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ABSTRACT. Regional outbreaks of southern pine beetle (Dendroctonus  frontalis Zimm.)  show marked

spatial and temporal patterns. While these patterns are of interest in themselves, we focus on
statistical methods for estimating the effects of underlying environmental factors in the presence of
spatial and temporal autocorrelation. The most comprehensive available information on outbreaks
consists of binary data, specifically, annual presence or absence of outbreak for individual counties
within the southern United States. We demonstrate a method for modeling spatially correlated
proportions, such as the proportion of years that a county experiences outbreak, based on annual
outbreak presence or absence data for counties in three states (NC, SC, and GA) over 31 yr. In this
method, the proportion of years in outbreak is predicted using a marginal logistic regression model
with spatial autocorrelation among counties, with adjustment of variance terms to account for temporal
autocorrelation. This type of model describes the probability of outbreak as a function of explanatory
variables such as host availability, physiography, climate, hurricane incidence, and management type.
Explicitly including spatial autocorrelation in the model improves estimates of the probability of
outbreak for a particular county and of the importance of the various explanatory variables. FF O RO R . . Sci.
46(1):95-107.

Additional Key Words: Generalized estimating equations, spatial prediction, marginal models,
correlated proportions, correlated binary data.

1 Introduction these patterns mean the data do not fit the assumptions‘
required for classical regression. We describe here the

SOUTHERN PINE BEETLE (Dendroctonus frontalis Zimm.) out- development of a statistical model which properly ac-
breaks occur in forests throughout the Southern United States counts for these autocorrelations and which allows inclu-
and can cause tremendous economic damage (Holmes 199 1, sion of additional explanatory covariates in the model.
de Steiguer et al. 1987); hence there is great interest in Previous analyses have examined spatial patterns such as
understanding their causes and in improving tools to predict those in Figure I, and often related them to host availability
outbreaks. Visual analysis of maps of outbreaks across the or climate. Temporal patterns such as those in Figure 2 have
region (Price et al. 1998) reveals striking temporal and also been the subject of study, frequently related to weather
spatial patterns, but the autocorrelations associated with or to endogenous cycles of the beetle and its predators.
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that the beetle exploits other southern pine species to
varying degrees.

Temporal Patterns
Southern pine beetle populations vary dramatically over

time, oscillating between endemic and outbreak conditions,
where an outbreak is defined as at least one southern pine
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beetle spot infestation per 405 ha (1,000 ac) of loblolly/
shortleaf or oak/pine type forest (Price et al. 1998). Various
researchers have noted a periodicity but have reported  these
over different spatial scales. Pye (I 993) cited a cycle length
of 6-7 yr for recent outbreaks spanning the southern United

1 0 .: States, but Mawby  and Gold (1984) reported varying

- 0.3
periodicities when the region was divided into 24 subregions.
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Figure 1. North Carolina, South Carolina, and Georgia proportion
of years  from 1960 to 1990 with southern pine beetle outbreaks.

Spatial Patterns
Mawby and Gold (1984) found that regional outbreaks of

southern pine beetle (SPB) exhibited varying levels of spatial
autocorrelation depending on the severity of that year’s
outbreak. Outbreaks in the United States generally occur in a
diagonal band from central Virginia to northeastern Texas,
corresponding roughly to the coniferous-broadleaved semi-
evergreen forest ecoregion (Bailey 1995). Price and Doggett
(1982) visually compared the long-term distribution of out-
breaks to the distribution of one of its host species, shortleaf
pine (Pinus echinata  Mill.). Pye (1993) noted a similar
correspondence with the timber volumes of shortleaf plus
two other important host species, loblolly and Virginia
pines (Pinus  taeda L. and P. virginiana Mill.),  recognizing

Turchin  et al. (1991) found temporal autocorrelations at lags
of both 1 and 2 yr for populations in East Texas and concluded
that delayed density dependence was a more important regu-
lator of populations than density-independent factors such as   
climate.

Ungerer et al. (1999) have claimed a climatic factor may
be important by showing that cold temperature events at the
northern limit of outbreaks match experimentally determined
lethal tolerances for the beetle. If climate is an important
determinant of temporal patterns, it is likely a complex
relationship. Climatecan affectpopulation dynamics through
direct impact on beetle metabolism, viability, and generation
length (Gagne et al. 1980, Hines et al. 1980),  or pheromone
communication (Fares et al. 1980),  or population levels
indirectly by modifying the resistance of host species to
beetle attack via drought or flooding stress (Kalkstein 1976,
Lorio  1986) or disturbances such as lightning (Coulson et al.
1983).

Broad-scale changes in the region could be caused by
factors such as (1) regionwide changes in host forest types
(Mawby et al. 1989); (2) warmer temperatures from in-
creased atmospheric CO, or other causes (Ungerer et al.

