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Developing and Pricing
Precipitation Insurance

Steven W. Martin, Barry J. Barnett,
and Keith H. Coble

Production agriculture and agribusiness are exposed to many weather-related risks.
Recent years have seen the emergence of an increased interest in weather-based
derivatives as mechanisms for sharing risks due to weather phenomena. In this
study, a unique precipitation derivative is proposed that allows the purchaser to
specify the parameters of the indemnity function. Pricing methods are presented in
the context of a cotton harvest example from Mississippi. Our findings show a
potential for weather derivatives to serve niche markets within U.S. agriculture.
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Introduction

Production agriculture and agribusiness are exposed to many weather-related risks.
Common examples include extremes of both precipitation and temperature. In the United
States, the federally subsidized crop insurance program provides crop producers with
protection against many weather-related risks. However, the program is plagued with
moral hazard and adverse selection problems (Skees and Reed; Quiggin, Karagiannis,
and Stanton; Smith and Goodwin; Coble et al.; Just, Calvin, and Quiggin). Further,
federal crop insurance policies all contain deductibles that leave growers with some
exposure to losses associated with extreme weather.

Livestock producers in the U.S. currently have no federally subsidized insurance, yet
they are also exposed to weather risks. Extreme heat can cause increased death loss in
broiler houses and/or higher electrical cost for cooling. Extreme cold can cause increased
death loss for range-fed livestock. In 1999, Hurricane Floyd dramatically demonstrated
that extreme precipitation can cause extensive problems with lagoon waste management
systems for confinement livestock facilities (Barrett; Kilborn; Whitman). Many agri-
businesses (input supply, transportation, storage, processing, marketing, etc.) are also
indirectly affected by impacts of weather risk on production agriculture but have no
federally subsidized insurance.

Recent years have witnessed an increased interest in weather-based derivatives as
mechanisms for sharing risks due to weather phenomena. Since early 1997, market
participants in the electricity and natural gas sectors have used temperature-based
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derivatives to offset their exposure to extreme temperatures. Tailored over-the-counter
derivatives are based on a specified temperature index such as cumulative heating
degree days (HDD) or cooling degree days (CDD) for a given location over a specified
period of time (Dischel 1998b). On September 22,1999, the Chicago Mercantile Exchange
began trading standardized monthly cumulative HDD and CDD futures and options
contracts. Contracts are now traded for Atlanta, Chicago, Cincinnati, Dallas, Des Moines,
Las Vegas, New York, Philadelphia, Portland, and Tucson.

In this article, we propose a unique precipitation derivative that allows the purchaser
to specify the parameters of the indemnity function according to his/her risk manage-
ment needs. While the proposed derivative has characteristics much like an option, we
assume the highly tailored contracts and the relatively small dollar amounts of protection
required by most retail purchasers would necessitate sales through traditional retail
insurance channels. A cotton harvest example from Mississippi is employed to demon-
strate the potential uses of such derivatives. We begin with a discussion of the rapidly
growing market for weather derivatives.

Background on Weather Derivatives

Weather derivatives provide a mechanism for cross-hedging against variability in a
firm's revenues or costs. If the firm's revenues or costs are sufficiently correlated with
the underlying weather phenomenon, the weather derivative will provide a useful, though
not perfect, mechanism for cross-hedging. For example, temperature extremes create
problems for electric and natural gas utilities. During periods of extremely high temper-
atures, electric utilities may face levels of consumer demand in excess of generating
capacity. To meet that demand, utilities purchase marginal quantities of electricity on
spot markets. But, because extreme temperatures are often spatially correlated, a utility
may find itself bidding against many other utilities for available spot market supplies
of electricity. Spot-market prices can increase dramatically above long-run equilibrium
levels. In June 1998, spot-market wholesale prices for electricity increased from $35 per
megawatt-hour to $7,500 per megawatt-hour in a matter of days (Dischel 1998c). When
summer temperatures are unusually mild, electric utilities are faced with reduced
demand and lower revenues. Natural gas suppliers are also faced with temperature-
related risks. Unusually mild winter temperatures reduce the demand for natural gas,
and hence revenues of natural gas suppliers. Temperature derivatives allow utilities to
shed the volumetric risk associated with extreme demand shifts.

