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Abstract

The design of environmental monitoring networks is a problem of great
practical interest and it has been analyzed from different approaches. In
this paper a simple and economical procedure, not only in its design but
also in its implementation, is proposed for monitoring the water quality
in a hydrological system. The approach consists of an iterative procedure
of deletion of sites which is based on the minimization of the cokriging
prediction variance. It also considers a stopping rule and a validation
method to assess the optimality of the design. An application is made for
La Vieja river, Colombia.
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1 Introduction

There exist different methodologies in order to construct optimal monitoring net-
works and among them there are some specially attractive which are based on the
spatial dependence structure of the variables in study represented by the variogram
function and use the geostatistical method of kriging.

Most of these procedures consider the addition or deletion of locations to or from
an existing network and involves the minimization of an objective function, generally
the mean or maximum of the prediction variance. More specifically, they use the fact
that the mean-squared prediction error does not depend on the variable value but it
depends on its location and the variogram function which can be assumed known or has
to be estimated, Carrera et al.(1984), Russo(1984), Warrick and Myers(1987), Spruill
and Candela(1990), Ben-Jemaa et al.(1995), Zimmermam(2005). Other proposals as
given by Caselton and Zidek(1984) and Ben-Jemaa et al.(1995) use the entropy of the
variables in study or the cokriging variance as objective function, respectively.
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Some of these before-mentioned works are efficient for spatial prediction, others
for estimation of parameters. Diggle and Lophaven(2006) and Zhu and Stein(2006)
proposed classical and Bayesian model-based designs integrating both considerations.

Our proposal consists in constructing an optimal monitoring network for spatial
prediction from an initial sample, using information of several variables and an iterative
process of deletion of sites which is based on the mean-squared prediction error or
cokriging variance. It has the advantage that the estimators of the variogram and cross-
variogram functions do not change through the process since they can be estimated
from the initial sample. We also consider a stopping rule and a validation method that
guarantee the efficiency of the design in the sense that the two interpolations obtained
from the initial and the optimal network, respectively, are statistically similar.

After applying the methodology to an initial network of 105 sites in La Vieja river
(Colombia), it can be concluded that the number of sampling locations might be re-
duced to 25 in order to study spatially the contamination levels of the river.

In Section 2, the geostatistical method of cokriging is briefly described. In Section
3, the network design approach is presented. The application and the validation of the
design are described in Section 4 and finally, some conclusions are given in Section 5.

2 Background theory

Kriging and cokriging are techniques of geostatistical prediction derived from Mathe-
ron’s theory on regionalized variables and are based basically on the minimization of
the mean-squared prediction error.

Consider k×1 vectors z(s1), z(s2), . . . , z(sn), where z(sj) contains the information of
k variables Zi, i = 1, . . . , k, which are sampled at the spatial location sj , j = 1, 2, . . . , n.

The cokriging predictor of the variable Z1 at a single location s0, Ẑ1(s0), is a linear
combination of all the k × n observations Zi(sj), i = 1, . . . , k; j = 1, . . . , n,

Ẑ1(s0) =
k

∑

i=1

n
∑

j=1

λijZi(sj)

where the k × n values λij can be obtained by the solution of the following cokriging
equations system

k
∑

i=1

n
∑

j=1

λijCii′(sj, sj′) − mi′ = C1i′(s0, sj′), i′ = 1, . . . , k, j′ = 1, . . . , n (1)

n
∑

j=1

λ1j = 1,

n
∑

j=1

λij = 0, i = 2, . . . , k,

where Cii′(sj, sj′) = Cov(Zi(sj), Zi′(sj′)) represents the cross-covariogram of the varia-
bles Zi and Zi′ in the sites sj and sj′ for i, i′ = 1, . . . , k; j, j′ = 1, . . . , n.
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The cokriging variance, σ2
k(s0), measures the uncertainty that is produced when

Z1(s0) is predicted and is given by the expression

σ2
k(s0) = C11(s0, s0) −

k
∑

i=1

n
∑

j=1

λijC1i(s0, sj) + m1, (2)

where the λ′

ijs and m1 are obtained by the solution of system (1).
Introducing the semi-variogram (i = i′) and cross-variogram notation

γii′(sj, sj′) =
1

2
E[Zi(sj) − Zi(sj′)][Zi′(sj) − Zi′(sj′)],

where i, i′ = 1, . . . , k; j, j′ = 1, . . . , n, the cokriging variance may be also represented
as

σ2
k(s0) =

k
∑

i=1

n
∑

j=1

λijγ1i(s0, sj) + m1. (3)

As we can observe in equation (3), the prediction variance does not depend on
the variable values but it depends on the semi-variogram function γ11 and the cross-
variograms γ1i, i = 2, . . . , k, which represent the spatial correlation structure.

When k = 1 in equation (1) we have the kriging system and the corresponding
kriging prediction variance in equations (2) and (3).

