say
F̃ and G̃, the function defined as

H̃[x, y] := C̃[F̃[x], G̃[y]] , (7)

for each (x, y)T ∈ F̃ × G̃, is a bivariate distribution function as defined in (1).

The representation in (6) suggests the appropriateness of the term copula
to describe C as it couples the marginals F and G to the joint distribution
function H. Note that by virtue of the converse to this result, if uniform
marginals, which are of course continuous, are plugged into any copula, the
resulting function is a bivariate distribution function with uniform marginals.
This reconciles, as mentioned in the last section, with comparing the axiomatic
definitions for a bivariate distribution (1) and that of a bivariate copula (2) and
yields the following statistical definition.

Definition 3 [Copula]. A copula is a bivariate distribution function with uniform
marginals.

Furthermore, the representation (6) suggests that if the copula C were
known, then substituting continuous marginal estimators for F and G would
yield a plug-in estimate of their associated joint distribution function H. More-
over, in light of Sklar’s result with arrive at the following functional definition
of a copula

Definition 4 [Copula]. Given a bivariate distribution function H with marginals F
and G, the function defined as

CH[u, v] = H[F−[u], G−[u]] , (8)

for (u, v)T ∈ [0, 1]2, where F− and G− are the inverse functions of F and G
respectively, is the copula corresponding to H.

We conclude this section by presenting the following important comment.

Remark 2. Given a bivariate distribution function H with continuous marginals
F and G, let C the unique copula expressing the distribution function as
H[x, y] = C[F[x], G[y]]. We will say that C is generated by H. What should
be noted is that the pair (F[X ], G[Y ])T is distributed according to the copula C.
Similarly, given a pair (U, V )T drawn from the uniform copula C, the pair
defined as (F−[U ], G−[V ])T is distributed according to H.

1.5. Copulas, dependence, independence and exchangeability

Sklar’s theorem provides a formal framework for exploring the relationship
between copulas and multivariate distributions. To explore the relationship
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between copulas and dependence, we will introduce the notions of the Frechet-
Hoeffding bounds and tail dependence next. We begin by formally defining

CL[u, v] = max[u + v − 1, 0] , (9)

CU[u, v] = min[u, v] , (10)

which we will refer to as the Frechet-Hoeffding lower and upper bounds.
Some fundamental relationships between copulas and these bounds and the
independence copula CI defined in (5) are itemized next.

Theorem 2. Suppose that (X, Y )T is a random pair from a distribution H with
continuous marginals and let C denote the corresponding copula.

i. CL, CU and CI are all bona-fide copulas.
ii. For each (u, v)T ∈ [0, 1]2,

CL[u, v] = max[u + v − 1, 0] ≤ C[u, v] ≤ min[u, v] = CU[u, v] . (11)

iii. X and Y are independent if and only if C = CI (the independence copula (5)).
iv. Let h be any arbitrary mapping of F into G. Then h is almost surely strictly

increasing (or decreasing) on G if and only if C = CU (or C = CL), where
CU and CL are the upper and lower Frechet-Hoeffding bounds defined by (10)

and (9) respectively.

Remark 3. Sklar’s theorem and the function definition of copulas trivially ex-
tend to higher dimensions. The results in the previous theorem also extend to
higher dimensions by defining the Frechet-Hoeffding bounds and the indepen-
dence copula, as for example is the three-dimensional case, by CL[u, v, w] =
max[u + v + w − 1, 0], CU[u, v, w] = min[u, v] and CI[u, v, w] = uvw. We do
point out that the lower Frechet-Hoeffding bound, in higher dimensions, is not
a copula.

In turns out that copulas are invariant under increasing transformations.
Furthermore, under decreasing transformations the resulting copula, can be
expressed these properties are to be formalized in the following result.

Theorem 3. Given is a pair of random variables (X, Y )T distributed according
to H with continuous marginals F and G. Let CXY denote the copula generated by
(X, Y )T .

i. Suppose that h1 : F → R and h2 : G → R are strictly increasing and define
Z1 = h1[X ] and Z2 = h2[Y ]. Then

CXY = CZ1 Z2 , (12)

where CZ1 Z2 denotes the copula generated by (Z1, Z2)
T .
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ii. Suppose that h1 : F → R and h2 : G → R are both strictly decreasing and
define Z1 = h1[X ] and Z2 = h2[Y ]. Then

CZ1Y [u, v] = v − CXY [1 − u, v] , (13)

CX Z2[u, v] = u − CXY [u, 1 − v] , (14)

CZ1 Z2[u, v] = u + v − 1 + CXY [u, v] . (15)

Next, we will introduce the concept of tail-dependence and illustrate its
intimate relationship to copulas. Suppose that (X, Y )T is a random pair from
some distribution H. Tail-dependence, as formalized in the following definition,
can be used to quantify the likelihood that X attains an extreme value given
that Y has attained an extreme value in its support.

Definition 5 [Tail-Dependence]. H with continuous marginals F and G respec-
tively. If the limit

λL[H] := lim
u↓0

λL[H; u] = lim
u↓0

P[X ≤ F−[u]|Y ≤ G−[u]] , (16)

exists, then H is said to have lower tail-dependence (LTD) if λL[H] ∈ (0, 1] or
to have lower tail-independence (LTI) if λL[H] = 0. Similarly, if the limit

λU[H] := lim
u↑1

λU[H; u] = lim
u↑1

P[X > F−[u]|Y > G−[u]] , (17)

exists, then H is said to have upper tail-dependence (UTD) if λU[H] ∈ [0, 1)

or to have upper tail-independence (UTI) if λU[H] = 0.

It is a matter of some algebraic manipulations to show that the functions
λL[H; u] in (16) and λU[H; u] in (17) maybe expressed, in terms of the copula
C generated by H as

λL[H; u] = 1

u
C[u, u] (18)

and

λU[H; u] = 1

1 − u
{C[u, u] − 2u + 1} , (19)

which suggests tail-dependence, or lack thereof, for bivariate distributions may
be studied using copulas.

