Likelihood Estimation and Inference for the
Autologistic Model

N. FrRIEL and A. N. PETTITT

The autologistic model is commonly used to model spatial binary data on the lattice.
However, if the lattice size is too large, then exact calculation of its normalizing constant
poses a major difficulty. Various different methods for estimation of model parameters, such
as pseudo-likelihood, have been proposed to overcome this problem. This article presents
a method to estimate the normalizing constant in an efficient manner. In particular, this
allows tasks such as maximum likelihood estimation and inference for model parameters.
We also consider the true likelihood approximated by the product of likelihoods for which
the normalizing constant can be found by an analytic computational method by wrapping
the lattice on the cylinder. This gives a simulation-free method of inference. We compare
estimates of model parameters based on our new methods with the commonly used pseudo-
likelihood approach. Although we have not considered Bayesian inferences here, the method
can be straightforwardly extended to find posterior distributions. We apply our methods to
the well-known endive data and to simulated data and find that our methods give substantially
increased accuracy of estimation of model parameters.

Key Words: Autologistic distribution; Gibbs distribution; Ising model; Maximum likeli-
hood; Markov chain Monte Carlo; Pseudo-likelihood.

1. INTRODUCTION

The autologistic model was first proposed by Besag (1972, 1974) and is widely used to
model binary spatial data. A major drawback with its use, however, is that the normalizing
constant is generally unknown analytically. In particular, this makes tasks such as maximum
likelihood estimation impossible to carry out; see, for example, Huang and Ogata (2001).
Many different methods have been introduced to overcome this problem by introducing
approximate methods, for example, based on estimating equations, pseudo-likelihood or
coding (Besag 1986). In fact pseudo-likelihood has been applied to a wide variety of spatial
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data (see, e.g., Augustin, Mugglestone, and Buckland 1996; Wu and Huffer 1997). Geyer
and Thompson (1992) provided a method for finding maximum likelihood estimates—
Monte Carlo maximum likelihood—but this method, based on importance sampling ideas,
is potentially very slow numerically and unstable due to calculation of the density and
therefore exponentiation of large-valued statistics. The log-density is used in our methods,
which are therefore numerically stable.

Pettitt and Friel (2001) showed how the normalizing constant for the autologistic model
can be found by a computational analytic method if the lattice is wrapped onto the cylinder.
But this method is restricted to lattices of size m x n, (m < n), with m < 10, as the method
depends on finding eigenvalues of a 2" x 2™ matrix. Pettitt and Friel (2001) showed how it
is possible to extend this result on the cylinder lattice to find the normalizing constant for the
free boundary lattice using a Markov chain Monte Carlo scheme known as path sampling
(Gelman and Meng 1998). This article shows that it is possible to extend these results
to larger, arbitrary sized lattices. Further, we use this methodology to find the maximum
likelihood estimate or posterior mode of model parameters for larger lattices and illustrate
the method with the well known 14 x 179 lattice involving the endive data (Besag 1978)
and simulated data.

For the endive data, we additionally find estimates and confidence intervals based on an
approximation of the likelihood by approximating the normalizing constant as the product
of two normalizing constants based on two 7 x 179 lattices found by splitting the original
data into two sub-lattices. For each sub-lattice the normalizing constant is approximated by
the corresponding normalizing constant for the cylinder. For the normalizing constants cal-
culation we effectively treat the two sub-lattices as independent whereas the unnormalized
distribution is taken to be its true value. We compare our two new methods of inference for
the parameters with the well-known pseudo-likelihood approach. For the endive data we
find good agreement for values of estimates and confidence intervals for our new methods,
while the value of the pseudo-likelihood estimate is statistically significantly different from
the maximum likelihood estimate. For simulated autologistic data there is a substantial
difference between our new methods and the pseudo-likelihood approach. Our simulation
results suggest that the true likelihood method and our good approximation to it are substan-
tially more efficient than the pseudo-likelihood method. We find that the efficiency (defined
as the ratio of the mean square error of the method and that of the true likelihood estimate)
of the pseudo-likelihood estimate is typically 15% and our new approximate estimate about
60% efficient for the range of cases considered. These findings are also supported by Gu
and Zhu (2001), who derived maximum likelihood estimates for the Ising model using an
MCMC based Newton—Raphson algorithm. Additionally, our approximate methods can be
used to find posterior distributions of parameters without recourse to simulation and only
using MCMC to refine the normalizing constant approximation. However, here we illustrate
the technique by finding confidence intervals for parameters based on the profile likelihood.

