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ABSTRACT. This paper introduces a tree-based model that combines aspects of CART (Classifi-
cation and Regression Trees) and STR (Smooth Transition Regression). The model is called the
Smooth Transition Regression Tree (STR-Tree). The main idea relies on specifying a paramet-
ric nonlinear model through a tree-growing procedure. The resulting model can be analyzed as a
smooth transition regression with multiple regimes. Decisions about splits are entirely based on
a sequence of Lagrange Multiplier (LM) tests of hypotheses. An alternative specification strategy
based on a 10-fold cross-validation is also discussed and a Monte Carlo experiment is carried out
to evaluate the performance of the proposed methodology in comparison with standard techniques.
The STR-Tree model outperforms CART when the correct selection of the architecture of simulated
trees is discussed. Furthermore, the LM test seems to be a promising alternative to 10-fold cross-
validation. Function approximation is also analyzed. When put into proof with real and simulated
datasets, the STR-Tree model has a superior predictive ability than CART.
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1. INTRODUCTION

IN RECENT YEARSMuch attention has been devoted to nonlinear modeling. Techniques
such as artificial neural networks, nonparametric regression and recursive partitioning meth-
ods are frequently used to approximate unknown functional forms (Murthy 1998, Hastie,
Tibshirani, and Friedman 2001). This paper considers a nonlinear regression model that
combines aspects of two well-known methodologies: Classification and Regression Trees
(CART) discussed in Breiman, Friedman, Olshen, and Stone (1984) and the Smooth Tran-

sition Regression (STR) presented in Granger andsharta (1993). The proposed model
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is called the Smooth Transition Regression Tree (STR-Tree). The CART methodology rep-
resents a unification of all tree-based classification and prediction methods that have been
developed since Morgan and Sonquist (1963). It transformed the regression tree models
in an important nonparametric alternative to the classical methods of regression. Since
then, the attractiveness of this methodology has motivated many authors to create hybrid
modeling strategies that merge tree techniques with known statistical methods. See, for
example, Segal (1992) in a context of longitudinal data analysis, Ahn (1996) for survival
analysis, and Cooper (1998) for time series analysis. Other approaches can be found in
Ciampi (1991), Crowley and Blanc (1993), and Denison, Mallik, and Smith (1998).

Allowing smooth splits on the tree nodes instead of sharp ones, we associate each tree
architecture with a smooth transition regression model and thus it turns possible to for-
mulate a splitting criteria that are entirely based on statistical tests of hypotheses. The
Lagrange Multiplier (LM) test in the context presented by Luukkonen, Saikkonen, and
Terasvirta (1988) is adapted for deciding if a node should be split or not. The tree growing
procedure is used as a tool for specifying a parametric model that can be analyzed either
as STR model or as a fuzzy regression (Jajuga 1986). In the former case, we can obtain
confidence intervals for the parameters estimates in the tree leaves and predicted values. In
the regression-tree literature, the replacement of sharp splits by soft (of smooth) thresholds
is not a new idea; see Chang and Pavlidis (1977), Jang (1994), Yuan and Shaw (1995),
Janickow (1998), Sarez and Lutsko (1999), and Olaru and Wehenkel (2003). However,
we contribute to regression-tree literature by proposing a coherent model building strategy
fully based on statistical arguments. Our proposal is simple, easily implemented, and is
not computer intensive. Furthermore, decisions based on statistical inference also lessen
the importance of post-pruning techniques to reduce the model complexity and circum-
vent identification problems common in nonlinear regressions; see Medeir@syira,

and Rech (2006) for a related discussion. An alternative specification strategy based on a
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10-fold cross-validation is considered. An extension of the basic model to allow for the in-
clusion of categorical variables is discussed. A detailed Monte Carlo experiment is carried
out to evaluate the performance of the proposed methodology in comparison with standard
techniques. The STR-Tree model outperforms CART when the correct selection of the ar-
chitecture of simulated trees is considered. Even when the true model is a regression-tree
with sharp splits, the model building strategy proposed here selects the correct architecture
in almost 100% of the cases. Furthermore, the LM test is less computer-intensive than
10-fold cross-validation. Finally, the simulation study also shows that the STR-Tree model
is a promising alternative when out-of-sample prediction of unknown nonlinear functions
is considered. When put into proof with real datasets, the STR-Tree model has a supe-
rior predictive ability than CART. Model averaging is discussed and the main result is that
the combination of the STR-Tree model with the multivariate adaptive regression splines
(MARS) of Friedman (1991) is a viable alternative to nonlinear prediction. A Matlab code
for carrying out the modeling cycle exists and can be obtained from the authors.

The paper is divided as follows. In Section 2, we briefly introduce some important
regression tree concepts and introduce the main notation. Section 3 describes the proposed
model. Section 4 discusses the model building strategy and parameter estimation. The use
of categorical data is considered in Section 5. A Monte Carlo Experiment is conducted
in Section 6. Examples with six datasets are presented in Section 7. Finally, Section 8

concludes. A technical appendix provides the proofs of the theorems.

2. REGRESSIONTREES

A regression tree is a nonparametric model which looks for the best local prediction of
a continuous response through the recursive partitioning of the space of the predictor vari-
ables. Usually, regression trees are estimated by a greedy recursive partitioning algorithm;
see Breiman, Friedman, Olshen, and Stone (1984). The fitted model is displayed in a graph

which has the format of a binary decision tree wiirentandterminal nodegalso called
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leaves, and which grows from theoot nodeto the terminal nodes. For example, Figure 1

displays a tree with three parent nodes and four leaves.

2.1. Mathematical Formulation. Letx, = (zy,...,zm) € X C R™ be a vector which
containsm explanatory variables for a continuous univariate respgnse R. The rela-

tionship betweeny,; andx; follows the regression model

yr = f(x¢) + &y, 1)

where the functional forny(-) is unknown and there are no assumptions about the dis-
tribution of the random term,. Following Lewis and Stevens (1991), a regression tree
model with K leaves is a recursive partitioning model that approximgtesby a general
nonlinear functionH (x;; ¥) of x, indexed by the vector of parametatsc R”; r is the
total number of parameters. Frequentti-) is a piecewise constant function defined by
K subregionsg;;(0,),i = 1,..., K, of some domaifk C R™. Each region is determined

by the parameter vect®;,: = 1,..., K, such that

K
f(xe) = Zﬁz‘[@'(xt; 0:), 2)
i=1
where
1 |f Xy € kZ(B,),
I;(x4;0;) = (3)
0 otherwise,

andy = (64, .., 0k, 0, ...,0%)". Conditionally to the knowledge of the subregions, the
relationship between, andx; in (1) is approximated by a linear regression on a set of
dummy variables.

The most important reference in regression tree models is the CART approach discussed
in Breiman, Friedman, Olshen, and Stone (1984). In this context, it is usual to define the
subregions:;, i = 1,..., K, in (2) by hyperplanes that are orthogonal to the axis of the

predictor variables. For example, consider a simple tree structurefvith 2 leaves and
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FIGURE 1. Graphical display of a regression tree.

depthd = 1. The unknown functiorf (x;) in (1) may be approximated by a constant model

in each leaf, written as

yr = Bl (X4 50, c0) + B2 [1 — 1(xX45 50, co)] + €, (4)

where

1 if Tt S Co;
](Xt; 30,00) = (5)
0 otherwise,

so €S ={1,2,...,m},andzs,; € x;.

