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Abstract: The occurrence of rainfalls of high magnitude constitutes a primary 

natural hazard in many parts of the world, and the elaboration of maps showing 

the hazard of extreme rainfalls has great theoretical and practical interest. In this 

work a procedure based on extreme value analysis and spatial interpolation 

techniques is described. The result is a probability model in which the 

distribution parameters vary smoothly in space. This  methodology is applied to 

the middle Ebro valley (Spain), a climatically complex area with great contrasts 

due to relief and the exposure to different air masses. The database consists on 

43 daily precipitation series from 1950 to 2000. Since rainfall tends to occur 

highly clustered in time in the area, a de-clustering process was applied to the 

data, and the series of daily cluster maxima were used hereinafter. The mean-

excess plot and error minimizing were used to find an optimum threshold value 

to retain the highest records (peaks-over-threshold approach), and a Poisson-

Generalised Pareto model were fitted to the resulting series. The at-site 

parameter estimates (location, scale and shape) were regressed upon a set of 

location and relief variables, enabling the construction of a distributed 

probability model. The advantages of this method to obtain maps of extreme 

precipitation hazard are discussed in depth. 

 

Keywords: Extreme precipitation, Hazard mapping, Regionalisation, Spatial 

regression, Generalized Pareto distribution, Ebro valley, Spain. 
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1. Introduction 

The analysis of extreme events is currently one of the lead research topics in 

climatology due to the potentially dangerous character of the phenomena (Obasi 

1994; Bruce 1994). An increase on the interest on extreme events has been 

detected in the last years within the climatic change paradigm. One of the most 

accepted hypothesis is that of a future increase of extreme events due to the 

increase of climatic variability (Katz and Brown 1992; Groisman et al. 1999). In 

different regions a clear growth of climate extremes has been reported (Karl et 

al. 1995; Groisman et al. 2004), which have had great negative impacts on 

society and environment (Kunkel et al. 1999; Easterling et al. 2000). 

Extreme precipitation events constitute a primary natural hazard since they 

are in the origin of degradation processes like severe erosion, landslide 

triggering or flash floods, which can have regional devastating power and pose a 

severe hazard to lives and property. Mapping the hazard of extreme precipitation 

allows assessing the spatial distribution of this climatic feature, but also permits 

the estimation of hazard at locations where no climatic record exists. Climatic 

hazard maps, in general, can also be useful as a part of decision support systems, 

especially in the fields of regional planning and environmental management. The 

main objective of this paper is to describe a method to obtain extreme rainfall 

hazard maps. 

The problem of mapping the spatial distribution of extreme precipitation 

involves the need to translate the point information registered at different 

climatic stations in a region to a spatially continous variable. Also, different 

variables have been used to describe the extreme precipitation. Thus, 

Prudhomme (1999) and Prudhomme and Reed (1999) used the median of the 
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annual maximum daily precipitation. Lorente and Beguería (2002) used the 

median of the annual maximum precipitation accumulated in 1, 3, 5 and 7 days. 

It can be objected that a median value is not the most adequate variable to 

express extreme events. Attempts using absolute maxima, however, have had 

very little success (García Ruiz et al. 2000). 

Instead of using a single statistic like the median of the annual maxima to 

describe the occurrence of extreme rainfalls in a region, the extreme value theory 

provides a much more complete analysis of the statistical distribution of extreme 

rainfall events, allowing for the construction of magnitude-frequency curves. 

Derived statistics like quantile estimates (average magnitude of an event of 

given return period) have been widely used to express the degree of hazard 

related to extreme precipitation at a given location. Combined with spatial 

interpolation techniques, they have also been used to assess the spatial 

distribution of the hazard of extreme rainfalls. For example, Gajic-Capka (1991) 

and Lana et al. (1995) mapped quantile estimations obtained by fitting a Gumbel 

model to series of annual maxima by means of local interpolation methods. 

Beguería and Lorente (2000) used ordinary regression against relief parameters 

to provide estimations of the 100-year daily maximum rainfall also estimated by 

the Gumbel model at several points in the study area. Weisse and Bois (2001) 

compared krigging and ordinary regression against topography to model 10-year 

and 100-year rainfall estimates for rainfall duration of 1 to 24 hours. The use of 

the extreme value theory in these examples, however, was reduced to at-site 

(independent) calculation of the extreme quantiles. The existence of a spatial 

structure in the distribution of the model parameters was not addressed. In 
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addition, if a map was wanted corresponding to a different return period or 

hazard level, new at-site estimations and interpolation were needed. 

In this paper we explore the construction of a spatially continuous 

probability model in which the parameters of a Generalized Pareto distribution 

are allowed to vary spatially. The parameters are estimated locally by common 

at-site methods from the climatological records in the study area, and then 

distributed using spatial interpolation techniques. Once the spatial models of the 

distribution parameters are known, different maps of probabilities, quantiles and 

return periods can be derived according to the needs of the user, without 

undertaking new spatial interpolations. Moreover, compared to using a set of 

unrelated at-site probability models, the analysis of the spatial distribution of the 

model parameters results in a much more robust regional probability model. The 

spatial distribution of the parameters can also be interesting from a theoretical 

point of view. 

 

2. Study area and elaboration of the data base 

We have tested our methodology in a Mediterranean area in which the extreme 

precipitation are frequent and cause important social, economic and 

environmental damages (White et al. 1997; García-Ruiz et al. 2000; Lasanta 

2003). The study has been carried out in the middle Ebro valley (NE of the 

Iberian Peninsula) (Figure 1). 