Purchasers of weather derivatives are generally exposed to some degree of geograph-
ical basis risk. Weather derivatives are typically settled based on realized weather
phenomena, measured by an objective party, at a given location. In the United States,
the underlying index is normally based on National Oceanic and Atmospheric Admin-
istration (NOAA) measurements at a given weather station. In a world of complete
weather derivative contracts, potential purchasers may be able to significantly reduce
geographic basis risk by spreading their risk protection across derivatives based on
several surrounding weather stations.

Weather derivatives are typically based on official NOAA measurements for at least
two reasons. First, both parties can be confident of an objective measurement of the
weather phenomenon on which the contract will be settled. Second, buyers (sellers) can
base bid (offer) prices on an extended time series of data collected at the site. It is not
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unusual for weather data to be available from a given weather station covering periods
of 50 years or more. These data are made available via the internet by the National
Climate Data Center, a NOAA subsidiary (Dischel 1998c).

Precipitation Insurance

Changnon and Changnon describe the process by which they established premium rate
tables for short-term (1-72 hours) precipitation insurance. The policies were designed
to provide protection against precipitation affecting outdoor events such as fairs or
concerts. Data from 211 weather stations were used to calculate empirical hourly
cumulative frequencies, averaged over calendar months, for six levels of precipitation
(0.01, 0.05, 0.10, 0.25, 0.50, and 1.00 inches). The continental United States was divided
into 17 rating regions, and the historical frequencies were then averaged across all the
weather stations within each rating region.

Patrick presents estimated premium costs for a proposed rainfall insurance contract
in the Mallee wheat-producing region of Australia. Though Patrick indicates premiums
are derived from "reasonable [parametric] distributions of rainfall," no specifics are pro-
vided about distributional forms or parameters.

Sakurai and Reardon estimate the demand for a hypothetical "rainfall lottery" in
Burkina Faso. The lottery, which is assumed to be administered by an insurance
company, would make a lump-sum payment to lottery ticket-holders whenever annual
rainfall, measured at a given weather station, is below some predetermined level.

The instruments described by Changnon and Changnon; Patrick; and Sakurai and
Reardon are similar in that each uses weather station data to calculate premium rates.
However, Changnon and Changnon set premium rates for a traditional precipitation
insurance policy where loss adjustment would be based on realized precipitation at the
event site. In contrast, Patrick, and Sakurai and Reardon, consider insurance policies
which are effectively weather derivatives. Specifically, their studies describe put options
with loss adjustment based on realized values of an underlying index of precipitation
measured at a given weather station. Nevertheless, both Patrick, and Sakurai and
Reardon characterize their proposed precipitation derivatives as insurance, because
they assume the derivatives would be sold to farmers through retail insurance channels.

Turvey presents stylized European HDD, CDD, and precipitation options where the
indemnity function is of the form

O... .0 if x > strike,
(1) indemnity = x strike,]

strike-x if x<strikef x <

for puts, and

(2) -indemnity = if x < strike,]
x - strike if x > strike

for calls, where strike is a choice variable, x is the cumulative realized value of the
underlying index (HDD, CDD, or precipitation) during the contract period, and X is
some predetermined dollar value per unit of the index. Thus, for a precipitation put,
if x is 2 inches, strike is 5 inches, and X is $100 per inch, the indemnity would be equal
to $300.
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Skees and Zeuli propose a European precipitation put with an indemnity function of
the form

0 if x > strike,
(3) indemnity = strike - x if strike x liability,

if x < strike
strike

where liability is a choice variable that establishes the maximum possible indemnity.
The brackets in equation (3) contain the loss cost function specifying the percentage of
liability to be paid out as an indemnity conditional on the choice of strike and the reali-
zation ofx. The indemnity function in equation (3) is analogous to that used by Skees,
Black, and Barnett for Group Risk Plan area yield puts. Note, if X = liability/strike,
equation (3) is identical to equation (1).