Defining N(h) ≡ {(sj , sj′) : sj − sj′ = h; j, j′ = 1, . . . , n}, the semi-variogram
(when i = i′) and cross-variogram can be expressed as

γii′(h) =
1

2
V ar[Zi(sj + h) − Zi′(sj)],

and a natural estimator based on the method-of-moments is given by

γ̂ii′(h) =
1

|N(h)|

∑

N(h)

(Zi(sj + h) − Zi′(sj))
2
,

where |N(h)| is the number of distinct pairs of N(h).
As it can be observed h is a vector with norm and direction. When the cross-

variogram function does not depend on the direction of h we say that the process is
isotropic and in this case, we can represent the function as γii′(h), where h = ‖h‖ repre-
sents the norm of h. There exist various isotropic semivariogram models in the classical
literature of geostatistics, the most known are the spheric, exponential and Gaussian
models. These models depend on three parameters called nugget, sill and range. The
nugget (s0) represents the micro-scale variations and/or measurement errors. Ideally,
the semivariogram increases with the distance from a value equal to the nugget to a
constant value that is the sill (s). The range (r) is the distance corresponding to the
sill; at larger distances the covariance is usually considered to be null. In the appli-
cation made herein, we used the spheric and gaussian models which are given by the
expressions (4) and (5) respectively.
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γii′(h) = s0 + s2

[

3

2

(

h

r

)

−
1

2

(

h

r

)3
]

, (4)

γii′(h) = s0 + s2
(

1 − e−(h

r
)
2
)

. (5)

Further details about regionalized variables and geostatistical theory can be found
in Cressie(1993) and Wackernagel(1995).

3 The Procedure

Our procedure to construct a monitoring network for a hydrological system begins
by suppose that we have information about a set of variables of interest in N0 sampling
sites which are spatially georeferenced and conforms a set R0. Furthermore, we assume
that this set contains all the information about the system. The purpose is to identify
in R0 a subset R of N sites that contains approximately the same information than R0

but with N << N0. The subset R thus constructed is called the optimal monitoring
network or the design.

The approach is based on an iterative algorithm of deletion of sites that is controlled
in each stage by the increment of the uncertainty and by the existent relation among
the horizon of spatial correlation (hc), Hurtado et al.(1999), and the distances between
the remaining sites. In this procedure, the semi-variogram and cross-variograms are
estimated from the initial sample. Hence, they not change through the process.

The procedure of deletion of sites may stop either fixing the number of sites of the
network, N , or identifying the minimum number of sites such that the interpolation by
kriging will be reliable. The second option is determined when an isolated site of order
q is identified. We say that a site si is isolated of order q if it has less than q neighbors
from a distance smaller than the horizon of spatial correlation (hc). The choice of q is
arbitrary but if we want to reduce considerably the initial network, it has to be small.
It can also depend on the resource availability. Nevertheless, since we wish to obtain
a design that will be reliable for prediction, we suggest to complement the design with
some criterion of validation as given in section 4.3.

The procedure is given by the following iterative algorithm:

1. Eliminate any site of R0 and calculate its cokriging prediction variance using the
N0 − 1 remaining sites.

2. Include again the deleted site.

3. Repeat the steps 1 and 2 for all site of R0.

4. Identify in R0 the site with minimum prediction variance.

5. Eliminate the site identified in step 4.
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When the size of the network is fixed, using some criterion of specialists, the
process may stop after eliminate N0−N sites. Otherwise, if we want to optimize
the network, the algorithm has to continue the following steps:

6. Calculate the distance between pairs of the remaining sites and verify that anyone
of them is an isolated site of order q.

7. Return to 1 considering the fact that the set R0 has now N = N0 − 1 sites.

In this case, the procedure finishes after r stages when remainds a set R with N

sites such that, in the following step, will appear an isolated site.

4 Application

Our procedure can be applied for any hydrological system except for the validation
method which, in this case, is specified for unidimensional process.

4.1 The study zone and the initial network

In order to apply our approach, it is considered a case study to investigate the
spatial distribution of polluents and control the contamination levels in La Vieja river,
which is located in the west of Colombia, bordering the states: Quindio, Risaralda and
Valle del Cauca (see Figure 1). It has a lenght of 102 kilometers approximately and is
the main afluent of the Cauca river, the second most important river from Colombia.

Figure 1: Hydrological map of the Colombian West
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In its course, the river cross some agricultural, cattle-rising and mining exploration
areas and some small industrial and touristic cities establishing the main sources of
emission of polluents. Accordingly, the criterion for designing the initial network was
allocate the sampling sites looking for the maximum variability among them but with-
out to fall into temptation of sampling only in those places where there were high values
of contamination. Under these conditions, 105 georeferenced sites were allocated on the
river as it can be seen in Figure 2, and in each site were sampled different variables that
are indicators of the contamination. For this application we only consider the variables:
Total Suspended Solids, Nitrites and Turbidity Units, labeled in the sequel as Z1, Z2

and Z3, respectively.
Since realizations from a river may be analyzed like an unidimensional series, Fi-

gures 3, 4 and 5 show the spatial distribution of data on a cartesian plane, where the
horizontal axis (s) represents the distance from the river-head to each site, and the
varia-ble values are represented on the vertical axis.