Figure 2 shows the spatial distribution of the mean annual precipitation 

(1), the average annual daily maxima (2) and the ratio of the annual maximum 

event to the total annual rainfall in percentage (3), for the period 1951-2000. The 

study area covers 22973 km2. Relief isolates the valley, largely impeding the 
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maritime influence, resulting in a continental-like climate. These features 

similarly determine the complexity of its climate, its principal feature being its 

aridity (Cuadrat, 1991; Creus and Ferraz, 1995; Creus 2001). 

The annual precipitation oscillates between 300 and 450 mm in the valley 

bottom, and more than 800 mm in the northern and southern mountain areas. A 

high interannual variability is observed as a consequence of the alternation of 

dominant atmospheric patterns. There are years in which the precipitation 

greatly exceeds the mean value; in other years, the values are less than a third of 

the mean, and long drought periods are particularly frequent (Vicente-Serrano 

and Beguería-Portugués, 2003).  

Extreme precipitation events are frequent in Mediterranean regions. In the 

Mediterranean coastland areas are recorded the most extreme events in the 

Iberian Peninsula (Romero et al. 1998), as a consequence of the higher influence 

of Mediterranean convective cellules that affect importantly these areas 

(Camarasa, 1993; Llasat and Puigcerver, 1994; Millán et al. 1995; Llasat, 2001). 

This cause that precipitation is concentrated in a little number days and annual 

maxima events represent a high percentage of the total annual precipitation (De 

Luis et al., 1996; Martín-Vide, 2004). This influence can be seen in the study 

area, where the highest irregularity (map 3) is found on the South-east, close to 

the Mediterranean Sea. 

The original data based consisted of 380 series of daily precipitation with 

different lengths. Due to the frequent changes of position of the observatories 

within the same locality we created new series merging the data of the 

observatories located in the same town (<10 km of distance). We then selected 

the series with less than 15% of daily data lost (Karl et al. 1995), and with a 
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common record period covering the range from 1951 to 2000. We adopted this 

strict criterion to ensure that all the series were sufficiently long to provide 

reliable estimates of the probability of extreme events (Jones 1997), and that 

they covered the same record period to avoid variability in parameter estimation 

due to interanual climatic cycles. This led to a final database of 43 observatories 

(See location in figure 1). 

The reduction of the spatial coverage of the weather stations can introduce 

some limitations to the analysis of climatic variables. The use of a high density 

of weather stations facilitates the mapping process independently of the 

interpolation method selected (Weisse and Bois, 2002; Vicente-Serrano et al., 

2003). Nevertheless, long climatologic time series are not frequent in the Iberian 

Peninsula due to frequent changes in the location of observatories. Also, the 

series can greatly differ in the period of record. 

The length of the dataset is an important aspect on the analysis of 

climatological variables, but in the case of extreme value analysis it becomes 

critical, since the samples are reduced to only the highest values in the range of 

the variable (Jones, 1997). The problem is even higher under Mediterranean 

climate, characterised by high interannual variability of precipitation. In Spain 

significant differences in the annual averages have been found between decades 

(Esteban-Parra et al. 1998; Rodríguez-Puebla et al. 1998; Rodríguez et al. 1999), 

which implies the need of long series to provide robust estimations. Significant 

temporal variability and trends in extreme events have also been found in 

different areas of the Iberian Peninsula (García et al. 1995; González-Hidalgo et 

al. 2003).  
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The adequate length of series needed to obtain reliable predictions about 

the frequency of extreme events is subject to debate. Benson (1952) indicated 

that the 50 year return interval estimations, by means of annual maxima 

following a Gumbel distribution with a 25 % error requires 39 years of data. 

Porth et al. (2001) analysed the adequate sample size for return interval 

estimation and found that 20 years of data provide estimates with a 20 % rate of 

error, and in order to obtain the return periods with less than a 20 % of error 25 

or more years of data were necessary. 

Considering the previous discussion, we decided to maintain a large 

temporal extent of the database (50 years), despite the reduction of spatial 

coverage.Although the methods used to analyse the probability of the extreme 

events do not require to have complete series, we decided to fill the lost data to 

assure that all the observatories recorded the same precipitation events, to avoid 

that the lack of a high event in only one observatory could affect the frequency 

distribution of the variable in that location. 

The process of complete missing daily data is highly problematic. It is 

common practice to fill the gaps by means of statistical techniques. Karl et al 

(1995), Karl and Knight (1998) and Brunetti et al (2001 and 2002) filled missing 

values by generating random rainfall amounts based on the probability 

distributions of the variables studied. The goal of this procedure was not giving a 

realistic estimate of the unknown daily values, but to obtain data series of equal 

length without changing the probability distributions of rainfall amounts. To fill 

the gaps, we followed the procedure described by Romero et al (1998) to create 

a complete daily precipitation dataset in the Mediterranean coastland of the 

Iberian Peninsula. They used the weighted average of the records at the nearest 
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stations to fill the gaps in the weather station under study. The spatial criterion, 

used by them to select the auxiliary weather stations, was a limit distance of 60 

km. In our case we selected only the weather stations around 15 km of the 

station to be completed. The high density of weather stations allowed 

completing records with a high reliability. Only in the rare occasions (< 5 % of 

total missing data) when no data was available at the circle of 15 km we 

considered a wider radius of 30. A total of 47317 daily data were filled, with an 

average of 1100 data in each weather station (5.7% of the data) and a range from 

31 records (0.16%) to 2773 records (14.88%). 

