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Abstract

We examine experimental design issues arising with gene expression microarray tech-
nology. Microarray experiments have multiple sources of variation, and experimental
plans should ensure that effects of interest are not confounded with ancillary effects. A
commonly-used design is shown to violate this principle and to be generally inefficient.
We explore the connection between microarray designs and classical block design and
use a family of ANOVA models as a guide to choosing a design. We combine prin-
ciples of good design and A-optimality to give a general set of recommendations for
design with microarrays. These recommendations are illustrated in detail for one kind
of experimental objective, where we also give the results of a computer search for good
designs.
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1 Introduction

Geneticists are very interested in comparing the relative quantities of mRNA se-
quences in cell populations. Spotted cDNA microarrays (Brown and Botstein 1999)
are emerging as a powerful and cost-effective tool for quantifying gene transcription for
thousands of genes at a time. In the first step of the technique, samples of DNA clones
with known sequence content are spotted and immobilized onto a glass slide or other
substrate, the “microarray.” Next, pools of purified mRNA from cell populations under
study are reverse-transcribed into cDNA and labeled with one of two fluorescent dyes,
“red” and “green.” Two pools of differentially labeled cDNA are combined and applied
to a microarray. Strands of cDNA in the pool hybridize to complementary sequences on
the array and any unhybridized cDNA is washed off. Although hybridization efficiency
can vary from clone to clone, the efficiency for any particular clone should not be af-
fected by the type of the dye label. The “red” and “green” signals from a spot indicate
the relative abundance of the corresponding mRNA in the two cell populations.

Some of the first experiments with microarrays were time-series studies. DeRisi
et al. (1997) studied gene expression patterns in yeast during metabolic shift from
fermentation to respiration. Chu et al. (1998) conducted a similar study of yeast during
sporulation. The approach of this research was to cluster genes according to their
patterns of expression over timepoints of a biological process. The general idea is that
when a gene of unknown function ends up in a cluster of genes with known function,
one has a valuable clue as to the function of the unknown gene. Clustering ideas have
similarly been used to classify tissue samples according to their global patterns of gene
expression. For example, Perou et al. (1999) used gene expression patterns to classify
human breast cancers. Ross et al. (2000) studied gene expression variation in 60 cancer
cell lines and found associations between gene expression patterns as well as other
properties such as growth rate. Alizadeh et al. (2000) used this approach to identify
clinically relevant subtypes of B-cell lymphoma.

These experiments are just the beginning of the projected use of microarray tech-
nology. For example, Alon et al. (1999) used a related technology to make paired
comparisons of cancerous tissue samples versus normal surrounding tissues. Microar-
ray experiments will soon become multi-factorial in nature. For example, a researcher
may want to study tissue samples from male and female mice from different strain
backgrounds raised on different diets. It is easy to imagine a rich variety of experimen-
tal scenarios and substantial effort will be required to develop tools for higher-order
analyses of microarray data. Following the precedent of the leading experiments, there
have been many new ideas proposed about the best way to cluster genes (Ben-Dor et
al. 1999, Eisen et al. 1998, Heyer et al. 1999, Lazzeroni and Owen 2000, Tamayo et
al. 1999 to name a few). Yet we believe that some fundamental questions still lack
satisfactory answers.

The sources of variation in microarray data are yet to be completely understood. To
the extent that sources of variation are known, however, they should be considered in
the design and analysis of microarray experiments. The structure of microarray data,
the types of analyses that are possible, and the quality of the results are determined
by the experimental design. We believe there has been a lack of healthy skepticism
about the “right” way to design a microarray experiment, and that this is an area that
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deserves careful consideration and study.
Different cDNAs are known to incorporate dye with differential efficiency and hy-

bridize with their target spots on arrays at different rates. Further, with spotted arrays
it is not known how much DNA is immobilized on the array in any particular spot.
Therefore, as scientists have recognized, a single fluorescent intensity measurement from
a spot contains little useful information because of the unknown characteristics of the
spot and the unknown interpretation of a unit of fluorescence for any particular gene.
This realization undoubtedly motivated the two-dye system and the practice of calcu-
lating the ratio of the pair of readings from a spot. There is meaningful information in
the relative red and green intensities from a spot.

Now consider an experiment from the archives of statistics. If an agriculturalist
wants to measure the yields of strains of corn, s/he would realize that different plots of
land vary in soil fertility, amount of rainfall and sunlight, etc., so the only meaningful
direct yield comparisons are for strains grown on the same plot of land. These twenti-
eth century agricultural experiments share an important characteristic with twenty-first
century microarray experiments: the meaningful interpretation of the data is in terms
of relative comparisons. We believe there are valuable lessons to be learned from the
several generations of scientists and statisticians who studied experimental designs for
agriculture. In this work, we explore some of the connections between classical experi-
mental design and microarray technology.

The cell populations under study are the factor of interest in a microarray exper-
iment, but they are not the only sources of variation. The design of microarray ex-
periments — how the samples are paired onto arrays — should take this into account.
Section 2 identifies the experimental design factors involved with this technology. To
illustrate basic design ideas, a commonly used setup for microarray experiments is
studied in Section 3 and an alternative is proposed. We introduce a family of ANOVA
models, explore more examples, and give general design recommendations in Section
4. In Section 5 we consider general A-optimality and generalize classical results from
experimental design to microarrays. In Section 6 we discuss a search for good designs
for small (≤ 10) numbers of samples when one wants efficiency with respect to general
A-optimality but also requires certain model-robustness properties. Section 7 concludes
with a discussion of open questions for microarray experimental design.

