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Abstract

In many areas of epidemiologic, demographic and geographical research, inference based on
hierarchical spatial regression models is popular and important; for example, in disease mapping,
environmental and health monitoring studies. Several estimation and inferential procedures have
been proposed for these models, utilizing a variety of methods such as estimating equations, em-
pirical Bayes and hierarchical Bayes. Hierarchical Bayes provides the full range of statistical
inference (point as well as interval estimation) which may not be readily available in the other
approaches. However, hierarchical Bayes is not problem-free and computations can be challeng-
ing in complex applications. Recently, an alternative method, namely the approximate Bayes,
has been proposed to alleviate the problems with the hierarchical Bayes method. Approximate
Bayes uses an integrated nested Laplace approximation to derive numerical approximations to
various marginals of the full posterior distributions, thus avoiding Markov Chain Monte Carlo
sampling completely. In this article, we compare and contrast between approximate Bayes, hi-
erarchical Bayes and two other inferential methodologies in the context of hierarchical spatial
regression models. Our emphasis is to investigate some of the claims made on approximate
Bayes, namely the computational gain and the extent of automation, in the implementation.
The differences have been demonstrated via simulation as well as through real examples.

Keywords: Approximate Bayes, Default Prior, Disease Mapping, Empirical Bayes,
Estimating Equations, Hierarchical Bayes, Hierarchical Spatial Models.

1 Introduction

Mapping incidence and mortality from diseases such as cancer is an indispensable tool for epidemi-
ologists to understand disease etiology. The standardized mortality ratio (SMR) is the primary

∗Authors’ names are in alphabetical order.
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measure for displaying incidence maps. However, direct use of SMRs can be misleading since
their estimates do not account for the varying population sizes over the region under consideration
(Clayton and Kaldor, 1987). In their seminal paper, Clayton and Kaldor (1987) proposed shrink-
age estimators for the SMR based on Poisson-gamma and Poisson-lognormal models. Thereafter,
numerous extensions and variations of these basic models were proposed in the literature. We refer
the reader to recent review articles and books by Lawson (2006), Elliot et al. (2000), Waller and
Gotway (2004) and the special volume of Statistics in Medicine (2000) on this important issue.

The most important statistical problem (which is common to all models) is to estimate and make
inference on the SMRs and model parameters. Two powerful approaches, namely the empirical
Bayes (EB) and hierarchical Bayes (HB) methods, are quite popular in their own right. In EB,
unknown model parameters are estimated from the observed data likelihood. However, EB provides
approximate inference only and there is no (theoretically valid) method currently available for
estimating EB confidence intervals in our context. The approach introduced in Clayton and Kaldor
(1987) (CK) to estimate SMR is the EB method we investigate here.

On the other hand, the HB methodology is exact and accurate (in principle), and provides the
fullest possibilities for inference (including confidence interval construction). There are however
several difficulties in the HB inferential framework. HB requires the elicitation of a prior on the
unknown model parameters, and therefore, can be sensitive to prior specification. Non-informative
prior elicitation potentially provides a stable HB solution in absence of definite subjective infor-
mation; for example, Sun et al. (1999) develops non-informative priors for CAR models. Another
difficulty is that HB utilizes Markov Chain Monte Carlo (MCMC) techniques which can be com-
putationally intensive to develop. In some cases, the MCMC chains can be slow to mix and the
decision of whether the chain has converged can be sometimes dubious.

The main objective of this article is to search for viable alternatives which utilizes the theoretical
correctness of HB but yet is computationally less intensive and user friendly. To this goal, we
explored the approximate Bayes (AB) approach, a method based on integrated nested Laplace
approximation recently proposed by Rue, Martino and Chopin (2009), (Journal of Royal Statistical
Society, Series B, discussion paper). It is not possible to explore the impact of EB, HB and AB
approaches on all available hierarchical spatial models in the literature. Instead, we investigate
their impact on one of the most basic models which is popular and extremely useful, namely the
Poisson-CAR model. The Poisson-CAR model is characterized by a spatial latent distribution
for the expected SMRs, and conditional on the SMRs, the area specific counts follow a Poisson
distribution.

Estimating equation based approaches (EE) avoid full distributional specifications by only re-
quiring some moment assumptions, and hence, we also considered the EE approach here. An
attractive property of the EE approach is that difficulties in maximizing the likelihood of the
Poisson-spatial regression model are completely avoided. However, prediction of relative risks is
difficult from this approach. In this paper, we consider the approach introduced in Yasui and Lele
(1997) (YL) as one of EE methods.
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The motivation of this work came from our current project of mapping lung cancer for all the
counties in Michigan, USA, where we need a simple yet statistically feasible and valid procedure.
Michigan is a highly segregated state by industrial zones. Thus, the disease map would help identify
areas that need immediate government attention for various health issues. While working with the
Michigan dataset, we also experimented with the Scottish lip cancer data (a data set that has been
used heavily in the literature) using all the four methods EE, EB, HB and AB. The procedures are
also compared using several simulation studies.

Based on the Poisson-CAR regression model, we find as expected that HB is sensitive to prior
choice. Thus, we have considered non-informative priors for both HB and AB so that the inference
is not sensitive with respect to the prior specification. Another advantage of using non-informative
priors is that the Bayes estimates often have good frequentist properties. While implementing the
Bayesian procedures via AB, it appears that each application (the model and the dataset) needs
customization with a specific set of tuning parameters, contrary to HB. These settings of tuning
parameters may significantly increase computational time depending on the inferential goals.