 (3) lengthened rotations on national forests,
 

1999); and

s

potentially increasing outbreaks on surrounding private for-
ests (Carter et al. 1991). Evaluation of the likely impacts of
such changes requires improved statistical models which
imultaneously account for the spatial patterns of beetle

range and dispersal, the temporal autocorrelations associated
with predator-prey population cycles, and mechanistic mea-
sures of host condition and climate. Many studies of southern
pine beetle dynamics have been performed in the past, but
none have been tailored specifically to data in the form of

Ii spatially correlated proportions. Spatial statistical methods

I I
for Gaussian (normally distributed) data have begun to be

/,A

widely used in entomological studies (Liebhold et al. 1993).
Methods for non-Gaussian data are also beginning to appear.

I’\ \
Recently, Preisler et al. (1997) demonstrated a very flexible

I ’ // \i-- L /
generalized additive model to study relationships between

I980 1990
twig beetle attacks and explanatory variables, including a
function of spatial location as an explanatory variable.

 

stc;te -GA - - - -  NC

YEAR The objective of this study is to demonstrate use of a

7 marginal logistic regression model for spatially correlated
i SC proportions, which also incorporates information about tem-

 , and GA for poral autocorrelation. We use the marginal logistic regres-
sion model to describe the pattern  of southern pine beetle

Figure 2. Proportion of counties   in outbreak in NC, SC
each year.
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outbreaks and assess the explanatory power of environmental 2 Marginal Logistic Regression Model
variables for predicting where outbreaks tend to occur in
North Carolina, South Carolina, and Georgia. This type of
model has two features that distinguish it from an ordinary
linear model: (1) the logistic form and (2) incorporation of
spatial and temporal autocorrelation.

The advantage of a logistic type of model over a more
familiar linear or nonlinear model is that it can be tailored to
a binary response, like presence or absence of outbreak, or to
a proportion, such as proportion of years in outbreak. With
such a model we can make estimates of the odds of an
outbreak in a given county or group of counties. A more
technical advantage of logistic regression over ordinary re-
gression has to do with the methods of estimation. Logistic
regression incorporates information about the variance of
binary/proportion data into the estimating equations to pro-
vide more efficient estimates than ordinary regression would.

The second distinguishing feature of this type of model,
the incorporation of spatial and temporal autocorrelation,
also provides advantages both for estimation of the effects of
the regressor variables and for estimation of the probability
of outbreak in a given county. If spatial and temporal
autocorrelation are ignored in fitting the model, the param-
eter estimates have lower precision (higher variances) than if
the correlations are incorporated into the fitting procedure.
Furthermore, if ordinary regression software is used the
standard errors that are produced are incorrect. Thirdly, and
the greatest benefit of all, estimates of the probability of
outbreak in a given county are much more precise than if the
spatial autocorrelation is ignored. This is because the local
patterns of variability are taken into account when making
estimates for a site, whereas in ordinary logistic regression
they are not.

The bulk of this article demonstrates the fitting and inter-
pretation of a marginal logistic regression model which is
described in Section 2. Sections 3 and 4 demonstrate an
analysis of the southern pine beetle data starting with ordi-
nary logistic regression and adding complexity as it is needed.
We show some typical steps an analyst might go through and
some methods for evaluating the adequacy of each model.
Examination of the residuals from ordinary logistic regres-
sion in Section 3.2 reveals  spatial and temporal autocorrelation,
indicating that ordinary logistic regression is not the best
procedure for these data. In Section 4.1 we show how tempo-
ral autocorrelation changes the variance of the proportion
of years in outbreak. The ordinary logistic regression
model is  next modified to account for temporal
autocorrelation and fitted using weighted logistic regres-
sion, which is readily available in commercial software.
Even after accounting for the temporal autocorrelation,
spatial correlation remains, so the last step, in Section 4.2,
is to incorporate spatial correlation and fit the model using
generalized estimating equations. Section 5.1 shows how
to use this type of model to interpolate spatially (i.e., to
predict the proportion of years in outbreak for a county
with missing data). Section 5.2 discusses the use of this
model for making predictions into the future, and Section
6 gives a general discussion of our conclusions.

-

The general class of models known as marginal models
(Liang and Zeger 1986, Diggle et al. 1994) allows for
covariates (explanatory variables) and for spatial and tempo-
ral correlation but does not require full specification of the
joint probability distribution of all sites. Marginal models
were initially proposed for longitudinal binary data (Liang
and Zeger 1986),  but have recently been applied to spatially
correlated data as well (Albert and McShane  1995, Gotway
and Stroup 1997). The term “marginal” refers to modeling the
expected response of a site to the regressor variables, rather
than the joint responses of all sites simultaneously. The focus
is on the relationships between the explanatory variables and
the probability of outbreak. In this type of model, the spatial
and temporal correlations are secondary, included to obtain
better estimates of the expected response. The marginal
logistic model consists of a model for the mean,

logit(pi) = ~$3 (1)

where pi is the probability with which the ith county experi-
ences  outbreaks, and a model for the variances and covari-
ances  among the sites. The response variable Yi is the propor-
tion of years each county experiences outbreaks. The ex-
planatory variablesxi are county-level measurements; that is,
we have one measurement of each of the explanatory vari-
ables for each county. Hence, the explanatory variables vary
over space but not over time, and they can help predict or
explain general spatial patterns of southern pine beetle out-
break but cannot shed light on why outbreaks occur in some
years but not others. Spatial correlation is explicitly incorpo-
rated into the logistic regression model using an exponential
covariance function.