2 Sources of Variation in Microarray Experi-

ments

The simplest microarray experiment looks for changes in gene expression across a
single factor of interest. This factor might be the timepoints of a biological process,
or different types of tissue, or drug treatments. We generically call the categories of
a factor of interest varieties. Fluorescent intensities clearly also depend on the cDNA
sequence spotted on the arrays. We call the spotted sequences “genes” whether they
are actually genes, ESTs, or DNA from another source. Further, microarray technology
makes use of two different dyes and an entire experiment uses multiple arrays. Therefore
we identify four basic experimental factors: varieties, genes, dyes, and arrays.
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With these four factors there are 24 = 16 possible experimental effects. Explicitly,
there is the mean or baseline effect, four factor main effects for arrays (A), dyes (D),
varieties (V ), and genes (G), six two-factor interactions, four three-factor interactions,
and one four-factor interaction. The first step in choosing a good design is to identify
which effects might possibly contribute to variation in the data.

Array main effects measure overall variation in fluorescent signal from array to array.
These effects arise if, for example, arrays are probed under inconsistent conditions that
increase or reduce hybridization efficiencies of labeled cDNA. Dye main effects measure
differences in the two dye fluorescent labels. For example, one dye may be consistently
“brighter” than the other. Gene main effects occur when certain genes emit a higher
or lower fluorescent signal overall, compared to other genes. These effects arise because
some genes have generally higher or lower levels of expression than others, and also
because of differential hybridization efficiency and differential labeling efficiency for
different sequences. Variety main effects occur when the varieties of the factor of interest
have higher or lower overall expression levels for the genes spotted on the arrays. It is
reasonable to suspect that all four of these main effects will contribute to variation in
microarray data.

For a particular tissue sample, red- and green-labeled cDNA is produced in separate
runs of the reverse-transcription process. Differences in the runs can produce pools of
cDNA of varying concentrations or quality. This results in experimental dye×variety
(DV ) interactions. Array×gene interactions (AG) occur because spots for a given gene
on the different arrays vary in the amount of cDNA available for hybridization. Thus
AG effects are the “spot” effects. By considering AG effects, we take the approach of
treating each spot as a unique entity. Alternative strategies might try to capture spot
characteristics by, for example, modeling spot density or properties of pin groups. Here
we wish to work in the most general setting and not to assume spot characteristics can
be successfully modeled. We attempt to make the most out of the two-dye system and
the fact that there are two readings per spot. Dye×gene effects (DG) arise if there are
differences in the dyes that are gene-specific. For example, if the overall efficiency of
incorporation of red dye is higher than that of green dye except for a small subset of
genes for which the reverse is true, this would be captured in the DG effects. Although
we did not anticipate such effects, we have seen one extreme case in practice. In this
case, spots for a particular sequence on two arrays were consistently green despite the
fact that we had reversed the labeling on two identical cDNA samples. In other words,
we applied sample 1 labeled red and sample 2 labeled green to one array and sample 1
labeled green and sample 2 labeled red to a second array, and the spots for a particular
sequence emitted higher fluorescent intensity for the green dye on both arrays. At this
time we have no explanation for this phenomenon. However, had we run only one array
the gene would have appeared as an interesting and significant result rather than an
experimental anomaly.

Variety×gene interactions (V G) reflect differences in expression for particular vari-
ety and gene combinations that are not explained by the average effects of those varieties
and genes. These are the effects of interest. Identifying genes whose expression changes
in different varieties means identifying non-zero differences in V G effects.

Of the remaining interactions, three do not involveG: array×dye (AD), array×variety
(AV ), and array×dye×variety (ADV ). It is difficult to relate any of these to the pro-
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cess underlying microarrays and to suppose a reason why such interactions would come
into play. On the other hand, let us assume we account for all factor main effects.
Then since AD, AV , and ADV are not gene-specific, including or excluding any of
them in the analysis of microarray data does not change the estimates of the effects of
interest (V G), so the question is academic. The rest of the interactions are three- and
four-way effects involving G: array×dye×gene (ADG), array×variety×gene (AV G),
dye×variety×gene (AV G), and array×dye×variety×gene (ADV G). The presence of
such interactions would mean there is gene-specific variation attributable to a partic-
ular array and dye, a particular array and variety, a particular dye and variety, or a
particular array, dye, and variety combination. Again, these high-order interactions are
difficult to relate to the physical and chemical processes that make up this technology.
Therefore, in the remainder of this paper we concentrate on effects with understandable
interpretations. A secondary justification for this is that, ultimately, the value of this
technology will be judged by whether reproducible results can be obtained. At a fun-
damental level, it is not clear that results can be reproduced if every reading depends
on high-order interactions between genes and other factors in the experiment.

3 Microarray Designs

Each microarray in an experiment is probed with two differently labeled cDNA
samples. Informally, we say each array “contains” two samples. Arrays are the experi-
mental blocks with block size two. When there are more than two varieties of the factor
of interest, not every variety can appear on every array. Therefore the experimental
design is an incomplete block design. In this paper we primarily consider binary designs,
meaning a variety appears 0 or 1 times on any array.

We use directed graphs to describe designs. Nodes represent the varieties and edges
represent arrays. The direction of edges gives information about dyes. We arbitrarily
but permanently assign one dye to the tail of directed edges and the other dye to
the head. An edge from variety A to variety B represents an array containing variety
A labeled with the “tail” dye and variety B labeled with the “head” dye. Graphical
design illustrations have two advantages. First, they quickly and clearly communicate
the setup of a design. Second, they allow one to easily evaluate certain design properties.
As a bonus, they sometimes suggest design names.

We open our discussion of design for microarrays by looking at a design commonly
used in practice. We then propose an alternative design that uses the same number of
arrays. Comparing these designs illustrates some of the issues that arise with microarray
experiments.

The “Reference” Design. Figure 1(a) shows a commonly-used design for study-
ing v varieties of a factor of interest. We have dubbed this the “reference” design
because an additional (v+ 1)st variety is introduced to serve as a reference. Practition-
ers of this strategy use one dye to label the reference variety and the other dye to label
the varieties of interest. This means that variety effects are completely confounded with
dye effects. Consequently, the effects of interest, variety×gene (V G), are completely
confounded with dye×gene (DG) effects. In order to use this design, one must assume
there are no gene-specific dye effects. Note that the most information is collected on
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the reference variety, although this is not a variety of interest.
The reference design for v varieties of interest and n genes produces 2vn observa-

tions. The mean and the array, variety, and gene main effects account for 2v + (n− 1)
degrees of freedom. The effects of interest, variety×gene (V G), account for v(n − 1)
degrees of freedom. If array×gene (AG) effects must be accounted for, they comprise
the final (v − 1)(n− 1) degrees of freedom. No degrees of freedom remain to estimate
error.