We organize the sections as follows. Section 2 describes the Poisson-CAR model briefly and
mentions the inferential goals. Section 3 describes details of the four procedures EE, EB, HB and
AB. Section 4 contains numerical results from the simulation studies as well as the real data sets.
Finally, Section 5 presents the discussion followed by conclusions.

2 The Poisson-CAR Model

Consider n sites on a spatial domain. Let Y = (Y1, · · · , Yn)T and E = (E1, · · · , En)T denote,
respectively, the incidence counts and the expected population under risk for the n sites. We
denote the i-th area-specific relative risk by θi, and θ = (θ1, · · · , θn)T to be the collection of all the
area-specific relative risks. The standardized mortality ratio SMR = Y

E is the maximum likelihood
estimate (MLE) of θ when Yis are independent Poisson with mean Eiθi for i = 1, 2, · · · , n.

It is well-known that the MLE is not a good measure of risk since it does not account for the
differences in population sizes (which was highlighted in the seminal paper by Claton and Kaldor
(1987)). Various smoothing models and their refinements have been proposed to overcome this
drawback in the last twenty years or so. A typical property of smoothing models is to borrow
strength from spatially related areas to come up with a more reliable estimate of the SMR. We
consider here the basic model proposed by Clayton and Kaldor (1987) which has been used and
modified by many other researchers in recent years.

Let H i = (Hi1, · · · , Hip)T be a set of p covariates associated with site i, for i = 1, 2, · · · , n,
β = (β1, · · · , βp)T be the corresponding regression coefficients and Xi = log(θi), i = 1, · · · , n be the
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log relative risks. The Poisson-CAR model is defined hierarchically as follows:

Yi|Xi
ind∼ Poisson(Ei exp(Xi)) (1)

Xi = HT
i β + εi (2)

ε ∼ Normal
(
0, σ2D(γ)

)
; (3)

in (3), ε = (ε1, · · · , εn)T is taken to be distributed as the conditional auto-regressive (CAR) model
(Besag (1974)) with covariance matrix D(γ) = (I − γMW )−1M . Here, W = ((wij)) is the
n× n adjacency matrix that defines the neighboring (spatial) structure with wij = 1 if i and j are
spatial neighbors, and 0, otherwise (wii = 0 by convention). The matrix M = ((mij)) is a n × n

diagonal matrix whose i-th diagonal entry is given by 1
wi+

where wi+ =
∑n

j=1 wij . The parameter
γ ∈ (−1, 1) defines the extent of spatial dependence and σ2 is the measure of global variability. We
refer the reader to Cressie and Chan (1989) and Yasui and Lele (1997) for detailed description and
interpretation of the model and parameters.

In a typical disease mapping problem, the main interest is to infer the true relative risks θis,
and the model parameters δT = (βT , γ, σ2). When mapping is of primary concern, the param-
eter of interest will be the θis. Instead, if we are interested in studying association between the
exposure and outcome variables, or determine the spatial dependence, β and γ will be of primary
interest. Confidence intervals is a general method of inference for θis and model parameters. In
the subsequent paragraphs, we will compare several well-known methods with respect to inference
in the hierarchical model of (1-3).

3 Methods of inference for the Poisson-CAR model

3.1 Yasui and Lele (YL)

Yasui and Lele (1997) developed an approach where the model parameters δ = (βT , γ, σ2)T are
estimated based on estimating equations. The estimating equation approach avoids difficulties
involved with direct maximization of the likelihood (for example, the use of high dimensional
integration) by defining moments rather than fully specifying the distribution. These difficulties
are well recognized and documented in the literature (see, for example, Breslow and Clayton, 1993).
We adopt YL for the Poisson-CAR model in (1-3) and compare it with the EB, HB and AB methods
in the subsequent text.

The estimating equation for β is

HT Ṽ
−1

(Y ∗ −Hβ), (4)

where i-th element of Y ∗ is equal to Y ∗
i ≡ log{(Yi + 1/2− I{Yi=0}/4)/Ei}. Yasui and Lele (1997)

determine Y ∗ as the bias-corrected version of log SMR. Also, in (4), Ṽ
−1

is defined as

Ṽ
−1

=

{
E(var(Y ∗|θ))−1{E(var(Y ∗|θ))−1 + M−1/σ2}−1D−1/σ2, if σ2 > 0,

E(var(Y ∗|θ))−1 , if σ2 = 0,
(5)
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where the i-th diagonal element (var(Y ∗|θ))−1 is approximated by Ei exp(HT
i β−σ2mii/2). If θ is

observed, the estimating equation for β (given γ) would be HT D−1(θ∗ −Hβ) where θ∗ = log(θ).
Since θ is not observable, it is replaced by the bias-corrected quantity Y ∗ and the corresponding
optimal weight HT (var(Y ∗))−1 is approximated by HT Ṽ

−1
. When θ is known, the estimating

equations for γ and σ2, respectively, are

(θ∗ −Hβ)T MW (I − γMW )(θ∗ −Hβ)

(θ∗ −Hβ)T (M−1 − γW )(θ∗ −Hβ)− nσ2.

