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Beetle Outbreaks with Spatial and
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ABSTRACT. Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked
spatial and temporal patterns. While these patterns are of interest in themselves, we focus on
statistical methods for estimating the effects of underlying environmental factors in the presence of
spatial and temporal autocorrelation. The most comprehensive available information on outbreaks
consists of binary data, specifically, annual presence or absence of outbreak for individual counties
within the southern United States. We demonstrate a method for modeling spatially correlated
proportions, such as the proportion of years that a county experiences outbreak, based on annual
outbreak presence or absence data for counties in three states (NC, SC, and GA) over 31 yr. In this
method, the proportion of years in outbreak is predicted using a marginal logistic regression model
with spatial autocorrelation among counties, with adjustment of variance terms to account for temporal
autocorrelation. This type of model describes the probability of outbreak as a function of explanatory
variables such as host availability, physiography, climate, hurricane incidence, and management type.
Explicitly including spatial autocorrelation in the model improves estimates of the probability of
outbreak for a particular county and of the importance of the various explanatory variables. For- Sci.

46(1):95-107.

Additional Key Words: Generalized estimating equations, spatial prediction, marginal models,
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these paterns mean the data do not fit the assumptions
required for classical regresson. We describe here the
development of a statistical model which properly ac-
counts for these autocorrdations and which alows inclu-

1 Introduction

SOUTHERN PINE BEETLE (Dendroctonus frontalis Zimm.) out-
bresks occur in forests throughout the Southern United States

and can cause tremendous economic damage (Holmes 199 1,
de Steiguer e d. 1987); hence there is great interest in
understanding their causes and in improving tools to predict
outbresks. Visua andysis of maps of outbresks across the
region (Price e da. 1998) reveds driking tempora and
spatid patterns, but the autocorrelations associated  with

son of additiond explanatory covariates in the modd.

Previous andyses have examined spatid patterns such as
those in Figure |, and often related them to host availability
or climate. Tempord patterns such as those in Figure 2 have
adso been the subject of study, frequently related to wesather
or to endogenous cycles of the beetle and its predators.
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Figure 1. North Carolina, South Carolina, and Georgia proportion
of years from 1960 to 1990 with southern pine beetle outbreaks.

Spatial  Patterns

Mawby and Gold (1984) found that regiond outbresks of
southern pine beetle (SPB) exhibited varying levels of spatid
autocorrelation depending on the severity of tha year's
outbreak. Outbreaks in the United States generaly occur in a
diagond band from centrd Virginia to northeastern Texas,
corresponding roughly to the coniferous-broadlieaved semi-
evergreen forest ecoregion (Baley 1995). Price and Doggett
(1982) visudly compared the long-term digtribution of out-
bresks to the didribution of one of its host species, shortleaf
pine (Pinus echinata Mill.). Pye (1993) noted a smilar
correspondence with the timber volumes of shortleaf plus
two other important host species, loblolly and Virginia
pines (Pinus taeda L. and P. virginianaMill.), recognizing

Figure 2. Proportion of counties in outbreak in NC, SC, and GA for
each year.
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that the beetle exploits other southern pine species to
vaying degrees.

Temporal Patterns

Southern pine beetle populations vary dramaticaly over
time, oxcillaing between endemic and outbresk conditions,
where an outbresk is defined as a least one southern pine
beetle spot infestation per 405 ha (1,000 ac) of Ioblolly/
shortleaf or oak/pine type forest (Price et d. 1998). Various
researchers have noted a periodicity but have reported these
over different spatiad scdes. Pye (I 993) cited a cycle length
of 6-7 yr for recent outbresks spanning the southern United
States, but Mawby and Gold (1984) reported varying
periodicities when the region was divided into 24 subregions.
Turchin et a. (1991) found tempora autocorrelations at lags
of both 1 and 2 yr for populations in East Texas and concluded
that delayed density dependence was a more important regu-
lator of populations than density-independent factors such as
climate.

Ungerer et d. (1999) have clamed a climatic factor may
be important by showing that cold temperature events a the
northern limit of outbresks match experimentaly determined
lethd tolerances for the beetle. If climae is an important
determinant of tempord paterns it is likdy a complex
relationship. Climatecan  affectpopulation  dynamics  through
direct impact on beetle metabolism, viahility, and generation
length (Gagne et d. 1980, Hines et d. 1980), or pheromone
communicetion (Fares e d. 1980, or populaion leves
indirectly by modifying the resstance of host species to
beetle attack via drought or flooding dress (Kakstein 1976,
Lorio 1986) or disturbances such as lightning (Coulson et d.
1983).