It is easy to see how a scientist would arrive at the reference design. Biologists
recognize there is variation in the amount of cDNA from spot to spot and so fluorescent
intensities are only meaningful in a relative sense. This variation is “controlled” by
always having the same reference in each spot. Using classical experimental design
ideas, however, it is possible to obtain better results with the same number of arrays.

The “Loop” Design. As an alternative to the reference design, we propose the
loop design, shown in Figure 1(b) for v = 5 varieties. Using the same number of
arrays as the reference design, the loop collects twice as much data on the varieties
of interest. Further, notice that varieties are balanced with respect to dyes because
each variety is labeled once with the red and green dyes. This balance means that dye
effects are unconfounded with variety effects, so variety×gene effects are unconfounded
with dye×gene effects. Thus any anomalous behavior of genes with respect to dyes, as
describe in Section 2, will not bias the estimates of the effects of interest.

If one estimates all factor main effects and, in addition, the V G and AG interactions,
then n − 1 degrees of freedom remain. These degrees of freedom provide information
to estimate error variation. Therefore, using this design provides a basis for statistical
inference. This puts the loop design in an arena where the reference design cannot
compete.

A practical drawback of the loop design is that each sample must be labeled with
both the red and green dyes, effectively doubling the number of labeling reactions.
Because microarray technology is new and not yet fully understood, our opinion is that
this extra effort is worthwhile. Balancing varieties with respect to dyes produces data
in which dye×gene effects can be detected. If one is unable to complete the extra
work in dye-labeling, then one must be willing to accept the assumption that there are
no gene-specific dye effects. In that case, however, it is still possible to get the other
benefits of the loop design. Figure 1(c) shows a loop for six varieties in which there
is only one dye-labeling for each variety. When the number of varieties is even this
strategy actually has one fewer labeling than the reference design because it does away
with the reference sample. While this design does not have the orthogonality of variety
and dye effects, it retains the other advantages of the loop design, namely collecting
more data on the varieties of interest and providing degrees of freedom for estimating
error.

4 Evaluating Microarray Designs

Models and Assumptions. We assume that there exists a transformation of
microarray data on which the effects are additive, such as the log scale (Kerr et al.
2000). Using this scale, let yijkg be the fluorescent intensity from array i and dye
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j representing variety k and gene g. We further assume that the same set of genes is
spotted on each array in an experiment. This assumption means that a full replication of
genes is present for every array, dye, and variety combination in any design. Therefore,
gene effects are orthogonal to all effects of these factors. This effectively divides effects
into two groups: “global” effects, which only involve A,D, and V , and gene-specific
effects, which involve G. Because G is orthogonal to all of A,D, and V , gene-specific
effects are orthogonal to global effects. Note the effects of interest, variety×gene, are
gene-specific.

An ANOVA model can thus be considered as having global and gene-specific com-
ponents. Our models use just the A, D, and V main effects in the global component.
One might also want to consider dye×variety interactions to account for variation in
the dye labeling reaction. However, these are generally confounded with the main ef-
fects of A,D, V and so are indirectly accounted for. This is a case when confounding is
advantageous. Because of confounding, we account for effects that are not of interest
without using additional degrees of freedom (Cochran and Cox 1992).

A simple ANOVA model includes only the factor main effects and the effects of
interest, variety×gene:

yijkg = µ+Ai +Dj + Vk +Gg + (V G)kg + εijkg. (4.1)

A more plausible model accounts for spot-to-spot variation by including array×gene
effects:

yijkg = µ+Ai +Dj + Vk +Gg + (V G)kg + (AG)ig + εijkg. (4.2)

Another possibility is to further account for genes interacting with dyes:

yijkg = µ+Ai +Dj + Vk +Gg + (V G)kg + (AG)ig + (DG)jg + εijkg. (4.3)

We assume that there is independent, additive error εijkg ∼ F , where F is a distribu-
tion with mean 0 and variance σ2. However, it is an open question whether some genes
are inherently more “noisy” than others. A more general assumption is εijkg ∼ Fg,
with Fg having mean 0 and variance σ2

g . With the more general assumption, weighted
least-squares should produce lower-variance estimates. With gene-based heteroscedas-
ticity, questions arise about choosing the set of genes to study. However, for our design
problem — arranging varieties onto arrays — not much changes. The quantities of
interest are comparisons of varieties for fixed genes, e.g. (V G)1g − (V G)2g, and for any
given gene the relative merits of different designs does not depend on σ2

g . Therefore,
for simplicity we continue with the assumption of a common variance σ2, but note this
generalization.

Finally, models (4.1), (4.2), and (4.3) are set up for the situation in which each
gene is spotted only once per array. Multiple spotting is clearly an option, so that a
data value is yijkgs for the sth replicate of gene g from array i using dye j represent-
ing variety k. Statisticians generally advocate replication whenever possible, and we
believe microarrays should be no exception. When genes are replicated, the (AG)ig
effects in (4.2) and (4.3) should be replaced with spot effects (AG)igs. As one would
expect, estimation precision increases with more data. If genes are spotted m times
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per array, the variance of estimates such as ̂(V G)1g − ̂(V G)2g for gene-by-gene variety
comparisons decreases by a factor of 1/m. Thus for a given level of replication, the
relative efficiency of designs is the same. Therefore, we proceed with the case of no
replication for simplicity.

In order to fit models such as (4.1), (4.2), and (4.3) a design should be connected,
i.e. the graphical representation of the design is a connected graph. This is a necessary
condition for the A and V effects, and the AG and V G effects, to be jointly estimable.