For precipitation, x has a natural lower bound of zero. Thus, for puts, the maximum
indemnity is X(strike) for equation (1), and liability for equation (3). But there is no
natural upper bound on x. Thus, for calls, there is no cap on the maximum indemnity.

We propose a more flexible form for European precipitation options. For brevity, we
focus only on calls, though analogous presentations of puts are easily constructed. The
indemnity function for calls is designated by

0 if x < strike,
x - strike

(4) indemnity = - strike if limit > x > strike, x liability,
limit - strike

1 if x > limit

where limit is an additional choice variable. Again, the brackets contain the loss cost
function for the option. By their choices of strike and limit, purchasers define the domain
of x over which the option will pay an indemnity. For calls, limit > strike > 0. In addition
to allowing purchasers to tailor the characteristics of precipitation options according to
their risk management needs, the limit variable makes rating of precipitation calls more
tractable.

For calls, when limit > strike, we can define a variable ip such that

(5) limit = strike 1 + ),

where 0 < p < oo. Equation (4) can now be rewritten as

0 if x < strike,

p(x - strike)
(6) indemnity = ( stri if limit > x > strike, x liability,strike

1 if x > limit

where p is an increasing payment factor. If = 1, limit = 2 x strike. If limit > strike > 0,
pj determines how fast the maximum indemnity is paid relative to the base case of limit
= 2(strike). Consider a call with the strike set at 6 inches over the contract period. If
p. = 1, limit will be equal to 12, so the maximum indemnity will be paid only when x is
6 inches above the strike. If p = 2, limit will be equal to 9, so the maximum indemnity
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will be paid when x is only 3 inches above the strike. If p = 3, limit will be equal to 8, so
the maximum indemnity will be paid when x is only 2 inches above the strike. Thus, for
calls with the same strike, the value for pj indicates how fast the option will pay the maxi-
mum indemnity relative to the base case of p = 1. If p = 2, the call will pay the maximum
indemnity twice as fast as the base case; ifp = 3, three times as fast, and so on.

Pricing Precipitation Insurance

Expected loss cost is the standard basis for establishing insurance premium rates (Skees
and Barnett).l Loss cost is equal to indemnities divided by liability. Insurance actuaries
calculate an expectation on future loss cost based on historical experience with the insur-
ance product. Expected loss cost can be considered as an expected breakeven premium
rate.

Using extended time series of weather data, historical loss costs can be simulated for
stylized weather insurance instruments. An expected loss cost can then be estimated
from the simulated historical loss costs.

We assume that requiring purchase sufficiently in advance of the contract period will
prevent intertemporal adverse selection conditioned on precipitation forecasts (Luo,
Skees, and Marchant). In general, advance purchase requirements will need to be set
long enough such that an expectation on precipitation for the contract period conditioned
on meteorological forecasts is likely no better than an unconditional expectation. For
some areas, El Nifo/Southern Oscillation (ENSO) phenomena may require very long
advance purchase requirements (Ker and McGowan; Mjelde, Hill, and Griffiths; Podbury
et al.). Alternatively, extensions of the procedures described here could be used to condi-
tion premium rates on ENSO phenomena.

Loss cost is the portion of the indemnity function enclosed in brackets in equations
(4) and (6). The breakeven premium rate for the proposed precipitation insurance/option
is simply the unconditional expectation of loss cost.

Simulation

Climatological research has supported the use of a gamma distribution to characterize
the distribution of climatological variables (such as cumulative precipitation) exhibiting
a physical lower bound of zero but no upper bound (Barger and Thom; Thom; Ison,
Feyerherm, and Bark; McWhorter, Matthes, and Brooks; Wax and Walker). The proba-
bility density function for the gamma distribution is denoted by

/ )a-l e x pl -a)
(7) f(x; c, Pj) x (0;a, p>0,

where x is the random variable (in this case, cumulative precipitation), a is the shape
parameter, and p is the scale parameter. The mean of the distribution is ap.

