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Abstract

The level of yield risk faced by a farmer is an important factor in the design of appro-
priate management and insurance strategies. The difference between field scale and regional
scale yield risk, which can be significant, also represents an important measure of the factors
that cause the yield gap — the difference between average and maximum yields. While field
scale yield risk is difficult to assess with traditional data sources, yield maps derived from
remote sensing offer promise for obtaining the necessary data in any region. We analyzed
remotely sensed yield datasets for two regions in Northwest Mexico, the Yaqui and San Luis
Rio Colorado Valleys, in conjunction with time series of aggregated regional yields for
1976-2002. Regional scale yield risk was roughly 8% of average yields in both regions. Field
scale yield risk was determined to be 58% higher than regional scale risk in both regions.
The difference between field and regional scale risk accounted for 50% of the spatial variance
in yields in the Yaqui Valley, and 70% in the San Luis Rio Colorado Valley, indicating that
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climatic uncertainty represents an important source of the spatial yield variability. This
implies that accurate seasonal climate forecasts could substantially reduce yield losses in
farmers’ fields. The results were shown to be fairly sensitive to assumptions about the mag-
nitude and nature of errors in yield estimation, suggesting that improved understanding of
estimation errors are needed to realize the full potential of remote sensing for yield risk
analysis.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Average crop yields in agricultural regions vary from year to year as weather con-
ditions and other factors influencing crop growth change. The associated variations
in regional crop production can have important implications for crop prices and
food security risks, and therefore regional yield variability has been widely studied
(e.g., Naylor et al., 1997; Calderini and Slafer, 1998; Harwood et al., 1999). Such
studies typically utilize available data on regional crop yields obtained, for instance,
from government surveys (e.g. FAO, 2004; NASS, 2004).

At the scale of individual farmers, crop yield variability represents an important
source of income uncertainty and, in the case of subsistence farming, food security
risk (risk is defined here as uncertainty that affects an individual’s welfare; Harwood
et al., 1999; Hardaker et al., 2004). Studies that attempt to assess farmer-level risk
with regional crop yield data, however, tend to under-estimate risk (Debrah and
Hall, 1989; Marra and Schurle, 1994; Rudstrom et al., 2002; Gorski and Gorska,
2003). This is because temporal yield variations for different fields within a region
are not perfectly correlated, owing to differences in management, soil, and local cli-
matic conditions. As a result, regional crop yield variability is often lower than aver-
age field variability.

The yield risk at the field scale ideally could be estimated from time series of yields
from individual fields. However, obtaining field scale yield records is difficult and
expensive, and the sources that do exist may be subject to substantial bias (Rudstrom
et al., 2002). In contrast, objective measurements of individual crop fields are rou-
tinely made by Earth orbiting satellites, and these measurements of surface reflec-
tance properties have been successfully used to estimate crop yields in many
regions (e.g., Moulin et al., 1998; Shanahan et al., 2001; Lobell et al., 2003; Baez-
Gonzalez et al., 2005).

This paper describes an attempt to use remotely sensed yields to quantify field
scale yield variability. Section 2 outlines the conceptual basis for this approach, as
well as the relationship between temporal and spatial yield variability. Section 3 dis-
cusses some of the limitations of using remote sensing and describes the remote sens-
ing techniques used in this study. Section 4 describes the study areas and methods,
while Sections 5-7 discuss the main results and conclusions.
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2. Conceptual framework

To elucidate the difference between regional and field scale variability, the yield at
field i in year ¢ can be expressed as

Yit:YRtJF(Yit*YRt) (1)

where Yg;, the regional yield at time ¢, is the weighed average of yields for all fields in
the region, with the weights corresponding to the relative area of each field. The tem-
poral variance (uncertainty) of yield at the field scale can be written as:

Var(Y;) = Var(Yg,) + Var(Y;, — Yr,) + Cov(Yrs, Yir — Yry) (2)

The last term represents the covariance between regional yields and field-region dif-
ferences, which has expectation equal to zero (Harwood et al., 1999):

