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1. Abstract

Instead of using indicator kriging to estimate discrete versions of cumulative distribution functions,
with its order-relation problems, we suggest a compositional approach to the estimation of probability
functions. A preliminary Bayesian treatment is needed to obtain estimates of the pdf (without zeroes)
at sampled locations, and afterwards an isometric log-ratio transform provides unbounded real scores,
which are finally kriged.

2. Introduction

Estimation of probability functions (pdf)—or their cumulative versions (cdf)—of regionalized
variables is a common problem in geostatistics. Disjunctive kriging (DK) and indicator co-kriging (IK)
are the most-used estimation techniques. These techniques aim to estimate the target pdf or cdf,
conditional to observed data, by minimizing some square error difference between observed
frequencies and estimated probabilities. To our understanding, this difference criterion is the cause of
the so-called order relation problems: these methods frequently yield impossible probability estimates,
such as negative probabilities. Here we present an alternative kriging technique, where the fit of the
model is measured in terms of squared distances in the simplex, since relative frequencies and
probabilities can be viewed as compositions. The methodology consists in two steps. First, the range
of the regionalized variable is partitioned into D classes, and each observed value is translated into a
probability vector following Bayesian techniques. This vector replaces the raw zero-one observation
of a class given an opportunity to assess observation errors. This is then represented by log-ratio
coordinates of the simplex, which gives a D-1 real  vector without any constraint.  The second step is
the co-kriging of this coordinate vector of “observed” probabilities. Hypothesis about the Gaussian
character of such a vector random function are now consistent and classical co-kriging techniques give
a prediction of its coordinates at unsampled locations. These predictions are back-transformed into
probability vectors, which are viewed as estimates of the sought discretized pdf of the regionalized
variable. To test the reliability of this approach, we use a simulated example of a Gaussian random
function, and then apply our technique to predict the conditional distribution at new locations.



652  R. Tolosana-Delgado, V. Pawlowsky-Glahn, J.J. Egozcue, et al.

3. Basics of Indicator Kriging

Let Z(x) be a real random function in a spatial domain, with image a set A=[a0 , aD]. Let {x1,x2,...,xN}
be a set of sampled locations, and {z1, z2,...,zN} be the values observed at these locations. We want to
estimate, at an unsampled location x0, the conditional probability distribution of Z(x0). Assuming the
random function to have a joint normal distribution, this conditional distribution is a normal
distribution defined by the simple kriging (SK) predictor and its variance. If this joint normality
assumption is not admissible, other techniques must be used, e.g. indicator kriging (Journel, 1983, IK).
This technique estimates a discrete version of the cdf, by interpolating the step indicator transforms
I(x) defined by a set of cutoffs {a1, a2,..., aD-1}. Alternatively, we can estimate a discrete version of the
pdf by interpolating the equivalent set of disjunctive functions J(x), as disjunctive kriging (Matheron,
1976, DK) does. These two functions are defined by components as
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The vectors I(x) and J(x) can be respectively viewed as degenerated cdfs and pdfs. Indeed, their
expectation corresponds to the conditional functions they aim to estimate, thus the expected difference
between prediction and true value is zero. Also, when these I(x) and J(x) are considered as random
functions, a variographic analysis of these functions yields estimates of the equivalent marginal cdf or
pdf, which correspond with their global means. In other words, knowledge of the variogram implies
knowledge of the mean, and SK is then fully applicable. However, IK results are occasionally non-
sense, as probabilities must be positive, and increasing—for I(x)—or sum up to one—for J(x)—. Both
IK and DK present these problems.

4. Estimation of Multinomial Probability Vectors

Let us reinterpret the objects already introduced, ignoring the spatial dependency: Z is a random
variable with image a set A=[a0 , aD), and {a1, a2,..., aD-1} is a set of cutoffs used to define the partition
A=UAi, with Ai=[ai-1 ,  ai). Then, Eq. (1) defines a categorical random vector J=(Ji), with D
components, such that Ji=1 if and only if Z ∈ Ai, else Ji=0. This categorical vector follows a
multinomial model: J ~ M (n=1, p) where p=(pi) is a multinomial vector of probabilities, with pi =
Pr[Ji =1] = Pr[Z ∈ Ai]. Note that p is a composition, thus its sample space is SD, the D-part simplex
(Aitchison, 1986).

Our first goal is the estimation of the vector p from a single observation of J. Assume that we
observed category k, thus Jk=1. Classical IK applies the frequentist estimation formula
favourable/total cases,  and  obtains  Eq.  (1)  as  estimator.  Instead,  we  use  a  Bayesian  approach.  First,
we encode all available information on p in a prior distribution, which might be of Dirichlet type
(Haas and Formery, 2002)—including the uniform in SD, if all categories are equally probable—or
normal in the simplex (Mateu-Figueras et al., 2003). Then, it is updated by the likelihood of the
sample, to obtain a posterior distribution—respectively a Dirichlet or an Aitchison’s A distribution
(Aitchison, 1986)—. Finally, a representative value p* is  extracted from this posterior.  Changing the
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prior  distribution  and  the  loss  function  of  the  Bayesian  estimation,  we  obtain  different  results.
However, if the prior model treats all categories equally, all estimators are like
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which is a subjective assessment of the probability of actually having the i-th category in a place
where the k-th category was observed. The value a is then the largest probability in p*, and for
coherence, it should satisfy a > 1/D. Note that Eq. (2) does not take into account the order of the
categories, as the underlying model is a multinomial one.