The above estimating equations are functions of θ∗ via θ∗i , θ
∗
i
2 and θ∗i θ

∗
j for j 6= i and i, j =

1, 2, · · · , n. Yasui and Lele (1997) replaced θ∗i , θ∗i
2 and θ∗i θ

∗
j with Y ∗

i , Y ∗∗
i and Y ∗

i Y ∗
j , respectively,

where Y ∗∗
i is derived from the approximately unbiased estimate max{0, (log(Yi+1/2))2−1/(Yi+1)}

of (θ∗i + log Ei)2.
The intention of Yasui and Lele (1997) was to propose an alternative method to the penalized

and marginal quasi-likelihood (PQL and MQL) approaches of Clayton and Kaldor (1993). Yasui
and Lele (1997) recognized that “the PQL and MQL approaches may require more computational
time than the Gibbs sampler”, and moreover, the theoretical properties of PQL and MQL were
not well studied. Our take on the matter is that while the YL method is certainly computationally
more efficient (since it does not require the inversion of large dimensional matrices), the estimating
framework is not integrated in the sense that the model parameters are not estimated simultane-
ously. As a result, it is hard to assess how the uncertainty of estimating one parameter affects
the others. Asymptotic properties of estimates in the YL framework are somewhat (but not com-
pletely) rigorous; for example, the asymptotic arguments hold for unbiased estimators of θ∗i but
no such exactly unbiased estimators are provided. What YL proposed in applications is to use
approximately unbiased estimators for which the asymptotic results may or may not hold. Further,
properties of associated confidence intervals are only given for β, but not for the other parameters
(for example, for γ and σ2).

3.2 Clayton and Kaldor (CK)

Clayton and Kaldor (1987) proposed an EB-type approach where the estimator of relative risk is
the conditional expectation of θi given Y . The model parameters are estimated using the EM-
algorithm. The conditional expectation of θi given the data is derived in an approximated closed
form and the estimated model parameters are plugged-in for the corresponding unknown quantities
in the expression. The posterior distribution of X = (X1, X2, · · · , Xn) (see (2)) conditional on the
data is approximated by a multivariate normal density with mean µX and covariance matrix VX ;
the expressions for the mean and covariance are

µX = VX

(
1
σ2

D−1Hβ − ψ
′′
(X̃)X̃ + ψ

′
(X̃)

)
and

VX =
(

1
σ2

D−1 − ψ
′′
(X̃)

)−1

,
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where X̃ = log
(

Yi+1/2
Ei

)
, ψ

′
(X̃) = −1/2, and ψ

′′
(X̃) = −(Yi + 1/2) for the Poisson likelihood.

The expectation step of the EM algorithm has also been similarly approximated in their paper. We
refer the reader to their paper for more details. The main advantage of the CK approach is that the
point estimates of δ and θi, i = 1, 2, · · · , n are easily obtained. However, measures of uncertainty
of the point estimates as well as methods for construction of confidence intervals are not available.
Some efforts have been made in this regard, but to our knowledge, nothing is satisfactory. For
example, Hall and Maiti’s (2006) parametric bootstrap approach could be used but this needs
further theoretical investigation to justify their approach. No effort has been made as well for the
improved inference regarding regression parameters in the context of spatial regression.

3.3 Hierarchical Bayes (HB)

Unlike the CK approach, complete inference is possible in the HB framework based on the posterior
distribution of unknown quantities provided one elicits a suitable prior for the model parameters.
However, we found that the inference can be sensitive to the choice of prior elicitation in this
Poisson-CAR model. In fact, Gelman (2006) argued against the use of standard vague (weakly
informative) prior in a simple variance component model which is a special case of the Poisson-
CAR model. This motivated us to propose a default prior on δ which combines non-informative
(e.g., flat) priors on β and γ with a default prior on σ2. Following a Taylor’s expansion in Dass et.
al (2009) around a X∗ = (X∗

1 , X∗
2 , · · · , X∗

n)T , one can have an explicit expression for the conditional
mean of Xi for the model in (1-3) which is a weighted combination of data and prior contributions.
The approximated posterior mean of Xi has the expression

Ki

Ki + 1/σ2

(
Yi − h

′
i(X

∗
i ) + X∗

i h
′′
i (X∗

i )
)

+
1

Ki + 1/σ2
XCAR

i (6)

where Ki = h
′′
i (X∗

i )/wi+, hi(x) = Ei exp(x) is the inverse of the link function for the Poisson
density at the i-th site, and XCAR

i is the prior conditional mean of Xi given the rest of Xj , j 6= i.
Since Ki varies across all the sites, we replace the average ω0 = 1

n

∑n
i=1 Ki for each Ki in expression

(6). Requiring the weights to have a uniform prior leads to the following default prior elicitation
on σ2:

πD(σ2) ∝ 1
(1 + ω0σ2)2

. (7)

Note that πD(σ2) is a proper density. It can be shown that posterior distribution is proper based
on the above prior specification of δ. Incidentally, the above prior is similar to half-t prior intro-
duced in Gelman (2006) for the random effects model. We compare the parameter estimates based
on different prior choices using simulated data and results is shown in Section 4.1. Samples from
posterior of δ and the relative risk θ are obtained using Markov Chain Monte Carlo (MCMC) tech-
niques and subsequently used for inference. We implemented the MCMC algorithm in MATLAB.
Note that we could use BUGS which is well established program for the MCMC method and the
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CAR model is available within the program. However, we need to use ‘zeros’ tricks for a general
form of the prior distribution which is described in the User Manual. As mentioned in the Manual,
this method produces high autocorrelation and poor convergence and so, we did not pursue with
BUGS in this study.

3.4 Approximate Bayes (AB)

Recently Rue et al. (2009) advocated the use of approximate Bayes methods as an alternative to
HB for posterior based inference. They claim that one of the benefits of AB is “ ... computational:
where Markov Chain Monte Carlo need hours or days to run, our approximations provide more
precise estimates in seconds or minutes”. Our objective here is to compare and contrast AB
with HB in terms of statistical accuracy and the computational time involved when obtaining
posterior measures of inference (e.g., confidence intervals) for the Poisson-CAR model. It will be
demonstrated in the next section that the picture is different than what is anticipated in this special
case of spatial regression set-up.