N T
E[Cov(Yue, Yir = Y] = D D (Yre = Vr)(Ye = Vi) = (Vi = V) /NT =0

(3)

since Yg,, which represents the regional average over all years, and Y, which repre-
sents the field average over all fields and years, are equal (ignoring variations in field
size, which in extreme situations may cause the weighted average to differ signifi-
cantly from the simple arithmetic average). Eq. (2) can thus be simplified to:

Var(Y;) = Var(Yg,) + Var(Y;, — Yr,) (4)

which signifies field scale variance is the sum of regional scale variance and the var-
iance of field-region differences.

As seen from Eq. (4), estimation of yield uncertainty at the field scale requires
either (1) long-term datasets on yields in actual farmers’ fields, to directly estimate
Var(Y;); or (2) long-term datasets on average regional yields to estimate Var(Yg,),
combined with an estimate of the variance of field-region differences, Var(Y;, — Ygr,).
A lack of time-series data on field scale yields has precluded the former approach in
most regions, with some exceptions (e.g., Marra and Schurle, 1994). Estimation of
the variance of field-region differences thus represents a key bottleneck to improved
understanding of field scale yield uncertainties.

An interpretation of Eq. (4) is that uncertainty at the field scale has a component
that is shared among neighbors, due to common factors such as regional climatic
conditions, and a component that varies from field to field. The latter component
arises from interactions between spatial and temporal variations. For example,
weather conditions will not only impact average yields, but will affect the difference
in yield between a farmer who plants early and one who plants late.

A somewhat separate line of inquiry in agricultural research concerns the source
of spatial variability in yields, often measured by the difference between the highest
yielding fields and the regional average. We refer to this difference as the ““yield gap”,
although this term is reserved by some authors to signify the difference between the
genetic yield potential and average yields (Evans, 1993; Cassman, 1999). In
intensively irrigated and fertilized systems, such as those studied here, the highest
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yielding fields are often very close to genetic yield potential. Nonetheless, the distinc-
tion may be important in some systems and we emphasize that any gap between yield
potential and the highest yielding fields is not addressed here.

A common issue is whether the yield gap can be reduced by improved manage-
ment, and if so what specific actions should be taken (Cassman et al., 2003; Rose-
grant et al., 2003). In general, many soil, climatic, and management factors
contribute to yield losses in farmers’ fields, and we wish to identify the few factors
that are most responsible for these losses. One can classify these factors into two clas-
ses: those that are consistent (or fixed) in time and those that are not. Examples of
each are given in Table 1. An understanding of how much each class of factors con-
tributes to yield variability is an important step toward understanding causes of the
yield gap and identifying appropriate strategies to improve regional productivity.

From the discussion above, it is clear that the issue of field scale temporal variabil-
ity is closely related to that of spatial variability. That is, some fraction of spatial var-
iance may arise from temporally constant, site-related factors, but a significant
portion may also result from space—time interactions. Seen in this context, the var-
iance of field-region differences, in addition to its importance for measuring field
scale yield uncertainty, provides a measure for how important space-time interac-
tions are in driving spatial differences in yield.

Mathematically, the average spatial variance of yield over time, which we denote
as Vs, can be defined as:

I
M~

Vys Var(Y, — Yr,)/T
=3 > Yo~ (= Yo /TN = 1))
=3 > (= Yr)/[T(V = 1)] (%)
Table 1

Examples of temporally consistent (i.e., site-related) and inconsistent factors affecting field-region yield
differences

Consistent factors Inconsistent factors

Soil properties (e.g., texture, mineralogy) Climatic conditions
Topography and drainage characteristics Farmer (if rented)

Distance to canals, wells, cities, and other landscape features Variable annual management

decisions (e.g., planting, fertilizer
and irrigation dates)

Farmer (unless rented) Management—climate interactions
Long-term management decisions (e.g., irrigation system, soil Soil-climate interactions
management)

Consistent annual management decisions (e.g., planting, fertilizer
and irrigation dates)
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where Y;, — Yg,, the average across all fields of the difference between field yield and
regional yield, is zero. In comparison, the average temporal variance of field-region
differences, which we denote hereafter as Vyr, can be expressed as

Vyr =Y Var(y, - Yp)/N=>_ Y[, (V=R /N(T 1) (6)

i=1 =1 t=1

where Y, — Yy, the average field-region yield difference for field i, can be thought of
as the systematic difference in yield at field i/ due to factors such as soil quality or
farmer skill.