To mathematically represent more complex tree structures, we adopt a labeling scheme
which is similar to the one used in Denison, Mallik, and Smith (1998). The root node is
at position0 and a parent node at positigrgenerates the left-child node and right-child
node at position8; + 1 and2j + 2, respectively. Consider a tree witti parent nodes. The

variablesr,,, j = 1,..., N are usually calledplitting variables
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3. TREE-STRUCTURED SMOOTH TRANSITION REGRESSION(STR-TREE)

The main idea of the STR-Tree model is to take advantage of the CART structure, but
also to introduce elements which make it feasible to use standard inferential procedures.
Whenever possible, we intend to keep the interpretability of the tree-based models. The
highly discontinuous functional form of the model fitted by the CART and the strategy to
decrease the sum of squared errors by splitting the sample recursively, pose a problem to
test the significance of the model and to make classical inference. The idea here is the same
used in Sarez and Lutsko (1989): the substitution of sharp splits in the CART model by
smooth splits. Consider the simplest tree with two terminal nodes generated as in (4). If
we replace the indicator functiafi-) in (4) by a logistic function defined as

1
1 + e—Vo(wsot—Co) ’

G(x¢; 0,7, Co) = (6)

we obtainy;, = 51 G(xy; S0, 70, Co) + 52 [1 — G(x¢; S0, Y0, C0)] + €, Where now we have the
additional parametey,, called theslope parametemwhich controls the smoothness of the
logistic function. This change causes an important difference from the CART approach:
splitting the root node will not separate two subsets of observations but it will create two
fuzzy sets (Zadeh 1965) where all observations will belong to, but with a different degree
of membership. When the slope parameter approaches zero, it leads to the fuzziest situa-
tion in which there is no gain in splitting the data. The parametés called thdocation
parameter When the transition is very smooth the model looses the standard tree inter-
pretability. However, the STR-Tree model can be seen as a fuzzy regression model or a
model where we associate a probability of being in each regime.

As the CART node partition is nested in the smooth transition approach as a special case
when the slope parameter approaches infinity, we argue that the STR-Tree model inherits
all the function approximation properties of the regression-trees with sharp splits.

Replacing the sharp splits by smooth ones has some advantages. Firstly, standard infer-

ential theory can be used to test hypothesis about the location of the splits and to construct
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confidence intervals to the predictions. Moreover, as shown in the simulations in Section
6, cross-validation is inefficient in specifying correct-sized trees and is computationally in-
tensive. Finally, smoothing between adjacent nodes can reduce bias and variance in the
predictions, specially near the node boundaries. Finally, it is possible to interpret the re-
gression tree approach as a particular case of the STR models discussed in Chan and Tong

(1986) and Granger and Bavirta (1993).

4. MODEL BUILDING

The architecture of tree-based models is usually determined from the data. Popular meth-
ods for doing that are based of cross-validation or information criteria. Applying an infor-
mation criterion (IC) to decide whether or not another a given node should be split or not
requires estimation of a more complex model (with one more split). In this situation the
larger model is not identified and its parameters cannot be estimated consistently. This is
likely to cause numerical problems in maximum likelihood estimation. Besides, even when
convergence is achieved, lack of identification causes a severe problem in interpreting the
IC. The tree model with more terminal nodes (splits) is nested in the model with less ter-
minal nodes. A typical IC comparison of the two models is then equivalent to a likelihood
ratio test, see, for example, Bawvirta and Mellin (1986) for discussion. The choice of
the IC determines the (asymptotic) significance level of the test. But then, when the larger
model is not identified under the null hypothesis, the likelihood ratio statistic does not have
its customary asymptotig? distribution when the null holds. For more discussion of the
general situation of a model only being identified under the alternative hypothesis, see, for
example, Davies (1977, 1987) and Hansen (1996).

Here we adopt a different strategy following the modeling cycle described &sVeta
(1994), Medeiros and Veiga (2005), and Medeirosa$eirta, and Rech (2006). The “ar-
chitecture” of the model has to be determined from the data and we call thissgtage
fication of the model, which involves two decisions: the selection of the node to be split

and the index of the splitting variable. The specification stage will be carried out by a
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sequence of Lagrange Multiplier (LM) tests following the ideas originally presented in
Luukkonen, Saikkonen, and Bavirta (1988). An alternative approach based on 10-fold
cross-validation is also possible; however the computational burden involved is dramati-
cally high. The specification stage also requisSmationof the parameters of the model.
What follows thereafter isvaluationof the final estimated model. Tree models are usually
evaluated by their out-of-sample performance (predictive ability). In this paper we follow
the literature and evaluate the STR-Tree model in the same way. The construction of mis-
specification tests for the STR-Tree model in the same spirit of Eitrheim argVviga
(1996) is also possible, but this topic is beyond the scope of the paper.

Following the “specific-to-general” principle, we start the cycle from the root node

(depth0) and the general steps are:

(1) Specification of the model by selecting in the degtlising the LM test, a node to
be split (if not in the root node) and a splitting variable.

(2) Parameter estimation.

(3) Evaluation of the estimated model by checking if it is necessary to: (a) Change the
node to be split; (b) change the splitting variable; and (c) remove the split.

(4) Use the final tree model for prediction or descriptive purposes.

The modeling cycle begins from the root node (depth 0) by testing the null hypothesis of

a global constant model against a STR-Tree model with only 2 terminal nodes.

4.1. Parameter Estimation. Consider a full-grown STR-Tree model with depthK =

24 terminal nodes (leaves), afd = Zle 2! parent nodes, defined as

K
Y= H(xXp;) + e = ZﬁKJrkaBk(Xt; 0r) + e, (7)

k=1

where H (x;; ) = Sor, B r_oBr(xs;0r) and By(x,;01), k = 1,..., K, is defined by
products of the logistic function. The parameter veetor (Bx_1,. .., Box—2,07,. .., G’K)’

hasr = K + 2N elements. As an example, consider a STR-Tree model with diepth,
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K =4, N = 3, and functionsBy(x;; 0;), k = 1,..., K, in (7) written as
By (x4;01) = G (%43 50,70, c0) G (X5 51,71, ¢1) 5

By (x4302) = G (%43 50,70, o) [1 — G (%43 51,71, ¢1)] 5
Bs (x4;03) = [1 — G (x¢; S0, 70, ¢0)] G (X¢; S2, 72, ¢2) ; and
By (Xt; 94) = [1 -G (Xt; 50, 70, Co)] [1 -G (Xt; 52,72, 02)] .

The total number of parameters to be estimated iand there are three splitting variables
to be selected. It is important to stress that all tree architectures can be seen as a restricted

version of a full grown tree, which is used here just to make the presentation clearer.

4.1.1. Main AssumptionsAt this point we have to make the following set of assumptions.

ASSUMPTION 1. The sequencéxt}f:1 is formed by independent and identically dis-
tributed (11D) random vectors and have a common joint distribuidaon A, a measurable

Euclidean space, with measurable Radon-Nikodlensity.