The quality control and homogeneity of daily climatological records is 

very complex. There are no standard tools in the scientific literature to test the 

homogeneity of daily data sets, as it is the case for monthly data sets. For this 

reason, different authors have addressed the problem by first aggregating the 

data from daily to monthly records, and applying the homogeneity tests on the 

aggregated series (Manton et al. 2001; Brunetti et al. 2002). This has been the 

method followed in this study. 

Thus, we tested the monthly aggregated series against inhomogeneities 

using the standard normal homogeneity test developed by Alexandersson (1986) 

and Alexandersson and Moberg (1997). For this purpose the ANCLIM software 

was used (Štìpánek 2004). Since we did not have the meta-data of the weather 

stations we decided to apply a test of relative homogeneity. The relative 

homogeneity method compares the temporal evolution of the series under study 

with the temporal evolution of a reference series, which records the evolution of 

the neighbour stations. The procedure developed by Peterson and Easterling 

(1994) was followed to create each reference series, consisting of using the 
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average of the five highest correlated series with the series to check (using the 

first difference series).  

We only found significant shifts in five monthly series, which do not 

coincide with changes in the reconstruction of the series. The inhomogeneities 

were not important neither detected in other months on the same observatory. 

Moreover, we did not have the meta-data of the stations to be sure that the shifts 

coincide with changes in the location of the observatories. The shifts were 

recorded in small population centres or depopulated areas in which urban effect 

does not exist. For this reason we considered that there were no significant 

inhomogeneities in the dataset used. However, some inhomogeneities may 

remain in the data at a daily scale, that can affect the distribution of extremes in 

the data set and probably have some impact on the accuracy of our results. 

 

3. Methods 

3.1. Hazard estimation by the extreme value theory 

The extreme value theory deals with the analysis and estimation of the tails 

of random variables, adjusting different distribution functions to the highest or 

lowest observations in a given data set (see Hershfield 1973; Smith 1990 and 

2003; Reiss and Thomas 2001). This allows estimation of the probability of 

events greater than those observed during the period of record. The mostly used 

approaches for this are the series of maxima and the partial duration series. 

The exceedances or partial duration (PD) series approach has been used 

since long (see, i.e., Todorovic and Zelenhasic 1970; Davison and Smith 1990). 

It is based on censoring the original sample at a certain threshold value x0, taking 

only the exceedances over that threshold:  yi = xi, ∀ xi > x0. In contrast with the 
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series of series of maxima, like annual maxima, the PD approach allows to 

include more cases in the sample, resulting in much accurate estimation of 

parameters (Madsen et al. 1997). As demonstrated by Pickands (1975), the series 

generated by exceedances over a threshold tend to converge to a Generalized 

Pareto (GP) distribution, provided that the threshold value 0
~x  is high enough. In 

the form commonly applied to PD series, the GP distribution is described by a 

shape parameter κ~  and a scale parameter α~ , and has the following cumulative 

distribution function: 
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It contains the Exponential distribution as a special case when κ~  = 0 

(second expression), a form that was used extensively in the first applications of 

the PD scheme. For κ~  < 0 the distribution is long-tailed, and for κ~  > 0 it 

becomes upper-bounded with endpoint at -α~  / κ~ . These two forms of the GP 

distribution are sometimes referred in the literature as the Fréchet and Beta 

distributions, respectively. 

The probability of an exceedance Y is frequently expressed by its return 

period T, which is the expected time between two consecutive occurrences of the 

event. Under the assumption of homogeneous Poisson process, the return period 

is the inverse of the probability of exceedance; expressed in years, this equals: 

 ( ))(1
1

yYPt y ≤−⋅= λ ,      (eq. 2)  

where λ is a frequency parameter equalling the average number of occurrences 

of Y per year in the original sample. Expressed in the original scale, this gives: 
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The return period is only an expected, or most probable, value. The 

probability that an event of magnitude X (expressed in the original scale) will 

occur at least once in a period of t years is: 
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A common problem when analysing natural data series is the likely 

presence of serial dependence or persistence in the process, due to the rainfall 

events tending to occur clustered in groups. This is especially true for 

Mediterranean climates, where long periods without rainfall are followed by 

events that last several days (Martín-Vide 1989; Llasat and Puigcerver 1994; 

Martín-Vide and Llasat 2000). This constitutes a major problem, since 

persistence affects the premise of homogeneous random process. For this reason 

we adopted a cluster approach, considering that the series of clusters of rainfall 

(consecutive days with precipitation higher than 0 mm) adapt better to a random 

process (Beguería, 2005). This is a common approach in the analysis of 

hydrological extremes (see eg., Cunnane 1979), and has been used with other 

environmental variables as well (eg. Smith 1989). Thus, series of cluster maxima 

(maximum daily intensities in the clusters) were constructed for each station, 

and the remaining analysis was performed upon this data set. 
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The following procedure was followed to perform the PD-GP analysis. 

First, a threshold value 0
~x  was needed for extracting the exceedance series at 

every station. This is one of the most important issues in PD series modelling as 

the threshold level controls the size of the data sample. An important property of 

the GP model is that the shape parameter remains constant independently of the 

threshold (threshold stability), so the final predictions would be equivalent 

whichever the threshold value. Generally, a low threshold is to be preferred to a 

high one, since it maximises the amount of data used for estimation. However, if 

the threshold is too low, the asymptotic property would not apply, and the GP 

model would not fit the data correctly. 