It turns out that copulas are related to some of the standard non-parametric
measures of dependence. Again, assume that Z = (X, Y )T is a random variable
with joint distribution H and marginals F and G, which admits a copula
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model of the form H[x, y] = C[F[x], G[y]], for (x, y)T ∈ F × G. Using
the transformation (u, v)T = (F[x], G[y])T , in the integrals below, we obtain

r [H] := 1√
V1V2

∫
R

∫
R

{H[x, y] − F[x]G[y]}dxdy

= 1√
V1V2

∫ 1

0

∫ 1

0
{C[u, v] − uv}dF−1

1 [u]dF−1
2 [v] ,

(20)

ρ[H] := 12
∫

R

∫
R

{H[x, y] − F[x]G[y]}dF[x]dG[y]

= 12
∫ 1

0

∫ 1

0
{C[u, v] − uv}dudv

= 12
∫ 1

0

∫ 1

0
C[u, v]dudv − 3

(21)

τ [H] = 4
∫

R

∫
R

H[x, y]dH[x, y] − 1

= 4
∫ 1

0

∫ 1

0
C[u, v]dC[u, v] − 1 ,

(22)

�[H] =
∫

R

∫
R

{H[x, y] − F[x]G[y]}2dH [x, y]

=
∫ 1

0

∫ 1

0
{C[u, v] − uv}2dC[u, v] ,

(23)

γ [H] = 2
∫

R

∫
R

{|F[x] + G[y] − 1| − |F[x] − G[y]|}dH[x, y]

= 2
∫ 1

0

∫ 1

0
{|u + v − 1| − |u − v|}dC[u, v] ,

(24)

where C[u, v] = H[F−1[u], G−1[v]] and where V1 and V2 in (20) denote the
variances of the marginals to F and G respectively. We note that r, ρ, τ, �

and γ above are the famous Pearson Correlation, Spearman’s ρ, Kendall’s τ ,
Hoeffding’s � and Gini’s γ respectively.

We have already brought to attention the obvious fact that two random
variables are independent if and only if their generating copula is CI. We end
this section by formalizing the notion of a copula in the context of exchangeable
random variables.

Theorem 4. Given is a random pair (X, Y ) from a distribution H with continuous
marginals F and G with common support F. X and Y are exchangeable if and only
if F[x] = G[x] for every x ∈ F and C[u, v] = C[v, u] for all (u, v)T ∈ [0, 1]2.
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1.6. Parametric and archimedean copulas

In the introduction, we exemplified bivariate distributions which were ex-
pressible as a function of their marginals and a finite dimensional parameter
which controlled the degree of dependence. The one-parameter copula family,
to be discussed in some detail shortly, generalizes the aforementioned type of
bivariate distributions. In particular, we will assume that the joint distribution
function H is expressible as

H [x, y] = C[F[x], G[y], θ ] , (25)

where θ ∈ 	 is an unknown parameter, which as in the previously discussed
bivariate normal and exponential examples, controls the degree of dependence
between the two components. Next, we will present a discussion on four
standard parametric copulas. For three of the examples, we have indicated what
is believed to be the original or at least an early reference for that copula.

Example 1 [Normal copula]. The normal copula, also referred to as the Gaus-
sian copula, is defined as

CN[u, v, θ ] = �2[�−1
1 [u], �−1

1 [v], θ ] , (26)

where �2, the standardized bivariate distribution function with correlation co-
efficient θ ∈ [−1, 1], explicitly defined in (2), and �−1

1 denotes the inverse
function for a univariate standard normal distribution function. For this copula,
limθ↑↓0 C[u, v, θ ] ↑↓ C[u, v, 0] = CI, limθ↑1 C[u, v, θ ] ↑ C[u, v, 1] = CU, and
limθ↓−1 C[u, v, θ ] ↓ C[u, v, −1] = CL.

Example 2 [Gumbel’s copula]. The Gumbel copula (see Gumbel (1961)) with
parameter θ is defined as

CG[u, v, θ ] = exp[−((− log[u])θ + (− log[v])θ )
1
θ ] (27)

where the parameter θ ∈ [1, ∞). For this copula if θ = 1 attains CI and
limθ↑∞ C[u, v, θ ] ↑ CU. As such, it only admits positive dependence. It also
has upper tail dependence.

Example 3 [Frank copula]. Frank’s copula (see Frank (1979)) with parameter
θ ∈ (−∞, ∞) − {0} is given by

CF[u, v, θ ] = −1

θ
log

[
1 − (1 − exp[−θu])(1 − exp[−θv])

1 − exp[−θ]

]
. (28)

For this copula, limθ↑↓0 C[u, v, θ ] ↑↓ CI, limθ↑∞ C[u, v, θ ] ↑ CU, and limθ↓−∞
C[u, v, θ ] ↓ CL. Note that similar to the normal copula, it admits positive as
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well as negative dependence. What should be noted is that if one were to plug
in normal marginals in (28), the resulting function, by virtue to the converse
of Sklar’s result, is a bona-fide bivariate distribution with normal marginals. It
is, however, not a bivariate normal distribution function.

Example 4 [Clayton’s copula]. Clayton’s copula (see Clayton (1978)) with
parameter θ ∈ (1, ∞) is given by

C[u, v, θ ] = {u1−θ + v1−θ − 1} 1
1−θ . (29)

For this copula, limθ↓1 C[u, v, θ ] ↓ CI and limθ↑∞ C[u, v, θ ] ↑ CU. Unlike the
normal and Frank’s copula, it only admits positive dependence.

An important subclass of parametric copulas is the Archimedean Cop-
ula (AC) class. This rich class of copulas does not only enjoy a very simple
representation, as shown below, but also can be used, as will be discussed later,
as a goodness of fit tool. Let us start with providing a formal definition.

Definition 6 [AC copulas and distributions]. A copula function C is said to be
Archimedean if there exists a convex function φ with φ[1] = 0, such that the
copula C is expressible as

C[u, v] = φ−1[φ[u] + φ[v]] , (30)

for all (u, v)T ∈ [0, 1]2. A bivariate distribution function with continuous
marginals is said to be AC if its generating copula is AC. In this case, the
function φ is the called the generator.

It is easy to see, for example, that for the independence copula CI[u, v] =
uv, the generator is given by φ[u] = − log[u] and that for Gumbel copula (2)
the generator is given by φ[u; θ ] = (− log[u])θ .

We will end this section by making the following remark.