In addition, we also know which years each county
experienced outbreaks, so we use the outbreak data for
individual years to model temporal autocorrelation. The
autocorrelation over time within each county is modeled
by a  f i rs t -order  Markov process .  The temporal
autocorrelation then enters into the variance of the propor-
tion of years in outbreak for each county. The methods we
present are flexible and can be used with explanatory
variables other than those presented here.

3 Preliminary Analysis

Several explanatory variables were considered, all at the
county level. These included

) two measures of volume (m3/ha)  of host trees: sawtimber
volume (22.9 cm dbh minimum for softwoods, 27.9 cm
dbh for hardwoods), and poletimber volume (12.7 to 22.8
cm dbh for softwoods and 12.7 to 27.8 cm dbh for
hardwoods);

) three physiographic variables: proportion of land area
classified as mesic,  hydric, and xeric;

) three climate variables computed separately for the fall,
winter, spring, and summer seasons: average daily mini-
mum temperature (C), average daily maximum tempera-
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ture (C), and average monthly precipitation (cm); number 3.1 Selection of Variables
of 6 hour periods with hurricane force winds recorded in The general spatial pattern of host volume (Figures 3 and
the county from 1960 to 1990; 4) is similar to the pattern of southern pine beetle outbreaks

P

l  five management variables: area of land (in 1000 ha)
(Figure l), with high incidence of outbreaks in the northwest-

owned by the federal government, forest industry, indi-
ern part of the region and some high values in counties along

viduals, private corporations, and states; 
the coast, but the correspondence is far from exact. There is

) and three location variables: elevation (m), latitude, and
also some correspondence between the physiographic vari-
ables (Figures 5 and 6) and proportion of years in outbreak.

longitude. Elevation increases from the coast in the southeast to the

The host species include loblolly, shortleaf, Virginia,
mountains in the northwest (Figure 7). Temperature in-

pitch (Pinus rigida), sand (Pinus clausa),  pond (Pinus
creases from northwest to southeast (Figure 8),  and precipi-

serotina), and Table Mountain (Pinus pungens) pines and
tation  tends to be highest along the coast and in some parts of

spruce (Pinus glabra), The estimates of host volume, physi-
the mountains (Figures 9 and 10).

ographic  variables, USDA Forest Service and forest industry 
Many transformations and combinations of these explana-

land area were obtained from the USDA Forest Service’s
tory variables are possible. A preliminary analysis using

Forest Inventory and Analysis Data Base Retrieval System
ordinary linear regression, ignoring spatial and temporal

(Hansen et al. 1992). Hurricane track data were obtained
correlation, helped to narrow the set of explanatory variables

from NOAA’s Atlantic Oceanographic and Meteorological
to a manageable size. In the preliminary analysis, a number

Laboratory’s Hurricane Research Division website  (Landsea
of models were fit to

1995). The climate variables were computed from 30 yr “:,-II  I-;;\
(1960-1991) climatological averages by month for each bi”  \q ‘1  1

station, which were obtained from the Southeast Regional
Climate Center website  for Climatological Normals 1961-

using ordinary linear regression. For a first pass, all variables
were included

1990 (Owenby  and Ezell1992). The averages for all stations
within a county were averaged together to obtain the county

in the model, and then stepwise  regression was
used to add interaction 

average for each month. Three months were then averaged

              terms.  Next, first-order terms with low
F-values were dropped

together to obtain seasonal averages for fall (September

 unless they were part of an included
interaction term

through November), winter (December through February),

. The set of explanatory variables selected for
further conside

spring (March through May), and summer (June through
August) for each county. Climatological averages were not
available for many counties; 45 counties were missing pre-
cipitation records, and 213 counties were missing tempera-
ture records. The value from the available weather station

ration included In (elevation), longitude, square
roots of saw and poletimber volume per ha, square roots of
proportion of 1and area classified as xeric, mesic,  and hydric,
square roots 0.  f land area owned by the federal government
and by private forest .   i dustry,  average number of hurricane
wind periods per year, all 12 of the climate variables, and the
5 interactions:

nearest to the county center was substituted for any missing
county. Elevation, latitude, and longitude of the stations were
obtained from the National Climatic Data Center’s coopera-
tive statior master list (National Climatic Data Center 1995).

hurricanes per year x

maximum summer temperature x  / saw volume,

Figure 3. Poletimber volume (m3 /ha) for host species. Four
counties were missing data, indicated by a dot in the legend.
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Figure 5. Proportion of land area classified as hydric. A dot in the Figure 6. Proportion of land area classified as xeric.  A dot in the
legend indicates missing data. legend indicates missing data.

months (June, July, August). Climatological average for 1961-
1990.