An appropriate tool to assess the validity of the GP assumption is the mean 

excess plot, which is a plot of the average mean excess over a threshold against 

the value of the threshold. If the process follows a GP distribution at a given 

threshold value 0
~x , then the mean excess plot should appear approximately 

linear from this value on. Considering this, we selected the highest 1200 cluster 

maxima values at every station, corresponding approximately to the 93.5 centile 

of the original data series (λ = 23.7 events per year). This can be considered a 

sufficiently low threshold level for a starting point. Mean excess plots were 

constructed using increasing threshold values, to evaluate the adequacy of the 

model to the data. In all cases the series generated were found to fit the GP 

model adequately at the lower threshold values. 

Figure 3 shows, for example, the mean excess plot for the station of La 

Sotonera. As it can be seen, the dots follow a straight line from the lowest value 

of the threshold, which equals 7 mm. Additionally, we tested the convenience of 

the threshold by means of the probability-plot weighted correlation coefficient 
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(PPWCC, see below and also shown in Figure 3). As it can be seen, the process 

exhibits the highest values of this statistic around the selected threshold. 

We estimated the GP parameters using the method of probability weighted 

moments (Hosking and Wallis 1987): 
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where the circumflex ^ designates that the parameter is estimated from the 

sample. βr is the order r probability weighted moment, obtained as (unbiased 

estimator, Landwehr et al. 1979): 
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For assessing the goodness of fit of the GP models to the data, probability-

plots (PP) were constructed, which compare the observed exceedances Y  and 

the expected (GP predicted) ones Ŷ . This are obtained by solving equation 1 for 

yj: 

( )[ ]k
j jEmpCDFy ˆ)(11

ˆ
ˆˆ −−⋅=

κ
α

     (eq. 7) 

where EmpCDF(j) is the empirical cumulative distribution of jy , obtained using 

the plotting position formula of Landwehr et al. (1979): 

Bn
AjyXPjEmpCDF j +

+
=≤≡ )()(      (eq. 8) 

j being the position of jy  in the series of exceedances sorted in ascending order. 

The values of A = -0.15 and B = 0 were used, as recommended by Landwehr et 
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al. (1979) for similar, long-tailed, distributions. The probability plot is a 

graphical technique for assessing if the data set follows a given distribution 

function (see Chambers et al. 1983). 

A probability-plot weighted correlation coefficient statistic was computed 

as a measure of goodness-of-fit (PPWCC, based on Filliben 1975): 
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  (eq. 12) 

where y  and ŷ  are the weighted averages of y  and ŷ , respectively. As the 

number of small exceedances is much greater than the number of high 

exceedances, a weighting function ωj has been used in the calculation of the 

statistic. ωj is proportional to the probability of exceedance, thus giving more 

importance to the highest, less-frequent, observations in the sample: 

)(1
1

jEmpCDFj −
=ω       (eq. 11) 

Additionally two error statistics, the probability-plot weighted bias error 

(PPWMBE) and the root mean square error (PPWRMSE), were computed to 

compare the results of the at-site GP models with the results from the regional 

model (see below). The PPWMBE represents the average error, and the 

PPWRMSE represents the standard deviation or errors. The prefix PP stands 

again for ‘probability-plot’, to reflect the fact that the comparison is made using 
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two estimators of probability, and not directly between real and estimated 

values, as common. The expressions for these statistics are described in table 1. 

 

3.2. Hazard mapping using spatial interpolation methods 

The results of the previous section are a series of at-site GP models from which 

is possible to obtain return periods, probabilities of extreme events, etc, only at 

places where a climatic station is located. The purpose of this section is to 

extend this analysis to the rest of the study area, allowing for the elaboration of 

maps showing the spatial distribution of the above mentioned extreme statistics. 

As explained above, our approach has been to develop a spatial probability 

model whose parameters are dependent on the location of the point of interest. 

The local parameters α~ , κ~  and 0
~x , obtained by the procedure outlined above, 

were thus the dependent climatic variables to model. With respect to the 

frequency parameter λ, used in eqs. 3 and 4, we observed that it did not present 

significant variability between stations, so we used a fixed value corresponding 

to the average of the at-site values. 

There are different methods to predict the distribution of spatial variables: 

global, local, and geostatistical techniques (Burrough and McDonnell 1998). It 

has been shown that in mountainous areas and in regions with complex 

atmospheric influences, as the middle Ebro valley, the local interpolators and 

geostatistical methods, which do not use external variables, do not show the real 

spatial variability of climatic variables at different scale, and yield higher 

prediction errors (Daly et al. 2002; Weisse and Bois 2002; Vicente-Serrano et al. 

2003). In fact, these methods usually provide bad results if the sample network is 

not dense (Dirks et al. 1998). 
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On the other hand, regression is a global approach based on empirical 

relationships between the variable of interest and a other spatial variables, and 

tend to produce maps with a lower degree of generalisation. But also, applying 

smoothing filters of different sizes to the independent variables it is possible to 

capture the variability of the target variable at different spatial scales. Regression 

based techniques adapt to almost any space and usually generates adequate maps 

(Goodale et al. 1998; Vogt et al. 1997; Ninyerola et al. 2000). We thus selected a 

multiple regression scheme upon location parameters (powers of the coordinates 

of the point) and other spatially distributed independent variables. The value of a 

climatic variable at non-sampled points is predicted by the following 

transference function: 

nnPbPbPbbxz ++++= ...)( 22110     (eq 13) 

where z is the predicted value at the point (x), b0,...,bn are the regression 

coefficients and P1,...,Pn are the values of the different independent variables at 

point x. A forward stepwise procedure with probability to enter set at 0.01 was 

used to select only the significant variables. 