1While the proposed precipitation insurance is, in essence, an option, pricing based on standard options valuation models
is problematic. Standard options valuation models require that one be able to construct (at least conceptually) a riskless port-
folio consisting of both the option and the asset which forms the underlying index (Hull; Dischel 1998a). Yet, there is no
actively traded forward market for precipitation.
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To initiate the simulation, cumulative precipitation measures over the chosen contract
period are calculated for each year in the historical data series. Maximum-likelihood
estimation is then applied to these data to estimate the parameters on the gamma
distribution. Because the natural log of zero is undefined, a statistical problem occurs
if any of the cumulative precipitation observations in the historical data series are equal
to zero. To address this problem, Wilks treats precipitation data as exhibiting type I
censoring on the left. In the United States, precipitation amounts of less than 0.01 inch
are not recorded in official measurements. If we designate the censoring point as C,

where 0 < C < 0.01, then a given set of cumulative precipitation data will contain Nc
censored years in which cumulative precipitation over the contract period is recorded
as zero, and Nw years with positive measured values. The total number of years in the
data set will be equal to Nc + Nw. Wilks specifies the likelihood function for the param-
eters of the assumed gamma distribution as follows:

Nc Nw

(8) L(a, P; x) = HF(C; a, P) nf(xi; a, P)
j=1 i=1

(x 1 ( -x
N W - exp-

=[F(C; a, P)]NC P p
i=1 p(a

where F is the cumulative distribution function,

(9) F(C; a, P) = Cf(x; a, P)dx = Pr{xj < C}.

The log-likelihood function to be maximized is written as

(10) A(a, P; x) = Ncln[F(C; a, P)] - Nw[aln(P) + ln[r(a)]]
Nw 1 Nw

(a-1)ln(xi) - -
i=l P i=1

Note that if Nc = 0, equation (10) reduces to the standard log-likelihood function for
fitting the parameters of a gamma distribution.

Figure 1 presents estimated gamma probability density functions over cumulative
daily precipitation for the weather station located at the Delta Research and Extension
Center (DREC) in Stoneville, Mississippi. The probability density functions are based
on data from 1936 through 1995. The associated parameter estimates and standard
errors are found in table 1. All distributions exhibit positive skewness. Yet, as the
time period lengthens, the distributions become more symmetric. This is consistent
with findings reported in climatological literature suggesting more symmetric distri-
butions may adequately characterize cumulative precipitation measured seasonally
or annually, but are unlikely to be appropriate for shorter time periods. Climatologists
prefer the gamma distribution because it is sufficiently flexible to adequately character-
ize cumulative precipitation over time periods of varying length (McWhorter, Matthes,
and Brooks).

After fitting the parameters of the gamma distribution, the expectation of loss cost
is calculated by integrating over the loss cost component of the indemnity function. For
a call, the expectation of loss cost corresponding to equation (4) is given by
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Figure 1. Estimated gamma probability density functions for
precipitation at the Delta Research and Extension Center,
based on daily precipitation data, 1936-1995

(11) E(loss cost) = limit x- strike f(x)dx + f(x)dx
Jstrike limit -strike) limit

where f(x) is the gamma density. This expression can be rewritten to correspond to
equation (6) as follows:

(12) E(loss cost) = imit((x - strike) f(x)dx+ f(x)dx.
istrike strike imit

No indemnity is paid if x < strike.

Results

A cotton harvest example is used to illustrate the procedure described above. In the mid-
South, cotton harvest generally occurs during the period from mid-September until the
end of October. Growers in the region typically defoliate the crop when approximately
70% of the bolls are open. However, precipitation between the time cotton bolls open and
harvest can cause significant reductions in revenue. These losses occur due to lost yield
and reduced quality.

Using data from DREC test plots, Williford et al. estimate per acre revenue losses
between defoliation and harvest due to various discrete levels of precipitation. They
assume a 650 pound per acre expected yield and an expected price of $0.60 per pound.
We fit a quadratic function to these data to obtain the continuous loss function:

(13) loss per acre = -5.02 + 15.0757z - 0.3166z 2

(2.07) (0.60) (0.04)

R2 = 0.997,
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Table 1. Gamma Distribution Parameter Estimates Based on Daily Precipi-
tation Measurements

Shape
Parameter, a Mean, aU

Weather Station (Standard Error) (Standard Error)