Figure 9.    Mean fall (September,October,November) precipitation Figure 10. Mean summer precipitation (cm). Climatological
(cm). Climatological average for 1961-1990. average for 1961-1990.
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average spring precipitation x /pole volume,  and

minimum fall temperature x Jsawvol;lme  .

3.2 Residuals from Ordinary Logistic  Regression
Ordinary logistic regression was then used to fit this set of

explanatory variables to Yi. Ordinary logistic regression uses E 2-
maximum likelihood to fit the logistic model for the mean u .;i
given in Equation (1),  but assumes that observations are
uncorrelated, and that the proportion of years in outbreak is E ~:. -
a binomial random variable with variancep&  1 -p,)/n,  where b i
n = 31 yr and pi  = probability of outbreak in county i.

To evaluate the fit of this model, we computed deviance
residuals. Deviance residuals.

observed proportion of years in outbreak, for each
county (Collett 1991 p. 122). The deviance is twice the 0 *1
difference between the log likelihood of the data under the 0
hypothesized model and the log likelihood under a model
that includes a separate parameter for each county. This c
quantity is made up of a sum of contributions from each of
the counties. The deviance residual for a county is then

Figure 11. Sem
from ordinary logistic

defined as the square root of the county’s contribution to does not take spatial or
regression on 27 variables. This model
temporal autocorrelation into account.

the deviance. Notice that the deviance residual involves
the ratio of the observed to the predicted proportion of
years of outbreaks and the ratio of the observed to pre-
dicted  proportion of years without outbreaks.

If the deviance residuals are divided by their asymptotic
standard errors (theoretical standard errors when the sample
size is infinitely large), they are called “standardized devi-
ance residuals” (Collett 199 1). The standardized deviance
residuals from the ordinary logistic regression of logit( Yi) on
27 explanatory variables show some spatial pattern. They
tend to be zero or slightly negative in the large area of
southern Georgia where no outbreaks were ever observed and
positive in the higher elevations; thus this model was not able
to account for all of the spatial variability in southern pine
beetle outbreaks. An empirical semivariogram was com-
puted from the standardized deviance residuals, d; (Cressie

semivariogram estimates the variance of the response
variable. According to Figure 11, the variance of the
standardized residuals appears to be about 2.9. However,
since these residuals are standardized, we would normally
expect them to have variance one. Observing a variance
larger than that expected for a binomial model is called
“overdispersion.”

4 Incorporating Temporal and
Spatial Autocorrelation

4.1 Temporal Autocorrelation
A possible reason that the sill (the observed variance) is so

high is that outbreaks in a given county are correlated from
year to year. Since the outbreaks in a county are correlated

of pairs of counties h km apart, and the subscripts i and i*
indicate two different counties that are h units apart,

The semivariogram of the standardized deviance re-
siduals shows that counties are spatially correlated to a
distance of about 160 km; beyond this distance counties
are essentially uncorrelated (Figure 11). The sill of a
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The additional term is the total of all of the correlations 1995 p. 71) with significance level 0.05 for each county. The
among different years. If years are independent, this term first-order model appears to be appropriate for this process.
is zero, and we get the usual binomial variance, Var(Yi)  =
pj(l - pi)ln. If the correlation from one time to another

In only 7 (4%) of the 182 counties that ever experienced any
southern pine beetle outbreak was the first-order model

within a county is positive, the variance of Yi is larger than rejected in favor of the second-order model.

P&l -P1W.
It is possible to account for the temporal autocorrelation

The standard method of estimation for logistic regression
implemented in software packages such as SAS@  PROC

by fitting a model to it. We allow each site to have a separate LOGISTIC (SAS Institute 1997) is maximum likelihood
time correlation pattern, but within a site the correlation under the assumption that the response variable has a bino-
model is the same for all years. For simplicity, the probability mial distribution. Our response variable is not binomial since
of outbreak for the ith site, pi, is assumed to be constant over
time for each site; that is, there are no overall increasing or

the observations are correlated over time and the joint distri-
bution  is not known, so maximum likelihood estimation is not

decreasing trends in the number of outbreaks over time.
A simple model for the time series for each site is a first-

possible. However, a method of estimation called “quasi-
likelihood estimation” makes use of what is known about the

order Markov process, where the probability of outbreak variance of Y. The quasi-likelihood method involves itera-
in one year depends only on whether there was an outbreak tively solving the system of equations
in the previous year. Under a first-o]rder Markov process,
the correlation between observations at time j and time k D’P (y - p) = 0
at site i is

p/b-kll  .
I

where the ith element of y is Yi, the ith element of p is pi,

I

The correlation parameter pi gives the correlation between a
particular year  and the previous  vear. so if the correlation

I d ,

between two consecutive years is 0.6, then the correlation
between observations two years apart is 0.62= 0.36 under the
first-order Markov model. The correlation parameter is esti-
mated for each site by computing the first-order autocorrelation
coefficient