Remark 4. If a copula C coincides with one of the copulas CI, CL and CU,
the results of Theorem 2 would be useful in studying dependence. In practical
settings, one would need to assess how close a copula C is to one of these
three copulas. This would require the comparison between two surfaces (i.e.,
the copula C versus CI, CL or CU). In empirical settings, such comparisons,
although possible by considering empirical copulas (to be discussed later), may
not be desirable. In the context of parametric copulas, such as those discussed
in this section, this difficulty is circumvented as closeness between the copula
and three reference copulas is quantified by a single parameter.
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1.7. General literature and historical notes

As pointed out in Nelsen (1998), a comprehensive monograph on copulas,
early work on concepts related on copulas can be found in works by Hoeffding,
who considered bivariate standardized distributions whose support is [− 1

2 ,
1
2 ]

instead that of copulas which is [0, 1]2. Hoeffding’s work did not receive a
lot of attention, as it was published in not readily available European journals,
until his collected works were translated and reprinted in a volume edited by
Fisher and Sen (1994). Other insightful accounts for historical perspectives
on copulas can be found in Schweizer (1991) and Sklar (1996). Another
monograph by Joe (1997) provides not only a comprehensive treatment of
copulas, from a statistical point of view, but is also a general reference on
multivariate models and dependence. Insightful and extensive coverage on the
subject of dependence in the context of copulas, in particular in relation to
the standard non-parametric measures of monotone dependence (20)–(24), are
furnished in Schweizer and Wolff (1981), Schweizer and Sklar (1983) and
Scarsini (1984). The latter article also discusses the implication of discrete
distributions on dependence, an issue also taken up in Joe (1997) and and
Nelsen (1998), which is often, as in the case of this paper, ignored in the
literature. Cifarelli et al. (1996) provide a comprehensive discussion on the topic
of monotone dependence and suggest a general index for monotone dependence
of which Gini’s γ (24) and Spearman’s ρ (21) are special cases. Chapter 5 of
Nelsen (1998) also provides a detailed discussion on these topics of including
a thorough treatment of tail-dependence. Both Nelsen (1998) (pages 94-97)
and Joe (1997) (Section 5.1) provide comprehensive lists of parametric copulas
and their properties including the generators. A discussion on copulas can
also be found in an entry by Fisher (1997) in the Encyclopedia of Statistical
Sciences. Fisher and Switzer (2001) provide discussions on graphical methods
for representing dependence in the context of copulas. For early work on
families of general bivariate distributions see Mardia (1970).

2. Estimation

2.1. Model

The underlying model of interest is expressed as

H[x, y] = C[F[x], G[y], θ ] , (31)

where F and G are a pair of absolutely continuous marginals with densities f
and g respectively. We do point out that often additional smoothness and
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regularity conditions must be imposed. What is observed is a random sample
of pairs

Zn = {Z1, . . . , Zn} = {(X1, Y1)
T , . . . , (Xn, Yn)

T } , (32)

assumed to be drawn from the target distribution H as specified in (31). Cor-
responding to this observed sample Zn , we will also define

W n = {W1, . . . , Wn} = {(U1, V1)
T , . . . , (Un, Vn)

T } , (33)

where (Ui , Vi)
T = (F[Xi ], G[Yi ])T . What should be noted is that the elements

of W n , unlike those of Zn , are unobservable as the marginals are unknown and
that by virtue of Remark 2 the elements of W n are distributed according to the
generating copula C.

2.2. Semi-parametric model

The formulation of model (31), yields a semi-parametric model in the sense
that it is non-parametric in the marginals F ∈ F and G ∈ G and parametric in
the dependence parameter θ ∈ 	. The log-likelihood function for the parameter
η = (θ, F, G)T ∈ 	 × F × G given set of observed pairs, Zn is given by

�n[θ, F, G] = �n[θ |F, G] + �n[F, G]

=
n∑

i=1

log c[F[Xi ], G[Yi ], θ ] +
n∑

i=1

log{ f [Xi ]g[Yi ]} ,
(34)

where

c[u, v, θ ] = ∂2

∂u∂v
C[u, v, θ ] , (35)

is the density function of the distribution function C[u, v, θ ]. Note that if the
marginals F and G were known, then �n[θ, F, G] ∝ �n[θ |F, G] as �n[F, G]
in (34) does not depend on θ . Consequently, in this case, the log-likelihood
function would effectively be reduced to

�n[θ |F, G] =
n∑

i=1

�[θ |F[Xi ], G[Yi ]] =
n∑

i=1

log c[F[Xi ], G[Yi ], θ ] . (36)

The MLE-estimator of θ , then could be canonically represented as

θ̂n[F, G] = argmax
θ∈	

�n[θ |F, G] , (37)

or be equivalently obtained as the solution of the estimation equation

�n[θ |F, G] = 1

n
�̇n[θ |F, G] = 1

n

n∑
i=1

�̇[θ |F[Xi ], G[Yi ]] , (38)
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where �̇[θ, u, v] = ∂
∂θ

�[θ, u, v]. As the summands in (38) are mutually inde-

pendent and identically distributed, the asymptotic properties of the θ̂n[F, G],
under standard regularity conditions, can be obtained from standard results for
M-estimators. In particular, the M-estimator θ̂n[F, G], subject to certain regu-
larity conditions, is consistent and is asymptotically normal in the sense that

θn[F, G]
P→

n→∞ θ , (39)

and √
n(θn[F, G] − θ)

L→
n→∞ N1[0, σ 2

M[θ ]] , (40)

where

σ 2
M[θ ] = V[�̇[θ, F[X ], G[Y ]]]

E[�̇[θ, F[X ], G[Y ]]2]2
= V[�̇[θ, U, V ]]

E[�̇[θ, U, V ]2]2
, (41)

for a generic pair (U, V )T from the uniform copula C[u, v, θ ]. Note that the
above asymptotic variance depends explicitly on the dependence parameter θ

but not on the marginals F and G. In practice, however, the marginals F
and G, are unknown. What can, however, be done is to estimate the marginals
F and G by a pair of empirical estimators, say F̂n and Ĝn and then approximate
�n[θ |F, G] by �n[θ |F̂n, Ĝn]. Analogous to (37), one then obtains a pseudo-ML
estimator of θ as

θn[F̂n, Ĝn] = argmax
θ∈	

�n[θ |F̂n, Ĝn] , (42)

�n[θ |F̂n, Ĝn] = 1

n
�̇n[θ |F̂n, Ĝn] = 1

n

n∑
i=1

�̇[θ |F̂n[Xi ], Ĝn[Yi ]] . (43)

Note that the �n[θ |F̂n, Ĝn] is not necessarily a sum of independent terms as,
for example, F̂n[Xi ] is not independent of F̂n[X j ]. Consequently, the standard
results for M-estimators do not necessarily apply. The question that needs to
be addressed is what kind of marginal estimators, F̂n and Ĝn , of F and G,
under some additional assumptions, would preserve the asymptotic properties
enjoyed by (37). To that end, we will consider a special class of marginal
estimators as defined next.