A list of the independent variables introduced into the model is shown in 

Table 2. The independent variables were generated from a digital elevation 

model (DEM) at a resolution of 1 km using the MiraMon GIS software. Latitude 

and longitude (km) were calculated in UTM-30N coordinates. They were used to 

fit first and second order trend surfaces to the data, that can account for broad 

global spatial trends. Elevation (km) could be extracted directly from the DEM 

and introduced to the regression model, considering the well known effect of 

elevation on precipitation. Slope and relief (difference in height between the 

point of interest and the highest point in a circle of 2.5 or 25 km) were directly 
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derived from the DEM. In a different way, they both give information about the 

topography energy in the surroundings of a point, yielding high values in 

mountain areas and lower values on more flat areas, independently of their 

elevation. Also the annual potential incoming solar radiation was estimated from 

the DEM and included in the model (Pons, 1997). Low-pass filters with radii of 

2.5, and 25 km were applied to elevation, slope and incoming solar radiation 

maps in order to measure the influence of these variables at different spatial 

resolutions.  

The normality of each variable was tested by the Chi-square test. 0
~x  

showed a normal distribution (p = 0.70), and this was also the case for κ~  (p = 

0.98); in the case of the α~  parameter a logarithmic transformation was needed 

to attain normality (p = 0.95). 

Due to the likely presence of correlation between several of the 

independent variables, a conservative value of 0.01 was set for a variable to 

enter the stepwise procedure, as recommended by Hair et al. (1998). However, 

since collinearity problems can arise even with correlations as low as 0.3, a 

condition index test (SPSS v.12) was applied to the regression models. This test 

flags the models for which the coefficients uncertainty is too large due to 

multicollinearity, and recommends the use of a model with less number of 

parameters. 

The spatial database was then sampled at the locations corresponding to 

the climatic stations. The regression analysis was performed upon this data base 

using SPSS v.12 software, and the final maps showing the distribution of the 

three parameters were obtained using Arcview v3.2 GIS. 
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We used a jack-knife cross-validation method to validate the maps of GP 

parameters. A recursive procedure removed one station at a time and calculated 

the regression model with the remnant points, storing the predicted values of the 

parameters for the removed station. This procedure was repeated until all the 

stations were evaluated, and the predicted values of the parameters were 

compared to the known values obtained before. The error statistics described in 

Table 3 (Willmot 1981) where used to compare both results. 

Due to the global nature of the regression-based techniques, some local 

features can still not be represented in the model. For this reason, maps of the 

residuals (observed minus predicted values) of the parameters were visually 

inspected for spatial structure of the errors. A certain degree of spatial 

correlation was found in the case of the location and scale parameters, and a 

random pattern in the case of the shape parameter. For this reason, correction 

maps were constructed only for the two first parameters.  

A local adaptive method, splines with tension (ϕ = 400), were selected for 

the interpolation of the errors (Mitasova and Mitas 1993). The final maps of 0
~x  

and α~  were obtained by adding the regression estimates and the maps of 

interpolated errors. 

 

4. Results 

4.1- At-site extreme value analysis 

The results of the at-site hazard estimation are shown in Figure 4. For every 

station, the maximum daily rainfall is related to its average return period. Note 

the different shapes of the curves, due to the use of local (not regionally-

averaged) κ~  estimates. 

Preprint of paper published in Journal of Applied Meteorology, 45(1): 108-124 (2006)



 19

Goodness of fit and error statistics for the at-site GP models are given in 

Table 4. The mean bias error shows very small skew of the predictions to the 

right (note that the scale is the same as the original variable, mm of exceedance 

above the threshold). The probability-plot error and goodness-of-fit statistics can 

also be considered very good. The average PPWCC is 0.972. 

Two probability plots are given as examples in Figure 5, relating the 

observed exceedances with the theoretical values computed using eq. 6. The 

plots show one of the stations with best agreement (La Sotonera, PPWCC = 

0.999) and one of the worst (Escatrón, PPWCC = 0.922). A certain 

overestimation of the highest values is seen in the second case, but in general the 

level of agreement can be considered very good. Very similar plots were found 

in the rest of stations. 

 

4.2. Maps of the GP parameters 

The standardised Beta-coefficients of the multiple regression of the GP 

parameters are shown in Table 5, along with the goodness of fit (R2) and error 

statistics for the final models. Only the significant variables are shown. The 

three regressions were significant at a 95% confidence level. The R2 values 

obtained can be considered good, especially for the origin ( 0
~x ) and scale (α~ ) 

parameters. The regression of the shape parameter ( κ̂ ) obtained a lower R2, as 

expected from the greater uncertainty involved in its estimation, but it still was 

significant. Error statistics for the regression models are also shown in table 6. 

For 0
~x  the mean absolute error was 0.03, a small value compared to the range of 

the variable (0.1 to 7.6). The agreement between observed and predicted values 
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is very high (0.99). The same occurs with α, which has a mean error of 0.12 for 

a variable range of 6.6 to 19.5. For κ~  the relative error is higher due to the great 

uncertainty of this parameter (0.06, range -0.175 to -0.025). 

Figure 6 shows the maps of the different parameters. The value of 0
~x  is 

related with the latitude, showing a gradual increase to the North (map 6.1). 0
~x  

also shows relation with the relief, but at a broad scale (10 km average). The 

spatial distribution of 0
~x  mimics quite well the general distribution of the 

precipitation in the area. 