Expansion of the quadratic term in Eq. (6) gives

’Mz ‘IMZ
hER

S [ = Yr)* =200 = Vo) (T = ) + (T = T)’ /IN(T = 1)]

t=

(i = Vo)’ = (V=T /IN(T = 1)] )

1 ¢

Il
—_

l

Therefore, the main difference between Eqgs. (5) and (7) is the additional term in Eq.
(7) representing the time average squared field-region difference for each field. The
ratio

I=Vyr/Vys (8)

represents the variance of field-region differences as a fraction of total spatial yield
variance. In cases where spatial variability is largely due to consistent variations in
soil properties, farmer skill, topographic position, weather conditions, etc., the ob-
served spatial patterns of yields will be fairly consistent and the fraction, /, is ex-
pected to be fairly close to zero. Conversely, values of I near one would indicate
that a large fraction of total spatial variability is attributable to factors that are
not consistent in time. An ability to distinguish between these two sets of factors
based on observed values of I would offer useful insights into constraints on regional
crop production.

It should be noted that Egs. (5)—(7) are analogous to an ANOVA decomposition,
where the total sum of squares of yields are separated into effects of fields and years,
with one observation for each field—year combination. However, the representation
of variability in terms of variances rather than sum of squares is more useful in situ-
ations where Vyg and Vyr are estimated from different data sources. For example,
Vys may be estimated from exhaustive datasets from one or two years, while Vyr
may be estimated from a few fields with longer time series.

To summarize, an accurate estimate of Vyr can help to quantify both field scale
yield uncertainty and the importance of consistent, site-related factors in driving spa-
tial yield variations. The former is of great importance when evaluating the potential
value of risk management strategies to farmers, while the latter provides insight into
the causes of spatial yield variability (i.e., the yield gap) and therefore the potential
value of approaches to raise regional yields. However, estimation of Vyt remains
problematic due to a paucity of long-term, field scale yield datasets.
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3. Remote sensing of crop yields

In this paper, we present an approach to estimate Vyr using multi-year yield
maps, generated from remote sensing data acquired by the Landsat thematic mapper
(TM) and enhanced thematic mapper plus (ETM+) sensors. The datasets and meth-
ods used to generate the yield maps used here are described in detail by Lobell et al.
(2003). Briefly, each 30 x 30 m Landsat pixel containing wheat is identified based on
the ratio of near-infrared (NIR) to red reflectance values at different dates. Yields for
wheat pixels are then estimated by fitting a curve of daily canopy light absorption
(derived from a crop model) to Landsat estimates of light absorption at each image
date. The estimate of total growing season light absorption is then multiplied by the
ratios of biomass to light absorption and grain yield to biomass, which are relatively
well conserved properties and are prescribed constant values based on field trials
(Lobell et al., 2003).

This light-use efficiency model thus provides a yield estimate for each 30 x 30 m
pixel with wheat. When images are available from multiple years, careful geo-regis-
tration of images allows successive years to be overlain on each other and compared.
The yield time series for individual fields can then be extracted from the multi-year
yield images.