Contrasts of Interest. Microarrays are useful for studying the relative expres-
sion of genes across samples. The effects of interest are the variety×gene interactions.
Specifically, the contrasts of interest are (V G)k1g − (V G)k2g for fixed genes g and pairs
of varieties k1 6= k2. The interesting variety pairs will depend on the objectives of the
experiment.

Consider model (4.1) and a design in which variety k appears on rk arrays. Under
the assumptions that the same set of genes is spotted on every array, V G effects are
orthogonal to all other effects in (4.1). The least-squares estimate of (V G)k1g−(V G)k2g

is then y··k1g − y··k2g − (y··k1· − y··k2·). When there are n genes in the experiment, we
have

var (y··k1g − y··k2g − (y··k1· − y··k2·)) =
n− 1
n

(
1
rk1

+
1
rk2

)
σ2.

The variance is solely a function of the rk, n, and σ2; it is unimportant how varieties
are paired onto arrays.

In our analyses of microarray data we have found this model to be inadequate
because of spot-to-spot variation on arrays. Models (4.2) and (4.3) account for this
with AG effects. For these models, the functional form of the least-squares estimates
(V̂ G)k1g − (V̂ G)k2g depends explicitly on the design because V G effects are partially
confounded with AG effects. Estimators for model (4.2) are given in Appendix A for
the reference design and Appendix B for the loop design. The partial confounding of
AG and V G is an unavoidable consequence of the fact that when there are more than
two varieties, not every variety can appear on every array.

By the nature of the technology, arrays are automatically balanced with respect
to dyes, so dye×gene effects are orthogonal to array×gene (AG) effects. Whether
variety×gene (V G) effects are orthogonal to dye×gene effects depends on the design.
A design balances varieties with respect to dyes when each variety is labeled with the
red and green dyes equally often. Clearly, a necessary condition for balance is that every
variety appears in the design an even number of times. The graphical representation
of such designs have the property that the degree of every node is even. We call such
designs even. Evenness is also a sufficient condition for balance to be possible. This
fact follows from Euler’s theorem that every even graph has a circuit that traverses
every edge exactly once. By directing the edges in an even graph as an Eulerian circuit,
every node ends up with the same number of “heads” and “tails” and thus varieties
are balanced with respect to dyes. Properly directed even designs prevent confounding
between V G and DG effects. If V G and DG effects are orthogonal, the problem of
choosing a good design considering model (4.3) reduces to the problem considering
model (4.2).
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Example: Relative Efficiency of Loop and Reference Designs. The loop
and reference designs use the same number of arrays to compare v varieties of a factor
of interest (we assume the reference variety in the reference design is not a variety of
interest). We first note that the Dj terms must be removed from any model for reference
design data because this design completely confounds dye effects with variety effects.
If model (4.1) suffices, then the variance of each pairwise contrast (V̂ G)k1g − (V̂ G)k2g,
where k1 and k2 are varieties of interest, is 2n−1

n σ2 for the reference design and n−1
n σ2

for the loop design. In other words, the standard deviation for a contrast of interest is√
2 larger for the reference design.

If the larger model (4.2) is used, then the variance of each (V̂ G)k1g− (V̂ G)k2g using
the reference design is 4n−1

n σ2. For the loop design the variance depends on v and the
relative positions of k1 and k2 in the loop. Comparisons for varieties nearby in the loop
are estimated more precisely than varieties that are far apart. One way to compare the
designs is to average the variance over all pairs of varieties for the loop design. Figure 2
gives the results. We see that for v < 10 the loop design does better than the reference
design. Intuitively, loops are inefficient for large v because some pairs of varieties are
too far apart.

Finally, we note that one cannot fit model (4.3) to the reference design because DG
effects are completely confounded with V G effects. To use this design one is forced to
assume there are no dye×gene interactions. If they exist, they cannot be accounted for
and V G estimates will be biased.

Example: Multiple Treatments versus a Control. Clearly it is not always the
case that all variety comparisons are equally interesting — it depends on the experimen-
tal objectives. In experiments with a treatment/control structure it will be interesting
to compare treatment varieties with the control but not so important to have precise
comparisons between the treatments. As a simple example, consider a study in which
there is a control and three treatments. One idea is to use a design as in Figure 3. This
an example of a class of designs defined by Bechhofer and Tamhane (1981) called bal-
anced test-treatment incomplete block designs. In some cases these designs are known to
be optimal for making treatment-control comparisons (Hedayat and Majumdar 1984).
These results apply to microarrays when we consider model (4.2) because spots are in-
complete blocks of size two (this connection will be described in more detail in Section
5). The design in Figure 3 has the additional property that varieties are balanced with
respect to dyes, so V G effects are orthogonal to DG effects. This means the design is
equally efficient for model (4.3) as for model (4.2).

Example: Time-Course Experiments. Some of the first experiments that
demonstrated the power and potential of microarrays were time-course gene expression
studies (DeRisi et al. 1997; Chu et al. 1998). A common setup for these experiments
is similar to the reference design. Every time point is compared with time 0, including
an array that contains only time 0 labeled with each dye. Figure 1(c) illustrates this
design, which we call the augmented reference design. The additional “self compari-
son” array in the augmented reference design means that DG effects are only partially
confounded with V G effects, so it is possible to estimate model (4.3). Time-course
studies have proven to be an important and useful class of experiments, and we belive
the design of these experiments deserves further consideration.

A reference or augmented reference design seems like a natural setup when there is
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a treatment/control structure to the varieties, but since this is not the case with time
series we question whether alternative designs might be more appropriate. After all,
these experiments seek expression profiles for genes over time, so comparisons between
every time and time 0 that are not of any special interest. One alternative is to use a loop
design and, for timepoints 0, 1, . . . , v, to make the v comparisons of every timepoint
to the previous rather than to time 0. This set of contrasts between adjacent time
points should contain as much information about the expression pattern of a gene over
time, but these contrasts can be estimated more precisely. Figure 4 shows the variance
of the (V G)kg − (V G)k−1,g estimates from the loop design divided by the variance of
the (V G)kg − (V G)0g estimates from the augmented reference design. We see that, for
each of models (4.1), (4.2), and (4.3), the estimates from the loop design have smaller
variance. The inefficiency of the augmented reference design is most dramatic for (4.3)
because this model accounts for DG effects. The partial confounding between dye×gene
and variety×gene effects is almost complete with the augmented reference design, so
correcting for DG effects dramatically decreases the efficiency of the design. We do not
claim the loop design is the best solution for time-course experiments. Rather, we only
point out that alternatives exist and deserve consideration.

