
Autologistic model with an application to the

citrus sudden death disease

Elias Teixeira Krainski ∗Paulo Justiniano Ribeiro Jr †

Luziane Franciscon ‡Renato Beozzo Bassanezi §

1 Introduction

Brazilian citrus fields are responsible for about 53% of the worldwide orange juice
production and for 80% of the concentrated form. Citrus producers, industry and
scientists are constantly aiming for higher productivity, control of the production
process and capacity. Such targets are threaded by various diseases among which is
the Citrus sudden death (msc). This disease affects commercial varieties on limoeiro

Cravo, which represents the majority of the commercial fields causing reduction in
size, weight and number of fruits, combined with rapid decline and death of the
trees. The suspicion it was caused by a virus transmited by a efficient flying vector
(Bassanezi, Fernandes & Yammamoto 2003) has recently being confirmed.

In a citrus fields the trees are usually arranged in a grid with possibly different
distances between rows and columns. There is an interest in assessing spatial pat-
terns of the disease. Methods for characterizing the pattern as aggregated, regular
or random are currently used. However such methods are note design to quantify
the effects of spatial covariates since they do not assume an explicitly model rela-
ting such covariates with the presence of the disease. One alternative investigated
here is the adoption of an autologistic model which relates the probability of a unit
become diseased given the status of neighboring plants in space and/or time, taken
as covariates and therefore having a associated coefficient parameter. The regular
arrangement favors for the adoption of autoregressive models for the analysis which
allows for the detection of usual covariate effects as well as the assessment of spatial
effects. The latter are particularly useful for the description and hypothesis tests
on the patterns of the disease, which may suggests propagation mechanisms and
control strategies. For instance, for binary data such as presence/absence of the di-
sease the autologistic model describes the probability of a tree become infected given
the status of the neighboring trees. The model parameters has an straightforward
interpretation, incorporating explicitly the dependence structure. In agricultural
applications the model has being initially adopted the study the incident of Phy-

tophthora in bell pepper (Gumpertz, Graham & Ristano 1997). Here we further
explore the model considering the particular aspects of the msc. The model is
presented in Section 2 and Section3 reports the analysis of data collected at 11 dif-
ferent time points in a field with presence of msc. The conclusions and discussion
are presented in Section 4.
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2 Methodology

The logistic regression model is currently widely used to the analysis of binary out-
comes such as presence or absence of a certain characteristic of interest. For presence
of plant disease it is particularly relevant to consider possible spatial dependence gi-
ven it is reasonable to assume that neighbouring trees are more likely to have similar
status. The autologistic model (Besag 1972) extends the usual logistic regression
accounting for such spatial structure.

2.1 Autologistic model

The autologistic model describes the probability of a plant have the disease given
the status of the neighbouring plants using through a covariate connected to the
outcome through the link function,

logit(pij) = β0 + γ1(yi−1,j + yi+1,j) + γ2(yi,j−1 + yi,j+1) , (1)

with pij being the probability for the plant in the ith row and jth column; yi−1,j and
yi+1,j are the status in the adjacents rows which are combined to produce the row

covariate; yi,j−1 and yi,j+1 are the status of plants in adjacent columns producing
the column covariate; γ1 are γ2 the respective parameters measuring the effect of
such spatial covariates. The separation of row and column effects accommodates the
fact the spacing are typically different within and between rows, allowing to study
directional effects.

A näıve method to obtain parameter estimates for {γ1, γ2} = γ is based on the
maximisation of the pseudo-likelihood (Besag 1977)

L̃(γ, y) =
∏

i

∏

j

f(pij, y) , (2)

where f(.) is the density of the Bernoulli probability distribution. This methods
provides consistent parameter point estimates, however underestimates the associa-
ted standard errors. Intuitively this is due to the fact that an observation is used as
a responser variable as well as providing information for the covariates in the model.