ASSUMPTIONZ2. The sequenc{amzt}tT:1 is formed by independent and normally distributed

(NID) random variables with zero mean and variance< oo, that ise; ~ NID (0, o2).

AssuMPTION3. Ther x 1 true parameter vectoty™ is an interior point of the compact

parameter spac& which is a subspace &, ther-dimensional Euclidean space.

ASSUMPTION4. The parameters; > 0,7 = 1,..., N, whereN is the number of parent
nodes. Furthermore, if for two adjacent parent nodes at positiong- 1 and 25 + 2,

Tyt = Tanj oty t(NENC, | < Coy sy

Assumption 1 states that we are working with 11D data such as cross-sectional or a set
of time-series with [ID observations. Although Assumption 2 may seem a little restrictive,
model (7) is still very flexible. Furthermore, Assumption 2 allows us to work in a maxi-

mum likelihood framework that will be equivalent to nonlinear least-squares. In the case
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of non-Gaussian errors, Assumption 2 may be substituted by some moment conditions and
a quasi-maximum likelihood framework should be used instead. The main difference will
be related to the computation of the covariance matrix of the parameter estimates. In ad-
dition, a robust version of the tests presented latter can be constructed in the same spirit of
Wooldridge (1991) and Medeiros, Bavirta, and Rech (2006). Assumption 3 is standard
and Assumption 4 guarantees that the STR-Tree model is identifiable.

As discussed previously, we estimate the parameters of our STR-Tree model by maxi-
mum likelihood (ML). The use of maximum likelihood makes it possible to obtain an idea
of the uncertainty in the parameter estimates through (asymptotic) standard deviation es-
timates. The STR-Tree model is similar to many linear or nonlinear models in that the
information matrix of the log-likelihood function is block diagonal in such a way that we
can concentrate the likelihood and first estimate the parameters of the conditional mean.
Conditional maximum likelihood is thus equivalent to nonlinear least squares (NLS).

The nonlinear least squares estimator (NLSE) of the parameters equals

T T
b = aggergin%cmm - agpgen;in% > aw) = agpgen;ir% >oet (8)
4.1.2. Existence.The proof of existence of the NLSE is based on Lemma 2 of Jennrich

(1969), which establishes that under certain conditions of continuity and measurability on
the mean square error (MSE) function, the NLSE as in (8) exists. Theorem 1 states the

necessary conditions for the existence of the NLSE.

THEOREM 1. The STR-Tree model satisfies the following conditions and the NLSE exists.

(1) For eachx; € X C R™, function Hy (¢») = H (x4; %) is continuous in compact
subsetV of the Euclidean space.

(2) Foreachy € ¥ C R", functionH,, (X) = H (x;; 1) is measurable in spacg.

(3) & ~ IID(0, 02) .
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4.1.3. Consistency.The consistency of the NLSE was proved in Jennrich (1969). We

follow Amemiya (1983) and state the following theorem.
THEOREMZ2. Under the Assumptions 1{5 is strong consistent fog™, i.e.,a,?; L5 ",

4.1.4. Asymptotic Normality Asymptotically normality of the NLSE was also carefully
proved in Jennrich (1969). We follow his results and the developments in Amemiya (1983)

and state the following theorem.

THEOREM3. Under the Assumptions 1-5

T2 — ) N (o, _plim A<¢*>1) , ©

T—oo

* 2 *
whereA (%) = 0—1208%%(;", ),

REMARK 1. The extension of the above theorems to the case of non-IID observations and
to misspecified models is relatively straightforward. The results of White (1982), White

(1994), and Wooldridge (1994) can be applied.

4.1.5. Concentrated Least-Square€onditional on the knowledge of the paramet@rs

in(7), k = 1,..., K, model (7) is just a linear regression and the vector of parameters
B=0k-1,--- ,BQK_2)’ can be estimated by ordinary least-squares (OLS) as
B = [B(6)B(6)] 'B(0)Yy. (10)

wherey = (y1,...,yr), 0 = (6),...,0%), and
Bl(Xl; 91) BK(X1;0K>
B(0) =
By(x1;61) --- Bg(x7;0k)

The parameteré,, £ = 1,..., K, are estimated conditionally ofi by applying the

Levenberg-Marquadt algorithm which completes itheiteration.
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4.2. Splitting the Nodes. We have a particular interest in the hypothesis concerning the

significance of splitting the root node. If we re-parameterize the STR-Tree model as:
Ye = ¢o + MG (X¢; 50,70, Co) + €1, (11)

whereg, = (G, and )\, = ;1 — 2, we obtain a more parsimonious representation of the
simplest STR-Tree model. In order to test the significance of the first split, a convenient
null hypothesis isH, : 79 = 0 against the alternativé{, : v > 0. An equivalent
null hypothesis isH; : A\, = 0. However, undefH,, the nuisance parameteks and
¢o can assume different values without changing the likelihood function. This poses an
identification problem whose solution was first discussed by Davies (1977).

We adopt as a solution for this problem the one proposed in Luukkonen, Saikkonen, and
Terasvirta (1988), that is to approximate the functiofi) by a third-order Taylor expansion

aroundy = 0. After some algebra we get
Y= o+ Qg + Tl + asTd ey, (12)

whereq;, ¢ = 0,1,2,3, is a parameter that is function of, co, ¢o, and g, ¢; = &, +

Mo R(x¢; 80,70, Co), ANAR(xXy; So, Y0, Co) iS the remainder. Thus,
Hoi Oéi:(), 221,2,3 (13)

Note that undef{,, the remainder of the Taylor expansion vanishesand ¢;, so that
the properties of the error process remain unchanged under the null and thus asymptotic
inference can be used. Finally, one may also view (12) as resulting from a local approxi-

mation to the log-likelihood function, which for observatibtakes the form

1 1 1 2
I, = —3 In (27) — 5 Ino? — ) {yt —Qp— Q1 Tgyt — ozga:ioi — a3x§0,t} . 14)

At this point we make the following additional assumption.
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ASSUMPTIONS. E|r,,[° < 0o,V sq € S, for somey > 6.
This enables us to state the following well-known result.

THEOREMA4. UnderH, : 79 = 0 and Assumptions (2)—(5), the LM type statistic
-1 T

1 T T T T oy
t=1 t=1 t=1 t=1 t=1 t=1

wherez, = y, — 3, is the estimated residuals under the néfl, = (/7)) &% h, =1,

andv, = (z,,, 22, :cgot)’, has an asymptotig? distribution with3 degrees of freedom.
REMARK 2. Note that, undef, 3o = %Zle v 2 F (yy).