The AB approach has three important approximation steps which we describe now. The pos-
terior of δ given Y for the Poisson-CAR model is

π(δ|Y ) =
π(Y |X)π(X|δ)π(δ)

π(X|Y , δ)
, (8)

which holds for any value of X. The first step of AB is to approximate the posterior distribution
of log relative risks, π(X |Y , δ), by a multivariate Gaussian density πGG(X |Y , δ). The posterior
density of δ is then approximated by

π̂(δ|Y ) =
π(Y |X)π(X|δ)π(δ)

πGG(X|Y , δ)

∣∣∣∣
X=X∗(Y ,δ)

, (9)

where X∗(Y , δ) is the mode of πGG(X |Y , δ) for a given δ. Finally, the marginal posterior distri-
bution of the log relative risks is approximated using numerical integration of an integrand which is
a product of the approximations in the first two steps. The key idea of AB is to replace the denom-
inator of (8), π(X|Y , δ), with a Gaussian approximation πGG(X|Y , δ) and evaluate it at the mode
X∗(Y , δ). Since no exact closed form is available for X∗(Y , δ), Rue et al (2009) computes this
mode using the Newton-Raphson algorithm. Note that the multivariate Gaussian approximation
πGG(X | δ, Y ) on X forces each of the marginal distributions of Xi to be normal which we denote
by πGG,i(Xi | δ, Y ) for i = 1, 2, · · · , n. The marginal posterior densities of Xi and δ are obtained
by integrating out the irrelevant terms in the full posterior. An approximate expression for the
marginal is

π(Xi|Y ) =
∫

π(Xi|Y , δ)π(δ|Y )dδ ≈
∑

k

πGG,i(Xi | δk, Y )π̂(δk |Y )∆k (10)

which is evaluated using numerical integration on a set of δ-grid points, δk, with area weights ∆k

for k = 1, 2 · · · ,K. A similar numerical integration technique is used for the evaluation of the
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marginal

π(δi |Y ) =
∫

π(δ|Y )dδ−i ≈
∫

π̂(δ|Y )dδ−i. (11)

Rue et al (2009) proposed other methods such as Laplace and simplified Laplace approximations
to improve the accuracy when evaluating π(Xi|Y ). Eidsvik et al. (2009) developed AB specifically
for spatial generalized linear mixed models. Our study is in the same spirit of Eidsvik et al. (2009)
although our model and inferential goals are somewhat different.

The accuracy of the above numerical integration steps requires a good choice of δ evaluation
points. The approach suggested in Rue et al. (2009) is

• STEP 1: locate the mode of π̂(δ|Y ), δ∗ say, by optimizing log π̂(δ|Y ) with respect to δ,

• STEP 2: compute the negative Hessian matrix S at δ = δ∗ and consider the spectral value
decomposition of S−1 = QΛQT . The centered and scaled variable z is defined as

z = QT Λ−1/2(δ − δ∗) or δ(z) = δ∗ + QΛ1/2z. (12)

• STEP 3: find a collection of z, Z, such that the corresponding δ(z) points are located
around the mode δ = δ∗. Starting from z = 0 (δ = δ∗), each component entry of z is
searched in the positive and negative directions in step sizes of ηz. All z-points satisfying

log π̂(δ(0)|Y )− log π̂(δ(z)|Y ) < ηπ

are taken to be in Z.

• STEP 4: evaluate π(δi |Y ) for a fine grid of δi points based on values in Z. This last step
is needed for any inference procedure requiring the evaluation of the posterior density values,
such as obtaining HPD confidence sets.

Note that the values of ηz and ηπ should be appropriately tuned to produce accurate approx-
imations. The trade-off here is numerical accuracy versus computational time. The above stan-
dardization technique allows for the evaluation of π(δ |Y ) at the points δ = δ(z) for z ∈ Z only.
The map δ(Z) ≡ {δ(z), z ∈ Z} typically forms an ellipsoidal region in the δ-space. To compute
π(δi |Y ), the integral in (11) has to be evaluated for each fixed point δi = δ0. Consequently, this
method requires a substantial number of points in δ(Z) having δ0 as the value of its i-th component.
This is almost always not the case, thus necessitating the development of an interpolation scheme
to bypass this difficulty.
AB constrasted with HB: Once the model and the prior distributions are specified, unlike the HB,
the approximate Bayes approach needs to have following tuning parameters pre-specified: The
choice of z-values, the choice of ηz and ηπ, and the preference of interpolation as stated in the
previous paragraph. This is additional specification on top of HB specifications like the choice of
prior.
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4 Numerical Properties

The numerical studies are grouped by three different aspects of the Poisson-CAR model: (1) elici-
tation of priors and selection of a suitable robust prior, (2) comparison between different methods
of inference, and (3) the real data applications. Several simulation studies were conducted to com-
pare the performance of the proposed non-informative prior with other subjective priors, and to
compare parameter estimates and their confidence/credible intervals obtained from their respective
posteriors. Our benchmark approach is the well-established MCMC based HB. For HB, we checked
all convergence of the chains up to satisfactory levels.

4.1 Prior Elicitation

Following Yasui and Lele (1997), we generated n = 10×10 grid points. The adjacency matrix W is
defined in terms of the four nearest neighbors corresponding to each site of interest. The regression
covariates are Hi = (1, hi)T where hi is generated from a normal distribution with mean zero
and variance 0.5. The regression coefficients are taken as β = (β0, β1)T = (0.1, 0.3)T , the spatial
dependence parameter γ = 0.95 and variance σ2 = 0.2. The expected counts Ei are generated from
uniform on [10, 30], and given Ei, Yi is generated from the Poisson distribution with mean Eiθi.
We generate 200 replications from this model specification.