Delta Research & Extension Center, Stoneville, Mississippi 4.24 6.41
September 1-October 31 (1936-1995) (0.766) (0.413)

Delta Research & Extension Center, Stoneville, Mississippi 1.88 3.25
October 1-October 31 (1936-1995) (0.327) (0.314)

Delta Research & Extension Center, Stoneville, Mississippi 1.19 1.94
October 16-October 31 (1936-1995) (0.201) (0.250)

Greenville, Mississippi 1.21 2.89
October 1-October 31 (1936-1995) (0.199) (0.339)

Cleveland, Mississippi 1.25 3.19
October 1-October 31 (1936-1988) (0.219) (0.392)

where z is precipitation between defoliation and harvest, and the numbers in parentheses
are standard errors. The loss function is shown in figure 2. On a hypothetical 1,000-acre
cotton farm, 4 inches of cumulative precipitation cause an estimated loss of approxi-
mately $50,200; 6 and 8 inches of cumulative precipitation cause estimated losses of
approximately $74,000 and $95,300, respectively.

Suppose, prior to planting, this grower purchased a buy-up insurance policy covering
65% of the actual production history (APH) yield at 100% of the expected price (the most
common selections on buy-up policies). For simplicity, assume theAPH yield is equal
to the expected yield of 650 pounds per acre. Also assume a price selection equal to the
expected price of $0.60 per pound. The expected revenue on the crop is $390,000. Yet,
because of the 35% deductible, the grower is responsible for the first $136,500 of yield
or quality losses (realized yield is adjusted for quality losses on crop yield insurance
policies). Suppose further that in late September the crop is on target to meet the 650
pound per acre yield expectation. The grower is concerned about potential losses due to
precipitation prior to harvest. At this time, the crop yield insurance policy provides
essentially no financial protection because of the deductible. Historical data from 1936-
1995 reveal mean cumulative precipitation for October at the DREC of 2.96 inches, with
a range from 0.03 to 10.99 inches. Twelve inches of precipitation, higher than any occur-
rence in the historical record, would generate an estimated $130,300 in losses, all of
which would fall under the grower's deductible. Even with a 75% coverage level, a crop
yield insurance policy would not pay an indemnity until over 8 inches of precipitation
had caused almost $100,000 in losses. If, in late September, the expected yield on the
crop is higher (lower) than the APH yield, higher (lower) losses due to precipitation would
be required to trigger a crop yield insurance indemnity.

We construct a precipitation call for the period October 1-October 31, with the under-
lying index being precipitation measured at the DREC. Table 2 presents breakeven
premium rates for various strikes and limits.

For different choices of strike and limit, and different realizations ofx, table 3 reports the
cost and indemnity for a call with liability equal to $100,000. Various combinations of
strike and limit would provide protection against the estimated losses. Breakeven premium
costs range from $30,200 for strike = 1 and limit = 8, to $5,400 for strike = limit = 8.
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Figure 2. Estimated losses per acre on cotton due to precipitation
between defoliation and harvest

While various combinations are possible, consider a few examples. If realized precipi-
tation is 6 inches, total losses would be approximately $74,000. A $100,000 call with a
strike of 4 inches and a limit of 6 inches would have a breakeven cost of $17,900. With

the realized precipitation of 6 inches, the call would pay an indemnity of $100,000. This

would more than cover the estimated loss. A $100,000 call with a strike of 4 inches and
a limit of 8 inches would have a breakeven cost of $13,100 and, given the same realized
precipitation, would pay an indemnity of $50,000, covering only about two-thirds of the
estimated loss.