Broad-scale changes in the region could be caused by
factors such as (1) regionwide changes in host forest types
(Mawby et d. 1989); (2) warmer temperatures from in-
creased atmospheric CO, or other causes (Ungerer et d.
1999); ad (3) lengthened rotations on national foredts,
potentidly increesing outbresks on surrounding private for-
eds (Carter et a. 1991). Evaduation of the likely impacts of
such changes requires improved doatisticd models which
simultaneoudy account for the gpatid patterns of beetle
range and dispersa, the temporal autocorrelations associated
with predator-prey population cycles, and mechanistic meser
sures of host condition and climate. Many studies of southern
pine beetle dynamics have been peformed in the pest, but
none have been tallored secificaly to data in the form of
spatidly corrdlated proportions. Spatid datisticd  methods
for Gaussan (normdly didtributed) data have begun to be
widely used in entomologica Sudies (Liebhold et a. 1993).
Methods for non-Gaussian data are dso beginning to appear.
Recently, Preider et d. (1997) demondrated a very flexible
generdized additive modd to dudy reationships between
twig bedle atacks and explanatory varigbles, including a
function of gpatid location as an explanatory variable.

The objective of this dudy is to demondrate use of a
margind logigic regresson modd for spdidly correated
proportions, which aso incorporates information about tem-
pord autocorrdation. We use the margind logigtic regres- -
sion mode to describe the patern of southern pine beetle!



outbresks and assess the explanatory power of environmenta
vaiables for predicting where outbresks tend to occur in
North Carolina, South Cardlina, and Georgia This type of
modd has two features that digtinguish it from an ordinary
liner modd: (1) the logigic form and (2) incorporation of
soatid and tempora autocorrelation.

The advantage of a logigtic type of model over a more
familiar linear or nonlinear modd is that it can be talored to
a binary response, like presence or absence of outbreak, or to
a proportion, such as proportion of years in outbreak. With
such a modd we can make edimates of the odds of an
outbresk in a given county or group of countiess A more
technicd advantage of logigtic regresson over ordinary re-
gression has to do with the methods of edimation. Logistic
regresson incorporates information about the variance of
binary/proportion data into the estimating equations to pro-
vide more efficient estimates than ordinary regresson would.

The second diginguishing festure of this type of modd,
the incorporation of spatid and temporal autocorrelation,
adso provides advantages both for estimation of the effects of
the regressor variadbles and for estimation of the probability
of outbresk in a given county. If spatid and tempord
autocorrdaion are ignored in fitting the modd, the param-
eter etimates have lower precison (higher variances) then if
the correlations are incorporated into the fitting procedure.
Furthermore, if ordinary regression software is used the
standard errors that are produced are incorrect. Thirdly, and
the greastest benefit of dl, etimaes of the probability of
outbresk in a given county are much more precise than if the
spatia  autocorrelation is ignored. This is because the loca
patens of vaiability are taken into account when making
edimates for a dte, wheress in ordinary logistic regresson
they are not.

The bulk of this aticle demonstrates the fitting and inter-
pretation of a margind logiic regresson mode which is
described in Section 2. Sections 3 and 4 demongrate an
andyss of the southern pine beetle data starting with ordi-
nary logistic regresson and adding complexity as it is needed.
We show some typicd steps an andyst might go through and
some methods for evauating the adeguacy of each modd.
Examination of the resduds from ordinary logigic regres
son in Section 32reveds spaia and tempora autocorrelation,
indicating that ordinary logidic regresson is not the best
procedure for these data. In Section 4.1 we show how tempo-
ra autocorrlation changes the variance of the proportion
of years in outbreak. The ordinary logistic regression
model is next modified to account for temporal
autocorrdation and fitted usng weighted logistic regres
don, which is readily avalable in commercid software.
Even after accounting for the tempord autocorrdation,
gpatia correlation remains, s0 the last step, in Section 4.2,
is to incorporate spetid correlation and fit the mode using
generdized edimating eguations. Section 5.1 shows how
to use this type of mode to interpolate spatidly (i.e, to
predict the proportion of years in outbresk for a county
with missing data). Section 52 discusses the use of this
modd for making predictions into the future, and Section
6 gives a generd discusson of our conclusions

2 Marginal Logistic Regression Model

The generd cdass of modes known as margind models
(Liang and Zeger 1986, Diggle & d. 1994) dlows for
covariates (explanatory variables) and for spatiad and tempo-
rd corrdation but does not require full specification of the
joint probability digribution of al dtes Margind modes
were initidly proposed for longitudind binary data (Liang
and Zeger 1986), but have recently been applied to spatidly
corrlated data as well (Albert and McShane 1995, Gotway
and Stroup 1997). The term “margind” refers to modeding the
expected response of a dte to the regressor variables, rather
than the joint responses of dl stes smultaneoudy. The focus
is on the relaionships between the explanatory varigbles and
the probability of outbresk. In this type of modd, the spatid
and tempora correlations are secondary, included to obtain
better edtimates of the expected response. The margind
logistic modd condgsts of a mode for the mean,

(a5 (o) Dl €]

where p, is the probability with which the ith county experi-
ences outbresks, and a modd for the variances and coveri-
ances among the sites. The response variable V) is the propor-
tion of years each county experiences outbresks. The ex-
planatory variablesx) are county-level messurements that is
we have one measurement of each of the explanatory vari-
ables for each county. Hence, the explanatory variables vary
over space but not over time, and they can help predict or
explain generd spatid petterns of southern pine beetle out-
bresk but cannot shed light on why outbresks occur in some
years but not others. Spatid correlation is explicitly incorpo-
rated into the logidtic regresson modd using an exponentia
covariance  function.