To assess the performance with respect to prior choice, several choices of subjective priors were
taken for σ2 in addition to the default prior, πD, and the half-Cauchy prior of Gelman (2006). The
subjective choice was the inverse gamma prior IG(a, b) with several different choices of a and b;
here, we define the IG prior as 1/IG(a, b) ∼ G(a, b) where G(a, b) has mean ab and variance ab2.
We consider five sets of a and b: (a, b) = (0.01, 0.01), (0.1, 0.1), (0.1, 100), (0.01, 500) and (0.01, 10).
The choices of a and b were selected to represent prior information ranging from weakly to highly
informative. To represent weakly informative priors, one might choose small and large values of a

and b, respectively, which are the last three choices above. The first two choices with small a and b

has been considered in several works, for example, Natarajan and Kass (2000). We found that the
results of inference is very sensitive to the prior specification. The first two combinations of (a, b)
gave greatly varying results while the last three gave fairly similar results. For illustration and to
save space, we selected the first two combinations and (a, b) = (0.01, 500) for reporting purposes.
The half-Cauchy prior of Gelman (2006) is

πC(σ2) ∝ 1
σ(1 + (σ/A)2)

.

For the half-Cauchy prior, we set A = 100 which makes it weakly informative. We tried several
values of A ranging from A = 0.1 to A = 100 but found that the inference is fairly robust. Thus,
we report only results based on one A specification, namely, A = 100. Note that the prior πD

is fully automatic with no hyper-parameters to be specified. In each replication, we ran 3 Gibbs
samplers for 10, 000 iterations and computed results using the last 3 × 2, 000 = 6, 000 samples.
Convergence has been checked by monitoring the Gelman-Rubin’s R2 statistic. Table 1 gives several
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statistical measures of performance, namely, the bias, mean-squared error (MSE) and coverage for
90% highest posterior density (HPD) sets. The average of the maximum-a-posteriori estimates
(MAPs) computed from the 200 replications is also reported.

The SMR column in Table 1 reports averages over all n = 100 sites on the spatial grid. Clearly,
the two informative prior choices (small a and b) on σ2 behaves erratically. For example, although
the coverage for β is reasonable, the coverages for γ and σ2 are meaningless. This could be due
to the high bias and MSE values for these two parameters. The three weakly informative prior
choices give fairly sensible results and are comparable to the half-Cauchy (with large A) and default
priors. The overall conclusion from Table 1 is that the weakly informative IG priors as well as the
half-Cauchy and default priors are sensible priors to use as they give good and consistent results.
In the subsequent numerical simulations, we use the default prior as the prior of choice for the HB
and AB approaches.

[Table 1 approximately goes here]

4.2 A Comparison Between Different Methods

After selecting the prior, our objective is to implement and compare the HB and AB methodologies
with respect to model parameter inference. In the Poisson-CAR regression model, inference on
the regression parameters are usually of primary interest (rather than prediction). Since the CK
and YL approaches are viable methods for estimation and inference on regression parameters, we
also compare their performance with HB and AB. Table 2 reports the results. The YL method
provides estimates, standard errors and confidence intervals for β based on asymptotic arguments
as well as estimates for γ and σ2. However, no confidence intervals are provided for σ2 and γ. The
CK method provides estimates of model parameters and relative risks but confidence intervals for
them are unavailable. In contrast, the HB and AB methods provide estimates, standard errors
and credible intervals for all model parameters as well as estimates of the relative risks, θ. This is
possible since inference is carried out using samples from the posterior density in the HB method.
In the AB method, numerical approximations to various marginal posterior densities are available.
Since one of the main purposes is to compare AB and HB in terms of implementation, we have
taken two versions of AB depending on their tuning parameters. The first and second versions
of AB, AB1 and AB2, respectively, correspond to the specifications (1) ηz = 1, ηπ = 5 and (2)
ηz = 0.5, ηπ = 20. The specifications of AB2 lead to a finer grid for numerical evaluations which
result in higher accuracy but longer computational time. In our simulation study, the computational
times are as follows. On a computer with Pentium IV dual processor, the approximate running time
for the MCMC in HB is 25 min per replication. For AB1, the total time for one replication is 34
minutes whereas for AB2, it is 3.83 hours. The first three steps (i.e., STEPS 1-3) in AB1 take only
43 seconds but to complete STEP 4 (needed for full inference), the time is 34 minutes. Similarly,
for AB2, the times are 3.28 and 3.83 hours, respectively. The computational time depends on the
size of Z which may vary from replication to replication in the simulation study.
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[Table 2 approximately goes here]

Estimation of β = (β0, β1)T in terms of the bias and mean square error (MSE) is best for CK
followed by AB2 and HB, with AB1 giving comparable results to HB. For the estimation of γ, YL
performs the best followed by HB, AB2 and CK in terms the MSE. For σ2, CK is the best in
terms of MSE followed by HB, AB and YL. For estimating the coverage, YL performed equally
with HB and AB2 for β1 but poorly for β0. The coverage of HPD sets for all model parameters
for AB1 are way off compared to the nominal coverage 90%. The coverage under AB2 is fairly
comparable with HB for β1 and σ2, but still way off for β0 and γ.