Until this point, we have just interpreted the simplest tree model as a particular case of
the STR model as in Granger and dsvirta (1993) and the testing strategy to split the
root node corresponds to a linearity test in which the linear model in question is a global
constant model. However, the key idea is to consider the basic testing procedure described
above in a more complex framework. To give an example of a more complex model,
consider that the null hypothesis (13) was rejected and a STR-Tree model with two leaves
was consistently estimated. A natural way, within the tree framework, of considering a
hypothesis of misspecification is by formulating a new model that splits one between the

two created nodes, say the left child node, leading to the following model
ye =H (xi;%) + &
={BsG (x5 51,71, ¢1) + Ba[1 — G(x4; 51,71, ¢1)]} G (X5 80, Y0, Co) + (16)
Ba [1 — G (x5 80,70, €0)] + &t

Therefore, rewriting (16) as

Y = [p1 + MG(x4; 51, 71, ¢1)] G(X45 50, Y0, €0) + B2 [1 — G(X45 50,70, C0)] + €, (17)

where¢; = 3 and\; = 33 — (4, a convenient null hypothesisig, : v; = 0.
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However, under the null hypothesis, the model (17) can not be consistently estimated
because of the nuisance parametgrandc;. For solving this identification problem, we
proceed as before and approximate the functign by its third-order Taylor expansion
aroundH,. After some algebra we get

Y = + alG (xsot; Yo, CO) + Ck2CTY (xsot; Yo, CO) xslt"’
(18)

. 2 . 3
asG («Tsot, 70, CO) Lt + G (xsolﬁ 7o, CO) Lgit + e,

wheree; = ¢ + R(xy;81,7,¢1); R(x¢581,71,c1) is the remainder. The decision for

splitting the node corresponds to the rejection of the following null hypothesis

Ho: a; =0, i =2,3,4. (19)

/
Ho>

From the assumption of normality of the error term, the information matrix is block

The test statistic is (15) with

oy~ OG (251370, C . 0G (541370,
ht - 17 G (:I;sot;/yO)CO), aq <xaot o CO) , (1 (m ot o CO)
Yo o dcy

0

andv; = (G (24190, 00) Tyt G (Tsoti F0, C0) 72,4, G (Tsot; F0, C0) 72,) .

diagonal and thus we can assume that the error variance is fixed. The test can be carried

out according to the following steps:

(1) Estimate the STR-Tree model under the null hypoth#gisand compute the resid-
ualsz;. Compute the sum of the squared residugds?, = ZtT:l g2,

(2) Regress; onh; andv;. Compute the sum of squared residuals obtained from this
regression§SR,).

(3) Compute they? statistic

SSRy— SSR,
SSRy ’

LM, =T (20)
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or the F" version of the test

(SSRo — SSRy) /3

LMp =
r SSR /(T —7)

(21)

whereT is the sample size. Under the nill\/, is asymptotically distributed as a
x? distribution with 3 degrees of freedom and/; has an asymptoti¢’ distribu-

tion with 3 and7" — 7 degrees of freedom.

Hereafter, the idea is to carry out a sequence of LM-type tests to grow the tree model in
the same format as the one presented above and the general form of the test statistic when
testing a model with nodes against an alternative with- 1 nodes is given by:

(SSRy — SSRy) /3
SSR/[T = (p+3)]

LM = (22)

wherep is the total number of elements of the vedigr

4.2.1. Modeling Cycle from the root node (depth O)he decision to split the root node is

based on the following steps.

(1) For each explanatory variable, apply the LM-type test described above and select
the variabler, , that generates the lowestvalue below a specified level In case
of all candidate variables do not produce a significant split, the root node is declared
as terminal and the global constant model is selected as the best model. Otherwise,
two children nodes are generated to compose the first depth of the tree.

(2) Conditional to the choice of,, estimate the vector of parameters= (o, co, 51, [-}2)’

by concentrated least squares.

4.2.2. Modeling Cycle from the 1st depttfter the tree has started to grow from the root
node, the first depth is created and the cycle continues by testing for the adequacy of split-
ting one between the two children nodes. The null hypothesis in this test concerns the

conditional linear model and the alternative brings the inclusion of a nonlinear term that is
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responsible for splitting the node. From now on, besides selecting a splitting variable, we

shall also select which one between the two created nodes shall be split at the first place.

(1) For each combination of splitting variable indexSn= {1,2,...,m} and node
number inD; = {1, 2}, apply the LM-type test and select the indeyes D, and
sj, € S that generates the lowestvalue below a pre-specified significance level.
If there is no significant split, the tree growing process stops.

(2) Estimate the parameters of the model.

4.2.3. Modeling Cycle from théth depth. The execution of the algorithm in a general
depthk is straightforward.

(1) Apply the LM test to all combinations of splitting variables indexes and nodes in
the sefD, which contains all numbers of children nodes that composktthéepth.
Note thatD, C {2*F —1,2% ... 2k — 2},

(2) Selectj; € Dy, ands;, € S by the rank of significant-values obtained through the
LM-type test.

(3) Estimate the parameters of the model.

The whole modeling cycle ends when a determined depth do not produce children nodes.

4.3. Sequential Tests.To achieve the final tree model, we perform a sequence ar-
related LM-type tests of hypothesis in whiehs a random variable. Due to multiplicity
from repeated significance testing, we have to control the overall type | error under the
risk of an overstatement of the significance of the results (more splits are reported to be
significant than it should be). To remedy this situation, we adopt the following procedure.
For thenth test in the sequence, if it is performed in dth depth the significance level is
a(d,n) = 5. In the root noddd = 0) and we apply the first te$t, = 1) for splitting the

node at a significance level if the null is rejected than the secofwd = 2) test is applied

in the 1st depth(d = 1) and the significance level is/2. By forcing the test to be more
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rigorous in deeper depths, we create a procedure that diminishes the importance of using
post-pruning techniques.

There are several alternatives to control the overall size of the sequence of tests: Hochberg
(1988), Benjamini and Hochberg (1995,1997), Benjamini and Yekutieli (2000,2001), and
Benjamini and Liu (1999). However, by our experiments, our simple methodology works
well and the comparison between different techniques to reduce the nominal size of each

test is beyond the scope of the paper.

5. CATEGORICAL DATA

In principle, the previous developments do not take into account the case where some of
the variables are categorical. However, the extension to include categorical data is straight-
forward. The main idea is to replace the constant model in each terminal node by a linear
regression on a constant and a set of dummy variables representing the categorical data.

Letx; = (z}, w;)’, werez, is a vector of categorical variables awg is a vector of con-
tinuous variables. LeD,(z;) be a vector of dummy variables representing the categorical

vectorz,. In that case model (7) may be rewritten as:

K
ye = H (xi;) + &1 = 2/6,[(+i—1Dt(Zt)Bk(Wt; 0y) + & (23)
k=1

6. MONTE CARLO EXPERIMENT

In this section study the small sample properties of the nonlinear least squares estimators
under correct specification of the STR-Tree model and investigate the performance of three

different tree-growing algorithms:

CART: We use the most traditional CART tree growing strategy. This consists of
growing the tree using as a stopping rule the minimum of five observations per
terminal node, and then prune the tree using the 1-SE rule with errors estimates

obtained by 10-fold cross validation.
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STR-Tree/LM: This strategy uses the LM test to select the node and splitting vari-
able. This specification strategy does not need pruning and the control of the overall
error is done by the reducing the test size during the tree growing.
STR-Tree/CV: We carry at each node a 10-fold cross-validation experiment to se-
lect the splitting variable that minimizes the overall MSE (Mean Square of Errors)

evaluated out-of-sample.