I+

and V is a diagonal matrix with ith diagonal element Var(Yi)
(Diggle et al. 1994, Appendix A.6). In this particular prob-
lem, where we want to account for correlation over time but
we still assume that observations are spatially uncorrelated,
this method of estimation amounts to weighted logistic re-
gression, replacing the binomial variance expression

*(l -p:-1)

ts range from
southern pine

 fii, 0.32.

correlation over time
a county and me amount or autocorrelation varies

widely among counties. The next question is whether the
first-order Markov process adequately describes the ob-
served temporal correlation pattern. In a second-order Markov
process, the probability of outbreak depends on the outbreak
status of the previous 2 yr, not just the previous year. We
compared the first-order model to a second-order Markov

 fit (Guttorpprocess using a Chi-square test for goodness of

logistic regression. For example, in SAS@  Proc Logistic
(SAS Institute 1997),  one would regress Yi on the explanatory
variables and specify weights wl = 1/(1 + TOTCORR{ni)
where wi is a multiplier for the inverse of the variance.
Several counties experienced no outbreaks between 1960 and
1990. For these counties, we set the correlation between any
2 yr to be 0.99, which gives TOTCORR = (30)(3 1)(0.99).

The standardized deviance residuals resulting from fitting
this model still show spatial autocorrelation, but now the sill
is close to one (Figure 12). The exponential semivariogram
fitted to the empirical semivariogram by weighted nonlinear
least squares (Cressie 1991) is

q(h) = 0.26 + 0.81(1-  e-3h’76.8).

This function has a sill of 1.07 and a range of 76.8 km. Note that
in the exponential correlation model, the range is the distance at
which the semivariogram is 95% of the sill. Incorporating the
temporal autocorrelation into the variance of Yi seems to account
for all of the “overdispersion” seen in the data.
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Figure 12. Empirical and fitted semivariograms of standardized
deviance residuals from weighted logistic regression on 27
variables. Temporal autocorrelation is incorporated into the
variance of Y,

4.2 Incorporating Spatial Autocorreh

4.2 Incorporating Spatial Autocorrelation

The last refinement to the model is to incorporate the spatial
autocorrelation, resulting in the modelautocorrelation, resulting in the model

logit = X# withlogit = X# with

V = Var(y)  = A”2V = V=(y)  = A1’2m”2 (2)

where Var(fi> (D’v-‘D)-‘, and the hypothesis being tested
is Ho: L/3 = 0. For large samples, the Wald statistic approaches
a chi-square distribution with degrees of freedom equal to the
rank of L.

Thirteen variables were retained in the sequential proce-
dure described above using an a = 0.10 significance level
(Table 1). As a final check, the 14 variables that had been
dropped from the original 27-variable model were tested
simultaneously using a Wald test with 14 degrees of freedom.
The P-value for dropping all 14 variables from the model was
0.55, indicating that together they do not contain significant
explanatory power beyond that contained in the final model
of 

,
of Table 1.

In the fitted model, the probability of southern pine
beetle outbreaks increases with the amount of fall precipi-
tation; this is the single strongest predictor of outbreak

wherewhere probability and also visually corresponds well with the
pattern of outbreaks (Figure 9). The estimated probability

 A = diag ‘I(‘-  ‘I)
( 1

(1+ TOTCORR, / ni),
n,

Ri,i,  = CORR(I;:,  &) =~2Ri,i,  = CORR(I;,  x*)  = -&e-3h’a,
00 1

h is the distance in km between counties i and i*, and a is the
range of spatial correlation.

We use the fitted exponential semivariogram function to
estimate the pairwise  covariances among the counties. The
method of generalized estimating equations can be used to
estimate the parameters of a marginal logistic regression
modelmodel with spatialwith spatial correlation.correlation. The procedure is to iterativelyThe procedure is to iteratively
solve the equation:solve the equation:

of outbreak tends to be higher for areas with dry summers
and lower for areas with high summer precipitation. For a
given volume of sawtimber, the estimated probability of
outbreak increases as summer or winter daily maximum
temperature increases. Looked at the other way, probabil-
ity of outbreak increases with volume of sawtimber per ha,
but the volume of timber needed before outbreaks begin
depends on the mean daily maximum temperature (Figure
13). Note that the summer and winter mean daily maxima
are very highly correlated with each other, making it
difficult to determine which of these variables might be
responsible for the observed pattern of outbreaks.