The above observations indicate that there is a considerable difference between AB and HB
particularly for construction of HPD sets. The discrepancies can be reduced at the expense of
increased amount of computational steps and time. To our surprise, we did not experience the
striking computational advantage of the AB method as mentioned by Rue et al (2009) in our
simulation studies. In searching for the reason behind this surprising behavior, we find this is due
to accurate estimation of the tail area of the posterior distributions for computing the HPD sets.
Figure 1 provides density plots of a randomly selected replicate (out of the 200) for the marginal
posterior distributions of all model parameters under AB1 and AB2. On each plot, samples from
the posterior in the HB method was used to compute a kernel density estimate and this was overlaid
in each panel. While the plots for β1 nicely coincide, discrepancies are clear for β0, γ and σ2 where
the difference in coverage are observed. Note that the point estimates are fairly comparable with
HB even under AB1 because the center of the posterior distributions are well matched. It is in the
tails that the difference is the largest, and the tail regions are crucial for the construction of the
HPD sets. This explains the differences in inference. Lawson, in the discussion of Rue et al (2009),
queried this potential drawback of the AB method which we explicitly establish here.

[Figure 1 goes here]

If one is interested only in point estimates of the model parameters, fine tuning of ηz and ηπ is
not needed. The posterior distribution can be evaluated only on a small number of points in Z to
yield comparable estimates in a relatively short time. For example, to get an estimate of β0, one
can apply AB1 based on steps (1-3) on the transformed grid and compute

E(β0 |Y ) =
∫

δ
β0 π(δ |Y ) dδ ≈

∫

Z
β0(z) π̂(δ(z) |Y ) dδ(z)

in less than a minute (approximately 43 seconds). The time reduction is from the fact that STEP 4
is avoided completely. However, for construction of HPD sets, marginal posterior densities need to
be evaluated for a number of β0 points on a grid which necessitates STEP 4 and the interpolation
scheme mentioned after STEP 4 earlier to transform Z back to the rectangular grid.
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4.3 Real example: Scottish Lip Cancer data

In this subsection, we like to report our experience with two real examples using all the procedures
discussed previously. Our first example is the Scottish lip cancer dataset which has been analyzed
by many leading researchers including Clayton and Kaldor (CK) (1987) and Yasui and Lele (YL)
(1997).

The Scottish lip cancer incidence data consists of the observed and expected cases of lip cancer
during the 6 years from 1975 to 1980 in each of 56 counties of Scotland along with the percentage
of the work force employed in agriculture, fishing, or forestry (AFF). The Poisson-CAR model is
considered with one covariate hi = AFF/10 whose information was not incorporated by CK. While
HB and AB2 are in close agreement except for the HPD set of β0. Note that AB1 has larger
discrepancy compared to AB2. The computational times are as follows: The total time taken for
HB is 22 minutes; for AB1 and AB2, the total time is 37 minutes and 5.16 hours, respectively.
These results are consistent with our simulation study in Section 4.1 and are reported in Table 3;
note that the numbers reported under YL are adopted from their original paper. Interestingly, YL
reports some results in their paper that are not in close agreement with HB and AB. For example,
the estimate of β1 is 0.08 which is significantly different from the HB and AB approaches (both
report the value at around 0.4). The 90% confidence interval for β1 is (0.08±1.65×0.23), concluding
that β1 is insignificant. However, both HB and AB results show that the covariate information is
strongly significant at 90% level. The estimates of β0 and σ2 for YL are also significantly different
from HB and AB.

[Table 3 approximately goes here]

4.4 Michigan Lung Cancer data

We give another real data example to illustrate the difficulty and sensitivity involved in selection of
the tuning parameters for AB. Our main aim of investigation is to find out whether the discrepancy
between HB and AB remains the same from application to application given a fixed set of tuning
parameters (for AB). Note that both HB and AB use the same prior elicitation here, namely the
default prior, so the differences, if any, will be due to tuning parameter (not prior) specifications.
The dataset we consider is lung cancer mortality incidences in 83 Michigan counties from 2001
to 2005, which were obtained from the SEER database (URL: seer.cancer.gov). Cancer mortality
incidence is rare enough relative to the population in each county so that a Poisson-CAR model is
reasonable. The expected count is computed by taking each county’s age distribution into account,
which is available from U.S. Census 2000. The expected age-adjusted number of deaths due to lung
cancer in each county is calculated according to the formula in Jin et al (2005).

We consider one covariate at the county level, namely, the proportion of the population under
poverty. This information is available from the SEER site at the county level based on Census 2000.
Better covariate information (such as smoking status) for predicting lung cancer is possible but this
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is currently unavailable at the county level. Another argument for choosing poverty is that a simple
correlation between poverty rate and SMR due to lung cancer is reasonably high at 0.40. Thus, for
the purpose of illustrating the issues with AB, we consider poverty as a covariate. Figure 2 shows
the spatial distributions of observed SMRs and poverty over different Michigan counties which can
be seen to have similar spatial distributions. Running the analyses with the four approaches, Table
4 shows that the coefficient of poverty is significant for AB, HB and YL.