However, two issues arise when using remote sensing datasets to estimate Vyr.
First, only relatively short-term records are obtainable for individual fields in
most situations, owing to limited availability of satellite records. An estimate of
Vvt based on yields for a single field will therefore be prone to large errors asso-
ciated with the small sample size. To avoid such errors, one may perform similar
estimates for a large number of fields and compute the average value of Vyr.
This is demonstrated in Fig. 1, which plots the average sample variance for a
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Fig. 1. Average temporal variance of simulated random variables with length two years (left) and four

years (right). True variance is equal to 1. These simulations demonstrate the expected accuracy of Vyrt
estimates based on the number of fields and number of years of yield data.
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simulated random variable with true variance equal to 1.0. The average sample
variance is determined by two factors: (1) the number of years used to compute
the variance for each sample and (2) the total number of samples (i.e., fields).
With only two years of data (Fig. 1a), the average sample variance often deviates
from the true value by more than 20%, even for sample sizes above 200. With
four years of data (Fig. 1b), however, the estimate becomes more reliable and
is generally confined to within 10% of the true value for sample sizes above
100. Thus, using the spatial coverage of remote sensing to observe a large number
of fields, sampling errors related to the relatively sparse temporal coverage can be
substantially reduced.

A second problem related to the use of remote sensing is that yield estimates
may be prone to substantial uncertainties, resulting from the various modeling
assumptions necessary to translate satellite measured radiance to yield estimates
(Lobell et al., 2003). In fact, the problem of measurement error is not unique to
remote sensing, but is often ignored when using data from more traditional
sources, such as field surveys. For any measurement of yield at field i in year ¢
(Z;,) that has some error (g;) associated with it, we cannot estimate Var(Y; — Yg,)
directly, but rather Var(Z; — Zgr,). This value can be expressed as:

Var(Z, — Zg,) =Var(Y;, — Yr, + &y — €r/)
=Var(Y; — Yr,) + Var(e;, — er;) + Cov(Y; — Yrs, & — er/)  (9)

where &g, is the average error across all fields (i.e., bias). Hereafter, we assume that
any bias has been accounted for in the model, and thus eg, = 0. If we further assume
that measurement errors are random and therefore independent of yield, then the
last term in Eq. (9) is zero and we are left with

Var(Y; — Yr,) = Var(Z;, — Ygr,) — Var(e;) (10)

Thus, an estimate of the variance of measurement error, Var(e;), must be subtracted
from the observable Var(Z;, — Yg,) to derive Var(Y;, — Yg,). Similarly, Var(e;)
should be subtracted from the computed spatial variance of yield measurements to
estimate Vys. To estimate Var(e;), one can employ error propagation techniques,
such as Monte Carlo simulation, within the yield estimation model or directly com-
pare estimates with field measured values. For the data used in this study, both ap-
proaches have previously been applied (Lobell et al., 2003, 2005) and indicate a value
of approximately 0.1 Mg” ha™? for Var(g;). Since these estimates of error are them-
selves subject to uncertainty, we analyze below the sensitivity of results to the as-
sumed value of Var(e;).

4. Methods

Here we apply the remote sensing approach outlined above to two irrigated agri-
cultural regions in Northwest Mexico: the Yaqui Valley (YV) and San Luis Rio Col-
orado Valley (SLRCYV) (Fig. 2). The total area of irrigated cropland is 225,000 Ha in
YV and 27,000 in SLRCV. Both regions grow predominantly irrigated spring wheat
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Sonora, Mexico

San Luis Rio Colorado Valley Yaqui Valley
e

8 ton ha"

I 5 ton ha“!

5 km

Fig. 2. The study regions of the Yaqui Valley (right) and San Luis Rio Colorado Valley (left). Images
display estimated wheat yields for 2002 in both regions. Black boxes outline locations of fields randomly
selected for multi-temporal analysis.

(roughly 60% of total cropland is typically sown to wheat in each region) and there-
fore the analysis focused on this crop. In both regions, wheat is sown in late fall
(November—December) and harvested in late spring (April-May). Throughout this
paper, the year of yield refers to the year in which the crop was harvested.

Records of average wheat yields (Ygr,) for 1976-2002 were obtained for each
region from Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimen-
tacion (Secretaria de Agricultura, 2003). The variance of regional yields, Var(Yy,),
was computed by first fitting a linear trend to the yield time series to remove long-
term trends (Fig. 3), and then computing the variance of yield anomalies from this
trend (Marra and Schurle, 1994; Harwood et al., 1999).