In addition, we aso know which years each county
experienced outbresks, so we use the outbresk data for
individud years to modd tempord autocorrdetion. The
autocorrelation over time within each county is modded
by a first-order Markov process. The temporal
autocorreletion then enters into the variance of the propor-
tion of years in outbresk for each county. The methods we
present are flexible and can be used with explanatory
variables other than those presented here

3 Preliminary Analysis

Severd explanatory varigbles were consdered, dl a the
county levd. These incduded
»| two measures of volume (m3/ha) of host trees: sawtimber
volume (229 cm dbh minimum for softwoods, 27.9 cm
dbh for hardwoods), and poletimber volume (12.7 to 22.8
cm dbh for softwoods and 12.7 to 27.8 cm dbh for
hardwoods);

»| three physographic variables proportion of land area
classified as mesic, hydric, and xeric;

» three dimate varigbles computed separately for the fal,
winter, spring, and summer seasons. average daly mini-
mum temperature (C), average daly maximum tempera:
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ture (C), and average monthly precipitation (cm); number
of 6 hour periods with hurricane force winds recorded in
the county from 1960 to 1990;

® five management variables aea of land (in 1000 ha)
owned by the federa government, forest industry, indi-
viduals, private corporations, and dates;

» and three location vaiables devation (m), latitude, and
longitude.

The host species incude loblolly, shortlesf, Virginia,
pitch (Pinus rigida), sand (Pinus clausa), pond (Pinus
sroting), and Table Mountain (Pinus pungens) pines and
spruce (Pinus glabra), The estimates of host volume, phys-
ogrgphic  variables, USDA Forest Service and forest industry
land area were obtained from the USDA Forest Service's
Forest Inventory and Andyss Daa Base Relrievd System
(Hansen et d. 1992). Hurricane track data were obtained
from NOAA's Atlantic Oceanographic and Meteorologica
Laboratory’s Hurricane Research Divison webste (Landsea
1995). The climate variables were computed from 30 yr
(1960-1991) climatologicd averages by month for each
dation, which were obtained from the Southeest Regiond
Climate Center webste for Climatologicd Normds 1961-
1990 (Owenby and Ezell1992). The averages for dl dations
within a county were averaged together to obtain the county
average for each month. Three months were then averaged
together to obtan seasonad averages for fal (September
through November), winter (December through February),
gring (March through May), and summer (June through
August) for each county. Climatological averages were not
avaladble for many counties; 45 counties were missing pre-
cipitation records, and 213 counties were missing tempera-
ture records. The vaue from the avalable weather ation
nearest to the county center was substituted for any missing
county. Elevetion, latitude, and longitude of the stations were
obtained from the National Climatic Data Center's coopera-
tive datior master list (Nationd Climatic Data Center 1995).

3.1 Selection of Variables

The generd spatid pattern of host volume (Figures 3 and
4) is dmilar to the pattern of southern pine beetle outbresks
(Figure 1), with high incidence of outbresks in the northwest-
en pat of the region and some high vaues in counties dong
the coadt, but the correspondence is far from exact. There is
aso some correspondence between the physiographic vari-
ables (Figures 5 and 6) and proportion of years in outbreak.
Elevaion increeses from the coast in the southeast to the
mountains in the northwest (Figure 7). Temperature in-
creases from northwest to southeest (Figure 8), and precipi-
tation tends to be highest dong the coast and in some parts of
the mountains (Figures 9 and 10).

Many transformations and combinations of these explana-

tory variables are possible. A preliminary analysis using

ordinary linear regression, ignoring spatid and tempord
correlation, helped to narrow the st of explanatory variables
to a managegble sze. In the prdiminary andyss, a number
of modds were fit to

sin {‘\1,1 JH \i
usng ordinary linear regression. For a first pass, dl variables
were included in the model, and then stepwise regression was
used toaddinteradion tems. Next, first-order terms with low
F-vaues were dropped unless they were pat of an included
interaction @m. The set of explanatory variables sdected for
further consideration included In (dlevation), longitude, square
roots of saw and poletimber volume per ha, square roots of
proportion of 1and area classified as xeric, mesic, and hydric,
square roots O.f land area owned by the federd government
and by private forest industry] average number of hurricane
wind periods pe year, dl 12 of the climate varigbles, and the
5 interactions:

hurricanes per year x +/mesic,

/ saw volume,

maximum summer temperature X

Figure 3. Poletimber volume (m3 /ha) for host species. Four
counties were missing data, indicated by a dot in the legend.
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Fiaure 4. Sawtimber volume [m3/ha) for host species. A dotin the
legend indicates missing data.



Figure 5. Proportion of land area classified as hydric. A dot in the Figure 6. Proportion of land area classified as xeric. A dot in the
legend indicates missing data. legend indicates missing data.