We simulate two tree architectures which are illustrated in Figure 2, with different com-
binations of smoothness parameters. Thus, five models are simulated for Architecture |
which contains three terminal nodes and three models are simulated for Architecture I
which has four terminal nodes. Basically, we consider three types of splits (see Table 1):
very smooth {; = 0.5), moderate sharpy( = 5), and sharp+; = oc). The sharp splits
are used to evaluate the robustness of the STR-Tree model when the true specification is a
regression-tree with hard thresholds. We also mix types of splits. Model 1.1, for example,
is obtained from two consecutive smooth splits and Model 1.4 brings a smooth split at the

root node, followed by a moderate sharp split.

N

(a) Architecture | (b) Architecture Il

FIGURE 2. Small simulated trees architectures

We simulate 1000 replications for each model with sample sizes150 and7" = 500.
As the main concern is about the effects of the slope parameter, there is not much variation
in the choice of the constants within the nodes. Three uncorrelated and normally distributed
predictor variables are used as candidates to be the splitting variables:N(10, 2.56);
xo ~ N(90,9); andzs ~ N(25,4). The error term is defined as ~ N(0,1). Since

the slope parameter is not scale-free, we standardize the argument of the logistic function,
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TABLE 1. Smoothness of the splits in the STR-Tree simulations

Model First Split Second Split Third Split

Architecture | 11 ~ =05 =05 —
(3 leaves) 12 =5 Y2 =5 —

1.3 =5 o = 0.5 —

14 =05 =5 —

15 y=x Yo = 00 —
Architecture Il 2.1 ~ =05 ~; =05 v9 =0.5
(4 leaves) 22 =5 v =25 Yo =5

23 Y=00 M= Y2 = 00

dividing it by the standard deviation of the splitting variable. The other parameters are
fixed according to Table 2. In the simulations concerning parameter estimation we do not

consider the cases wheye= cc.

TABLE 2. Parameters in the simulated STR-Tree models

Architecture | Architecture 1l
Constants 61=6 B3 =6; 04 =3.2
in the nodes b5 = 1.8; B = —1.5 b5 = 1.8; B = —1.5
Location parameters co = 83;co =10 co =90;c1 =10;co =25
Indexes of splitting variables  sqg =2; s, =1 so=2;,51=1;8, =3

As shown in Table 2, the location parameters are chosen strategically at median points for
simulations under Architecture Il. The aim is to provide a maximum amount of information
within the created nodes. The only concern related to the choice of the constants within the
nodes is to yield different local models.

The difference among models for Architecture | can be seen in Figure 3, which shows
the response surface for each one of the simulated trees. When all splits are moderate
sharp such as in model 1.2, the surface looks like a bivariate histogram. On the other hand,
a sequence of extremely smooth splits (Model 1.1) produces a relationship between the

response and regressors that is almost linear.

6.1. Parameter Estimation. In this Section, we discuss the empirical results obtained
with the use of the NLSE in the simulated models. The results are described through

descriptive statistics such as the sample mean. Two measures are chosen to evaluate the



20 J. C. DA ROSA, A. VEIGA, AND M. C. MEDEIROS

\N
N\
\\\\\

N\

N\

N\
A\

147 70
X1 x2

(b) Model 1.2

T
\\\Q\\\QQ\\\\:

N _HORt > ’ L
N\

i i iHin:k
HAINMHnk
Hil ik

NN \\\
NHiTi iHHkkk

nNniin: e

R IIITHTHTTTITIT

80
14
70 70

x2 X1 x2

(c) Model 1.3 (d) Model 1.4

FIGURE 3. Geometric Features of the Simulated Models (Architecture 1)

variability of the estimates; the sample standard deviation and, as a more robust alternative,

the median absolute deviation around the median (MAD):

MAD(qZ) = median(‘qz— mediar@)‘) . (24)
Estimation of the slope parameteresults in outliers and extreme values for some repli-
cations, hence the sample mean of the estimates is strongly affected by them. Itis clear in
Tables 3 and 4 that the parameters strongly overestimated wheéh = 150. In these
cases, the median seems to be a more robust measure of central tendency. Such problem
does not occur with the location parameter, whose sample mean and median are close to the
true value. Nevertheless, the variability of the location parameter estimator increases when-

ever there is a smooth split. As a consequence, the estimates of the parameters within the
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nodes are also affected, mainly in small samples. Thus, as it happened with Model 1.3, the
sample mean and median for the local model estimates deviate from the population values.
In general, the estimates, except for the smoothness parameter, are more precise in trees
simulated with sharp splits. When mixing different types of splits, the results pointed out
that a smooth split followed by a sharp split produces better results. In this situation, there
are more observations left to be modeled after the first split. Finally, an important aspect of
the simulation study is the indication that the NLS estimates converged, as expected, to the

true value of the parameter whenever the sample size increases.

6.2. Tree Architecture Specification by Different Algorithms. We show in Tables 5 and
6, the performance of the three algorithms to identify the simulated STR-Tree models.
When all partitions involve only moderate sharp splits, the STR-Tree models yield more
than 95% of correct specifications, independently of the simulated architecture. When
T = 150, the sequence of LM tests produced significantly better results than 10-fold cross-
validation. Forl" = 500 the performance of both are comparable, being the LM test slightly
better. On the other hand, all strategies faced more trouble to specify correctly trees which
were grown from very smooth splits. A very smooth split followed by a sharp one in-
creased the number of misspecifications. However, the STR-Tree model specified by the
LM test outperforms its competitors in most of the cases. The decision to generate trees
with a highly smooth transition function at the first node turned the specification task very
difficult for all algorithms, even so the STR-Tree/LM could perform quite satisfactorily in
large samples. The main problem for this algorithm occurred in the situation involving a
very smooth split at the root node followed by a sharp split in the subsequent node. It could
specify neither the tree architecture nor the splitting variables. Whenever the CART algo-
rithm is submitted to specify smooth trees, it tends to create less nodes than expected. In
the opposite situation where the splits are moderate sharp, even the post-pruning procedure

was not able to avoid overfitting. The strategy to use a 10-fold cross-validation experiment
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TABLE 3. Descriptive Statistics for Estimation in Architecture |

Model 1.1 T =150 T = 500

Mean Std. Dev. Median MAD| Mean Std. Dev. Median MAD
40 (0.5) 0.518 0.112 0.502 0.066 0.503 0.055 0.498 0.036
¢o (83) 82.988 0.476 83.002 0.31383.010 0.236 83.015 0.150
49 (0.5) 25183 207.942 0.570 0.2680.533 0.178 0.522 0.113
¢ (10) 10.020 2.255 10.036 0.69410.032 0.812 10.006 0.372
31 (6) 6.016 0.364 6.007 0.229 6.004 0.173 5.996 0.113
BE, (1.8) 2.187 1.531 1.734  0.526 1.895 0.567 1.766 0.252
Bﬁ (-1.5) -1.915 1.510 -1.452 0.512-1.623 0.630 -1.472 0.250
Model 1.2 T =150 T = 500

Mean Std. Dev. Median MAD| Mean Std. Dev. Median MAD
4o (5) 17.059 60.519 5.254  2.297 6.190 9.580 5.154 1.126
¢o (83) 83.035 0.183 83.019 0.09783.008 0.071 83.002 0.042
A9 (5) 35.672 319.697 5.581 1.64R11.260 153.725 5.158 0.767
¢2 (10) 10.002  0.099 10.004 0.066 9.998 0.051 9.997 0.035
Bl (6) 6.012 0.189 6.013 0.128 5.996 0.106 5.998 0.072
35 (1.8) 1.789 0.159 1.792 0.105 1.799 0.088 1.801 0.056
Bﬁ (-1.5) -1.501 0.161 -1.497 0.102-1.501 0.087 -1.496 0.058
Model 1.3 T =150 T = 500