The distribution of α~  is slightly different, as shown in map 6.2. α~  is 

negatively related with the longitude and the distance to the Cantabrian sea, 

capturing the gradual Mediterranean influence on climate towards the East. The 

consequence for the probability distribution of the extreme events is an increase 

in its variance, resulting in a more irregular distribution of the events. α is also 

related with the elevation and the relief, at mid-range scale (2.5 km). 

In contrast with the high spatial detail of the previous parameters, κ~  

presents a coarser spatial distribution, as it is only related to the latitude and 

longitude. The result is a gradient from the North towards the SW. The lowest 

values of κ~ , resulting in greater importance of the right tail of the distribution 

and hence of the extreme events, are found along the SW limit of the study area. 

Since the spatial regression of the parameters introduces a new source of 

uncertainty to the estimations, new validation statistics were calculated for the 

resulting models. Table 6 reports the error and goodness of fit statistics obtained 

comparing the empirical exceedance probability, Y , with the theoretical one 

obtained using the SPF method, Y~ . The results from the validation were very 
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similar to the ones obtained with at-site estimated parameters (Figure 5), what 

supports that the SPF model can be reliable for estimating the degree of hazard 

of extreme rainfalls. 

In Figure 7 are showed the probability plots for La Sotonera and Escatrón 

stations (same as in figure 5), using the spatially estimated parameters. Although 

in this case a certain overestimation is observed in La Sotonera station, the 

goodness of fit can be considered as being very good. 

 

4.3. Spatial distribution of extreme precipitation hazard 

With the parameter maps in figure 6 the estimation of return periods of extreme 

events and quantiles becomes possible at sites without climatic data records. The 

following figures are examples of this. The Figure 8 shows the distribution of 

the expected return period of a 100 mm event. In Figure 9 is shown the 

maximum daily-expected precipitation for different return periods. Finally, 

Figure 10 shows the probability that an event of 100 mm year-1 occurs within 

different time periods. Other maps can be of course obtained for different 

requirements. 

In general, the greatest hazard or heaviest precipitation is expected in the 

foothills of the Pyrenees and the Iberian Range, in the North and South-East of 

the study area respectively, coinciding with the greatest elevation and relief 

energy. But not only the relief explains the spatial distribution of the hazard of 

extreme precipitation, the atmospheric influences are also important. The South-

east regions are highly affected by the Mediterranean perturbations that cause 

precipitation events of high intensity, mainly during the autumn, due to the 

instability caused by the contrast between the hot sea surface and the cold air 
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masses that arrive to this latitude (Millán et al. 1995; Serra et al. 1996). These 

perturbations become weaker as they ascend the Ebro valley (Creus and Ferraz 

1995), and this fact can explain the reduction of the extreme precipitation hazard 

to the west. 

Also, the higher magnitude of precipitation expected in the northern 

mountains, is explained by the influence of the perturbations associated to the 

Polar front that arrive from the West. The effect of these fronts on intense 

precipitation is greatly increased by the mountain ranges that oppose the West 

flows, creating a great contrast with the center of the valley (Creus and Ferraz, 

1995; Ruiz 1982). Moreover, the mountains located to the north are affected by 

South-West flows associated to the negative phase of the North Atlantic 

Oscillation in winter (Martin-Vide and Fernandez 2001). These are regional 

flows that affect the whole of the Iberian Peninsula and are reactivated in the 

Northern Mountains due to vertical movements of the air masses (Esteban et al. 

2002; Vicente-Serrano 2004). 

The central areas of the valley are isolated from these air masses due to the 

mountains located in the north and south. The aridity is high in this area and 

extreme droughts are highly frequent (Vicente-Serrano and Beguería-Portugués 

2003). Nevertheless the low hills located in the center of the valley (<700 m 

a.s.l.) modulate the spatial hazard of extreme precipitation events due to its role 

in the convective movements, which cause high precipitation during summer 

months in the center of the valley (Cuadrat 1999). 

 

5. Discussion  
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The methodology presented in this paper has some points in common with 

the regional approaches to extreme flood estimation (see Cunnane 1988). 

Regional approaches were designed to maximize the information contained in 

different data series within a homogeneous region, with the result of providing 

more robust estimation of the distribution parameters. This applies specially to 

the shape parameter (κ~ ), subject to a great uncertainty since high order 

moments are involved in its estimation. For this reason a common average value 

of κ is used in most regional approaches, while the other two parameters can be 

estimated locally or be averaged too. Regional methods have been extensively 

used for the estimation of extreme floods, but some examples exist of their use 

to model extreme rainfall (Alila 2000; Fowler and Kilsby 2002), and even some 

regionalisation methods have been proposed for this variable (Cong et al. 1993; 

DeGaetano 1998). 

In this paper we have obtained statistically significant spatial models of the 

three parameters of the GP model, including the shape parameter, what 

represents an improvement over considering a simple average value. At least in 

our study area, we have demonstrated that spatial interpolation techniques can be 

used to obtain smooth continuous spatial representations of the probability 

model parameters, resulting in a robust regional model. Since the regional model 

contains the spatial distribution of the parameters of the probability distribution, 

this allows applying the theory of extreme value analysis also to ungaged 

locations. This is not the case for most of the regional approaches in the 

literature, where one or more parameters need to be estimated locally from a real 

data series. 
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We used a standard multiple regression model to explain the spatial 

distribution of the probability distribution parameters, what allowed for the 

inclusion of explanatory variables likely to be related with extreme rainfalls. For 

example, many authors have highlighted the relationship between precipitation 

intensity and elevation and other topographic features (Konrad II 1996; 

Prudhomme 1999; Prudhomme and Reed 1999; Lorente and Beguería 2002), but 

also the geographic location, the exposition to wind flows (Basist et al. 1994; 

Daly et al. 2002) or the proximity to hot seas (Llasat and Puigver 1994) can be 

determining factors that explain the spatial distribution of extreme precipitation.  