Figure 7. Ln(elevation) in m. Figure 8. Mean daily maximum temperature (C) for summer
months (June, July, August). Climatological average for 1961-

Figure 9. Mean fall(September,October,November) precipitation Figure 10. Mean summer precipitation (cm). Climatological
(cm). Climatological average for 1961-1990. average for 1961-1990.
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maximum winter temperature X +/saw volume ¥

average Soring precipitation x  ~”polevolume, and

minimum fdl temperaure X +/saw volume|.

3.2 Residuals from Ordinary Logistic Regression

Ordinary logistic regresson was then used to fit this set of
explanatory variables to Y| Ordinary logistic regresson uses
maximum likdihood to fit the logistic modd for the meen
given in Equation (1), but assumes that observations are
uncorrelated, and that the proportion of years in outbresk is
a binomid random varigble with variance p/| 1 —p,)/n| where
n =3lyrand p; = probability of outbresk in county i.

To evduae the fit of this modd, we computed deviance
resduas. Deviance resduds,

i .
d; = \/2:7 Y; log L +2(n; —n;Y, )log{ ],
p; - P;

measure the deviations of the fitted values, p;, from the
observed proportion of years in outbresk, ¥;, for each
county (Collett 1991 p. 122). The deviance is twice the
difference between the log likelihood of the data under the
hypotheszed model and the log likdihood under a mode
that includes a separate parameter for each county. This
quantity is made up of a sum of contributions from each of
the counties. The deviance resdud for a county is then
defined as the square root of the county’s contribution to
the deviance. Notice that the deviance residua involves
the ratio of the observed to the predicted proportion of
years of outbreaks and the ratio of the observed to pre-
dicted proportion of years without outbresks.

If the deviance residuds are divided by ther asymptotic
standard errors (theoretica standard errors when the sample
sze is infinitdy large), they are cdled “sandardized devi-
ance resduds’ (Collett 199 1). The standardized deviance
resduds from the ordinary logistic regresson of logit( 1) on
27 explanatory variables show some spatid pettern. They
tend to be zero or dightly negdive in the large area of
southern Georgia where no outbresks were ever observed and
postive in the higher devations, thus this modd was not able
to account for dl of the spatid varidbility in southern pine
beetle outbresks. An empiricd semivariogram was com-
puted from the standardized deviance resduas, 4| (Cressie
1991),

N(h)

¥ )—WZ(

i+

where h = distance between two counties, N(h) is the numbe,r
of pairs of counties /i km apart, and the subscripts i and i*
indicate two different counties that are 4 units apart,

The semivariogram of the standardized deviance re-
Sduas shows that counties are spatiadly corrdaed to a
distance of about 160 km; beyond this distance counties
are essentially uncorrelated (Figure 11). The sill of a
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Figure 11. Semmivarioaram of standardized deviance residuals
from ordinary logistic regression on 27 variables. This model
does not take spatial or temporal autocorrelation into account.

semivariogram estimates the variance of the response
variable. According to Figure 11, the variance of the
standardized residuals appears to be about 2.9. However,
snce these resduds ae dandardized, we would normaly
expect them to have variance one. Obsarving a variance
larger than that expected for a binomid modd is cdled
“overdispersion.”

4 Incorporating Temporal and
Spatial Autocorrelation

4.1 Temporal Autocorrelation

A possible reason thet the sl (the observed variance) is so
high is that outbresks in a given county are corrdaed from
year to year. Since the outbresks in a county are correlated
from one year to the next, the variance of the proportion is not
simply p,(1-p,)/n. Letting Ufj be the outbreak status (0 or 1)
in county { in year J, the variance of the proportion is

Var(¥)= Va{l? U.J
:"—ZVM(UU)'F EZCOV(UU,U)

£ &x]

,u,(l—pr LPJ(‘ pf)ZZCOH(UU Ui)

n Jok#j




The additiond term is the totd of dl of the corrdations
among different years. If years are independent, this term
is zero, and we get the usud binomia variance, Var(Y) =
p] - pp/n| If the correlation from one time to another
within a county is positive, the variance of Y] is larger than
Pl =pp)in

It is possible to account for the temporal autocorrdaion
by fitting a modd to it. We alow eech ste to have a separate
time corrdation pettern, but within a dte the correation
modd is the same for dl years. For smplicity, the probability
of outbresk for the ith site, p, is assumed to be constant over
time for each Ste that is there are no overal increasing or
decreasing trends in the number of outbresks over time.

A smple modd for the time series for eech dte is a first-
order Markov process, where the probability of outbreak
in one year depends only on whether there was an outbresk
in the previous year. Under a fird-o]rder Markov process,
the correlation between observations at time j| and time k
a dgte 1is

oliH.