Mean Std. Dev. Median MAD| Mean Std. Dev. Median MAD
4o (B5) 10.917 21.949 5.288 1.6938 5.852 9.369 5.100 0.870
¢o (83) 83.006 0.146 82.998 0.07382.999 0.061 82.998 0.040
49 (0.5) 16.131 126.012 0.542 0.2380.526 0.171 0.520 0.107
¢2 (10) 10.062 2.1281 9.969 0.70710.003 0.964 10.007 0.368
Bl (6) 6.009 0.193 6.007 0.126 5.999 0.102 5.998 0.064
B5 (1.8) 2.204 1.420 1.766  0.509 1.953 0.739 1.785 0.243
Bﬁ (-1.5) -1.955 1.595 -1.441 0.464-1.653 0.732 -1.483 0.246
Model 1.4 T =150 T = 500

Mean Std. Dev. Median MAD| Mean Std. Dev. Median MAD
4o (0.5) 0.527 0.145 0.505 0.07090.506 0.066 0.503 0.043
¢o (83) 83.045 0.513 83.023 0.34p83.011  0.277 83.020 0.183
Ao (5) 45,670 386.809 5402 1.7799.213 110.411 5.077 0.741
¢2 (10) 10.002 0.111 10.005 0.072 9.999 0.051 9.999 0.032
Bl (6) 6.004 0.357 5.984 0.223 6.000 0.188 5.994 0.123
35 (1.8) 1.778 0.182 1.789 0.117 1.791 0.096 1.795 0.066
Bﬁ (-1.5) -1.511 0.219 -1.505 0.145-1.503 0.116 -1.500 0.078

during the specification seems to produce results in the STR-Tree algorithm which are sim-
ilar to CART ones. Although the overfitting is not so dramatic as in the CART case, when
the splits are moderate sharp, the algorithm tended to create, mainly in small samples, trees
which are larger than expected. With large samples and moderate sharp splits, the speci-
fication performance is comparable to the one done by the sequence of LM-type tests, but

the computational burden is considerably high.
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TABLE 4. Descriptive Statistics for Estimation in Architecture Il

Model 2.1 T =150 T = 500
Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD

4o (0.5) 0.693 3.261 0.510 0.075 0.508 0.068 0.504 0.043
¢o (90) 90.017 0.542 89.998 0.38089.999 0.305 89.994 0.198
41 (0.5) 46.594 397.130 0.805 0.53117.417 253.162 0.557 0.188
¢1 (10) 10.104 2.135 10.095 1.028 9.962 1.311 9.942 0.578
42 (0.5) 11.897 171.624 0.549 0.1970.535 0.173 0.512 0.100
¢ (25) 24.997 1.953 25.031 0.78124.990 0.710 24997 0.358
Bg (6) 6.104 1.215 5.730 0.479 6.132 0.762 5.956 0.344
34 (3.2) 3.045 1.261 3.429 0.445 3.102 0.729 3.271 0.323
B5 (1.8) 2.061 1.155 1.773 0.372 1.854 0.437 1.797 0.201
BG (-1.5) -1.777 1.091 -1.520 0.423-1.555 0.451 -1.491 0.205

Model 2.2 T =150 T =500
Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
Yo (5) 70.192 1276.098 5.530 2.99825.373 238.576 5.080 1.389

¢o (90) 90.009 0.238 90.002 0.13090.003 0.116 89.997 0.065
A1 (5) 104.765 527.811 6.993 3.93367.216 4863.138 5.471 1.470

¢ (10) 9.997 0.157 9.999 0.09410.005 0.082 10.006 0.056
2 (5) 76.126  553.641 6.700 3.59655.747 323.296 5.207 1.261
¢2 (25) 24.995 0.182 24.999 0.10325.001 0.085 24999 0.053
35 (6) 6.004 0.218 6.004 0.132 5.990 0.124 5.988 0.084

34 (3.2) 3.210 0.209 3.216 0.139 3.213 0.115 3.216 0.073
05 (1.8) 1.790 0.194 1.782 0.125 1.789 0.099 1.794 0.067
Gs (-1.5) -1.494 0.204 -1.487 0.128 -1.492 0.116 -1.493 0.079

TABLE 5. Percentage of Correct Specifications in Trees Simulated for Ar-

chitecture |
T =150 T =500
Smoothness Parameters CART STR-Tree/LM STR-Tree/@QART STR-Tree/LM STR-Tree/CV
Y0=0.5v2=0.5 7.7% 34.7% 6.4% 23% 84.2% 15.1%
Y0=5 12=5 8.4% 98.4% 89.9% 0% 97.8% 96.3%
Y0=572=0.5 16.4% 85.4% 42.5% 0.1% 99.1% 80.6%
Y0=0.5v2=5 37.8% 45.8% 38.4% 3.5% 6.1% 11.4%

Yo = 00 Y2 = O 92.2% 98.5% 18.7% 100% 99.5% 11.6%
TABLE 6. Percentage of Correct Specifications in Trees Simulated for Ar-
chitecture I

T =150 T =500
Smoothness Parameters CART STR-Tree/LM STR-Treeg/@©QART STR-Tree/LM STR-Tree/CV
Y% =057 =05v% =05 0.8% 4% 0.6% 4.3% 61.1% 1.3%
Yo=957v1 =Dy =25 25.9% 98.3% 76.7% 0% 98% 94.8%
Yo=0071 = v =00 96.3% 98.6% 16.0% 100% 99.4% 8.7%
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Finally, when the true model is a regression-tree with hard splits, the CART algorithm, as
expected, performs very well. However, the STR-tree model specified with the LM strategy
is also very accurate, correctly selecting the true architecture in almost all replications. On
the other hand, the 10-fold cross-validation is not a viable alternative to build STR-Tree
models when the splits are hard. Surprisingly, when the splits change from moderate sharp

(v; = 5) tosharp{; = =), the performance of the CART algorithm improves dramatically.

6.3. Out-of-Sample Predictions. In order to evaluate the out-of-sample performance of
the STR-Tree model we conduct the following experiment. We simulated 1000 replications

with 750 observations of the following models:

e Model 1: Equation (66) in Friedman (1991)

_ 40 x exp {8 [(z1; — 0.5)% + (z2 — 0.5)?]}
exp {8 [(z1; — 0.2)2 + (wg; — 0.7)2]} + exp {8 [(z1; — 0.7)2 + (xg; — 0.2)2]}

Yi + Eiy

wheree; is drawn from a standard normal distribution and andz,; are drawn
from a uniform distribution in the unit square.

e Model 2: Neural Network with three hidden units
y; = 1.3+ 2.2f(1.5(0.521; + 0.629; — 10.5x3; + 50)) — L.7f(1.2(8.321; + 0.2x3 — 5))
+0.9f(5(0.7x1; — 6.829; + 3)) + &,
wheref(z) = [1 + exp (—z)]"", z1; andz,,; are drawn form a uniform distribution
in the unit squaregs; is drawn from a normal distribution with me&rand standard

deviation 4, and; is normally distributed with zero mean and unit variance.

e Model 3: Example 1 in Fan and Zhang (1999)
Y; = Siﬂ(601’1i)$2i + 45511(1 — l‘li)fgi + Eiy

wherezx; is follows a uniform distribution and,; andzs; are normally distributed

with zero mean, unit variance, and correlation coefficient2.
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e Model 4: Example 3 in Fan and Zhang (1999)
y; = sin [87m(x1; — 0.5)] x9; + {3.5 {exp (_(4%@' — 1)2) +

exp (—(4xh - 3)2) ] — 1.4}x3i + &
All the variables are defined as in Model 3.