A grower may wish to spread his/her liability across multiple options. Continuing our
example, a grower could purchase a $50,000 call with a strike of 4 inches and a limit of
6 inches, and a $50,000 call with a strike of 4 inches and a limit of 8 inches. This combin-
ation would have a breakeven cost of $15,500 and would pay an indemnity of $75,000
for 6 inches of realized rainfall. By spreading liability across multiple options with

different combinations of strike and limit, options purchasers can attempt to better match

indemnities to anticipated losses over the domain of potential precipitation.
We conduct an expected utility analysis to test the efficacy of these instruments in

protecting against precipitation-induced cotton losses prior to harvest. Our hypothetical
1,000-acre farm, located at the Delta Research and Extension Center, is assumed to have
an initial wealth of $400,000. Using the loss function in equation (13), pre-harvest losses

are estimated for each year from 1936 through 1995 based on cumulative precipitation

from October 1-31. Table 4 presents mean ending wealth and the standard deviation

of ending wealth under three scenarios: (a) no purchase of precipitation derivatives,
(b) purchase of a $100,000 call for DREC with a strike of 4 inches and a limit of 8 inches,
and (c) purchase of a $100,000 call for DREC with a strike of 1 inch and a limit of 8
inches.

Martin, Barnett, and Coble
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Table 2. Breakeven Premium Rates on Precipitation Calls for October 1-31,
Based on DREC Precipitation Measurements

Breakeven BreakevenInches of Precipitation re Rae Inches of Precipitation BreakePremium Rate Premium Rate
strike limit (%) strike limit (%)

1 8 30.2 6 6 11.9
4 4 25.7 6 8 8.2
4 6 17.9 6 10 5.9
4 8 13.1 8 8 5.4
5 5 17.6 8 10 3.7
5 6 14.6 11 11 1.6
5 8 10.4

Table 3. Cost and Indemnity of Various Precipitation Calls with $100,000
liability, October 1-31, Based on DREC Precipitation Measurements

Inches of Precipitation Inches of PrecipitationCost Indemnity Cost Indemnity
strike limit x ($) ($) strike limit x ($) ($)

1 8 5 30,200 57,143 1 8 7 30,200 85,714
4 4 5 25,700 100,000 6 6 7 11,900 100,000
4 6 5 17,900 50,000 4 8 7 13,100 75,000
4 8 5 13,100 25,000 6 8 7 8,200 50,000
1 8 6 30,200 71,429 1 8 8 30,200 100,000
6 6 6 11,900 100,000 4 8 8 13,100 100,000
4 6 6 17,900 100,000 6 8 8 8,200 100,000
4 8 6 13,100 50,000 8 8 8 5,400 100,000

The grower's expected utility over wealth is assumed to be characterized by a utility
function with constant relative risk aversion:

(14)
m W

1
n-rm IWlr

E(Usr) = E JS r s1
j=1 m(l - r)
m 1

E(Usr) = E ln(Wjs), r =1,
j=1 m

where U is utility, Wis annual ending wealth, s is the scenario, j is the year, and r is the
coefficient of constant relative risk aversion. The corresponding certainty equivalent of
ending wealth is denoted by

(15) CEsr = (1 - r)E(Usr)/(l'r), r 1,

CEs = eE(Ur), r = 1.

Table 5 provides certainty equivalents for each of the three scenarios over various
degrees of relative risk aversion. The scenario involving purchase of a call with a strike
of 4 and a limit of 8 generates the highest certainty equivalents. For r > 1, both scenarios
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Table 4. Summary Statistics on Ending Wealth Assuming Purchase of October
1-31 Precipitation Calls, Based on DREC Precipitation Measurements

Ending Wealth ($)

Call Scenario Mean Std. Deviation

No Purchase 364,633 30,136
strike = 4, limit = 8 364,854 16,082
strike = 1, limit = 8 363,264 4,580

Table 5. Certainty Equivalents Assuming Purchase of October 1-31 Precipita-
tion Calls, Based on DREC Precipitation Measurements

Call ScenarioConstant Relative
Risk Aversion No Purchase strike = 4, limit = 8 strike = 1, limit = 8

-------------- Certainty Equivalents ($)--------------
1.0 363,338 364,504 363,236
1.5 362,662 364,328 363,222
2.0 361,966 364,152 363,208
2.5 361,251 363,976 363,194
3.0 360,517 363,800 363,179
4.0 358,988 363,447 363,151

involving purchase of a precipitation call generate higher certainty equivalents than the
scenario with no purchase. The certainty equivalent for a purchase scenario is less than
that of a no-purchase scenario only when r = 1 and the call has a strike of 1 and a limit
of 8.