One possible workaround is to use resampling methods. However within the
context of spatial patterns this is not straightforward given the need to preserve
the spatial structure. This can be achieved by block resampling (Cressie 1993) for
instance using a Gibbs sampler (Gumpertz et al. 1997). The basic idea is to sample
from the distribution of each observation yij conditioning on the current status of
the neighbours, with probabilities given b the autologistic model (1). This is a
sequential algorithm which goes as follows. We start with observed values y(0) from
which we obtain via pseudo-likelihood parameter estimates γ̂(0). Next we generate
bootstrap resamples (y(1), ..., y(n)) and for each of them estimates (γ̂(1), ..., γ̂(n)) are
obtained. The bootstrap sample are obtained through the following steps:

1. starting from an arbitrary location (tree) update the status by sampling from
the Bernoulli distribution with probability given by the fitted model parame-
ters and current status of the plants f(γ̂(0), yt′). This is done for all units in a
random sequence until the cycle is complete, i. e. all the status are updated.
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2. once a cycle is completed obtains parameter estimates by maximising pseudo-

likelihood function L̃( ˆγ(0), y(t)),

3. repeat steps 1 and 2 N times, the number of bootstrap samples.

The variance of the estimate γ̂ is then given simply by the variance of the estimates
(γ̂(1), ..., γ̂(n)). It is also advisable to disregard a certain number m of initial resamples
and also trimming the simulations taking one at each k steps. This allows for
convergence of the chain and to reduce the number of stored simulations.

These procedures were implemented by us in a add-on package Rcitrus (Krainski
& Ribeiro Jr. 2005) to the R statistical environment for statistical analysis (R De-
velopment Core Team 2007).

2.2 Models

The data considered here comes from 11 visits to the citrus field at different calendar
dates. Three models were considered for the analysis. The first model (m1) consider
as spatial covariates the neighbouring observations within and between rows, at the
present time:

logit(pt
ij) = β0 + γ1(y

t
i−1,j + yt

i+1,j) + γ2(y
t
i,j−1 + yt

i,j+1) .

Model m2, considers the same neighbourhood, however with data reflecting the
status of the plants at the previous observation time:

logit(pt
ij) = β0 + γ1(y

t−1
i−1,j + yt−1

i+1,j) + γ2(y
t−1
i,j−1 + yt−1

i,j+1) .

Finally, model m3 considers contemporary and previous times in the covariates.

logit(pt
ij) = β0 + γ1(y

t−1
i−1,j + yt−1

i+1,j) + γ2(y
t−1
i,j−1 + yt−1

i,j+1)+
γ3(y

t
i−1,j + yt

i+1,j) + γ4(y
t
i,j−1 + yt

i,j+1) .

The significance test for the regression parameters is based on the usual ap-

proximation in generalised linear models that γ̂/
√

V ar(γ̂) ∼ N(0, 1). For m1, the
significance test for the coefficients allows for detecting spatial effects as well as dis-
tinguish between the close neighbours effects given by the within row covariate and
more distant neighbours given by the between rows covariate. Model m2 assess the
predictive ability of the model through the lagged information built in the covariate
given the fact the present status of the trees would allow to predict the probability
of trees become infected at the next observation time. The different covariate effects
assess patterns in the spread of the disease. A last model m3, can combines con-
temporary and lagged covariates attempt to check whether this improves the model
fit.

The Akaike Information Criteria (AIC) is a measure used to assess and compare
model fits and is given by the penalization of the log-likelihood by model complexity
and is given by 2∗ log(L(Y, θ))+2∗k, where k is the number of parameters included
in the model.
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3 Results

The data considered here were collected on a citrus field with presence of msc

within the farm Vale Verde, municipality of Comendador Gomes, Minas Gerais
State, Brazil. The trees are arranged in 20 rows of 48 plants with spacing of 7, 5 m
between rows and 4 m within rows. Data were collected at 11 time points between
05/11/2001 and 07/10/2002. The incidence ranged from 14, 9% at the first visit to
45, 73% on the final data. The response variable used here is the presence/absence
of msc on each tree.