As it can be observed, the variables exhibit some outlier values and a little trend
in the direction of water course. This pair of situations are violating the stationarity
and normality assumptions. Hence, in Table 1 is specified a corresponding regression
model in order to correct the trend, the number of outliers values in each variable and
the p-value obtained for the Kolmogorov-Smirnov normality test which is applied after
correcting for these outliers.

Table 1. Trend model, number of outliers and p-value of the normality test
Variable Model Outliers p-value

Total Solids Z1 = 61 − 1.61 × 10−3s + 10−8s2 11 > 0.15
Nitrites Z2 = 0.234 + 1.8 × 10−5s − 10−9s2 6 > 0.07

Turbidity Z3 = 7.63 + 9.9 × 10−5s 0 > 0.10

4.2 Algorithm to identify the Monitoring Network

Before executing the algorithm described in section 3 in order to identify the optimal
monitoring network, the semi-variograms and cross variograms of the variables Z1, Z2

and Z3 have to be previously estimated. Z1 is the predictor variable. The estimated
variograms γ̂11, γ̂22, γ̂33 and γ̂13 are spheric; γ̂12 and γ̂13 are Gaussian. Table 2 presents
the estimated parameters of each variogram.

Table 2. Estimated parameters of the semi-variograms and cross-variograms
Variogram Nugget Sill Range

γ11 217 400 6500
γ22 0.0001 0.0075 24500
γ33 6 67 24000
γ12 0.2 -2.8 20000
γ13 0 39.5 19200
γ23 0 -0.85 11000
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Figure 2: Initial network for La Vieja river
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Figure 3: Spatial distribution of Total Suspended Solids
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Figure 5: Spatial distribution of Turbidity

After applying the algorithm to the initial sample, with q = 3 and hc = 10000
meters, the procedure identified 25 sites distributed as in Figure 6 which corresponds
to the optimal monitoring network R0.

4.3 Validation

The optimal monitoring network thus constructed is in accordance with the ex-
pected if we may obtain from R0 the same prediction that is obtained from R for each
variable in study. In others words, if the interpolation made from the 105 initial sites
is not significantly different than that made from the 25 optimal sites. Figures 7, 8 and
9 show the two regular interpolations for each variable and, as it was expected, they
are very similar except in the places where the variables exhibit extremal values.

There exist differents methodologies to decide if two or more realizations were ge-
nerated by the same unidimensional process. Thus, in a more formal way, we compare
each pair of interpolations by applying some time series comparison test as given for
example by Quenouille(1958), Coates and Diggle(1986), Maharaj(2000), Salcedo et al.
(2000). Nevertheless, all the procedures above cited suppose that the two series are
stationary and free of outliers. Since the outlier values are due to the presence of some
pollution focus, we do not consider these observations in the comparison. Hence, we
only compare some segments of these series after applying a differentiation of order 1 to
transform the series to stationarity ones. For its simplicity, we apply the Quenouille’s
approach which decides if two independent series, {Xt}, {Yt}, are similar or not by
comparing their two corresponding autocorrelation functions. The null hypothesis is
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Figure 6: Optimal network for La Vieja river
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Figure 7: Interpolations obtained from the initial (dark curve) and the optimal network
for Total Suspended Solids

Figure 8: Interpolations obtained from the initial (dark curve) and the optimal network
for Nitrites
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Figure 9: Interpolations obtained from the initial (dark curve) and the optimal network
for Turbidity

that ρx(k) = ρy(k), ∀k = 0, 1, . . . ,K, and under H0, his statistic has asymptotically
a χ2

K distribution. Table 3 shows the p-values obtained when we compare K = 10
and K = 15 autocorrelations in the segment specified in column 2. Observe that we
cannot reject the hypothesis that both series are similar, thus we guarantee the network
usefullness. We could also check for similarity in the prediction error variances.

Table 3. p-values of the comparison test
Variable Segment p-value p-value

of Comparison (k = 10) (k = 15)

Total Solids 15-120 0.639 0.878
Nitrits 15-75 0.063 0.229

Turbidity 30-90 0.1963 0.1963

5 Conclusions

We present a simple and economical procedure in order to determine an optimal
design for monitoring the water quality in a hydrological system. From an initial
network R, the spatial correlation structure of the variables in study is estimated, and
using an iterative process of deletion of sites that is stopped when appears an isolated
site, we identify a subset R0 corresponding to the optimal design which is as efficient
as R in the sense that it produces the same predictions than R. The application of this
procedure to La Vieja river (Colombia) shows that is sufficient 25 sites for monitoring
the contamination levels. The spacing between the sites was expected since the network
was mainly designed for prediction.
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