Several comparative studies have determined the superiority of regression-

based techniques in the case of variables with a complex spatial distribution and 

normally not very dense sampling network, as is normally the case of climatic 

variables. Analysing specifically extreme precipitation data, Weisse and Bois 

(2002) concluded that geostatistical methods (kriging) performed better than 

regression models only when the gauging network was dense enough. Similar 

results have been published for other climatic variables (Dirks et al. 1998; 

Vicente-Serrano et al. 2003). It must be noticed, however, that other spatial 

interpolation techniques like geostatistics (kriging) have also great potential for 

capturing the variability of a spatial variable, and its use should not be avoided a 

priori when analysing other data sets. 

The results from the crossvalidation showed a good agreement with the 

estimates obtained by using standard at-site techniques at the gauged location, 

supporting the validity of the proposed method to estimate the hazard of extreme 

rainfalls also at ungauged locations. This is true, at least, for locations showing 

similar characteristics in terms of the predicting variables to the set of climatic 
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stations used for creating the spatial models. At points where one or more of this 

variables are far outside the range of the observations, however, it is necessary to 

extrapolate the results of the spatial models, and the results have to be 

considered as subject to higher uncertainty. This represents an important 

problem for any study addressing the spatial distribution of a climatic variable, 

since the stations rarely present a random spatial distribution, as it would be 

desirable in an ideal case.In this study we have considered one year as the 

temporal unit of study, as it is common practice in the analysis of heavy rainfalls 

for the purpose of hazard assessment. No seasonal effects or different synoptic 

situations have been considered, since they present a complete cycle within the 

period of one year, and thus do not introduce differences between different 

years. The explained methodology, however, can also be applied to datasets 

where the events have been classified according to the synoptic situation, or to 

the season of the year. This approach would allow developing different maps 

accounting for the spatial distribution of extreme rainfalls for every season or 

meteorological situation. 

 

6. Conclusions 

In this paper we address the problem of mapping the hazard of extreme 

precipitation, linking the theory of extreme value analysis and spatial 

interpolation techniques. We have showed that it is possible to obtain a 

probability model in which the distribution parameters vary spatially, yielding a 

robust regional extreme value model. As a product, maps showing the hazard of 

extreme precipitation at different recurrence times can be developed, or single 

values can be derived for non-gauged sites. 
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Starting from daily rainfall records, we have used partial duration series of 

rainfall cluster maxima, fitted to a General Pareto distribution, to obtain at-site 

estimates of the model parameters. The at-site magnitude-frequency curves have 

been validated against empirical frequency estimations using probability-plot 

error statistics. 

We have addressed the spatial distribution of the probability model 

parameters using geo-regression techniques including location and other spatial 

independent variables as predictors, obtaining significant and well-fitted models. 

The residuals of two of the parameters, location and scale, have been 

incorporated to the maps by local interpolation using splines. A jacknife 

validation scheme has been used to provide goodness-of-fit and error statistics, 

showing very good results. 
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Table 1. Error statistics used to test the adequacy of the GP distributions. 
Symbols used: n, number of observations; jy , observed exceedance value; jŷ  

GP predicted excceedance value; jω , weighting function (see text). 
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Table 2. List of independent variables 
Variable Explanation 
TREND1 First order trend suface (y = b1lat + b2lon + c) 

TREND2 Second order trend suface (y = b1lat2 + b2lon2 + b3lat + b4lon + 
b5latlon+c) 

ELEV2.5, ELEV25 Mean elevation within a circle of 2.5 and 25 km 
SLOPE2.5, SLOPE25 Mean slope within a circle of 2.5 and 25 km 

RELIEF2.5, RELIEF25 Mean relief energy within a circle of 2.5 and 25 km (max. 
elevation - elevation at the point) 

BARR_N2.5, BARR_N25, 
BARR_S2.5, BARR_S25, 
BARR_W2.5, BARR_W25, 
BARR_E2.5, BARR_E25 

Barrier effect to the four cardinal directions (max. elevation 
within a wedge of radius of 2.5/25 km and mean direction 
N/S/W/E - elevation at the point) 

RAD2.5, RAD25 Mean annual potential radiation within a circle of 2.5 and 25 km 
(J/m * day) 
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Table 3- Error statistics used in the validation of spatial regression models. 
Symbols used: n, number of observations; ip , observed parameter value; ip̂ , 

predicted parameter value; p ,  mean of observed values; ppp ii −= ˆˆ ' ; 
ppp ii −='  
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Table 4. Error and goodness-of-fit statistics for the extreme value analysis 