To assess the impact of geographic basis risk, the same scenarios are tested with the
calls based on weather stations located in Greenville and Cleveland, Mississippi (tables
6 and 7). Greenville, Mississippi, is located approximately 11 miles west and slightly
south of DREC. Cleveland, Mississippi, is situated approximately 31 miles north and
slightly east of DREC. Daily precipitation data were available for 1936-95 for Greenville
and 1936-88 for Cleveland. (Parameter estimates for the underlying gamma distributions
are shown in table 1.)

Table 6 reports mean ending wealth and the standard deviation of ending wealth for
calls based on Greenville and Cleveland, Mississippi, and table 7 presents certainty
equivalents for the calls. For every value of r, the certainty equivalents of the purchase
scenarios exceed those of the no-purchase scenario. The calls based on DREC and
Greenville generate lower standard deviations of ending wealth than those based on
Cleveland. However, the calls based on Cleveland cost less than those based on DREC
and Greenville. As a result, the highest certainty equivalents generally occur with the
purchase of calls based on Cleveland-the location farthest away from the hypothetical
farm. The only exception is for the call with strike = 4 and limit = 8 at the higher levels
of r. In this case, calls based on DREC generate higher certainty equivalents than those
based on Cleveland. Thus, for these examples, basis risk does not significantly undermine
the benefits of purchasing precipitation calls.
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Table 6. Summary Statistics on Ending Wealth Assuming Purchase of October
1-31 Precipitation Calls, Based on Greenville and Cleveland, Mississippi, Pre-
cipitation Measurements

Ending Wealth ($)

Weather Station/Call Scenario Mean Std. Deviation

Greenville: strike = 4, limit = 8 364,610 17,788

Greenville: strike = 1, limit = 8 364,629 12,818

Cleveland: strike = 4, limit = 8 365,284 19,470

Cleveland: strike = 1, limit = 8 364,936 14,483

Table 7. Certainty Equivalents Assuming Purchase of October 1-31 Precipi-
tation Calls, Based on Greenville and Cleveland, Mississippi, Precipitation
Measurements

Greenville Call Scenarios Cleveland Call Scenarios

Constant Relative strike = 4, strike = 1, strike = 4, strike = 1,
Risk Aversion limit = 8 limit = 8 limit = 8 limit = 8

--------------- Certainty Equivalents ($)---------------
1.0 364,181 364,408 364,767 364,655
1.5 363,966 364,297 364,505 364,514
2.0 363,750 364,187 364,241 364,373
2.5 363,534 364,076 363,975 364,231
3.0 363,318 363,966 363,706 364,090
4.0 362,885 363,746 363,162 363,808

Conclusion

Interest in weather derivatives is growing rapidly. To date, most applications in the
United States have been in nonagricultural industries. However, several other countries
are attempting to use weather derivatives in agricultural applications. While the current
federal crop insurance program crowds out some demand, weather derivatives could
possibly serve niche markets within U.S. agriculture.

We propose a flexible precipitation insurance/option instrument that allows the pur-
chaser to specify various parameters of the indemnity function. We also present a proposed
rating method based on simulation procedures. The choice variable, limit, allows buyers
to define a layer of protection over the domain of potential precipitation. This feature
can alternatively be characterized as an increasing payment factor reflecting the rate
at which the maximum indemnity will be paid relative to a base case. The limit variable
has numerous potential applications beyond precipitation options. For example, its
adoption would likely improve the efficiency of other index options such as federal crop
insurance Group Risk Plan contracts.

Further research could address the potential for reducing geographical basis risk by
spreading liability across contracts purchased on several surrounding weather stations.

272 July 2001



Developing and Pricing Precipitation Insurance 273

Alternatively, insurers, or other weather brokers, could use geographical smoothing
techniques to base indemnities and premiums on some algebraic combination ofweather-
station measurements. Further research is also required to determine appropriate
advance purchase requirements for different climatological regions. Should meteor-
ologists develop procedures that accurately predict ENSO occurrences on a consistent
basis, the rating procedures described here could be modified to allow for conditional
expectations on loss cost.

[Received November 1999; final revision received February 2001.]
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