[Figure 2 approximately goes here]

[Table 4 approximately goes here]

It is natural to take the HB approach as the benchmark. We have checked convergence of
the MCMC samplers until they reached satisfactory levels. We applied the tuning parameter
specifications of AB as set in the Scottish lip cancer dataset and the simulation results. However,
it turns out even AB2 has severe disagreements with HB in this case. Since σ2 is smaller in this
example, this is perhaps the reason for such a discrepancy; the δ-grid for AB is too coarse to give
rise to accurate numerical evaluations. Based on the estimated value of σ2, we refined the grid
by specifying ηz = (0.5, 0.5, 0.25, 0.125), thus increasing the resolution of the Z grid. We call this
AB3. The refinement reduced differences with HB but increased computational time significantly.
The computational times are 19 minutes for HB, 22 minutes for AB1, 46.4 minutes for AB2, and
6.30 hours for AB3. This example clearly illustrates that besides the computational differences, the
tuning parameters need to be chosen carefully in AB. In contrast, HB is more automatic once the
prior is specified. The smoothed estimates of SMR are displayed in Figure 3. Apparently, Figure
3 does not convey any noticeable difference because they are generated based on point estimates
where there is not much difference between HB and AB. However, the difference between the two
methods will be prominent in terms of mapping HPD sets. In HB, obtaining HPD sets for all
83 counties is definitely possible since we have posterior samples from all the counties. However,
this is not computationally feasible in AB since one can well imagine the computing time required
(from previous discussions) for all 83 Michigan counties. This naturally prohibits any statistical
comparisons between counties, for example the determination of high risk zones, via AB.

[Figure 3 approximately goes here]

5 Discussion and Conclusion

In this article, we have compared the EE, EB, HB and AB approaches in terms of their ability to
make inference for the Poisson-CAR model. We have outlined the current status of all the four
procedures in this context and have highlighted the pros and cons associated with each of them.
Clearly, when only point estimates of the model parameters are of interest, EE is the simplest to
implement. However, as one proceeds to require further statistical inference (for example, calcu-
lating standard errors and confidence intervals), one needs to look at HB and AB as alternative
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procedures. Our main objective was to find a procedure which would be simple, flexible and easy
to implement. Until recently, the Gibbs sampling based HB was proven to be the most powerful
method in this setup. However, the HB is not without difficulties. For example, even after selecting
the appropriate prior, the MCMC implementation and check for convergence can be challenging
although there are fairly reasonable guidelines available in the literature. Thus, for searching an
alternative and computationally less demanding procedure, we were led to the recently proposed
AB. However, we faced several obstacles in its implementation.

To our surprise, the AB procedure took a lot more time than the well established HB approach
at least in this setup. For the simple Poisson-CAR model, the time difference was more than several
hours depending on the degree of inferential accuracy one is aiming for. This problem is further
magnified when one is required to obtain two or more HPD intervals, for example in the case of
the 83 Michigan counties. Although AB does not have checks on convergence, it requires the user
to define several tuning parameters in its implementation. There is no clear guideline to selecting
these tuning parameters. While some intuitive specifications of tuning parameters can be set for
simulations (since the parameter values are known), this is more difficult in the case of real data
and can throw off inference results if they are not reasonably set.

The AB approach has been shown to be numerically close to point estimates based on marginal
posterior distributions but there is no theory nor numerical studies that indicate that the AB
approximation is close to the true full posterior distribution. We have demonstrated in this paper
that even for marginal posterior distributions, the tails do not match easily. Although we believe
that it is possible to reach as close as one desires at the tails, it is not clear how to prepare a guideline
for this (for example, selecting the right resolution for the δ-grid). Further, error bounds are not
available from previous works on AB. Thus, we face a major hurdle in the AB implementation.

Our conclusion is that AB is useful for deriving point estimates with potential time savings
compared to HB but for full inference (such as constructing of HPD sets), the implementation
of AB is both time consuming and possibly inaccurate. It may happen that there could be an
efficient way of coding using lower level languages such as C + + which could eventually reduce
the total computational time. However, HB could have the same advantage if it were written in
C + +. In our experiments, we used MATLAB which is a commonly used platform for statistical
computations.
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Figure 1: Posterior Densities from the AB and HB method
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Table 1: Comparisons of different choices of prior specifications.
Prior Specification Parameter (True Value) SMR

β0(0.1) β1(0.3) γ (0.95) σ2 (0.2) θ̄

Bias×103 -87.03 39.40 -783.49 2527.24 -1.47
IG(a, b) MSE×103 16.84 6.79 619.66 6392.90 54.81

a = 0.01, b = 0.01 Average of MAPs 0.02 0.32 0.18 2.62 1.07
Coverage 92.5% 100% 0% 0% 89.5%

Average width of HPD set 0.36 0.60 0.84 1.30 0.75

Bias×103 -65.07 31.84 -496.76 407.16 -1.94
IG(a, b) MSE×103 13.23 5.42 280.52 167.78 41.48

a = 0.1, b = 0.1 Average of MAPs 0.04 0.32 0.52 0.58 1.07
Coverage 67.5% 96.5% 20.5% 0% 91.8%

Average width of HPD set 0.27 0.32 0.76 0.34 0.69

Bias×103 -45.10 27.90 -197.52 4.21 -2.91
IG(a, b) MSE×103 10.84 4.88 62.78 2.73 35.29

a = 0.01, b = 500 Average of MAPs 0.06 0.32 0.87 0.19 1.08
Coverage 84.0% 89.0% 94.0% 92.0% 89.1%

Average width of HPD set 0.31 0.22 0.49 0.19 0.59

Bias×103 -47.05 27.32 -209.41 13.53 -3.06
Half Cauchy MSE×103 11.06 4.84 69.14 3.00 35.32

A = 100 Average of MAPs 0.06 0.32 0.85 0.19 1.08
Coverage 82.5 % 89.5 % 92.0 % 92.5 % 89.3%

Average width of HPD set 0.30 0.22 0.50 0.20 0.59

Bias×103 -46.20 27.25 -200.42 4.57 -3.10
MSE×103 10.99 4.83 63.51 2.54 35.27Default