Station PPWMBE PPWRMSE PPWCC Station PPWMBE PPWRMSE PPWCC

Borja 0.089 4.200 0.929 Escatrón 0.065 3.582 0.922
Luesia 0.039 1.040 0.991 Albalate del Arzobispo 0.054 1.933 0.975
Ejea 0.041 0.771 0.995 Jatiel 0.058 3.345 0.924
Luna 0.042 1.575 0.981 Santolea 0.046 2.006 0.970
Uncastillo 0.031 0.666 0.996 Alcañiz 0.074 4.266 0.905
Sádaba 0.040 1.285 0.987 Candasnos 0.048 2.059 0.970
El Bayo 0.050 1.670 0.982 Mequinenza 0.057 2.625 0.964
Ricla 0.051 1.714 0.978 Radiquero 0.039 0.973 0.995
Longares 0.055 2.363 0.961 Berbegal 0.042 1.476 0.985
La Almunia 0.056 2.538 0.949 El Tormillo 0.029 1.593 0.982
Zaragoza 0.061 3.818 0.882 Belver de Cinca 0.042 1.160 0.990
Marracos 0.065 2.087 0.981 Sariñena 0.051 1.695 0.983
Lupiñén 0.058 2.154 0.977 San Julián de Banzo 0.037 0.697 0.997
Aniés 0.050 0.908 0.996 Huesca 0.042 0.775 0.996
La Sotonera 0.033 0.308 0.999 Pallaruelo 0.047 1.624 0.981
Almudévar 0.034 0.577 0.997 San Esteban de Litera 0.044 0.940 0.994
El Temple 0.040 1.271 0.987 Binéfar 0.055 2.460 0.960
Monegrillo 0.051 1.718 0.979 Fraga 0.060 3.771 0.908
Pina de Ebro 0.056 3.169 0.924 Pena 0.150 5.167 0.964
Azaila 0.065 2.827 0.956 Maella 0.072 4.097 0.917
Sástago 0.062 3.486 0.918 Fabara 0.040 0.633 0.997
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Table 5. Multiple regression results: included variables, standardised (beta) 
coefficients, goodness-of-fit and error statistics 

Independent variables  Goodness of fit statistics Param. 
Lat Long Elev2500 Pend2500 Pend25000  R2 MAE RMSE Willmott's D

x0 0.744 0.020 0.289 --- 0.327  0.858 0.031 0.688 0.997 

α --- --- --- 0.676 ---  0.703 0.127 0.971 0.995 

κ 0.717 0.395 --- --- ---  0.516 0.056 0.044 0.992 
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Table 6. Error and goodness-of-fit statistics using the spatially estimated 
parameters. 

Station PPWMBE PPWRMSE PPWCC Station PPWMBE PPWRMSE PPWCC

Borja -1.062 2.501 0.986 Escatrón -0.343 2.459 0.950

Luesia 0.184 1.244 0.989 Albalate del 
Arzobispo 0.557 3.627 0.951

Ejea 0.407 1.581 0.990 Jatiel 0.117 3.526 0.919
Luna 0.109 1.678 0.979 Santolea 1.803 8.204 0.863
Uncastillo 0.615 1.809 0.990 Alcañiz -0.318 3.036 0.935
Sádaba 0.146 1.542 0.984 Candasnos 0.062 2.093 0.969
El Bayo -0.281 1.113 0.991 Mequinenza 0.165 2.862 0.961
Ricla 0.641 3.604 0.953 Radiquero 0.895 2.713 0.990
Longares 0.344 3.307 0.944 Berbegal 0.052 1.493 0.985
La Almunia 0.078 2.609 0.948 El Tormillo 1.397 2.810 0.999
Zaragoza -0.615 2.237 0.946 Belver de Cinca 0.099 1.252 0.989
Marracos -0.842 1.834 0.997 Sariñena -0.072 1.445 0.986
Lupiñén -0.743 1.935 0.991 San Julián de Banzo 0.615 1.447 0.998
Aniés 0.074 0.952 0.996 Huesca 0.105 0.870 0.996
La Sotonera 0.441 1.164 0.998 Pallaruelo -0.031 1.455 0.984

Almudévar 0.649 2.136 0.989 San Esteban de 
Litera -0.130 0.785 0.996

El Temple 0.180 1.629 0.983 Binéfar -0.941 2.161 0.990
Monegrillo -0.195 1.260 0.986 Fraga -0.779 2.339 0.962
Pina de Ebro -0.349 2.096 0.954 Pena -1.290 3.061 0.995
Azaila -0.103 2.324 0.965 Maella -0.261 3.169 0.938
Sástago -0.369 2.277 0.951 Fabara 1.897 5.902 0.961
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Figure captions  

Figure 1: Location of the study area and the weather stations used in this study 

Figure 2. Distribution of the mean annual precipitation (1), average annual daily 

maxima (2) and ratio of the annual maximum event to the total annual 

precipitation (3, in %) 

Figure 3: La Sotonera station: mean excess plot and probability-plot weighted 

correlation coefficient plot 

Figure 4. Quantile plots for the different studied climatic stations, expressed as 

maximum daily rainfall vs. return period. 

Figure 5. Probability plots for the stations of La Sotonera (A) and Escatrón (B): 

observed vs. theoretical exceedance values, regression line (dotted) and 

line of perfect fit (plain). 

Figure 6. Maps of the three GP-parameters. 1, origin ( 0
~x ); 2, scale (α~ ); 3, shape 

(κ~ ). 

Figure 7. Probability plots for the stations of La Sotonera (A) and Escatrón (B), 

using the spatially estimated parameters: observed vs. theoretical 

exceedance values, regression line (dotted) and line of perfect fit (plain). 

Figure 8. Return period maps: expected return period of a precipitation of 100 

mm day-1. 

Figure 9. Quantile maps: daily precipitation corresponding to return periods of 5 

(1), 10 (2), 25 (3) and 50 (4) years. 

Figure 10. Extreme probability maps: probability that an event of 100 mm day-1 

occurs at least once within a time period of 5 (1), 10 (2), 25 (3) and 50 

(4) years. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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Figure 9 
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