The final model reproduces the general spatial pattern
of southern pine beetle outbreaks fairly well (compare
Figures 14 and 1), but smooths the proportions somewhat,Figures 14 and  but smooths the proportions somewhat,
The result is that the estimated probabilities in theThe result is that the estimated probabilities in the

D’v-’ (y - p) = 0

(Liang and Zeger 1986; Gotway  and Stroup 1997).
Next we sequentially dropped nonsignificant terms from

the spatial logistic model. At each step we dropped the least
significant term, with the exception that we retained any
variables that were involved in a significant interaction. Then

i: :,

we refit the semivariogram model and the spatial logistic
model before proceeding to drop another term. The Wald

i statistic was used for all tests. For testing one variable, the
Wald statistic has the familiar form of a normal score; it is just

b

j li/w+

Bt,
.-

s(BI:)

where pk is the parameter being tested. This statistic is
compared to the standard normal distribution. Any linear

1 combination of parameters, Lb,  where L is a matrix of
coefficients selecting elements of p, may be tested using
the Wald statistic (Gotway  and Stroup 1997). The general

-I_..--

form is
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Table 1. Final logistic regression model with spatial autocorrelation [Equation (2).] Parameter estimates. standard- .   ---------- 
errors, and P-values from Wald tests using the exponential covariance model. Temporal autocorrelation within
counties is assumed to be a first-order Markov process.

Parameter Estimate SE P-value
Intercent    -8.7 6.9 0 .20
Ln[elevation (m)]

l/saw  volume(m3  /ha)

?/hydric  proportion

Jxeric  proportion

Longitude

/-

I national forest (thousand ha)

Mean  daily maximum fall temp (C)
Mean fall precipitation (cm)
Mean daily maximum  winter temp (C)
Mean daily maximum summer temp (C)
Mean summer precipitation (cm)

/
Max summer temp x dsaw  volume per ha

Max winter temp x &iiiGiEz

c,,  nugget parameter
c,,  sill parameter

 
0.21 0.10

a, range parameter

0.04
0.21 0.053 0.00008
3.61 1.09 0.0009

-1.49 0.54 0.006

-0.92 0.38 0.02

0.095 0.034 0.005

-0.75 0.34 0.03
0.35 0.062 1 E-8

-0.19 0.25 0.45 
1.34 0.27 1 E-6

-0.12 0.053 0.03
-0.18 51 0.0003

0.16 0.046 0.0005

0.24
0.85

97

high-outbreak counties are lower than the observed pro-
portions of years in outbreak, and the reverse is true in the
low-outbreak counties.

correlation has been incorporated into the parameter esti-
mates, p, and the estimated probability for an individual
county  is

5. Prediction and Evaluation

5.1 Spatial Prediction for Individual Counties
The estimates given in the previous section represent the

average effects of the explanatory variables. The spatial stimates the mean probability of outbreak forThis quantity e
a county with given values of the explanatory variables. We
can construct a predictor that also takes into account the
responses of surrounding counties. In linear regression mod-
els, the best linear unbiased predictor (BLUP), also known as
the kriging predictor or kriging with external drift (Christensen

,./ .f--- 1991, Goovaerts 1997),  does this. In the BLUP, the estimate
for a particular county, say $a, is adjusted according to its
location and the correlations among the counties. Letting

(2) vs. sawtimber volume (m3/ha),  with separate lines for
different average daily maximum summer and winter
temperatures (C). The temperature values are climatological
normals for 1961-1990.

Figure 14. Estimated probability, fi,  of outbreak
logistic regression, model (2).

from spatial



x;  = design matrix for county to be predicted

Y, = response for county to be predicted

x, = design matrix for other counties

Yl  = responses for other counties,

the best linear unbiased predictor is

The logistic regression model is linear for the logits;  that
is, logit = Xp. We can obtain an approximate best linear
unbiased predictor of the logits  and transform this back to the
original scale to get the spatial prediction of the probability of
outbreak [also see Gotway and Stroup (1997) for a slightly
different predictor]. Denoting the logit of the probability of
outbreak in the county to be predicted as v. and in the other
counties as vl, the best linear unbiased predictor of vu is

$0  =x~~+C,,,~c;,‘,(v, -X&)7

where the covariance matrix of V, xv, is approximated by

Figure 15. Predicted probability, i;, [Equation (3)] of outbreak
from spatial logistic regression, model (2). In ii the estimate fi
is adjusted for the responses of surrounding counties.

NP>c, = Var(v) = -
W

Var(y)  $$
( 1

’

error 0.08 1,  and 75% of the prediction errors lie between -
0.037 and 0.035.

5.2 Predicting into the Future

and it is partitioned into

L = [‘z:; ;;;I.

This approximation  for the covariance matrix of v comes

We might also be interested in predicting the proportion of
years that a particular county will experience outbreaks or the
probability that a county will experience at least one outbreak
in the next several years. The temporal part of this model
allows us to make these types of forecasts. We have assumed
that each county follows a first-order Markov process, which

from a first-order Taylor series expansion of v_as a function
of p. To obtain the predicted logit, substitute p into C,.