5. Kriging of Multinomial Probability Vectors

The sample space of both p(x) and its estimator p*(x) is the D-part simplex SD, since these vectors are
compositions. It is then natural to follow Pawlowsky-Glahn and Olea (2004) in the geostatistical
characterization of the vector p(x), considered as a multivariate random function. These authors
suggested to apply Aitchison (1986) log-ratio transformations, interpolate the transformed values with
a suitable kriging technique, and back-transform the results to obtain a composition. We select the
isometric log-ratio transformation (Egozcue et al., 2003, ilr), defined in general as
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where π represents the vector of ilr-transformed scores, Ψ a matrix with D-1 rows and D columns,
satisfying the kind of orthogonality conditions of Eq. (3),  and ID the D-dimen-sional identity matrix,
and 1 a D×D square matrix with all elements equal to 1. The vector of transformed scores π has D-1
unbounded real values, suitable to be treated with all classical statistical methods, including standard
variography and co-kriging techniques, using any existing software. In particular, given that the full
vector is  available at  all  sampled locations,  the matrix co-kriging notation of Myers (1982) is  highly
useful. Results, denoted by π*, will be back-transformed into the simplex using the inverse ilr,

( )( )* *C exp t π= Ψ ⋅p                                                               (4)

where C(⋅)  represents  the  closure  operation,  which  divides  all  components  by  their  total  sum,  thus
forcing the result to sum up to one. Note that, due to this operation and the properties of the
exponential, the final results p* obtained with Eq.(4) will always be valid multinomial probabilities,
with positive components summing up to one. In other words, this technique never presents problems
like those of IK or DK.

Pawlowsky-Glahn (2003) provides us with tools to understand the properties of this estimator (Eq. 4)
in the non-regionalized case. The simplex has an Euclidean space structure, in which Eq. (3) is the
expression of the so-called ilr coordinates with respect to a basis of the simplex characterized by the
matrix Ψ. In such an Euclidean space, we may define a characteristic measure and a normal
distribution completely embedded in the simplex (Mateu-Figueras et al., 2003). Using these tools, it
can be shown that the estimator of Eq. (4) minimizes the Aitchison distance dA(p*(x0),p(x0)) between
the prediction p*(x0) and the true value p(x0), characterizing the distribution of J(x0),



654  R. Tolosana-Delgado, V. Pawlowsky-Glahn, J.J. Egozcue, et al.

( )
2

*
* *

*

1arg min , arg min ln lni i
A

i j j j

p p
d

D p p<

 
= = −  

 
∑p p p

Also, assuming the random function p(x) to have a joint normal distribution on the simplex, SK
prediction of the ilr coordinates π(x) and their error variance-covariance matrix give the parameters of
the true distribution of p(x0) conditional on the observed data set. This distribution follows a normal
model on SD,
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which is a classical normal distribution defined on the ilr coordinates π(x0) themselves. Also, ordinary
or universal kriging represent valid approximations to this conditional distribution up to the same
extent they are for a conventional Gaussian random function. Finally, it can be shown that the
estimator p* and this conditional distribution do not depend on the chosen basis in the simplex SD.

6. Case Study

To  assess  the  goodness  of  the  proposed  method,  we  have  simulated  a  zero-mean  Gaussian  random
field Z(x), with an exponential variogram of c = 1 (sill) and a = 30u (effective range). The data set {x1,
x2,…, xN} contains N=1000 samples located at random in a 1u grid of 150×150 u2 (Fig. 1A). The
conditional  distribution  of  the  nodes  of  a  4u grid of 200×200 u2 is obtained using SK (Fig. 1B).
Applying a set of cuttoffs (Table 1, and legend of Fig. 1B) to this data, we compute the observations
of the vector random function J(x), represented in Fig. 1A as a categorical variable. To estimate the
multinomial probability vector p(xn)  at  each  one  of  these  sampled  locations  we follow the  Bayesian
approach described in section 4. Given that the categories are equally-distributed (Table 1), we may
use Eq. (2), and we decide to consider the parameter a=0.95, a classical value in statistics. In other
words, after observing category k at a given location, we attach a confidence of 95% to it, and a
(5/9)% to the other categories.

A                                       B
Fig.  1.  maps  of  data  set  (A)  and  SK  predictions  (B)  of  the  case  study.  The  color  scale
corresponds to the categories defined in Table 1, and it is valid for both maps. In (A), two lines
mark the levels of 0.90 and 0.95 of kriging variance.
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Table 1  Cutoffs of definition of the categories.
I 1 2 3 4 5 6 7 8 9 10
ai -1.28 -0.84 -0.52 -0.25 0 0.25 0.54 0.84 1.28 +∞

Pr[Z<ai] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

An arbitrary coordinate system was chosen, variograms were computed (Fig. 2), and SK was applied
to predict these coordinates. The predicted coordinates at each unsampled location x0 were applied Eq.
(4) to obtain the predicted multinomial vectors p*(x0) approximating the sought distribution of Z(x0).
Fig. 3 compares some predicted probability functions and discrete versions of their true values—
obtained with direct SK of Z(x0)—. Note that predicted distributions are in general more uncertain—
less informative—and the conditional mean of the predictions smoother than the truth.

Fig. 2. Experimental variograms of the 9 coordinates, and used models, all of exponential type.

7. Final Considerations

An isometric logistic kriging technique can be applied to estimate discrete probability density
functions if a certain degree of uncertainty is accepted when estimating the probability distribution at
sampled locations. The obtained predictor minimizes the compositional Aitchison distance between
the discrete distribution and its prediction at unsampled locations. This has some connections with
information concepts, which has not been explored here. The obtained predictions are by construction
valid probabilities, positive and summing up to one, thus this technique overcomes the main flaws of
IK. Our results—being estimates—are less informative than the true conditional distribution.
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Fig. 3. Estimated histograms (coloured), and equivalent discrete versions of the true
probability functions (white), with colours from the truly observed category (legend in Fig. 1).
The coordinates of the sampling locations are shown in the left upper corner of each plot.
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