Field scale yields of wheat were obtained from remote sensing derived yield maps
for four years (2000-2003) in YV and five years (2000-2004) in SLRCV. Very few
fields were planted with wheat in 2004 in YV because of limited water availability,
and therefore this year was omitted from the analysis. Within each region, the raw
yield images were first converted to images of field-region differences, (Z;, — Yr,),
by subtracting the average image yield for each year. The sequence of yield difference
images was then used to mask out pixels that did not contain wheat in all image
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Fig. 3. Wheat yields for 1976-2002 for the Yaqui Valley (black line) and San Luis Rio Colorado Valley
(gray line). Dashed lines show best-fit linear regression.

years. Pixels with values of (Z,, — Yr,) greater than three standard deviations from
the mean, deemed to indicate mis-specification of crop type, were considered outliers
and thus also removed from subsequent analysis. Among the remaining pixels, 200
fields were randomly selected in each region for further analysis. This number was
deemed sufficient to obtain a reliable estimate of Vyt based on the number of years
and simulations presented above (Fig. 1).

Each field was manually outlined in a geographic information system (GIS) to
identify those pixels within the field. To avoid errors incurred at field boundaries,
where pixels may include mixtures of roads and other fields, pixels near the edge
of the field were excluded from the so-called region of interest (ROI). The average
image value for pixels in each ROI (i=1, 2,..., 200) and year (t=1, 2,...,
NYR) was then extracted, resulting in a 200 x NYR array (D) of field-region differ-
ences (d;,), where NYR equaled four in YV and five in SLRCV.

dl,l dl,Z dl,NYR
dZ,l d2,2 U d2ANYR

D=1 . o : (11)
dZOO,I d200‘2 o dZOO‘NYR

The variance of each row of D was calculated to estimate Var(Z;, — Yr;) for each
field, with the average over all fields minus Var(g;) used to estimate a characteristic
V+yr for the region. Similarly, the variance of each column of D was used to compute
the spatial variance within each year, with the average over all columns, minus
Var(e;), used to estimate Vys. As discussed above, different values of Var(e;) were
evaluated to track the sensitivity of the results to assumptions about image noise.
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5. Results
5.1. Regional scale yield variability

The variance of yield residuals from the 1976 to 2002 trend is given for each
region in Table 2. Vgt was slightly higher in SLRCV than in YV, with the standard
deviation of yield residuals in both regions equal to roughly 7.5% of average yields.
This magnitude of variability is low relative to most major wheat growing nations,
which typically exhibit absolute values of yield deviations between 10% and 20%
of average yields (Calderini and Slafer, 1998). The greater stability in Northwest
Mexico likely reflects a combination of greater irrigation rates and less variable cli-
mate relative to other major wheat producing regions.

5.2. Field scale yield variability

Fig. 4a—c displays the histograms for field sizes, field-region yield differences, and
yield variances computed from the remotely sensed data in YV. The average field size
was 12.5 ha for the ROI’s in this region. The distribution of field-region differences
(Z;; — Yr,) for all fields and years, shown in Fig. 4b, was skewed toward negative
values (skewness = —0.50). This indicates that large negative field-region differences
were more common than large positive differences, which is consistent with previous
studies documenting the non-normality and negative skewness of yield anomaly dis-
tributions (e.g., Atwood et al., 2002).

The observed values of Var(Z; — Ygr,), whose distribution is shown in Fig. 4c,
averaged 0.21 Mg” ha 2. The average observed spatial variance, equal to the average
variance of columns in D, was 0.32 Mg” ha~? for YV. As discussed above, relating
these values to Vyt and Vyg requires an estimate of the error in yield estimation
Var(g;,). Fig. 4d displays values of Vy, Vys, and their ratio (/) as a function of
the magnitude of error. For a value of Var(g;) = 0.1, for instance, the inferred values
are Vyt=0.11, Vyg=0.22, and I =0.5. To test whether temporal variance was sig-
nificantly lower than spatial variance, a null distribution for 7 was derived using
Monte Carlo simulation to compute 7 100 times for normally distributed random
noise across 200 fields over four years. The 99% confidence interval was 0.93-1.05,
thus the values of I reported here are statistically significant at p <0.01.