The prediction of the urobabilitv of outbreak is obtained

means that the probability of outbreak in year t depends only
on whether there was an outbreak the previous year. Ifpi  is the
marginal prob

.-
 

. 

the proportion of years in outbreak for  each county in the tive utility of the time-series part of the model. The
dataset  was predicted from the other c o unties using Equation probability of observing any specific 6 yr string of out-
(3). This is called “leave-one-out cross validation." In the comes is computed by multiplying together a string of six

cross-validation, the spatial predictor i; does a very good job probabilities, each conditioned on the previous year’s

of reproducing the map of proportion of years in outbreak outcome. For example, given that there was no outbreak in

(compare Figures 1 and 15). The predictions show very little 1990, the probability of observing outbreaks in 1993 and

bias; the mean of the prediction errors, x - i;;, is 0.00018. 1994 but no other years in the period 199 1 through 1996 is

                1 l”,” . ,“I” - ,,I” * ,111 1 ,“I, - ‘“4”

Table 2. Conditional probability of outbreak given the outbreak status of the
previous year, first-order Markov process. t

pi,, , = Pr {outbreak | outbreak in previous year} = pill
P i

pI1,  0 = Pr {outbreak | no outbreak in previous year} = e
I

P ,,,;,  = Pr (no outbreak | outbreak in previous year} = pi
P i

piO,  0 = Pr (no outbreak | no outbreak in previous year} = l -2Pi  +Pill
l-pi 
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The probability of at least one outbreak in the ith county
in the 6 year  period  is 1 - Pr{ no outbreaks I cIi,1990},  where
Uj is the outbreak status of county i in year j. For each
county we computed the conditional probability, labeled
Pli,1990, of at least one outbreak in 1991-1996. The 31 yr
of data for each county prior to the period being forecast
provide baseline information from which we can obtain a
historical estimate of the probability of at least one out-
break in any 6 yr stretch given the preceding year’s
outbreak status. For each year that experienced an out-
break in the period 1960-1984 we tallied whether there
was at least one outbreak in the 6 yr period immediately
following that year. The proportion of such 6 yr periods
that included at least one outbreak is labeled 7~~.  For
counties that had an outbreak in 1990, we predict that there
will be at least one outbreak in the 6 yr 1991-1996 if

Pl II1990II1990 >!2L.
l-P4ll990l-P4ll990   - 75

A similar computation was done for counties that had no
outbreak in 1990. This is called a “Bayes discriminant rule.”
The effect of using

l--z,

=,

rather than a cutoff of 1 is to make it harder to predict an
outbreak for a county if historically there have been few 6
yr periods with outbreaks and easier to predict an outbreak
if there have been many 6 yr periods with at least one
outbreak. Table 3 summarizes the predictions based on the
first-order Markov chain model compared to the actual
numbers of counties that experienced at least one outbreak
in 1991-1996.

The probability that a county will experience m years of
outbreaks is obtained by adding together the probabilities of
all strings that contain exactly m outbreaks. The expected
proportion of years in outbreak, given the 1990 data, is then
{ Pr( 1 outbreak I Uj,tV9$ + 2 x x Pr(2 outbreaks I Ui,,990)  + . . .
+ 6 x  x  Pr(6 outbreaks | Ui 1990)}/6.  Over all counties the
average proportion of years with outbreaks in 1991-1996
was 0.097. Using the first-order Markov model, the average
predicted proportion of years in outbreak was 0.131. The
estimate not using any model would be the average propor-
tion of years in outbreak from 1960-1990, 0.143. The Markov
chain model provided a modest improvement, from a 47%
overprediction to a 35% overprediction. The Markov chain
estimate was just as variable, however, as the naive estimate
Yl; both had root mean square prediction error close to 0.145.

Table 3 Prediction of whether a county will experience at least
one southern pine beetle outbreak in the years 1991-1996
crosstabulated with observed outcome. The predictions are
based on the first-order Markov process conditional on the 1990
outbreak status for each county.

Observed at Predict at least one outbreak No. of
least one outbreak No Yes counties
No 0 . 8 2 0 . 1 8 1 9 2
Yes 0 . 3 6 0 . 6 4 1 0 9

6 Discussion 

al fea-
-

The marginal logistic regression model has sever
tures that make it a good tool for describing the spatial pattern
of southern pine beetle outbreaks. Traditional logistic regres-
sion models include the assumption that the observations are
independent of each other. Data on patterns of outbreaks of
pests and diseases tend to be correlated spatially and tempo-
rally, rather than being independent. Marginal models allow
specification of a correlation structure in addition to a model
for the mean response function. Software for fitting these
types of models is rapidly becoming available (Wolfinger
and O’Connell 1993, Littell et al. 1996).

We did find both spatial and temporal autocorrelation in
the southern pine beetle data. The spatial and temporal
correlations were incorporated into the model by assuming
that the process is a first-order Markov process over time and
that spatial correlation among sites has an exponential form.
These are simple assumptions about the correlation structure;
however, they appear to fit the data well. The modeling of
spatial correlation structures is currently an active area of
statistical research. One of our assumptions that is probably
too simple to be realistic is that the spatial autocorrelation is
stationary over the entire three-state region, and it may be
possible to improve the model by relaxing that assumption.