Average of MAPs 0.06 0.32 0.86 0.18 1.08
Coverage 84.0% 89.5% 94.5% 93.0% 89.1%

Average width of HPD set 0.28 0.22 0.48 0.19 0.59

Note: SMRs in the last column is averaged over all the 100 sites.
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Table 2: Comparison of the CK, YL, HB and AB approaches
Method Parameter (True Value) β0(0.1) β1(0.3) γ(0.95) σ2(0.2)

CK Bias×103 -19.20 22.00 -211.99 -7.54
MSE ×103 8.84 4.38 90.28 2.27

RMAD×102 77.65 17.56 22.84 19.61
Average of Medians 0.05 0.32 0.79 0.19

Bias×103 -51.74 29.07 -114.08 0.24
MSE ×103 12.37 5.58 61.55 5.39

YL RMAD×102 98.18 19.62 16.33 26.05
Average of Medians 0.01 0.33 0.93 0.19

Coverage 27.0% 89.0% — —

Bias×103 -46.20 27.25 -200.42 4.57
MSE×103 10.99 4.83 63.51 2.54

RMAD×102 91.14 18.48 21.15 19.71HB
Average of MAPs 0.06 0.32 0.86 0.18

Average of Medians 0.06 0.33 0.79 0.20
Coverage 84.0% 89.5% 94.5% 93.0%

Bias×103 -47.03 27.42 -282.62 25.70
MSE×103 11.17 4.84 126.26 3.08

RMAD×102 92.05 18.49 29.84 21.32AB1
Average of MAPs 0.05 0.33 0.75 0.21

Average of Medians 0.06 0.33 0.70 0.23
Coverage 34.0% 82.5% 35.5% 80.0%

Bias×103 -46.83 27.16 -304.79 27.95
MSE×103 11.21 4.83 140.45 3.19

RMAD×102 92.19 18.46 32.13 21.88AB2
Average of MAPs 0.06 0.33 0.70 0.23

Average of Medians 0.05 0.33 0.76 0.21
Coverage 50.25% 90.45% 58.29% 94.47%

AB1: ηz = 1, ηπ = 5, AB2: ηz = 0.5, ηπ = 20
RMAD = relative mean absolute deviation

— values have not been reported by Yasui and Lele (1997)
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Table 3: Results for the Scottish Lip Cancer data
Method/Parameter β0 β1(AFF/10) γ σ2

CK -0.25 0.40 0.99 0.47

YL -0.14 0.08 1 1.12
(se) (0.25) (0.23) — —

HB -0.31 0.38 0.96 0.64
(se) (0.39) (0.13) (0.04) (0.23)

MAP -0.33 0.39 0.99 0.54
Median -0.31 0.38 0.97 0.60

(HPD set) (-0.92, 0.33) (0.17, 0.59) (0.92, 1.00) (0.29, 0.98)

AB1 -0.29 0.37 0.96 0.61
(se) (0.21) (0.11) (0.02) (0.16)

MAP -0.31 0.37 0.98 0.53
Median -0.28 0.37 0.97 0.60

(HPD set) (-0.63, 0.03) (0.19, 0.54) (0.93, 0.99) (0.36, 0.85)

AB2 -0.31 0.37 0.95 0.67
(se) (0.29) (0.13) (0.04) (0.23)

MAP -0.34 0.39 0.98 0.52
Median -0.27 0.39 0.97 0.60

(HPD set) (-0.77, 0.14) (0.16, 0.58) (0.90, 1.00) (0.31, 1.00)

AB1 : ηz = 1, ηπ = 5, AB2:ηz = 0.5, ηπ = 20
— values have not been reported in Yasui and Lele (1997)
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Figure 2: Observed SMR of Lung Cancer and Poverty in Michigan
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Table 4: The Analysis of Michigan Lung Cancer data
Method/Parameter β0 β1 (poverty) γ σ2

CK -0.25 2.31 -0.60 0.06

YL -0.27 2.51 -0.60 0.06
(sd) (0.06) (0.59) * *

HB -0.23 2.19 -0.31 0.07
(sd) (0.07) (0.63) (0.42) (0.02)
MAP -0.26 2.27 -0.55 0.06

Median -0.24 2.21 -0.36 0.07
(HPD set) (-0.35, -0.13) (1.20, 3.22) (-0.97, 0.30) (0.04,0.09)

AB1 -0.22 2.07 -0.25 0.07
(sd) (0.04) (0.32) (0.30) (0.01)
MAP -0.23 2.09 -0.30 0.06

Median -0.22 2.09 -0.25 0.06
(HPD set) (-0.28, -0.17) (1.54,2.59) (-0.74,0.22) (0.05,0.09)

AB2 -0.23 2.12 -0.22 0.07
(sd) (0.05) (0.42) (0.36) (0.02)
MAP -0.23 2.11 -0.39 0.06

Median -0.23 2.17 -0.24 0.07
(HPD set) (-0.31, -0.16) (1.43,2.80) (-0.80,0.34) (0.04,0.09)

AB3 -0.24 2.19 -0.26 0.07
(sd) (0.05) (0.42) (0.39) (0.02)
MAP -0.24 2.15 -0.43 0.06

Median -0.23 2.21 -0.29 0.07
(HPD set) (-0.31, -0.17) (1.51,2.87) (-0.90,0.30) (0.04,0.09)

AB1 : ηz = 1, ηπ = 5
AB2 : ηz = 0.5, ηπ = 20

AB3 : ηz = (0.5, 0.5, 0.25, 0.125), ηπ = 20
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Figure 3: Observed SMR and estimated SMR of Lung Cancer in Michigan
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