For each replication we fit four different models using 500 observations: a STR-Tree
model specified with the sequence of LM tests; a regression-tree estimated with CART; a
neural network with 10 hidden neurons estimated with Bayesian regularization (MacKay
1992); and MARS (Friedman 1991). For each estimated model, we generate out-of-sample
predictions for the remaining 250 observations and we also compute the mean squared
errors (MSE). Table 7 reports the median, the MAD, the maximum, and the minimum of

the MSEs over 1000 replications.

TABLE 7. Out-of-Sample mean squared error of competing models over
1000 replications.

Model 1 Model 2
Median MAD Min. Max. Median MAD Min. Max.
STR-Tree/LM 1.97 0.29 115 7.75 1.10 0.07 0.86 1.61
CART 2.47 0.18 1.60 3.97 2.46 0.14 1.88 3.07
Neural Network 1.04 0.06 0.77 1.34 1.17 0.07 0.85 1.56
MARS 7.34 0.41 555 9.71 1.12 0.07 081 154
Model 3 Model 4
Median MAD Min. Max. Median MAD Min. Max.
STR-Tree/LM 1.57 0.10 1.14 2.27 1.90 0.11 1.46 3.04
CART 1.69 0.12 1.22 2.30 2.09 0.15 1.38 3.25
Neural Network 1.58 0.11 1.16 2.26 1.91 0.14 138 3.12
MARS 1.60 0.11 1.16 2.33 1.93 0.14 1.42 3.25

Analyzing the results in Table 7, the STR-Tree model performs quite well. In three out
of four cases, the STR-Tree model delivers the lowest median of the out-of-sample MSEs.
Only for Model 1, the STR-Tree specification is worse than the neural network, but it is

significantly better than the CART and the MARS alternatives.
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7. REAL EXAMPLES

In this section we apply the STR-Tree model to several datasets.

e Boston Housing — Housing values in 506 census tracts of Boston. This is the same
dataset used in Breiman, Friedman, Olshen, and Stone (1984).

e Cpus data — The Cpus data is discussed in Venables and Ripley (2002). The goal is
to explain the performance of 209 different CPUs by some hardware characteristics.

e Car sales in USA in 1993 — The data were taken from MASS library in R and
describe the prices and other 25 variables of 93 new cars models.

e Auto imports — This dataset was taken from Ward’s 1985 Automotive Yearbook and
consists of 195 prices of cars followed by some features such as: fuel consumption,
length, width, engine size, among others.

e Abalone data — This is a dataset originated from Biology and the objective is to
predict the age of an abalone from a set of physical measurements. There are 4177
cases and 7 continuous predictors. The source is the UCI repository.

e MPG data — The dataset concerns city-cycle fuel consumption in miles per gallon,

to be predicted in terms of 5 continuous attributes. There are 398 observations.

By choosing the datasets above we consider both small and large samples. In some cases
the regressors are highly correlated. In all cases we select only the continuous variables.
To get an honest picture of the performance reached by all models, we conduct an out-
of-sample evaluation by repeating 10 times a 10-fold cross-validation experiment. In each
of the 10 replications we randomly split the data in 10 parts, using nine parts to estimate
the model and one part to evaluate the out-of-sample performance. We repeat this leaving
each one of the 10 parts for out-of-sample evaluation. This means that for each of the 10
replication, we have 10 sets of mean squared errors Wjth) observations in each set.

N is the number of observations in the dataset. As we repeat the experiment 10 times, in

the end we havé0ON out-of-sample squared errors, reflecting different combinations of
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estimation (in-sample training) and testing (out-of-sample evaluation) sub-samples. Table
8 reports the median, the MAD, the maximum, and the minimum of the squared errors.

We compared the performance of the following models: CART, MARS, STR-Tree spec-
ified with the sequence of LM tests (STR-Tree/LM), STR-Tree specified with 10-fold
cross-validation (STR-Tree/CV), and a Neural Network with 10 hidden units estimated
with Bayesian regularization. We also consider three possible combination models using
a simple averaging scheme. The combinations are: MARS and CART, MARS and STR-
Tree/LM, and CART and STR-Tree/LM.

TABLE 8. Out-of-Sample squared errors of different models.

Boston Cpus

Model Median MAD Min. Max. Median MAD Min. Max.
CART 2049 6.99 835 51.78 5.56 x 10°  4.10 x 10> 472.50 4.31 x 10*
MARS 11.71 291 6.30 39.05 2.34 x 10 1.27x 10> 510.49 1.43 x 10*
NN 12.05 4.00 3.85 40.01 2.65 x 10> 1.73 x 10> 378.37 5.17 x 10*
STR-Tree/LM 1391 334 564 41.03 2.56 x 10> 1.33 x 10> 552.19 1.81 x 10*
STR-Tree/CV 12.06 296 6.49 43.32 3.05 x 10°  1.94 x 10 280.00 2.67 x 10*
MARS + CART 13.15 445 5.07 34.29 2.99 x 10>  1.64 x 103 21272 2.21 x 103

MARS + STR-Tree/LM 10.38 3.38 5.08 31.02 2.08 x 10% 1.05 x 10> 476.43 1.25 x 10°
CART + STR-Tree/LM 14.27 397 5.24 40.20 3.14 x 10°  1.95 x 10® 403.72 2.59 x 103

Car Sales Import
Model Median MAD Min. Max. Median MAD Min. Max.
CART 33.63 14.85 4.07 229.24 8.14 2.48 2.47 20.24
MARS 26.30 11.73 4.65 156.20 10.42 4.30 2.89 78.20
NN 48.09 27.79 5.26 627.95 14.29 9.43 1.65 112.38
STR-Tree/LM 25.58 12.79 2.97 169.22 8.92 2.38 3.50 26.00
STR-Tree/CV 26.40 15.68 3.08 169.66 11.27 3.05 3.94 33.32
MARS + CART 26.76 12.09 2.58 168.98 6.35 2.33 1.91 26.07
MARS + STR-Tree/LM 22.49 1092 4.22 161.24 8.32 2.53 2.50 33.26
CART + STR-Tree/LM 25.38 13.29 3.08 176.48 6.47 2.06 2.58 22.07