Section 2 briefly introduces the autologistic model and pseudo-likelihood estimation.
Section 3 outlines the approach to calculate the normalizing constant for the lattice wrapped
on the cylinder, and then shows how this result, when used with an MCMC scheme, may be
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applied to calculate the normalizing constant for the free boundary lattice. Section 4 presents
results of our maximum likelihood estimation procedures, together with confidence intervals
based on profile likelihoods. Finally, we present conclusions to this work in Section 5.

2. AUTOLOGISTIC MODEL

Consider a binary random variable x;; taking the values {0, 1} at each site (¢, j) on
a regular m x n lattice. The unnormalized autologistic distribution on the lattice may be
written in exponential form as

¢(x|0) = exp{O'V(x)}
cXp {H{jl‘?}(}i} -+ HIL’}{]{}} [2[]

Here © = (6, 0;) and V (x) = (Vo(x). Vy(x)), with

ox) = Y > i (2.2)
=] g
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'lf’f{x} = Z Z I[-.I-'fji — "i'.H'LJ'] -+ Z Z I[.‘I'T-,'j — .'i".e,'d'+|]. (23}
i=l 1=l i=] j=l

Here I[x;; = ;1 ;] is the usual indicator function, taking the value | when x;; = x4 j,
and 0 otherwise. It is seen that Vj(x) is the number of 1’s in the lattice. The first term of
V¢(x) counts the number of like-valued nearest neighbors within each column. The second
term counts a similar number for within rows. Thus, V;(x) counts the number of like-valued
direct adjacencies in the array. The subscript “f™ denotes “free-boundary™ lattice points.
The statistics Vy(x) and Vy(x) are sufficient statistics for #p and 6.

The normalizing constant is given by

2(©) = z(6p,0f¢) = [r;(xH:-)} (dx).

o X

where 4t is a counting measure and the integral becomes a sum over all possible outcomes
of x, in this case a sum involving 2" terms.

An important special case of the autologistic model occurs when the parameter 6, = 0.
This gives the well-known Ising model, studied extensively in statistical mechanics, and
widely used as a prior distribution in Bayesian image analysis. In this instance, positive
values of #; encourage patches of 0’s or I's and f/; < 0 promotes repulsive attraction
between neighboring lattice points.

One of the major difficulties with the autologistic distribution is that its normalizing
constant is often difficult to compute. Thus, in particular, maximum likelihood estimation of
the model parameters, 6 and ¢/ s, becomes difficult. For this reason many different methods
to estimate the likelihood have been proposed. The pseudo-likelihood method (Besag 1975)
is one such example. We describe it in the subsequent section.
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2.1 PseEupo-LIKELIHOOD ESTIMATION

The pseudo-likelihood method proposed by Besag (1975) estimates the joint probability
P(x|0) as the product of the full conditionals. That is,

Tt I

P(x|0) = [T T] P(zi;l1x\q.5). ©). (2.4)
i=1j=I
Here x\ (; ;) denotes the lattice x excluding point .r;;. Thus, pseudo-likelihood represents
superficially only a slight departure from independence since the full conditionals are written
as
E‘:Ipl[ﬂ”..:;:;j- + Hf Zé.qjmr’.j’ I[J:u- — J.'I'FJJ]:]

exp(05 2, jmir jo Ilwij = O]) + exp(fo + 04 Z:‘._;‘mr,y I[zi; = 1])
(2.5)

Here each summation is over first-order neighborhood structures, that is, summations over

P(z;;|x\(i,5),©) =

direct adjacencies. Again, I is the indicator function taking the value 1 when its argument
is satisfied, and 0 otherwise.

[t has been widely argued that pseudo-likelihood estimation gives misleading results,
particularly when the interaction parameter € is strong. For simulated data we find that
pseudo-likelihood estimates are very inefficient compared with our full likelihood methods.
We will return to this discussion later. Huang and Ogata (1999) use pseudo-likelihood
estimates as the starting point of a single step Newton-Raphson Monte Carlo scheme to
obtain better precision.