Table 2
Regional statistics for 1976-2002 wheat yields
Region Trend Variance of Standard 2000-2002 Coeflicient of
(kgha'yr ") yield residuals deviation average variation (a/u) (%)
(Vrr) (Mg?ha™2) of residuals yield ()
(0) Mgha™')  (Mgha )
YV 49.3 .19 44 5.81 7.5

SLRCV 71.8 24 49 6.57 7.4
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Fig. 5. Same as Fig. 4 but for the San Luis Rio Colorado Valley.

Fig. 5 displays the corresponding results for SLRCV. The average size of ROI’s in
this region was 4.3 ha, or roughly one-third the size of ROI’s in YV. Again, the dis-
tribution of field-region yield differences exhibited negative skewness (—0.85) and
was significantly non-normal (kolmogorov test, p < 0.01). The average variance of
the rows and columns of D was 0.24 and 0.30, respectively. Assuming Var(e;) = 0.1,
this translates to Vyt = 0.14, Vys = 0.20, and 7= 0.7. Thus, temporal variability in
SLRCYV was similar to YV but spatial variability was substantially lower (F test,
p <0.05).

6. Discussion

We highlight two important aspects of the results presented above: (1) the relative
values of Vyt and Vygr and (2) the relative values of Vyt and Vys. We do not focus
on the evidence for or against normality of yield anomalies, which can be an impor-
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tant issue when setting insurance premiums (Just and Weninger, 1999; Atwood et al.,
2002; Sherrick et al., 2004).

The following discussion assumes that Var(e;) = 0.1, which is deemed appropriate
based on previous uncertainty analysis and comparison with field data. However, as
seen in Fig. 4d and Fig. 5d, the interpretation of multi-year yield estimates is quite
sensitive to the assumed value for Var(g;,) (i.e., noise level). It is also important to
note that errors are assumed to be entirely random, i.e., they contribute equally to
spatial and temporal yield variance. However, the yield estimates rely on remotely
sensed estimates of canopy condition, which in turn are subject to errors associated
with differences in soil reflectance or crop cultivar (which influences canopy architec-
ture and leaf color) that are likely to exhibit consistent spatial patterns (Myneni and
Williams, 1994). Unfortunately, testing the spatial and temporal randomness of
errors requires validation data for several fields in multiple years, a dataset which
is not currently available.

Therefore, we suspect that the contribution of error to spatial variance is likely
higher than the contribution to temporal variance. The ratio of temporal to spatial
variance, /, is thus deemed a conservative (i.e., minimum) estimate for the proportion
of spatial variability owing to inconsistent factors. Finally, an assumption made
throughout this analysis is that fields that contain wheat in all image years are rep-
resentative of all fields with wheat in a single year; that is, selecting only those fields
with wheat every year does not bias our results. This assumption would not hold if,
for instance, less productive fields are less likely to be planted when prices are unfa-
vorable, or if more productive fields are more likely to be planted with higher value
crops in some years.

6.1. Regional vs. field scale yield uncertainty

The inferred values of Vyrin YV (0.11) and SLRCV (0.14) are, in both regions,
58% of the inferred value for Vygr. This indicates that field scale variability is
roughly 50% greater than regional-scale variability in both regions. Interestingly,
while these two regions differed in average field size (YV roughly three times big-
ger), region size (YV roughly 10 times bigger), and the ratio of field to region size,
there was either no effect on the Vy1:Vygr ratio or any effects canceled each other
out.