Recommendations. We advocate choosing designs that are robust, in that they
result in precise estimates of the quantities of interest regardless of the final model. Our
general recommendations for microarray designs are:

1. Choose an even design so that varieties can be balanced with respect to dyes. This
ensures that the effects of interest are not biased by genes interacting with dyes.
This is especially important when genes are not replicated on arrays, because
there may not be degrees of freedom to explicitly account for dye×gene effects.

2. Among even designs, look for a design that is efficient for comparing gene expres-
sion across varieties while accounting for spot-to-spot variation. Section 5 gives
some details about designs that have this property when all pairs of elementary
contrasts are of equal interest. The basic principle is intuitive: varieties to be
compared should be “close together” in the design.

3. Most importantly, keep in mind the fundamental principles of good design: bal-
ance and replication. Balance ensures that the effects of interest are not con-
founded with other sources of variation. Replication improves the precision of
estimates and provides degrees of freedom for error estimation (Fisher 1951).

5 General A-Optimality

To provide more detail about evaluating designs for one kind of experimental objec-
tive, in this section we suppose comparisons between all pairs of varieties are of equal
interest. A reasonable criterion for evaluating designs in this case is A-optimality. This
criterion favors designs that minimize

1(
v
2

) ∑
k1 6=k2

var
(

(V̂ G)k1g − (V̂ G)k2g

)
, (5.1)

the average variance of a contrast of interest.
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Recall that with model (4.1), the important parameters of the design are ri, . . . , rk,
the replication of varieties in the experiment. To minimize (5.1), one should replicate
varieties to minimize ∑

k1 6=k2

(
1
rk1

+
1
rk2

)
∝
∑
k

1
rk
. (5.2)

If b arrays are allotted to an experiment to study v varieties, (5.2) is minimized by
choosing rk = 2b/v, i.e. equal sampling of all varieties.

As mentioned, however, we have never found model (4.1) to be adequate because
it does not contain AG effects and thus does not account for spot-to-spot variation.
Including AG terms, as in model (4.2), puts us in the context of incomplete block design.
In classical block design, the expected yield of an observation is yik = µ+Bi+Vk, where
Bi is the effect of block i and Vk is the effect of variety k. A well-known result gives
an alternate method to obtain the sum of the variances of elementary variety contrasts
V̂k1 − V̂k2 (see Raghavarao 1971). For v varieties appearing r1, r2, . . . , rv times in a
design with b blocks, let N be the v × b incidence matrix of the design, where nki is
the number of times the kth variety appears in the ith block. The v × v matrix NN t is
known at the concurrence matrix of the design because its k1, k2 off-diagonal entries are
the number of times varieties k1 6= k2 occur together in the same block. The so-called
C-matrix, sometimes called the information matrix of the design, is

C = diag[r1, r2, . . . , rv]−
1
t
NN ′, (5.3)

where t is the block size. The matrix C is always singular. Let 0 = µ1 ≤ µ2 ≤ . . . ≤ µv
be the eigenvalues of C. The variance of V̂k1 − V̂k2 , averaged over all pairs of varieties
k1 6= k2, is 2σ2

v−1

∑v
i=2

1
µi

. This average variance is finite if and only if µ2 > 0, which is
true if and only if the design is connected.

This result applies to variety effects partially confounded with block effects. We
are interested in variety×gene interactions when they are partially confounded with
array×gene interactions. Since variety×gene interactions are orthogonal to all other
effects in (4.2) aside from AG effects, the result generalizes directly (see Appendix
C). Forming the C-matrix in exactly the same way and getting its eigenvalues µ, the
A-optimality criterion (5.1) becomes n−1

n
2σ2

v−1

∑v
i=2

1
µi

.

6 A Search for Good Designs

The most problematic aspect of our recommendations is of course item 2. This
recommendation says to choose a good incomplete block design for block size two.
This is a non-trivial problem that has been studied extensively. In this section we give
some efficient incomplete block designs when all pairwise variety differences are of equal
interest.

The literature on incomplete block designs generally operates under the strategy
of defining families of designs and attempting to show that designs in the family are
optimal, or at least highly efficient. This is an important direction of research, but
it is of limited use for the practical purposes of designing microarray experiments.
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For example, one of the strongest results is that a strongly regular graph design with
singular concurrence matrix is A-optimal (Cheng and Bailey 1991). A strongly regular
graph design (Bose 1963) is both a regular graph design (John and Mitchell 1977) and
a partially balanced incomplete block design with two-associate classes (PBIB(2); Bose
and Nair 1939). In Clatworthy’s compilation of PBIB(2) designs (1973), for block size
two this result covers only the semi-regular group-divisible designs for v = 2m varieties
and v2/4 blocks (corresponding to bipartite graphs with two groups of vertices of size
m). These designs were already shown to be optimal by Cheng (1978). Moreover, these
designs are even only if m is even, i.e. the number of varieties v is a multiple of 4.

Experimenters approach the design question from a different direction. They are
less interested in knowing families of optimal designs than in learning the answer to a
practical question: for the number of arrays budgeted for an experiment, which design
should I use? Along the same lines, experimenters with some flexibility in the number
of arrays to allot might ask how much could be gained by adding a few more arrays.