The correlation parameter pj gives the correlaion between a
paticular year and the previous year, so if the correation
between two consecutive years is 0.6, then the correlation
between observations two years apart is (.62 0.36 under the
first-order Markov model. The correlation parameter is eti-
mated for each site by computing the first-order autocorrelation
coefficient

m=1
] ..
— Uy~ H)WU;ja 1)
A i Jj=1

pi =

¥a_y)

I ']

Kedem (1980, p. 70).
The total correlation among pairs of years within a site is

IUILURK, = Z ‘Z Corr(U;;, Uy)
J k)

= Z z lej—kll

i k#j

= P L —phi-l |
=2+ ibm-u_J_ﬁalpi U

Estimated temporal autocorrelation coefficien tS range from
~U.21 to U.78 tor countics that cver had any -Southem  pine

beetle outbreaks, with 50% of the cour having] p; > 0.32.
Thus there is a substaniiat amount of correlation over time
within -a-county -ané ‘me amount or autocorrelation varies
widdy among counties. The next quesion is whether the
first-order Markov process adequately describes the ob-
served tempora correlation pattern. In a second-order Markov
process, the probability of outbreak depends on the outbresk
datus of the previous 2 yr, not just the previous year. We
compared the firg-order model to a second-order Markov
process using a Chi-square test for goodness of fit (Guttorp

1995 p; 71) with significance level 0.05 for each county. The
first-order model appears to be appropriate for this process.
In only 7 (4%) of the 182 counties that ever experienced any
southern  pine beetle outbresk was the first-order mode
rgected in favor of the second-order model.

The standard method of edtimation for logistic regresson
implemented in software packages such as SAS® PROC
LOGISTIC (SAS Inditute 1997) is maximum likelihood
under the assumption that the response variable has a bino-
mid digtribution. Our response variable is not binomid since
the observations are corrdlated over time and the joint distri-
bution is not known, so maximum likelihood estimation is not
possible. However, a method of edimation caled “quasi-
likelihood edtimation” makes use of what is known about the
variance of Y. The qued-likdihood method involves itera
tively solving the sysem of eguations

pviy-p=0
where the ith dement of y is V] the ith dement of p is p

s d
T
and V is a diagonal matrix with ith diagonal element Var(Y,)
(Diggle et d. 1994, Appendix A.6). In this particular prob-
lem, where we want to account for correlation over time but
we dill assume that observations are spatiadly uncorrelated,
this method of edimation amounts to weighted logigic re-
gresson, replacing the binomid variance expresson

p{'(]“pr').

n;

with the appropriate variance of

pi(l—p;)
y, Ho—FL
n;

[

(1+TOTCORR; I n;).

It is easy to implement using software that allows weighted
logistic “regresson. For example, in SAS®™ Proc Logsic

(SAS Ingtitute 1997), one would regress ¥} on the explanatory
varisbles and specify weights w; = U1 + TOTCORR/n)
where w) is a multiplier for the inverse of the variance.
Several counties experienced no outbresks between 1960 and
1990. For these counties, we set the corrdation between any
2 yr to be 0.99, which gives TOTCORR = (30)(3 1)(0.99).

The dandardized deviance resduds resulting from fitting
this mode ill show spatid autocorrelation, but now the sl
is close to one (Figure 12). The exponentid semivariogram
fitted to the empiricd semivariogram by weighted nonlinesr
least squares (Cressie 1991) is

Y(h)=0.26 + 0.81(1 4 6—31'1!?6.8) J

This function has a sill of 1.07 and arange of 76.8 km. Note that
in the exponentia corrlation mode, the range is the distance at
which the semivariogram is 95% of the sll. Incorporating the
tempora autocorrelation into the variance of ¥} seems to account
for dl of the “overdisperson” seen in the data.
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400 600
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Rigure 12. Empirical and fitted semivariograms of standardized!
devianceresiduals from weighted lobistic regression on 27 '

variables. Temporal autocorrelation is incorporated into the
variance of ¥}

4.2 Incorporating Spatial Autocorreh

The lagt refinement to the modd is to incorporate the spatia
autocorrelation, resulting in the model

logit(p;) = x/B with
V1= Var(y)= A"*RA" @

where

A= diagﬂMJ(h TOTCORR, / 1,)]

ﬂ!

o~3hla

6
R, 4= CORR(Y,|Y,.)= C'O)flql. :

(]

/i is the distance in km between counties i and i*, and a isthe
range of gpatid correation.

We use the fitted exponentid semivariogram function to
edimeate the pairwise covariances among the counties. The
method of generdized estimating equations can be used to
esimate the parameters of a margind logistic regresson
model with spatid corrdation. The procedure is to itertively
solve the equation:
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DV'i(y-p): 0

{Liang and Zeger 1986: Gotway and Stroup' 1997).

Next we sequentidly dropped nonsignificant terms from
the spatial logistic modd. At each step we dropped the least
dgnificant term, with the exception that we retained any
vaidbles that were involved in a sgnificant interaction. Then
we refit the semivariogram modd and the spatid logidtic
modd before proceeding to drop another term. The Wald
datistic was used for dl tests For testing one verigble, the
Wald gdistic hasthe familiar formof a normal score;-itis just

B,
-T(Bx- )Il

where 8, is the parameter being tested. This statistic' is
compared to the dandard norma distribution. Any linear
combindtion of parameters, LB, where L is a matrix of
coefficients sdecting eements of ] may be tested using
the Wdd ddidic (Gotway and Stroup 1997). The genera
fom is

W = (LBY (LVar(B)L’)"' LB,

where Var(B) ~(D’V"'D)'| and the hypothesis being tested
isHyj LB = 0. For large samples, the Wald statistic approaches
a chi-squaredistributionwithdegrees of freedomequal to the
rank <of L.-

Thirteen variables were retained in the’ Sequentiad  proce-
dure described above usng an ol = 0.10 Sgnificance level
(Table 1). As a find check, the 14 varigbles that had been
dropped from the origina 27-varisble mode were tested
smultaneoudy usng a Wad test with 14 degrees of freedom.
The P-vdue for dropping al 14 variables from the mode was
055, indicating that together they do not contain sgnificant
explanatory power beyond that contained in the find model
of Table 1.