Definition 7 [UCAN]. For H given in (31), let F̂n and Ĝn denote a pair of
marginal estimators for its marginals F ∈ F and G ∈ G. The estimator M̂n =
(F̂n, Ĝn)

T of M = (F, G)T is said to be UCAN (Uniformly Convergent and
Asymptotically Normal) if

sup
z∈F×G

|M̂n[z] − M[z]| a.s.→
n→∞ (0, 0)T (44)
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and √
n(M̂n[z] − M[z])

L→
n→∞ N2[0, �H[z]] (45)

for z = (x, y)T ∈ F × G. where

�H[z] =
( M11[x] H [x, y] − M12[z]

H [x, y] − M12[z] M22[y]

)
=

( M11[x] C[F[x], G[y], θ ] − M12[z]
C[F[x], G[y], θ ] − M12[z] M22[y]

)
,

(46)

where M11 = F(1 − F), M22 = G(1 − G) and M12 = FG,

It is noted that the standard empirical distribution function and smoothed
kernel estimators, under certain conditions as discussed in for example Yam-
ato (1972), Winter (1979), Reiss (1981), Falk (1983) and Fernholz (1991)
are UCAN. The abovementioned call of estimators will ensure that the result-
ing M-estimator of θ is consistent and asymptotically normal as stated in the
following result.

Theorem 5. Given that F̂n is UCAN estimator of F, the plugin estimator θn[F̂n]
is consistent and asymptotically normal. More specifically,

θn[F̂n, Ĝn] − θ
P→

n→∞ 0 , (47)

and √
n(θn[F̂n, Ĝn] − θ)

L→
n→∞ N1[0, σ 2[θ ]] , (48)

where

σ 2[θ ] = V[�̇[θ, U,V ]]

E[�̇[θ, U,V ]2]2
+ V[D10[U |θ ] + D01[V |θ ]]

E[�̇[θ, U,V ]2]2

= σ 2
M[θ ] + σ 2

P [θ ]

, (49)

where (U, V )T is a generic pair from the uniform copula C[u, v, θ ], and where

D10[u∗|θ ] =
∫ 1

0

∫ 1

0
I[u∗ ≤ u]�̇10[u, v, θ ]c[u, v, θ ]dudv , (50)

D01[v∗|θ ] =
∫ 1

0

∫ 1

0
I[v∗ ≤ v]�̇01[u, v, θ ]c[u, v, θ ]dudv , (51)

for all (u∗, v∗) ∈ [0, 1]2, where �̇10[u, v, θ ] = ∂
∂u �̇[u, v, θ ] and �̇01[u, v, θ ] =

∂
∂u �̇[u, v, θ ] for all (u, v) ∈ [0, 1]2.
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The asymptotic variance is decomposed into the sum of σ 2
M[θ ], the asymp-

totic variance of the MLE estimator, for which the marginals were known, and
σ 2

P [θ ] which can be thought of as the added variance induced due to plugging-
in marginal estimators for the marginals F and G. This estimation method,
in the special case where F and G are estimated by their respective standard
marginal empirical distribution functions, is discussed in Genet et al. (1995)
and Shih and Louis (1995). Two papers that consider estimation of copulas
in the context of AC copulas are Genest and Rivest (1993) and Wang and
Wells (2000).

2.3. Parametric model

A fully parametric counterpart of the copula model is obtained, if one were
to make parametric assumptions on the marginals F and G. For the sake of
completeness, we will provide a short discussion on estimating this parametric
model. In particular, let us assume that F and G are indexed by λ1 and λ2

belonging to parameter spaces �1 and �2 respectively. It is noted that the
likelihood function is expressible as

�n[θ, λ1, λ2] =
n∑

i=1

log c[Fλ1[Xi ], Gλ2[Yi ], θ ]] +
n∑

i=1

log{ fλ1[Xi ]gλ1[Yi ]} . (52)

Given that the parameter space is finite-dimensional, one may attempt to esti-
mate the parameter η = (θ, λ1, λ2)

T via MLE by

η̂n = argmax
η∈	×�1×�2

�n[η] argmax
η∈	×�1×�2

�n[θ, λ1, λ2] . (53)

Alternatively, one may employ an approach similar to that discussed for the
semi-parametric case. Specifically, given that the marginals are known, which
in this case is equivalent to having the parameters λ1 and λ2 known, the log-
likelihood reduces to

�n[θ |λ1, λ2] ∼
n∑

i=1

log c[Fλ1[Xi ], Gλ2[Yi ], θ]] , (54)

from which one-step plug-in estimator of θ is defined explicitly as

θn[λ1, λ2] = argmax
θ∈	

�n[θ |λ] , (55)

or implicitly as the solution of the estimating equation

�n[θ |λ1, λ2] = 1

n
�̇n[θ |λ1, λ2] = 1

n

n∑
i=1

�̇[θ |λ1, λ2] . (56)
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Analogous, to the approach taken in the semi-parametric case, the marginal
parameters are the estimated using, for example maximum likelihood, and then
are substituted into (54) to yield an estimator of θ and the

θn[λ̂1, λ̂2] = argmax
θ∈	

�n[θ |λ̂n] . (57)

A comprehensive treatment of this fully parametric model is given in Joe (1997).
Shih and Louis (1995) also provide a discussion on this model.

2.4. Additional remarks

One can consider variations of the types of models discussed above by
looking at estimation methods given that for example the two marginals are
modeled under a location-shift context. Also, one may consider estimation
methods assuming that the marginals are equivalent or if one is stochastically
larger than the other.