Abalone MPG

Model Median MAD Min. Max. Median MAD Min. Max.
CART 5.93 0.45 4.54 8.20 13.50 3.17 4.33 23.71
MARS 4.50 0.40 3.62 5.84 8.09 1.80 3.77 16.32
NN 4.60 0.47 3.32 7.55 9.09 2.90 3.33 27.03
STR-Tree/LM 5.23 0.55 3.85 7.79 9.54 2.18 4.45 22.96
STR-Tree/CV 6.26 0.63 4.21 8.38 8.06 2.04 2.96 17.60
MARS + CART 4.88 0.41 3.70 6.50 9.00 1.93 3.41 16.69
MARS + STR-Tree/LM 4.79 0.41 3.61 5.96 7.96 1.82 3.58 15.45

CART + STR-Tree/LM 5.26 0.44 3.86 6.79 9.86 2.44 3.71 21.63
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When compared to CART, the STR-Tree/LM model has a better performance in five out
of six cases. The only exception is the Auto Imports dataset, where CART performs slightly
better. The STR-Tree/LM model outperforms the NN alternative in three out of six cases
(CPUS, Car sales, Import). In the MPG dataset the STR-Tree/LM is worse than the NN
model, but the STR-Tree/CV has a lower median of the MSEs. Comparing with MARS, the
STR-Tree/LM model has a superior behavior in two out of six cases (Car sales and Import).
The STR-Tree/CV is better than the MARS in the MPG dataset. With respect to the Boston
dataset, the STR-Tree/CV, NN, and CART models have similar performance. When the
CPUS dataset is considered, the out-of-sample behavior of the STR-Tree/LM, NN, and
CART specifications are similar. Finally, the simple averaging of the STR-Tree/LM and
MARS models leads to the best alternatives in four out of six cases. The two exceptions
are the Abalone and the Import datasets. In the former MARS is the best model while in

the latter the combination of MARS and CART turns to be the best alternative.

8. CONCLUSIONS

In this paper, we proposed a model that combines regression trees and smooth transition
regressions. The model is called the Smooth Transition Regression Tree (STR-Tree). The
resulting model can be analyzed as a smooth transition regression with multiple regimes. A
detailed analysis of the asymptotic properties of the parameter estimates was presented and
a model building procedure, based on a sequence of Lagrange Multiplier (LM) tests, was
developed. An alternative specification strategy based on a 10-fold cross-validation was
discussed and a Monte Carlo experiment was carried out to evaluate the performance of the
proposed methodology. The STR-Tree model outperforms CART when the correct selec-
tion of the architecture of simulated trees is considered. Furthermore, the LM test seems to
be a promising alternative to 10-fold cross-validation. In addition, the proposed estimation
algorithm works properly in small samples. When put into proof with real datasets, the
STR-Tree model outperformed CART and was highly competitive against other nonlinear

alternatives.
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Appendix A. PROOFS

Appendix A.1. Proof of Theorem 1. Lemma 2 of Jennrich (1969) shows that the conditions (1)—

(3) in Theorem 1 are enough to guarantee the existence (and measurability) of the NLSE.
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Condition (3) in Theorem 1 is satisfied by Assumption 2. It is easy to proveHhad;; 1)
is continuous w.r.t the parameter vecipr This follows from the fact that, for each value ©f,
By (x4; 01) depends continuously dy, £ = 1,..., K. Similarly, H (x;, ) is continuous inx;,

and therefore measurable, for each fixed valug oThus (1) and (2) are satisfied.

Q.E.D

Appendix A.2. Proof of Theorem 2. Following Jennrich (1969) and Amemiya (198@),%3 «*
if the following conditions hold: (1) the parameter spaleés compact; (2)2(v) is continuous in

v € W forall x, € X and for ally; € R andQr () is a measurable function &f andy; for all
¥ € ¥; and 3)Qr(¥) ¥ Q) = E (y — H (x5 9))".

Condition (1) is satisfied by Assumption 3. Using the results of Theorem 2, Condition (2) is
satisfied. To check if Condition (3) is satisfied we will follow the steps in Amemiya (1983). From

(7) and (8) we get

Qr(w) = 5 S+ 2 (e ”) — Hixe )]z + Z (s 9) — H (3 9)]°
= A + Ay + As.

It is straightforward to see that, “3 o2 by the Strong Law of Large Numbers. Under Assump-
tion 3 and the continuity off (x;;1) on ¥, Theorem 4 in Jennrich (1969) implies that %3 0.

Now it is sufficient to show that the following condition is satisfied.
(3 % Zthl H(x¢; %) H (x¢;15) converges uniformly inp, ¥, € .
Assumption 1, and the fact thaf(x;; ) < 3, where = S5 |8k, 1| < oo, Condition
(3’) is satisfied; see Jennrich (1969). Finally we have to show the following condition is satisfied.
(3 Jim 4 370 [H(xi ) = H(xi;90)] # 01 o # 7.
The above condition is satisfied by Assumption 4, which guarantees that the STR-Tree model is
globally identified.

Q.E.D

Appendix A.3. Proof of Theorem 3. To prove the asymptotically normality of the NLSE we need

the following conditions in addition to the ones stated in the proof of Theorem 2.
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(4) The true parameter vectgr" is interior tow.

(5) The score vector satisfies

L 9Q1(¥") d \o o)),

B

3

where

w) = £[1 22001 92107

T O o’
(6) The Hessian
1 aQQT(d}*) p *
TW = D(¢7),

where
182QT<w*>}
T o'oY |

Assumption 3 guarantees that Condition (4) is satisfied. In order to check if Condition (5) is

D(¢*) = lim E[

T—o0

satisfied we have to analyze the behavior of

T

L 90r(¥7) _ 2 5~ 9HOaiyT)
VT oy VT&TT o

As, by Assumption 25, ~ N(0, o2), we have to show that

H

1 — OH (x¢;9p*) OH (x4; %)
> b '

exists and is non-singular; see Amemiya (1983). First, note that

OH (x¢;9")
o

. oy g OBi(x;0] . OBk(x;0%)\
— <B1(Xt;01)7 ceey BK(Xt;OK)v ﬁK—lléetl)v teey 621(—2 Kéeﬁ K)> :
1 1

By the definition of the STR-Tree moddBy (x;0;) < 1,k =1,..., K. FurthermoreBy(x;; 07.),

k=1,...,K,is the product of at most (depth of the STR-Tree model) logistic functionsxof

such that
6Bk (Xt; 0};)

d
89;9 < a(xt;al:) + ZCJ(XIHOZ) "rsjflt‘ ) k= 1> s 7K7 (Al)

j=1
wherea(x; 07,) < M < oo ande;(x¢;03) < 1,5 = 1,...,d. Then, Assumption 2, the unique
identification ofyy™ (Assumption 5), and (A.1) guarantee that Condition (5) is satisfied.

To verify Condition (6) we have to show that:
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(6’) The sum
72 8H Xt, 8H(xt,1,b)
o’
converges uniformly iny in an open neighborhood af*.
(6”) The sum

+ Z 82 Xt,
ooy
converges uniformly iny in an open neighborhood af*.

First, H(x;; ™) is twice continuously differentiable and following the same reasoning as before

9? By(xy; 0

d d
onom, = O 22 i (%

L k=1,....K, (A2

whereu(xy; 0;) < M' < oo andv;j(x¢;07) < 1,j =1,...,d. Then Condition (6”) is satisfied.

Q.ED

Appendix A.4. Proof of Theorem 4. This is a standard result in regression analysis and the proof

will be thus omitted.

Q.E.D
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