Finally, Huang and Ogata (2002) attempted to extend pseudo-likelihood estimation by
considering products of blocks of lattices points conditioned on their compliments. As the
blocks get smaller, the estimates should converge to pseudo-likelihood estimates. While as
the blocks gets larger, the hope would be that the estimates get closer and closer to the true
values of the maximum likelihood estimates.

3. LIKELIHOOD ESTIMATION FOR THE AUTOLOGISTIC
MODEL

This section describes an approach to computationally efficient estimation of the nor-
malizing constant of the autologistic distribution. Pettitt and Friel (2001, sec. 3) showed
that if the autologistic distribution is wrapped on a cylinder, that is, when the first column
and last column of the cylinder are direct neighbors of each other, then the corresponding
normalizing constant can be exactly and efficiently computed. Let us outline the details
here. The reader is referred to Pettitt and Friel (2001) for a more rigorous explanation.

3.1 NORMALIZING CONSTANT FOR THE CYLINDER LATTICE

We begin by extending the definition of the autologistic model as follows. Consider
the unnormalized autologistic model defined as follows, with an extra parameter ,.:

q(x|©) = exp {BoVo(x) + 0,V (x) + 0.V.(x)}. (3.1)
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Here Vj(x) and Vy(x) are defined as before in (2.2) and (2.3), and now © = (.6, 0.).
The additional statistic V.(x) is defined as

I

Vale) =Y "Iz =y (3.2)

g =]

So V.(x) is the product of direct adjacencies between the first and last columns, giving the
so-called cylinder boundary conditions. Clearly, when ¢. = 0 this model reduces to the
standard autologistic model and when 6. = 6 the model gives columns on the cylinder
which have a stationary distribution.

The idea of the calculation of the normalizing constant for the cylindrical lattice, is to
equate the n lattice columns, which are binary vectors of length ., to the outcomes over
imesl. ... n of a discrete vector stochastic process having its state space defined by all the
possible arrangements of a binary 1m-vector, which number 2™ in total. The result basically
derives from the realization that the normalizing constant is the trace of the product of
n positive matrices, each similar to the transition matrix involving two adjacent times or
columns. Further, as stated above, when the columns of the lattice are stationary then the
product simplifies to be of the form ATB™A for 2™ x 2™ matrices A and B, and where
A and the diagonal matrix B are derived from the one-step transition probability matrix for
the binary m-vector. We therefore need to calculate the trace of B", a diagonal matrix.

Note that this result is feasible for lattice sizes with smallest row or column less than or
equal to 10. This is not necessarily a drawback, as we will see in the subsequent sections that
we can use a Monte Carlo scheme to efficiently find normalizing constants for models which
are related to the lattice with the cylinder boundary condition. For example, two n x m
lattices can be “zipped” together to form a n x (2m) lattice, and so on. However, next we
derive a simulation free approximation for the normalizing constant for larger lattices.

3.2 SIMULATION-FREE APPROXIMATION OF THE NORMALIZING CONSTANT

We now consider a new approximation based on the exact normalizing constant result
for the cylinder boundary condition (Pettitt and Friel 2001). We first consider the standard
identity p( B, B,) = p(B,|B2)p(B>) with B, B, referring to the data for two sub-lattices
B, B; of the original lattice x. Given the Markov property of the lattice, the conditional dis-
tribution of B, given B; depends only on the sites of B> which constitute the boundary for
B,. If B, is relatively large in comparison to the boundary, then the conditional distribution
p(B;|B,) should be well approximated by the marginal p(.5; ). Or simply, we cut the lattice
into sub-lattices which are treated as being independent. Then, as shown in Section 3.1, the
normalizing constant can be found for lattices with smaller dimension being no more than
10, by using a computational analytic method. Hence likelihood inference can be carried
out without simulation using the approximation that the normalizing constant for (3, I33)
is the product of the normalizing constants for B and 3. There is no need to approximate
the unnormalized distribution ¢(x|#) as this is straightforwardly calculated. This approach
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can obviously be extended to large lattices with many sub-lattices. We call this approach
top x bottom estimation, and illustrate its performance in Section 4.