3. Additional topics and general applications

3.1. Empirical copula

Given a random sample

Zn = {(X1, Y1)
T , . . . , (Xn, Yn)

T } , (58)

from a distribution H with continuous marginals, we define the empirical copula
as function on the lattice

In =
{(

i

n
,

j

n

)
: i, j ∈ {1, . . . , n}

}
, (59)

defined as

Cn

[
i

n
,

j

n

]
= 1

n

n∑
k=1

I[Xk ≤ Xn:i , Yk ≤ Yn: j ] , (60)

where Xn:1, . . . , Xn:n denote the order statistics of X1, . . . , Xn . It is easy to
show that

Cn[u, v] = Hn[F̂−
n [u], Ĝ−

n [u]] , (61)

where F̂−
n [u] and Ĝ−

n [u] are the standard empirical distribution functions of F
and G and where

Hn[x, y] = 1

n

n∑
i=1

I[Xi ≤ x, Yi ≤ y] , (62)
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is the bivariate empirical distribution function of H. It can be shown that Cn

converges strongly to C. Also, under some conditions, as for example listed in
Lemma 3.9.28 in van der Vaart and Wellner (1996), the copula is, in suitable
sense differentiable, ans as such

√
n(Cn − C) converges in law to a function

of tight Brownian Bridge. This copula can be used to generate non-parametric
tests for independence as discussed. See for example Deheuvels (1981a, b). It
can be used to construct empirical counterparts to the measures of dependence
(20)–(23). For example, we recall that Spearman’s ρ in terms of copulas can
be expressed as

ρ[H] = 12
∫ 1

0

∫ 1

0
{C[u, v] − uv}dudv ,

for which an empirical version, based on the empirical copula, is given by

ρn[H ] = 12

n2 − 1

n∑
i=1

n∑
j=1

{
Cn

[
i

n
,

j

n

]
− i j

n2

}
. (63)

We conclude this section by the elaborating on the comments made in Remark 2.

Remark 5. Each pair (Xi , Yi)
T of Zn is distributed according to H, while each

pair (F[Xi ], G[Yi ])T is distributed according to the uniform copula C. Given
that F̂n and Ĝn are the standard empirical distribution functions of F and G,
the pair (F̂n[Xi ], Ĝn[Yi ])T is distributed according to the empirical copula Cn .

3.2. Continuity and differentiability

Two important properties of copulas are that they are uniformly continuous
and have bounded first-order partial derivatives.

Theorem 6. Given is a copula C.

i. C satisfies the Lipshitz condition

|C[u1, v1] − C[u2, v2]| ≤ |u1 − v1| − |u2 − v2| , (64)

for u1, u2, v1, v2 ∈ [0, 1].
ii. C is uniformly continuous on [0, 1]2.

iii. The partial derivatives

C10[u, v] = ∂

∂u
C[u, v] ∈ [0, 1] and C01[u, v] = ∂

∂u
C[u, v] ∈ [0, 1] , (65)

exist for every pair (u, v)T ∈ [0, 1]2 and our bounded.

Both continuity and differentiability properties follow quite easily from the
Lipshitz condition coupled with the axiomatic properties of a copula.
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3.3. Conditional distribution and simulation

Given that (U, V ) is a pair from the copula C, then for every u ∈ [0, 1],
the conditional distribution of function of V given U = u is given by

P[V ≤ v|U = u] = C10[u, v] , (66)

for every v ∈ [0, 1]. Analogously, one obtains ins the conditional distribution
of U given V using C01 in (65). Consequently, given a random pair (X, Y )T

from a distribution H, assuming that the marginals are continuous, the condi-
tional distribution of X given Y = y ∈ G can be expressed in terms of the
conditional copula as

P[X ≤ x |Y = y] = C01[F[x], G[y]] , (67)

for x ∈ F . For any copula C, given that U ∗ and V ∗ are two independent
uniform [0,1] variates, the pair( U

V

)
=

(
C

−
01[U ∗, V ∗]

V ∗
)

, (68)

where C
−1
01 denotes the quantile function of C01, is distributed according to

the C. One could analogously generate a random pair from C, using the pair
(U, V )T = (U ∗, C

−
10[U ∗, V ∗])T . Furthermore, given that (X, Y )T is a random

pair from a distribution H with continuous marginals F and G, the pair( X
Y

)
=

( F−[U ]
G−[V ]

)
, (69)

where F− and G− denote the inverse functions of F and G respectively. is
distributed according to H. One could analogously generate a random pair from
C, using the pair (U, V )T = (U ∗, C

−
10[U ∗, V ∗])T . We should point out, that

with a few exceptions, the conditional copula C01 does not admit a closed-
form inverse function. As such, the employment of this method will more
often that not in practice necessitate the use of numerical inversion methods.
Copulas and bivariate distributions, as for example discussed in Marshal and
Olkin (1988, 1991), can be constructed by mixtures. This construction will
yield and alternate method, discussed in the latter reference, for simulating
from copulas which does not require numerical inversion. The monograph by
Johnson (1987) is a general purpose reference on simulation for multivariate
distributions. Also see Lee (1993). The conditional copula can be used to
generate updated estimators of the marginals. One notes that

F[x] =
∫

y
P[X ≤ x |Y = y]dG[y] , (70)
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which can be equivalently presented, in terms of the conditional copula, as

F[x] =
∫

y
C01[x, y, θ ]dG[y] . (71)

What this representation suggests is that if one has a current estimate of the
marginal G and the parameter θ , then one can obtain an updated estimate of
the marginal F

F (1)[x] =
∫

y
C01[x, y, θ (0)]dG(0) . (72)

Similarly, one may obtain an updated estimate of the marginal G and subse-
quently obtain an updated estimate of θ based on F (1) and G(1). On a related
topic Zheng and Klein (1994, 1995, 1996) propose an estimation routine for
estimating the marginals in the context of a competing risk model.