Tabela 1: Incidence, parameter estimates and p-values for models m1, m2, m3

Model m1 Model m2 Model m3

Present time Previous time

Av. Incidence γ̂1 p-value γ̂1 p-value γ̂1 p-value γ̂1 p-value

1 0.14895 -2.02052 0.27365
2 0.17293 -1.97306 0.16735 0.35758 0.0542 0.4166 0.0462 −0.0342 0.4350
3 0.21875 -1.84436 0.00221 0.44081 0.0054 1.0271 0.0000 −0.5060 0.0041
4 0.23840 -1.78096 0.00036 0.63954 0.0000 0.9160 0.0000 −0.2393 0.0600
5 0.26354 -1.68169 0.00126 0.61800 0.0000 0.3901 0.0163 0.2437 0.0246
6 0.27812 -1.63307 0.00025 0.59488 0.0000 0.8874 0.0000 −0.2445 0.0305
7 0.32292 -1.45117 0.00018 0.58248 0.0000 0.5437 0.0006 0.0972 0.1955
8 0.33125 -1.39161 0.00014 0.61067 0.0000 0.5732 0.0002 0.0703 0.2597
9 0.34167 -1.28953 0.00005 0.60794 0.0000 0.1542 0.1672 0.4721 0.0000

10 0.37500 -0.90676 0.00190 0.50256 0.0000 0.0641 0.3341 0.4443 0.0000
11 0.45729 -0.90008 0.00028 0.43635 0.0000 0.6371 0.0000 −0.1196 0.1179

The models presented in Section 2 were fitted to the data. Table 1 shows sig-
nificant effects only for the covariate number of neighbours within row for models
m1 e m2 and the spatial covariate was not significant for the first and second data
collections. Overall similar results were found for model m2.

Model m3 includes two spatial covariates: S1 is number of within rows neighbours
at present time and S2 is number at previous time. Estimated coefficients and p-
values are also shown in Table 1. Some combinations of relevant results are as
follows. Both spatial covariates are significant at 5% significance level for times 3,
5 e 6; for times 2, 4, 7, 8 e 11, just S1 was significant; and only S2 for times 9 e 10.
It is important to notice a potential (nearly) collinearity effect since the values of
the two covariates can be similar, specially when the incidence is nearly the same
between two consecutive observations in time.

Table 2 shows the Akaike Information Criteria (AIC) which is used to assess the
fitted models. This criteria points that model m1 is the preferable one for most of
the observation periods (2,4,5,6,7,8 e 11), Model m3 is better supported for time 3
and m2 for times 9 and 10.

4 Conclusion

The autologistic model provides a tool to further explore and describe spatial pat-
terns of plant diseases beyond methods currently adopted, allowing to better unders-
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Tabela 2: AIC values for the tree fitted models
Model m1 Model m2 Model m3

2 725.55 726.76 727.54
3 813.25 824.66 812.33
4 851.58 858.66 853.08
5 908.32 909.09 909.81
6 932.52 936.61 934.17
7 992.94 997.26 994.80
8 1003.70 1004.79 1005.68
9 1019.30 1018.58 1020.50

10 1067.11 1064.87 1066.82
11 1109.49 1121.87 1111.08

tand mechanisms of the spread of the disease, not only detecting spatial patterns but
also quantifying effects of presence of disease in different neighbourhood structures
through the associated coefficients. An important feature of the autologistic model
applied to individual trees is the objectivity when analysis original data, without
the need of some sort discretizations, as for instance needed by methods based in
quadrats.

The results found here for msc points to the presence of spatial patterns in
the disease for which evidence becomes clearly as the incidence rises. In general
evidence of aggregation for levels of incidences higher than 20%. From the third
data collection time onwards there was a noticeable increase of the probability of
a plant become diseased in the presence of neighbours with the disease. Model fit
for m2 shows evidence of infective pressure. Notice however the detection can be
influenced by the time interval between observations. Overall the within row effect
is stronger, reflecting the spacing adopted in the field and supporting the conjecture
of spatial pattern, i.e. the closer the plants the higher the infective pressure.

Our conclusion at this stage is that the autologistic model has a potential do
be widely adopted to investigate spatial patterns. It requires a extra computational
burden compared with usual generalised linear models which we have overcomed
with our computational implementation. Further attempts to explore more flexible
and general descriptions of the spatial patterns, ways to combine a sequence of time
observations are steps to be followed in our investigation. Also the methodology
suggests a way to objectively combine data from different fields, allowing for inves-
tigation of effects of choices of spacing between trees, age, type of citrus and tree
combinations and other properties which can vary between different fields.
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