In the fitted modd, the probability of southern pine
beetle outbresks incresses with the amount of fal precipi-
tation; this is the single gdrongest predictor of outbresk
probability and aso visudly corresponds well  with the
patern of outbresks (Figure 9). The edtimated probability
of outbreak tends to be higher for areas with dry summers
and lower for aress with high summer precipitation. For a
given volume of sawtimber, the edimated probability of
outbresk increases as summer or winter daily maximum
temperature increases. Looked at the other way, probabil-
ity of outbresk increases with volume of sawtimber per ha,
but the volume of timber needed before outbresks begin
depends on the mean daly maximum temperature (Figure
13). Note that the summer and winter mean daly maxima
are very highly correlated with each other, making it
difficult to determine which of these variables might be
responsible for the observed pattern of outbresks.

The find mode reproduces the genera spatial pattern
of southern pine beetle outbresks fairly wel (compare
Figures 14 and 1), but smooths the proportions somewhd,
The result is that the estimated probabilities in the



Table 1. Final logistic regression model with spatial autocorrelation [Equation (2).] Patameter estimates. standard
errors, and P-values from Wald tests using the exponential covariance model. Temporal autocorrelation within
counties is assumed to be a first-order Markov process.

Parameter Estimate SE P-value
Intercent 87 6.9 0.20
Ln[elevation (M)] 0.21 0.10 0.04
Longitude 021 0.053 0.00008
; ='San\'| volume(m/ hay 361 1.09 0.0009
hydnd proportlon -1.49 054 LiLes
|/ xerig] proportlon -0.92 0.38 0.02
4 national forest (thousand ha) 0.095 0.034 0.005
Mean daly maximum fal temp (C) -0.75 0.34 0.03
Mean fall precipitation (cm) 0.35 0.062 1 E-8
Mean daily maximum winter temp (C) -0.19 0.25 0.45
Mean daily maximum summer temp (C) 134 0.27 1 E-6
Mean summer precipitation (cm) -0.12 0.053 0.03
Max summer temp X - sav.1 volume per ha -0.18 o1 0.0003
Max winter temp X - waw m]ume per ha 0.16 o 0.0005
€,{ nugget parameter 0.24
¢,) sl parameter 0.85
a, range parameter 97
high-outbresk counties are lower than the observed pro- correlation has been incorporated into the parameter esti=
portions of years in outbresk, and the reverse is true in the mates, ., and the estimated probability for an individual
low-outbreak  counties. county is
5. Prediction and Evaluation ¥ P
P =
5.1 Spatial Prediction for Individual Counties Y B

The edimates given in the previous section represent the

avaage dfedts of the explanaory varisbles The spatia This quantity estimates the mean probability of outbresk for

a county with given vaues of the explanatory varidbles We
can condruct a predictor that also takes into account the
responses of surrounding counties. In linear regresson mod-
els, the best linear unbiased predictor (BLUP), dso known as
the kriging predictor or kriging with external drift (Christensen
1991, Goovaerts 1997), does this. In the BLUP, the estimate
for a paticular county, sy p,| is adjusted according to its
location and the correlations among the counties. Letting

~ Tl T

Figure 13. Estimated b
(2? vS. sawtimber evo J%ealz g}f\a)u Wlt Utgégg#a 'éOWnrg'

different average daily maximum summer and Wlnter .
temperatures (C). The temperature values are climatological Figure 14. Estimated probability, p]of outbreak from spatial
normals for 1961-1990. logistic regression, model (2).
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xJ = design matrix for county to be predicted
Y
Xy
Y| = resgponses for other counties,
the best linear unbiased predictor is

xgB +Cov(Y,y,)Var(y,)™ (3, - XB).

The logidtic regresson modd is linear for the logits that
is, logit(p) = XP. We can obtain an approximate best linear
unbiased predictor of the logits and transform this back to the
origind scale to get the spatid prediction of the probability of
outbreak [adso see Gotway and Stroup (1997) for a dightly
different predictor]. Denoting the logit of the probability of
outbregk in the county to be predicted as v and in the other
counties as v, the best linear unbiased predictor of v, is

response for county to be predicted

desgn matrix for other counties

\T’J =r56+zv0|£::l(\"1| = Xlﬁ')]
where the covariance matrix of v, X, is approximated by
2 )= Var(v) = o) Var(y)ﬂdﬂ‘?—J
ap| dp
and it is patitioned into

E\JI _ [va 23\?0]
zvl(} 2‘\'tl

This gpproximetion  for the covariance matrix of v comes
from a fird-order Taylor series expansion of v ag a function
of py To obtain the predicted logit, substitute fj into X |

The prediction of the urobabilitv of outbresk is obtained
by transforming the predicted logit to the original scale,

Ta gvalnate the spatial interpolation abilitv of the model,
the proportion of years in outbresk for each county in the
dataset was predicted from the other co unties using Equation
(3). This is caled “leave-one-out crossvalidation." In the
cross-validation, the spatial predictor p does a very good job
of reproducing the map of proportion of years in outbreak
(compare Figures 1 and 15). The predictions show very little
bias, the mean of the prediction errors, ¥ - p.| is 0.00018.