We found that we could adequately estimate the mean
probability of southern pine beetle outbreak for a county with
given characteristics, and do an excellent job of spatial
interpolation (spatial prediction) using the marginal logistic
regression model with spatial and temporal autocorrelation.
The set of variables including elevation, longitude, sawtim-
ber volume per ha, area of national forestland, some of the
physiographic variables, precipitation in fall and summer,
and average daily maximum temperature in fall, winter, and
summer together provided the best fit to the observed data.
This should be interpreted to mean that this set of explanatory
variables does a good job of describing the spatial pattern of
outbreak probabilities. There are other sets of variables that
would do an equally good job of predicting the outbreak
probabilities. Many of the explanatory relationships revealed
as significant in this model agree with observations else-
where: the volume of sawtimber-size pines is a better predic-
tor of SPB attacks than the volume of the smaller pulpwood
stems, and the more sawtimber-size pines the better for beetle
populations. National forests are managed on longer rota-
tions than those of the forest industry, and older pine are
generally more vulnerable than younger trees. Lastly, the
moderate moisture status found on mesic  sites may generate
less resistance to attack than the more chronically stressful
xeric  or hydric sites. Other relationships are harder to inter-
pret without either examining outbreaks over a broader
spatial scale or including in the model the temporal dynamics
of outbreaks and time-varying explanatory variables.

In this study the climate variables are highly correlated
with each other, with elevation, and with the physiographic
variables. It is not possible to determine which are causal
effects. What we can do, however, is to conclude that coun-
ties with certain characteristics are more or less likely to see
outbreaks. When doing regression on correlated variables, it
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predictive power. Examining different models can give a 
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phenomena. There is also room for examining other sets of
variables and other functional forms of variables. Our interest
here was to demonstrate the potential utility of this statistical
approach rather than to definitively model the causal factors
of outbreaks. Models of similar form might also be useful in
other forestry applications where binary dependent variables
occur, such as models of harvesting, regeneration, or land
conversion decisions, or disturbance processes such as land-
slides or windthrow.

Finally, we mention two areas for improvement. In
order to deal with the different spatial scales of the climate
variables we took the simplest possible route and used
averages of stations within a county to represent the
county. For counties with no climatological stations, we
used the value of the station nearest to the county center,
thus the climate variables incorporate a high degree of
error. The usual effect of large errors inregressor variables
is that regression coefficients tend to appear smaller and
less significant than they would if the explanatory vari-
ables were measured without error. Location of stations
may also be biased toward lower elevations. More com-
plete climate data and/or more sophisticated spatial inter-
polation methods for the climate variables would certainly
improve parameter estimation. Even greater improvements
could be obtained by developing methods of fitting and
evaluating models for binary data from individual years,
as opposed to data in the form of proportions. We used the
proportion form of the response variable rather than the
binary response for individual years for two reasons: (1)
variograms and correlation functions of binary variables
depend in a complicated way on the probability of outbreak
and are difficult to work with; and (2) 30 yr averages of the
climate variables were more readily available than averages
for individual years. Judging by the cross-validation results,
we were able to obtain excellent spatial interpolations, but
predictions of future outbreak probabilities were not as good.
To do a betterjob of predicting into the future, measurements
of climate and other explanatory variables each year are
needed. Because temperatures and precipitation change each
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forest invent ory  database: Users manual. USDA Forest Service Gen.
Tech. Rep. NC-151 48 p.  Database is available online at http://
www.srsfia.u sfs.msstate.edu/scripts/ew.htm  Accessed 8/2/96 (host vol-
ume), 4/9/98 (physiographic variables), 3/13/98 (forestland ownership).

HINES, G., H. TAHA, AND F. STEPHEN. 1980. Model for predicting southern pine
beetle population growth and tree mortality. In Modeling Southern Pine
Beetle populations, Stephen, F.M., J.L. Searcy, and G.D. Hertel (eds.).
USDA For. Serv.Tech. Bull. 1630. Washington, DC.

HOLMES, T.  1991. Price and welfareeffectsofcatastrophicforestdamagefrom
southern pine beetle epidemics. For. Sci. 37:500-5  16.

KALKSTEIN,  L. 1976. Effects of climatic stress upon outbreaks of the southern
pine beetle. Environ. Entomol. 5:653-658.

KEDEM, B. 1980. Binary time series. Marcel Dekker, New York. 140 p.

LANDSEA, C. 1995. Atlantic Basin best track documentation. ftp:hrd-
type42.nhc.noaa.gov/data/ linked to http://www.aoml.noaa.gov. Accessed
on l/19/98.

year, but physiographic characteristics and elevation do not,
using time-varying  climate data should give better ability to

LIANG, K., AND S. ZEGER. 1986. Longitudinal data analysis using generalized
linear models. Biometrika 73: 13-22.

distinguish between the temperature and precipitation effects
and the effects of physiographic variables and elevation. It
should also allow us to test whether temperatures and precipi-
tation  during the preceding year affect the probability of SPB
outbreak.
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