Every binary design for v varieties with b ≤
(
v
2

)
blocks of size two corresponds to

a simple graph on v nodes. We can take advantage of this fact to do a search on all
possible designs when v is not too large. We used the computer program “makeg”
(McKay 1991) to generate full sets of non-isomorphic connected designs. For v ≤ 10 we
searched over the set of all possible connected designs and recorded A-optimal designs.
Because we have special interest in even designs, we also recorded the best even designs
in our search. The result is definitive lists of optimal designs for v ≤ 10 and v ≤ b ≤

(
v
2

)
.

Figure 3 contains plots of the A-optimality criterion (5.1) (ignoring the factor (n−
1)σ2/n) for the best designs and the best even designs for v = 6, . . . , 10 and v ≤ b ≤

(
v
2

)
.

The reference sample strategy uses v arrays and always yields an average variance of
4 regardless of v. This is noted with an ‘R’ on the plots. The only even design for v
varieties and v arrays is the loop design, so trivially the loop is the best even design of
its size. The loop is A-optimal when v ≤ 8.

We note that there is a relatively small improvement in precision for using v + 1
arrays over v arrays, but a fairly substantial improvement in using v + 2 arrays over
v+1 arrays. From a practical point of view, we would encourage investigators planning
to use v arrays for v varieties to budget the extra two arrays. This is particularly
true for large v because loops become very inefficient and the relative cost of extra
arrays is small. Figure 4 shows the best even designs for studying v varieties with
v + 2 arrays. Experimenters able to use more arrays could use Figure 3 to gauge
what a sensible number might be. A catalogue of the resulting designs is given at
www.jax.org/research/churchill.

There are 11,716,571 non-isomorphic connected graphs on 10 nodes. The corre-
sponding counts for eleven and twelve nodes are 1,006,700,565 and 164,059,830,476.
Obviously a naive search of all possible designs becomes computationally infeasible for
larger v. Hopefully, families of efficient designs will continue to be discovered. An-
other line of research could work out algorithms for constructing designs. Bagchi and
Cheng (1993) give a method for constructing efficient, although not necessarily opti-
mal, designs with block size two for any v by combining smaller, efficient designs. Their
method produces designs in which each variety appears r times, 1

2v < r < v − 1. Be-
cause microarrays are expensive, algorithms that produce smaller designs would be of
great interest.

12



In the meantime, for larger v we can only recommend the sensible heuristic of
mimicking the patterns of optimal designs for smaller values of v. When the number
of arrays is not much greater than v, these patterns are easy to see in the graphical
representation of designs. One example is the designs with v + 2 arrays for v varieties
above. Another example is designs using 2v arrays for v varieties, shown in Figure 5.
These designs can be described as “interwoven” loops. Notice that for v = 7, 9 the A-
optimal design is not a cyclic design (John et al. 1972). It is reasonable to suspect that
designs of this type are A-optimal for larger v. In general, when constructing designs
of any size one should keep in mind the basic principles of good design: balance among
the factors, approximately equal sampling of varieties, and minimizing the distance
between pairs of varieties.

7 Discussion

We have had success studying microarray data with models such as (4.1), (4.2), and
(4.3) (Kerr et al. 2000), so we have used linear models as a starting point for studying
microarray experimental design. A simple linear model seems to be an obvious place to
start for data that depends on many multi-level factors. We stress, however, this is the
beginning and not the end of the story. Other modeling assumptions are similarly open
to scrutiny. The terms we include in our models and the design factors we consider
are certainly debatable. Further, we based our results on the simple assumption of
independent, additive error with constant variance σ2. Again, we have found this to be
a reasonable assumption in our experience with data, but do not consider the question
to be settled. As discussed in Section 4, a more general assumption of a gene-dependent
σ2
g variance can be incorporated into our framework.

In our exploration of design, we have treated all effects as fixed. We made this
assumption for simplicity and convenience and not out of a conviction that it is the
correct assumption. Indeed, we are inclined to agree that it may be more appropriate to
model certain factors as random effects (Robinson 1991). The consequences of random-
or mixed-models for experimental design are not entirely clear. Many of our results
generalize the developed theory for incomplete block design, but the vast majority of
the literature on incomplete block design assumes fixed effects models. Some work has
been done to study incomplete block design when block effects are taken to be random
effects. (In our context, this corresponds to “spot” or AG effects taken to be random.)
This research has confirmed the optimality of some families of designs under mixed
models (Bhattacharya 1984, Mukhopadhyay 1984) when one is restricted to a general
family of designs such as binary designs. Such results confirm our intuition that design
efficiency should not depend heavily on whether effects are fixed or random, but further
research is needed.

One of our main purposes in this paper was to connect microarray experimental
design with classical results. However, we realize the usefulness of classical results can
only extend so far. Higher-order analytical tools, such as cluster analysis, are often
applied to gene expression data, such as cluster analysis. Several groups have studied
different clustering algorithms (Ben-Dor et al. 1999, Eisen et al. 1998, Heyer et al.
1999, Lazzeroni and Owen 2000, Tamayo et al. 1999), seeking methods best-suited to
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microarray data. We believe a question of equal importance is how to assess one’s
confidence in the output of any clustering algorithm, given that estimates of relative
expression are just that — estimates. Clearly more reliable clusters should follow from
more precise estimates, and the foundation of efficient estimation is design. We would
like to see an exploration of design issues for experiments where clustering or other
higher-order analyses are planned.

Finally, we have used the A-optimality criterion to evaluate designs in this paper,
but also consider other design properties, such as balance. Balance and replication are
general principles of good design, and should make the designs we recommend robust
to our modeling assumptions. In an experiment where all variety pairs are equally
interesting to compare, A-optimal even designs are efficient and ensure these robust
properties. For experiments in which the varieties have a design structure of their
own, it will be important to choose an arrangement of samples on arrays that does not
confound the comparisons of interest with other design factors and yields good precision
for the estimates of interest. Exactly how such experiments should be designed remains
an area of open investigation. We look forward to many new and creative developments
in this area of statistical design.
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A Least-Squares Estimators for Reference De-

sign

Denote the reference variety in the reference design as k = 0. The varieties of
interest are k = 1, . . . , v. For v varieties of interest there are v arrays in the design.
The design can be summarized as {(k, 0, g), (k, k, g) : k = 1, . . . , v; g = 1, . . . , n}.