3.4. Survival function

There is a sizeable amount of literature concerning the estimation, from
non- and semi-parametric points of view, of the dependence and joint distri-
bution of censored survival variables. Some papers on the estimation of the
dependence, in a semi-parametric setting, are Clayton (1978), Oakes (1982,
1986, 1994), O’ Quigley and Prentice (1991), Jung et al. (1995) and Shih
and Louis (1995, 1996). Dabrowska (1988, 1989), Prentice and Cai (1992),
Oakes (1994) and Gill et al. (1995) constitute a list of representative papers. A
comprehensive treatment of issues concerning estimation for multivariate sur-
vival functions, including material on copulas, is presented in a monograph by
Hougaard (2000). Parametric copulas can be used not only to model the de-
pendence between censored survival variables but also to estimate the bivariate
survival function. The latter can be accomplished by substituting appropri-
ate smooth estimators for the marginal survivals. The relationship between
the copula generated by a distribution function, H, and that generated by its
corresponding survival function H̄ can be seen from the following:

H̄[x, y] = 1 − F[x] + G[y] + H[x, y]

= 1 − F[x] − G[y] + C[F[x], G[y]]

= CS[F[x], G[y]]

= CS[1 − F[x], 1 − G[y]]

(73)

for (x, y)T ∈ F×G, where F = 1− F and G = 1−G are the marginal survival
functions corresponding to F and G respectively. It is easy to show that the
function

CS[u, v] = 1 − u − v + C[u, v] , (74)
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in the above expression, is by virtue of C being a copula, a copula itself and
will be referred to as the associated (with C) survival copula.

Remark 6. The converse to Skylar’s result stipulates that if C is a copula and
F and G are continuous marginal distribution functions, the function defined
as H[x, y] = C[F[x], G[y]] is a bivariate distribution function. Analogously,
it can be shown that for the same copula C, the function defined as S[x, y] =
C[1 − F[x], 1 − G[y]] is a bivariate survival function. One should, however,
note that H̄ [x, y] = CS[1 − F[x], 1 − G[y]], as shown in (73), and not S is the
survival distribution corresponding to H.

What this also suggests is that when modeling bivariate survival data, it
may be more convenient to express the joint survival function directly as a
copula of its marginal survival functions. More specifically, we will assume
that our generic pair of survival times, denoted by (X

′
, Y

′
)T follows a joint,

survival function H̄ expressed as

H̄[x, y] = C[F[x], G[y], θ ] , (75)

for some copula C. Assuming that the survival times for subject i , (X
′
i , Y

′
i )

T ,
are subject to some independent right-censoring mechanism, what is observed
is Zi = (Xi , Yi)

T = (X
′
i ∧ C X

i , Y
′
i ∧ CY

i )T , where (C X , CY )T are the so called
censoring variables and �i = (�X

i , �Y
i )T = (I[Xi ≤ C X

i ], I[Yi ≤ CY
i ])T are the

so called corresponding event variables. In particular, given that the marginal
survival functions F and G are known, the log-likelihood function is given the
data

Zn = {(Z1, �1)
T , . . . , (Zn, �n)

T } , (76)

is given by

�n[θ |F, G] =
n∑

i=1

log[c[F[Xi ], G[Yi ], θ ]]�
X
i �Y

i

+
n∑

i=1

log[C10[F[Xi ], G[Yi ], θ ]]�
X
i �̄Y

i

+
n∑

i=1

log[C01[F[Xi ], G[Yi ], θ ]]�̄
X
i �Y

i

+
n∑

i=1

log[C[F[Xi ], G[Yi ], θ ]]�̄
X
i �̄Y

i ,

(77)

where �̄X
i = 1−�1

i and �̄Y
i = 1−�Y

i . Plug-in M-estimation methods similar to
those described earlier for the uncensored case. may be employed to estimate θ .
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Shih and Louis (1995) provide some arguments for the asymptotic law of the
estimator in the special case where the marginal survival functions, F and G,
are estimated by the standard Kaplan-Meier marginal estimators and consider
a related case study.

3.5. Semi-parametric bootstrap

To employ the simulation techniques outlined in the context of parametric
copulas, one needs to know the parameter θ as well as the marginals F and G.
This luxury of this knowledge is not afforded in data analysis problems and as
such, we will be able to draw random pairs from neither the uniform copula C

nor the target distribution function H. As in most empirical simulation problems,
we will need to settle for simulating from the estimated rather than actual
distribution functions. Suppose that U ∗ and V ∗ are two independent uniform
variates and that θ̂n, F̂n and Ĝn are estimators of θ, F and G, based on Zn

respectively. Then given Zn , the pair( Ũ
Ṽ

)
=

(
C

−1
01 [U ∗, V ∗, θ̂n]

V ∗
)

, (78)

is a distributed according to C[u, v, θ̂n]. If the marginal estimators are contin-
uous, we may take this a step further by saying that given Zn , the pair( X̃

Ỹ

)
=

(
F̂−

n [Ũ ]
Ĝ−

n [Ṽ ]

)
, (79)

is distributed according to Ĥ[x, y] = C[F̂n[x], Ĝn[y], θ̂n]. Note that based on
the observed sample Zn we can now simulate a larger sample of size N [n] > n.
More specifically, we can simulate a random sample

W ∗,N [n] = {(U ∗
1 , V ∗

1 )T , . . . , (U ∗
N [n], V ∗

N [n])
T } , (80)

of size N [n] from estimated uniform copula C[u, v, θ̂n]. Then given continuous
estimators F̂n and Ĝn , of F and G, we can simulate a random sample

Z∗,N [n] = {(X∗
1, Y ∗

1 )T , . . . , (X∗
N [n], Y ∗

N [n])
T } , (81)

where (X∗
i , Y ∗

i ) = (F̂−
U∗

i
[n], Ĝ−

V ∗
i

[n]) for i ∈ {1, . . . , N [n]}, from the estimated

distribution C[F̂n[x], Ĝn[y], θ̂n]. This method can then be employed to simulate
statistical functionals of H. For example, E[h[X, Y ]] based on Zn can be
simulated by

E
∗
N [n][h[X, Y ]] = 1

N [n]

N [n]∑
i=1

h[X∗
i , Y ∗

i ] . (82)
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3.6. Minimum, maximum and extreme values

The distribution of the minimum and maximum, min[X, Y ] and max[X, Y ],
under the copula model can be expressed as

P[min{X, Y } ≤ z] = P[X ≤ z, Y ≤ z] = C[F[z], G[z]] , (83)

and

P[max{X, Y } ≤ z] = 1 − P[max{X, Y } > z]

= 1 − P[X > z, Y > z] = 1 − CS[F[z], G[z]] .
(84)

These expressions suggest that by estimating the copula, one obtains an estimate
of the distributions of the minimum and maximum. There is a substantial
amount of work in the area of bivariate extremes in the context of copulas. We
will not elaborate on this issue but suggest Marshal and Olkin (1983), Capéraá
et al. (1997) and Genest and Rivest (2001) as representative papers on this
topic.