Thev alen chnw little variahilitvy with mean eanare nredictinn

A o i S '{I._...I
Figure 15. Predicted probability, p| [Equation (3)] of outbreak
from spatial logistic regression, model (2). In f the estimate p
is adjusted for the responses of surrounding counties.
error 0.08 1, and 75% of the prediction errors lie between -

0.037 and 0.035.

5.2 Predicting into the Future

We might dso be interested in predicting the proportion of
years that a particular county will experience outbresks or the
probability that a county will experience at least one outbresk
in the next severd years The tempora pat of this mode
alows us to make these types of forecasts. We have assumed
that each county follows a first-order Markov process, which
means that the probability of outbresk in year t depends only
on whether there was an outbresk the previous year. Ifp] is the
margind probability of outbreak, and p;,, is the probability
of outbreaks in 2 consecutive years in county i, then the
probabilities of an outbreak or of no outbreak in any particu-
lar year given the previous year are given in Table 2.

Southern pine beetle data for the 6 additional years
1991 through 1996 became available after the start of this
project. We used these additional data to check the predic-
tive utility of the time-series part of the model. The
probability of observing any specific 6 yr dring of out-
comes is computed by multiplying together a dring of sx
probabilities, each conditioned on the previous year’'s
outcome. For example, given that there was no outbresk in
1990, the probability of observing outbresks in 1993 and
1994 but no other years in the period 199 1 through 1996 is
P P Pipipy™ Pitin Pty % Piige

Table 2. Conditional probability of outbreak given the outbreak status of the
previous year, first-order Markov process.

P, » = Pr{outbreak |outbresk in previous year} =

Pal = Pr{outbreak | no outbreak in previous year} =

Pill

Pi

Pi —Pin
1-p,

P ] =Pr(nooutbresk |outbreak in previous year} = bi — Pl

P [

Py o = Pr(no outbreak |no outbresk in previous year} = 1-2pj +p;

1-p|
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The probability of a least one outbresk in the ith county
inthe 6year period is1 - Pr{ no outbresks | U{.__lggouwhere
[| is the outbresk status of county i in year j. For each
county we computed the conditiona probability, labeled
P1,199] Of @ least one outbresk in 1991-1996. The 31 yr
of data for each county prior to the period being forecast
provide basdine information from which we can obtan a
hisoricd egimate of the probability of a lesst one out-
break in any 6 yr stretch given the preceding year’'s
outbresk satus. For each year that experienced an out-
bregk in the period 1960-1984 we talied whether there
was a least one outbregk in the 6 yr period immediately
following that year. The proportion of such 6 yr periods
that included at least one outbreak is labeled ;) For
counties that had an outbresk in 1990, we predict that there
will be a least one outbresk in the 6 yr 1991-1996 if

Pllji990 5 -
1= PLjjo0) T

[

A dmilar computation was done for counties that had no
outbresk in 1990. This is cdled a “Bayes discriminant rule”
The effect of usng

rather than a cutoff of 1 is to make it harder to predict an
outbresk for a county if higoricdly there have been few 6
yr periods with outbresks and easier to predict an outbresk
if there have been many 6 yr periods with a least one
outbregk. Table 3 summarizes the predictions based on the
firsd-order Markov chain moddl compared to the actud
numbers of counties that experienced a least one outbresk
in  1991-1996.

The probability that a county will experience m years of
outbresks is obtained by adding together the probabilities of
dl drings that contain exactly m outbresks. The expected
proportion of years in outbresk, given the 1990 data, is then
{ Pr(1 outbreak | U; 1g9,) +2 x Pr(2 outbresks | U, gg) * - -
+ 6 x Pr(6 outbresks | U 990)}/6. Over dl counties the
average proportion of years with outbresks in 1991-1996
was 0.097. Using the first-order Markov model, the average
predicted proportion of years in outbresk was 0.131. The
edimate not usng any modd would be the average propor-
tion of years in outbresk from 1960-1990, 0.143. The Markov
chan model provided a modest improvement, from a 47%
overprediction to a 35% overprediction. The Markov chain
esimate was just as varidble, however, as the naive estimae
Y] both had root mean square prediction error close to 0.145.

Table 3 Prediction of whether a county will experience at least
one southern pine beetle outbreak in the years 1991-1996
crosstabulated with observed outcome. The predictions are
based on the first-order Markov process conditional on the 1990
outbreak status for each county.