There can be no dye effects in the model when working with the reference design
because “dye” is completely confounded with “variety.” The revised model (4.2) is

yikg = µ+Ai + Vk +Gg + (AG)ig + (V G)kg,

where the Vk nominally measure variety effects but actually measure a combination of
variety and dye effects. A convenient set of linear constraints is

∑
Ai = vV0 + V1 +

· · ·+ Vnk =
∑
Gg =

∑
g(AG)ig =

∑
g(V G)kg = v(V G)0g + (V G)1g + . . .+ (V G)vg = 0.

With these constraints the least-squares estimators of the variety×gene effects are:

̂(V G)kg = 2(ykkg − ykk· − yk·g + yk··) + y·0g − y·0· − y··g + y

B Least-Squares Estimators for Loop Design

The loop designs uses v arrays to study v varieties of interest. The varieties of
interest are k = 1, . . . , v and the arrays are i = 1, . . . , v. Without loss of generality,
say array i contains variety i and i+ 1 for i = 1, . . . , v − 1 and array v holds varieties
v and 1. In other words, variety 1 is on arrays v and 1 and variety k is on arrays k− 1
and k for k = 2, . . . , v. To simplfy things, all subscripting with i and k is understood
to be modulo v.

To estimate (4.2) we use the constraints
∑
Ai =

∑
Dj =

∑
Vk =

∑
Gg =∑

g(AG)ig =
∑

g(V G)kg =
∑

i(AG)ig =
∑

k(V G)kg = 0. Call νk = νkg = y··kg − y··k· −
y···g + y···· and αi = αig = yi··g − yi··· − y···g + y····. Call γk = γkg = νk − 1

2(αk−1 + αk).
The functional form for the estimator for (V G)kg depends on v and its parity.

Define sequences al = l(l + 1) and bl = l2. Let m = [v/2]. If v is odd, v
2
̂(V G)kg =

amγk+
∑m−1

i=1 am−i(γk−i+γk+i). If v is even, v2
̂(V G)kg = bmγk+

∑m−1
i=1 bm−i(γk−i+γk+i).

For example, if v = 7 then 7
2
̂(V G)kg = (2, 6, 12, 6, 2)·(γk−2, γk−1, γk, γk+1, γk+2). If v = 8

then 8
2
̂(V G)kg = (1, 4, 9, 16, 9, 4, 1) · (γk−3, γk−2, γk−1, γk, γk+1, γk+2, γk+3).

C Average Variance of Pairwise Variety×Gene

Effect Contrasts

In classical block design, the reduced normal equations for estimating the variety
effects τ = (V1, . . . , Vv)′ are given by Cτ = Q, where C is the information matrix of the
design as at (5.3) with eigenvalues 0 = µ1 ≤ µ2 ≤ . . . ≤ µv, Q is the vector of “variety
totals adjusted for blocks,” and var(Q) = σ2C. Fitting model (4.2) using the linear
constraints

∑
Ai =

∑
Dj =

∑
rkVk =

∑
Gg =

∑
g(V G)kg =

∑
k rk(V G)kg = 0, let
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τ∗ = τ∗g = ((V G)1g, . . . , (V G)vg)′. Let Q∗k = Q∗kg = rk(y··kg − y··k·)−
∑

i3k(yi··g − yi···),
where rk is the number of times variety k appears in the design and i 3 k means the
arrays i containing variety k. The Q∗k can be considered “variety×gene totals adjusted
for array×gene totals” and we have Cτ∗ = Q∗ and var(Q∗) = σ2 n−1

n C, where n is
the number of genes. Thus the proof that the average variance of a pairwise contrast
τ∗k1
− τ∗k2

is n−1
n

2σ2

v−1

∑v
i=2

1
µi

follows precisely as the proof of the classical result that the

average variance of a pairwise contrast τk1− τk2 is 2σ2

v−1

∑v
i=2

1
µi

(see Raghavarao, 1971).

16



Literature Cited

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick,
J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T.,
Hudson, J., Lu, L., Lewish, D.B., Tibshirani, R., Sherlock, G., Chan, W.C.,
Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wil-
son, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., and Staudt, L.M.
(2000). Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene
Expression Profiling. Nature 403 503–511.

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Levine,
A.J. (1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis
of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proceed-
ings of the National Academy of Sciences 96 6745–6750.

Bagchi, S. and Cheng, C.-S. (1993). Some Optimal Designs of Block Size Two. Journal
of Statistical Planning and Inference 37 245–253.

Ben-Dor, A. Shamir, R., and Yakhini, Z. (1999). Clustering Gene Expression Patterns.
Journal of Computational Biology 6 281–297.

Bechhofer, R.E. and Tamhane, A.C. (1981). Incomplete Block Designs for Comparing
Treatments With a Control: General Theory. Technometrics 23 45–57.

Bhattacharya, C.G., and Shah, K.R. (1984). On the Optimality of Block Designs
Under a Mixed Effects Model. Utilitas Mathematica 26 339-345.

Bose, R.C. (1963). Strongly Regular Graphs, Partial Geometries and Partially Bal-
anced Designs. Pacific Journal of Mathematics 13 389–419.

Bose, R.C. and Nair, K.R. (1939). Partially Balanced Incomplete Block Designs.
Sankhya 4 337–372.

Brown, P.O. and Botstein, D. (1999). Exploring the New World of the Genome with
DNA Microarrays. Nature Genetics 21(1 Suppl) 33–37.

Cheng, C.-S. (1978). Optimality of Certain Asymmetrical Experimental Designs. An-
nals of Statistics 6 1239–1261.

Cheng, C.-S. and Bailey, R.A. (1991). Optimality of Some Two-Associate-Class Par-
tially Balanced Incomplete-Block Designs. Annals of Statistics 19 1667–1671.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Bostein, D., Brown, P.O., and Her-
shkowitz, I. (1998). The Transcriptional Program of Sporulation in Budding
Yeast. Science 282 699–705.