3.7. Goodness of fit

So far, it has been implicitly assumed that the copula function is known. In
data analysis problems, one is faced with choosing the copula which generates
the target distribution. The methods to be discussed are appropriate for select-
ing the best-fitting, based on some criteria, copula among a pool of potential
candidate AC copulas. For a given distribution function H, let use define

K [w] = P[H[x, y] ≤ w]] =
∫ ∫

I[H[x, y] ≤ u]dH[x, y] , (85)

for each w ∈ [0, 1]. Furthermore, suppose that H is generated by a copula C

parametrized by θ and note that

KC[w; θ ] =
∫ ∫

I[C[u, v, θ ] ≤ u]dudv = K [w] . (86)

It can be shown, see for example Genest and Rivest (1993), that that if C is
AC and generated by φ, that

KC[w; θ ] = w − φ[w; θ ]

φ̇[w; θ ]
, (87)

where φ̇[w] = ∂
∂w

φ[w]. We note that K [w] in (85) can be estimated non-

parametrically by say K̂n[w] and that KC[w; θ ], as the generator φ is assumed
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to be known, can be estimated by plugging in an estimator θ̂n of θ in (86). As
such we can quantify the goodness of fit for the chosen copula by assessing the
empirical discrepancy between K̂n[w] and KC[w; θ̂n]. Wang and Wells (2000),
for example, suggest using the L2 distance

δ2[θ ] =
∫

{K [u] − KC,θ [u]}2du . (88)

The also generalize this idea in the context of bivariate censored variables. One
can also employ a graphical approach by plotting for example K̂n[w] versus
KC[w; θ̂n]. Also see Rivest and Wells (2001) for related issues.

3.8. Approximating copulas

In this section, we will present two methods for approximating copulas.
For a given copula C, its Bernstein approximation is given by

B
n
C

[u, v] =
n∑

i=1

n∑
j=1

C

[
i

n
,

j

n

]
bn[u, i]bn[v, j] , (89)

where

bn[w, k] =
(

n

k

)
wk(1 − w)n−k , (90)

for k ∈ {1, . . . , n} and w ∈ [0, 1], and its checkerboard approximation is
given by

D
n
C

[u, v] = n2
n∑

i=1

n∑
j=1

�n
C

[i, j]dn[u, i]dn[v, j] , (91)

where

�n
C

[i, j] = C

[
i

n
,

j

n

]
−C

[
i − 1

n
,

j

n

]
−C

[
i

n
,

j − 1

n

]
+C

[
i − 1

n
,

j − 1

n

]
, (92)

for i, j ∈ {1, . . . , n} and

dn[w, k] =
∫ w

0
I

[
t ∈

[
k − 1

n
,

k

n

]]
dt , (93)

for each k ∈ {1, . . . , n} and w ∈ [0, 1]. It can be shown that B
n
C

and D
n
C

are
copulas and that they converge uniformly to C. For more detailed discussions
on approximations of copulas, see Mikusinski et al. (1992), and Li et al. (1998)
and Kulpa (1999).
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3.9. Efficient scoring

The plug-in type estimators that were discussed are obviously, except in
the case of independence, not fully efficient. Three references, which address
the issue of efficient scoring for copulas, are Bickel et al. (1993) (Section 4.7),
Maguluri (1993) and Klaassen and Wellner (1997). The first provides a com-
prehensive treatment on efficient estimation in the context of semi-parametric
models. The latter derives the efficient score for the special case of the normal
copula (1). The efficient score function is implicitly defined as a solution of
coupled differential equations. Both references emphasize the point that al-
though the solution to the corresponding differential equations may exist, in
general it will be prohibitively difficult to derive in closed form. Two other
comprehensive references on semi-parametrics, useful for studying theoretical
properties of copulas, are the last chapter in van der Vaart (1998) and a series
of lecture notes by van der Vaart on semi-parametric statistics in Bolthausen
et al. (2002).

4. Applications

4.1. Power and sample size considerations

Power and sample size calculations are important tools in designing statis-
tical experiments and trials. Often a small sample, say Zn , of size n has made
been available from a pilot-study to be utilized in designing the study. The idea
is to estimate the distribution function H based on the observed sample Zn and
then simulate a larger sample, say Z N [n], of size N [n] > n using the ideas dis-
cussed in Section 3.5. Note that this is similar, in nature, to the empirical power
calculation methods discussed in Chapter 25 of Efron and Tibshirani (1993),
where the joint distribution function H is estimated by the bivariate empirical
distribution function based on the pilot data. The potential advantage of the
copula based approach described here is that one is able to impose dependence
structures on the data, rather than having the data completely impose the struc-
ture of the dependence. That may potentially be of great importance if for
example the dependence is weak but due to the physical nature of the problem,
the dependence structure must necessarily be non-negative. In this case, the
imposition of a positive dependence structure may be more efficient.

4.2. Microarrays

The development of statistical methodology for the analysis of microarray
data has gained great momentum in the last few years. We have already dis-
cussed the utility of copulas in quantification as well as estimation of dependent
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censored survival variables. The goal of this section is to illustrate the utility
of copulas in detecting gene markers which are associated with a censored
response such as a survival variable. In this setup, we have an n × M matrix
Z

n,M = [Zn,1| . . . |Zn,M ] (n subjects and M markers) of gene array expressions.
Gene i is said to be a prognostic marker if its corresponding gene expression
is associated with the survival time T . Suppose that the joint survival function
of T and Zi , where Zi is a generic gene expression for gene i , is given by

H̄i [t, x] = C[ST [t], Si [z], θi ] , (94)

where ST and Si are the marginal survival functions of T and Zi respectively.
Given that the survival times are Y n , we may estimate θi by Y n and Zn,i

using the likelihood (77). It should be noted that the likelihood will have a
simpler form in this case as only the survival times and not the expressions
are subject to censoring. For notational simplicity, we will assume that marker
i is not associated with the survival time if θi = θ0. That is if θi = θ0,
then Ci = CI. The hypotheses of interested can be canonically presented as
testing H0 : θi = θ0 for all i ∈ {1, . . . , M} versus H1 : θi �= θ0 for some
i ∈ {1, . . . , M}. Let θ̂ i

n denote the estimator corresponding to θ1 and let

ξ̂ M,n = max{|θ̂1
n |, . . . , |θ̂ M

n |} . (95)

We will reject H0 in favor of H1 if ξ̂ M,n is large. More specifically, given a
family-wise error rate of size α ∈ (0, 1), we want to find a critical value ξα

such that P[ξ̂ M,n > ξα|H0] ≤ α. Note that under the null hypothesis, none of
the markers are associated with the survival variable, whence the distribution
of ξ̂ M,n , under H0, can be generated via permutation resampling by simply
permuting the rows on Y n . As n!, the number of possible permutations, is in
most practical applications, prohibitively large, we will typically settle for B
permutations. Let ξ B

α denote the approximation of the critical value ξα based
on B permutations. Then gene i is declared to be associated with the survival
endpoint, if |θ̂ i

n| > ξ B
α . In this setup, we have assumed that the generating

copula is the identical for all the gene markers. We may generalize this by
considering having different copulas.