3.3 From CYLINDER TO FREE BOUNDARY LATTICE

This section shows how it is possible to extend the exact result for the normalizing
constant on the cylindrical lattice to the free boundary lattice. To begin, note the following
result which has appeared, for example, in Ripley (1988, p. 64) and Ogata (1989),

E(Hﬂ-.ﬂ;qﬂu]) f”ﬂ ,
log - Exi(0,.0;.0.)Ve(x) db.. (3:3)
(E(Hu-ﬁf-ﬂh) g ARl (x)

This result shows that it is possible to explicitly calculate the ratio (or the log of the ratio)
of two normalizing constants, when f/. differs, and each of #, and 0/ are fixed.

Our primary interest concerns calculating z(6y, € ¢. 6..), when 6. = 0. However, we can
use (3.3), and the exact result for the normalizing constant on the cylinder to do this since

z(Hg, 0,0
log (2(6,0,0)) = lng(ﬁ{Eg[:] g; H;)) + log (2(6o,05,05)) .

Here the first term on the right-hand side can be calculated using (3.3), while the second
expression on the right-hand side is the normalizing constant for the cylinder lattice, and so
can be calculated exactly.

The expression (3.3) concerns an integral over V,.(x), a sum of m terms, and provides
a highly efficient way of evaluating z(6y, @, 0). The reader is referred to Pettitt and Friel
(2001, sec. 5) for a complete discussion, where the above conjecture is verified for various
simulations.

Until now we have not mentioned the method of calculating the integral (3.3). Here
we have some choices. One option—as described by Gelman and Meng (1998) and Petutt
and Friel (2001 )—is the method of path sampling. Here the idea is to sample jointly from
a distribution for x and @ with the two conditionals p(x|f) x q(x|#) and p(f|x) x q(x|d).
This leads to the marginal p(f) oc 2(6). If 2(#) does not change much in value over the
range of ¢, then this method is very efficient as the integral in (3.3) can be estimated by
the simulation sum of generated values of V.(x) weighted inversely by the incremental
differences in the ordered simulated values of # (Gelman and Meng 1998, sec. 5). If z(#)
changes greatly over the range of #, then the values of ¢ over this range are poorly sampled
leading to a poor estimate of log z(#). In fact this is the situation we encountered in this
study, and so we were prompted to look at alternative ways to estimate the integral (3.3).

A less efficient and more straightforward method is to estimate the integral using a
quadrature rule. Simply choose a gnid of #,. values along the path of integration, and for
each grid point, use MCMC theory to generate a Markov chain converging to p(x|fy, 0, 0..).
Samples from this stationary distribution can then be used to estimate E)g,,0,6.)Vc(X)
via an ergodic average. The integral (3.3) over 6. can then be replaced by a discrete sum
over the grid of @, values using a quadrature rule. We favor the trapezoidal rule.
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3.4 EXTENSIONS TO LARGER LATTICE SIZES

As stated previously in Section 3.1, the exact result for the normalizing constant for
the cylinder wrapped on a lattice may only be feasible for a lattice with smallest row or
column less than or equal to 10. However, this section shows how this drawback may be
overcome to estimate the normalizing constant for larger lattice sizes. We describe in detail
the approach to calculate the normalizing constant for a lattice of size (2m) x n, where
m < nand m < 10. It will become apparent how this may be generalized to larger lattice
sizes.

Let us begin by reparameterizing the autologistic model assigning parameters to each
of the m x n lattices in the top and bottom of the (2m) x n lattice. The sufficient statistic
Vo(x) can be written in terms of a statistic V} ;(x), defined for the upper half, “top”, of the

(2m) x n lattice withrows ¢ = 1,. .., m, and V} ;(x), defined on the lower half, “lower™,
rowsi=m+1,..., 2m. So we have
I ri 2m
:ZZ'T” Z Z"’u—vl x) + Vo p(x).
=1 j5=I t=m-+1 j}

In a like manner we can reparameterize the statistic Vy(x). Here, however, there is a part,
V.(x), common to both halves which involves elements in rows m and m + 1:

2m—1 n 2m n-—|
Vf[:-c} — Z ZI{:FU == .'J'.','_J_LJ'] -+ Z Z I[;ﬂu s :f_lt"j_|_|]
i=l j=I i=1 j=I
m n—| m—1 n
= ZZI[H?,;J— 1113+|i+ZZILU I,._,h|_,]
=] 3=I i=1 3=l

T
-1 Z: I[J":I'T:I_} = :rl'ﬂ‘f"-_.?l
=1

2m - 2m—1 I

+ Z ZI[IU_‘I:J-H L Z ZIlia;:izHiJ]

i=m+1 j= i=m-+1 j=I

Vi(x) + Va(x) + Vip(x), (3.4)

respectively.
Each of the newly defined parameters and corresponding statistics may be combined

to give the unnormalized autologistic distribution
q(x[©) = exp{fonVo.b(x) + b0, Voo (x) + O pVyn(x) + 0.Va(x) + 07, Vi (x)}
with
© = (Gop.004.075.0:,05,).

Writing z(6y . Oy . 054, 0.,05) for the normalizing constant of this distribution, the fol-
lowing relationship holds for the normalizing constant of the (2m) x n lattice

—
fad
L
o

“2m.n {Hﬂ- Hf} = E{”{], {(}!}- ﬂf* H_.I"t ﬂf}'
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Figure I.  Evolution from two m x n lattices wrapped on a cylinder to a (2m)x n lattice.

and when @, = (0 we can relate the normalizing constant of the (2m) x n lattice to the
m x n lattice as follows

(00, 00,05,0: = 0,05) = {zmn(60,6)}* (3.6)

because the top and bottom half of the lattice are made independent when @, 1s set equal
to zero. Here we introduce subscripts to the notation for z(fy, 0y ) to emphasize the corre-
sponding lattice size, when this might be unclear. We can combine each of (3.5) and (3.6)
in the following expression for the normalizing constant for the (2m) x n lattice:

E{H{],ﬂn,ﬁf‘ﬁz = Hfﬁ'_r)
(69, 600,05,0. =0,05)
2(0o, 60,07,0. = 05.05)
z(09, 6o, 0y,0. = 0,05)

Ez,m"(ﬂ[].ﬂf] X E(H{];H{;,HI..HE ==tk HI}

bt {Em.n(gihﬂf}}z- {3?)

Consider the first expression on the right-hand side. Here only the /., parameter differs, when
comparing the numerator and denominator, and so the log of its ratio may be estimated as an
integral over f,, mimicking the discussion in Section 3.3. Because z,,,,,(fg, # ) corresponds

to a sufficiently small lattice it too may be easily calculated. Thus, taking logs we may rewrite
(3.7) as

f:"'Jr
]Ug{zz.m‘n{:ﬁg. HJFD = f Eillﬂ'l"ﬂn‘ﬂf‘ﬂ: ,ﬂf}vz(x}dﬂ: + 2 lﬂg(z"m(ﬂn, H_f;l} (33}
0

To summarize, the procedure to calculate the (2m) x n lattice may be thought of as
follows. Begin with two lattices of size m x n wrapped on a cylinder, and in each allow
fl. = 0, to obtain two free boundary lattices of size m x n. These two independent lattices
are then joined together to form a (2m) x n lattice by introducing a parameter ¢. and
corresponding statistic V. (x) which connects the smaller lattices along their last and first
rows. Figure 1 aims to explain this idea graphically.

4. RESULTS

This section presents various methods to estimate likelihood parameters. We present
what we term the true likelihood method which uses the exact estimate of the normalizing
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Figure 2.  Endive dataset; see Besag (1978),

constant described above, together with the top x bottom estimation, described in Sec-
tion 3.2. Essentially this amounts to splitting the lattice into two halves along its middle
row. The full lattice 1s then treated as two independent lattices, each wrapped on a cylinder.
Following the terminology of Section 3.4, this amounts to treating the variable #, as zero.
Finally, both of these are compared with pseudo-likelihood estimates. Intuition would sug-
gest that the top x bottom estimates should be closer to the true likelihood estimates than
the pseudo-likelihood since the approximation involves an error for the log normalizing
constant given by the integral in Equation (3.8) which, at its worst, should have a relative
errorof nin2(m + 1)norlin (2m + 1).