Observed at Predict at least one outbreak No. of
least one outbreak No Yes counties
No 0.82 0.18 192

Yes 0.36 0.64 109

© Discussion

The margind logidic regresson mode has severa fea
tures that make it a good tool for describing the spatia pattern
of southern pine beetle outbresks. Traditiona logistic regres-
sion modes include the assumption that the observations are
independent of each other. Data on patterns of outbresks of
pests and diseases tend to be corrdated spatidly and tempo-
rdly, rather than being independent. Margind models dlow
specification of a corrdation structure in addition to a modd
for the mean response function. Software for fitting these
types of modes is rapidly becoming avalable (Wolfinger
and O'Connell 1993, Littell et a. 1996).

We did find both spatid and tempord autocorrdation in
the southern pine beetle data The spatid and tempord
correlations were incorporated into the model by assuming
that the process is a first-order Markov process over time and
that spatiad corrdation among Stes has an exponentiad form.
These are smple assumptions about the correlaion structure;
however, they appear to fit the data well. The modding of
spatid correlation dructures is currently an active area of
datigtical research. One of our assumptions that is probably
too smple to be redidic is tha the spatid autocorreaion is
detionary over the entire three-gtate region, and it may be
possble to improve the mode by reaxing that assumption.

We found that we could adequately estimate the mean
probability of southern pine beetle outbregk for a county with
given chaacterigics, and do an excdlent job of spatid
interpolation (spatiad prediction) usng the margind logigtic
regresson mode with spatid and tempord autocorrelation.
The set of variables including €eevetion, longitude, sawtim-
ber volume per ha, area of nationd forestland, some of the
physographic varigbles, precipitetion in fdl and summer,
and average daly maximum temperature in fdl, winter, and
summer together provided the best fit to the observed data
This should be interpreted to mean that this set of explanaory
variables does a good job of describing the spatid pattern of
outbreak probabilities. There are other sets of varigbles that
would do an equaly good job of predicting the outbresk
probabilities. Many of the explanaory relationships reveded
as dgnificant in this modd agree with observations else
where: the volume of sawtimber-sze pines is a better predic-
tor of SPB attacks than the volume of the smaler pulpwood
gems, and the more sawtimber-size pines the better for beetle
populations. National forests are managed on longer rota-
tions than those of the forest industry, and older pine are
genedly more vulnerable than younger trees. Ladly, the
moderate moisture status found on mesic Sites may generate
less resigance to atack than the more chronicaly stressful
xeric or hydric stes. Other relationships are harder to inter-
pret without either examining outbresks over a broader
gaid scae or including in the modd the tempora dynamics
of outbresks and timevarying explanatory variables.

In this dudy the dimate vaigbles are highly correlated
with each other, with devation, and with the physiographic
vaiables. It is not possble to determine which are causd
effects. What we can do, however, is to conclude that coun-
ties with certain characteristics are more or less likey to see
outbreaks. When doing regresson on correlated variables, it
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is usudly informative to examine more than one st of
explanatory varigbles that have about the same amount of
predictive power. Examining different modds can give a
better understanding of the clusters of variables that tend to
appear together and tend to be highly correlated with the same
phenomena. There is dso room for examining other sets of
vaiables and other functionad forms of variables. Our interest
here was to demondtrate the potentiad utility of this satistica
goproach rather than to definitively mode the causd factors
of outbresks. Models of smilar form might dso be useful in
other forestry gpplications where binary dependent variables
occur, such as models of harvesting, regeneration, or land
converson decisons, or disturbance processes such as land-
dides or windthrow.

Findly, we mentiontwo aess for improvement. In
order to ded with the different spatia scdes of the climate
vaiables we took the smplest possible route and used
averages of stations within a county to represent the
county. For counties with no dimatologica detions, we
used the vadue of the dation nearest to the county center,
thus the climate variables incorporate a high degree of
eror. The usud effect of large errors inregressor varigbles
is that regresson coefficients tend to appear smdler and
less dgnificat than they would if the explanaory vari-
ables were messured without error. Location of dations
may aso be biased toward lower elevations. More com-
plete climate data and/or more sophigticated spatid inter-
polation methods for the climae varidbles would certainly
improve parameter edtimation. Even greater improvements
could be obtaned by developing methods of fitting and
evduating modds for binary data from individud years
as opposed to data in the form of proportions. We used the
proportion form of the response variable rather than the
binary response for individud years for two reasons (1)
variograms and corrdation functions of binary variables
depend in a complicated way on the probability of outbresk
and are difficult to work with; and (2) 30 yr averages of the
climate variables were more readily available than averages
for individua years. Judging by the crossvdidation results,
we were able to obtain excdlent spatid interpolations, but
predictions of future outbreak probabilities were not as good.
To do a betterjob of predicting into the future, messurements
of cimate and other explanatory varigbles each year are
needed. Because temperatures and precipitation change each
year, but physiographic characteristics and eevation do not,
udng timevaying climate data should give better ahility to
digtinguish between the temperature and precipitetion effects
and the effects of physiogrephic variables and eevation. It
should aso dlow us to test whether temperatures and precipi-
tation during the preceding year affect the probability of SPB
outbreak.
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