4.3. Multivariate receiver operator curves

Consider a classifier that assigns a subject as type A if some corresponding
measurement, say X , exceeds a certain threshold say τ and as type B otherwise.
Receiver Operator Curves (ROC) have shown to be very useful and have enjoyed
broad popularity in assessing the performance of such classifiers. An illustrative
example is that of a biomarker such as PSA (Prostate-Specific Antigen) whose
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large values are often thought to be indicative of prostate cancer. Swets and
Pickett (1982) lists over 100 potential applications while Pepe (2000) provides
a nice review on this topic. Given that S A and SB denote the survival function
of X under populations A and B respectively, ROC curve is formally defined as

ρ1[u] = S A
1 [ζ B

1 [u]] , (96)

for u ∈ [0, 1], where ζ B
1 [u] is the inverse function of SB

1 An aggregate measure
for the assessment of the performance of the test is the Area under the ROC
(AROC) defined as

α1 =
∫ 1

0
ρ1[u]du . (97)

It is easily seen, the details are omitted here, that this quantity is equivalent to
P[X A > X B], where X A and X B are generic measurements from populations A
and B respectively. A standard non-parametric estimator, for this quantity, is the
Mann-Whitney statistic (see Sidak et al. (1999) for more details). As such, the
AROC is often useful in addressing questions about stochastic ordering between
two distributions. Given that we have two random samples, X A

1 , . . . , X A
n A

and
X B

1 , . . . , X B
nB

, of sizes n A and nB , from populations A and B respectively, the
non-parametric estimator of ρ1[τ1] is given by

ρ1[u] = S A
1 [ζ B

1 [u]] , (98)

ρ̂1[τ1] = S1
n [ζ 1

n [τ1]] , (99)

where S1
n is the standard empirical estimator of S1 based on X A

1 , . . . , X A
n A

and
ζ 1

n is the marginal quantile estimator based on X B
1 , . . . , X B

nB
. α1 is given by

α̂1 = 1

n A

1

nB

n A∑
i=1

nB∑
j=1

I[X A
i > X B

j ] . (100)

The pair of measurements (X, Y )T is assumed to follow the survival function

H̄
A[x, y] = C[S A

1 [x], S A
2 [y], θ ] , (101)

under population A while following the survival function

H̄
B[x, y] = C[SB

1 [x], SB
2 [y], θ ] , (102)

under population B. What should be noted, under the specified model, is
that the measurements (X, Y )T have potentially different marginal effects while
having identical dependence structures under the two populations. This can
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be generalized by using different dependence parameters or by using different
copulas altogether. The ROC vector is then defined as

ρ[u, v] =
( S A

1 [ζ B
1 [u]]

S A
2 [ζ B

2 [v]]

)
, (103)

for (u, v) ∈ [0, 1]2 and its corresponding vector of AROCs is given by

α =
( α1

α2

)
=


∫ 1

0
S A

1 [ζ B
1 [u]]du∫ 1

0
S A

2 [ζ B
2 [v]]dv

 . (104)

The covariance matrix of α̂ under (101) and (102) is now easily obtained. By
estimating the parameters of (101) and (102), one obtains a plug-in estimates
of these covariance matrices. The method based on multivariate U -statistic out-
lined in DeLong et al. (1988) can be considered as a non-parametric counterpart
to the semi-parametric copula based approached presented In some applications
with two or more markers, one marker is of primary interest while the re-
maining markers are of secondary interest or peripheral. In this case, we may
consider the performance of the primary marker conditional on the secondary
marker(s). The conditional distribution, in the context of the copula model,
can be easily estimated to produce Conditional ROC curves (CROC) as well
as Conditional AROCs (CAROC).

4.4. Applications to problems is finance, insurance and risk management

The applications presented thus far may give the erroneous impression
that the utility of copulas is limited to biostatistics. Frees and Valdez (1998),
in addition to providing a review of copulas, present applications to insur-
ance problems. Wang (1998), Li (2000) and Lauprete et al. (2002) discuss
applications of copulas to financial and insurance problems. A series of work-
ing papers by researcher at Credit Lyonnais, with applications of copulas to
problems in finance and credit risk management, are available for download
(http://gro.creditlyonnais.fr/content/rd/home copulas.htm).

4.5. Software

An open-source library, for use within GNU R (www.r-project.org), is
currently in development by the authors. This library will offer general facilities
for simulation and estimation for a number of standard families of bivariate
copulas. More specifically, this library will also be useful in the context of the
biostatistical applications discussed in this paper. Other non-commercial copula
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related software is available for download from the internet. In the commercial
domain, S+FinMetrics�, an addon module for S-PLUS� (www.insightful.com),
according to company literature, provides functionality for the simulation and
estimation of parametric and empirical copulas. This add-on module, as its
name suggests is primarily intended for financial applications. The MODEL�

procedure in SAS� (www.sas.com), according to its online user manual, utilizes
copulas for simulating from multivariate distributions.

5. Concluding remarks

As pointed out in the introduction and as suggested by the title of this paper,
the goal set forth was to present a review of the concept of copulas vis-a-vis
multivariate distribution functions and statistical dependence along with a list
of the early as well as recent relevant literature. As this field has been growing
and developing at a fast rate, the list of relevant literature is by no means
exhaustive but is rather intended to be representative. To keep the presentation
focused towards applications, we have often refrained, as much as possible, from
providing technical details as most of these are well documented the literature.
More importantly, our hope is that the number of applications mentioned in
this presentation will demonstrate the utility of copulas in engaging problems
in applications for which the appropriate modeling of the dependence structure
is paramount.
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