Clatworthy, W.H. (1973). Tables of Two-Associate-Class partially Balanced Designs.
Washington D.C.: National Bureau of Standards Applied Mathematics Series 63,
National Bureau of Standards.

Cochran, W.G. and Cox, G.M. (1992). Experimental Designs. New York: Wiley.

DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the Metabolic and Genetic
Control of Gene Expression on a Genomic Scale. Science 278 680–686.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Proceedings of
the National Academy of Sciences 25 14863–14868.

17



Fisher, R.A. (1951). The Design of Experiments, 6th edition. Oliver and Boyd,
London.

Hedayat, A.S., and Majumdar, D. (1984). A-Optimal Incomplete Block Designs for
Control-Test Treatment Comparisons. Technometrics 26 363–370.

Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999). Exploring Expression Data: Iden-
tification and Analysis of Coexpressed Genes. Genome Research 9 1106–1115.

John, J.A. and Mitchell, T.J. (1977). Optimal Incomplete Block Designs. Journal of
the Royal Statistical Society, Series B 39 39–43.

John, J.A., Wolock, F.W., and David, H.A. (1972). Cyclic Designs. Washington
D.C.: National Bureau of Standards Applied Math Series 62, National Bureau of
Standards.

Kerr, M.K., Martin, M., and Churchill, G.A. (2000). Analysis of Variance for Gene
Expression Microarray Data. Journal of Computational Biology, to appear.

Lazzeroni, L. and Owen, A. (2000). Plaid Models for Gene Expression Data. Technical
Report 211, Department of Biostatistics, Stanford University.

Mukhopadhyay, S. (1984). Ψf Optimality of MBGDD of Type I Under Mixed Effects
Model Within the Restricted Class of Binary Designs. Sankhya: The Indian
Journal of Statistics 46, Series B 113-117.

McKay, B. (1991). “Nauty” and “makeg” C-programs available at
http://cs.anu.edu.au/people/bdm/nauty.

Perou, C.M., Jeffrey, S.S., Van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T.,
Pergamenschikov, A., Williams, C.F, Zhu, S.X., Lee, J.C.F., Lashkari, D., Shalon,
D., Brown, P.O., and Botstein, D. (1999). Distinctive Gene Expression Patterns
in Human Mammary Epithelial Cells and Breast Cancers. Proceedings of the
National Academy of Sciences 16 9212–9217.

Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Ex-
periments. New York: Wiley.

Robinson, G.K. (1991). That BLUP is a good thing: The estimation of random effects.
Statistical Science 6, 15-51.

Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V.,
Jeffrey, S.S., Van deRijn, M., Waltham, M., Pergamenschikov, A., Lee, J.C.F.,
Lashkari, D., Shalon, D., Myers, T.G., Weinstein, J.N., Botstein, D., Brown P.
(2000). Systematic variation in gene expression patterns in human cancer cell
lines. Nature Genetics 24, 227-235.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Smitrovsky, E., Lander,
E., and Golub, T.R. (1999). Interpreting Patterns of Gene Expression with Self-
Organizing Maps: Methods and Application to Hematopoietic Differentiation.
Proceedings of the National Academy of Sciences 96 2907–2912.

18



Figure Captions

Figure 1: (a) Reference Design; (b) Loop Design for Five Varieties;
(c) Augmented Reference Design; (d) Modified Loop Design for Six
Varieties.

Figure 2: Relative Efficiency of Reference and Loop Designs. The aver-
age variance over pairwise comparisons for the loop design is shown as a ratio relative
to the average variance for the reference design. For model (4.1), the loop design is
always twice as good because varieties are sampled twice as much. For model (4.2), the
loop design has smaller average variance for the contrasts of interest than the reference
design for v ≤ 10 varieties. The designs cannot be compared for model (4.3) because
dye×gene effects are not estimable with the reference design.

Figure 3: A Design for Three Treatments and a Control.

Figure 4: Relative Efficiency of Two Strategies for Time-Course Exper-

iments. The ratio of var( ̂(V G)kg− ̂(V G)k−1,g) from the loop design over var( ̂(V G)kg−̂(V G)0g) for the augmented reference design, considered for models (4.1), (4.2), and
(4.3). For all three models, profiling genes using the loop design strategy leads to more
precise results.

Figure 5: A-Optimality Scores for A-Optimal Designs. Each plot for
v = 6, 7, 8, 9, 10 varieties gives the smallest attainable average variance for the contrasts
of interest for a design with b arrays, v ≤ b ≤

(
v
2

)
, assuming model (4.2). The factor

n−1
n σ2 is removed from each average variance and then plotted on the square-root scale.

The best A-optimality score over all designs is given with a ‘·’ and the best over even
designs is given with an ‘X.’ The absence of an ‘X’ means there is no even design for
that v and b. The reference design always results in an average variance of 4n−1

n σ2, and
this is denoted with an ‘R’ at 2 on each plot over b = v. Loop designs are the only even
design for v = b, and they are A-optimal for v ≤ 8. These are indicated on the graphs.
Regular bipartite designs are always A-optimal and they are even when v is a multiple
of 4. This design is indicated on the plot for v = 8.

Figure 6: A-Optimal Even Designs with v + 2 Arrays. The A-optimal
designs among the set of even incomplete block designs for studying v varieties with v+2
arrays are shown for v = 6, . . . , 13. Nodes (·) represent varieties and edges represent
arrays. Orientation of edges should be assigned to maintain balance of varieties with
respect to dyes.

Figure 7: A-Optimal Designs with 2v Arrays. The A-optimal incomplete
block designs with 2v arrays are seen to be even for 5 ≤ v ≤ 10. For v = 5 the design
is the balanced incomplete block design because 2v =

(
v
2

)
. For v = 8 the design is the

group-divisible PBIB(2), or bipartite, design. The general pattern of these designs is
“interwoven” loops. For v = 7, 9 the A-optimal design is not cyclic.
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