The increase of risk by 58% when moving from the regional to field scale is not
only consistent between the two sites studied here, but agrees well with previous
studies from other regions. In a study of wheat yields in Kansas, Marra and Schurle
(1994) computed average yield standard deviations of roughly 0.46 Mgha™' at the
county scale and 0.56 Mg ha ! at the field scale, which translates to a ratio of field
to county variance of 1.49. In a study of wheat yields in Canada, Rudstrom et al.
(2002) report an average ratio of field:municipality yield variance of 1.6. While sev-
eral factors contribute to the effect of aggregation on yield risk (Marra and Schurle,
1994; Rudstrom et al., 2002; Gorski and Gorska, 2003), it thus appears that a
roughly 50% increase in risk in terms of yield variance is common when moving from
regional to field scales.
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6.2. Temporal vs. spatial yield variability

In YV, the temporal variance of field-region differences was one-half the magni-
tude of average spatial yield variance (I = 0.5). We interpret this to mean that spatial
variability of wheat yields in YV can be explained roughly equally well by the factors
in left and right hand side of Table 1. As shown in Table 1, annual management deci-
sions such as planting date and fertilizer rates can either be consistent or inconsis-
tent, depending on the actions of the farmer. For instance, some farmers tend to
always apply high fertilizer rates, and therefore this factor would tend to be consis-
tently different between fields. On the other hand, a factor such as planting date may
vary based on the farmer’s schedule from year to year. Thus, it is impossible to
entirely classify annual management decision as consistent or inconsistent. However,
based on our experience, farmers tend to manage their land similarly from year to
year. Thus, the 50% explained by inconsistent factors is likely due not to variation
in management practices, but by interactions of climate with spatially variable fac-
tors, such as soil and management properties.

A simple interpretation of I = 0.5 is that no more than half of yield variability can
be explained by factors associated with location (i.e., soil properties, landscape posi-
tion, farmer identity, etc.). This, in turn, implies that efforts to address these factors
will, at best, reduce the yield gap by 50%. The higher value of I = 0.7 in SLRCYV indi-
cates that a maximum of just 30% of yield variability in this region can be explained
by location. It therefore appears that non-site related factors drive the majority of
spatial variations in yield performance. If we assume that management is fairly con-
sistent through time at each field, this implies that the relative yield performance of
farmers is largely the result of uncertain factors, namely climatic conditions via their
interaction with management and soil properties. This, in turn, implies that forecasts
of growing season weather conditions, which could be used to adjust management
based on known climate-management interactions, has the greatest potential to con-
tribute to yield gap reductions in these agricultural regions. These conclusions are
somewhat at odds with traditional views of many farmers and researchers, which
is that while climate is important for determining average performance, the difference
between farmers is strongly related to skill, access to capital, and biophysical
resources.

7. Conclusions

Remote sensing provides access to unparalleled datasets on the temporal variabil-
ity of crop yields at the field scale. The extensive spatial coverage of Landsat-like
instruments can overcome problems associated with the relatively short records
attainable from satellite. The yield datasets used in this study relied on methods that
utilize minimal ground information and therefore can be readily applied to different
agricultural regions, including those in developing regions where reliable ground
data can be sparse. Thus, overall remote sensing can greatly contribute to under-
standing of yield variability at the field scale. However, improved understanding
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of the errors associated with remote sensing yield estimates is needed to fully realize
this potential, since the interpretation of yield patterns are sensitive to assumptions
about measurement errors.

In the case studies presented here, field scale yield variability was determined to be
roughly 58% greater than regional-scale variability in both regions, illustrating that
individual farmers face substantially greater risk than suggested by aggregated yield
time series. This finding agrees with several previous studies from other regions and
emphasizes the need to be mindful of scale when assessing farmer risk and decision
making. Further work is needed to test whether this magnitude of risk increase is
indeed very common, with potential implications for insurance rating and other risk
management efforts.

The results of this study also indicate that a significant fraction of spatial yield
variability can be attributed to the same factors that give rise to field scale yield risk,
namely climate variability. Forecasts of growing season weather therefore appear
critical to significantly reducing spatial yield variability and the associated yield
gap. Reductions in the yield gap may be increasingly important if crop demand rises
at a faster rate than genetic yield potential (Cassman et al., 2003).
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