The pseudo-likelihood and top x bottom estimates were found using simulated anneal-
ing. The normalizing constant for the true likelihood estimate was found as follows. First
the interval [0, 6] in the integral (3.8) was discretized into 100 equal parts. An MCMC
chain generated using Metropolis-Hastings updates with a burn-in of 5,000 iterations and
5,000 subsequent iteration values was used to estimate E(V.(x)) at each point along the
integral (3.8). The integral was then estimated by quadrature using the trapezoidal rule.

Clearly both pseudo-likelihood and top x bottom are simulation-free estimation meth-
ods, while the true likelihood method involves some simulation. It is a nontrivial matter
to quantify bounds on the error of the simulation approximation. However, we note that
perfect sampling (Propp and Wilson 1996) can be applied straightforwardly to the autolo-
gistic model, thus eliminating the error in estimating the burn in time to stationarity in each
MCMC chain.

4.1 ENDIVE DATA

The following dataset first appeared in Besag (1978). It concerns the spread of footrot
over an approximate regular lattice of size 14 x 179 of endive plants. These binary data
describes the absence or presence of this disease. As before, we let x = {x;,} describe
the state of the lattice. Here x;; = 0, if the plant is healthy, and 1, if the plant is diseased.
Figure 2 displays this dataset. In this display black pixels correspond to lattice points with
the value 1.
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Table 1. Various Estimates for the Endive Dataset, Together with Corresponding Log-Likelihood Val-

ues.
fo A Log-likelihood
True likelihood ~0.801 0.389 —1053.96
Top x bottom —-0.803 0401 —-1055.82

Pseudo-likelihood —0.781 0.398 —1061.71

We assume that this spatial dataset is a realization from an autologistic distribution. We
return to this later. The main concern is inference for the model parameters. Table 1 presents
three estimates: pseudo-likelihood estimates; estimates where the normalizing constant for
the dataset is treated as two independent lattice each of size 7 x 179 (top xbottom); and
finally the computationally efficient true likelihood estimates from Section 3. Each of these
estimates is displayed with a log-likelihood value calculated using the exact method to
calculate the normalizing constant.

The estimation procedure for the true likelihood method was repeated 10 times, using
different initial random seeds. The corresponding estimates given in Table | are given as
the average of these. The simulation standard errors for iy and @ are 0.0007 and 0.0005,
respectively.

Table 1 also shows that, indeed, the true likelihood estimate gives the largest log-
likelihood value, not surprisingly, since this is how these estimates were chosen. Interest-
ingly the estimates using the top x bottom method give a log-likelihood value closer to that
of the true likelihood estimate, than for those estimated via pseudo-likelihood. This should
agree with our intuition. Formally, if we test whether the pseudo-likelihood estimate values
lie in a 95% confidence interval for the two parameters based on the true likelihood then,
referring the deviance or twice the log-likelihood difference, 2(—1053.96 + 1061.71) or
15.5, to chi-squared on two degrees of freedom, we obtain a negative conclusion. Thus,
the pseudo-likelihood estimate is certainly statistically different from the true maximum
likelihood estimate in the sense that the value of the true likelihood evaluated at the pseudo-
likelihood estimate is substantially less than the maximum of the likelihood.

We can find 95% confidence intervals based on the profile method using the likelihood
or its approximation. For 6 and the true likelihood we obtain [—0.851, —0.742|, while
for the top x bottom method we obtain [—0.845, —0.746]. For #; we obtain the inter-
vals: [0.365,0.434] and [0.377, 0.429], respectively, for the true and top x bottom methods.
We note that the top xbottom confidence interval is somewhat more symmetric about the
estimate than the true likelihood interval and this may be due to simualtion error in the
estimation of the true likelihood normalizing constant.

4.2 SIMULATED DATA

This section presents results for simulated data. Here, for each choice of parameter
values, we simulated 15 realizations of a lattice of size 12 x 100 from an autologistic
distribution. To illustrate our findings we consider first the case with parameters f; = 0
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Figure 3. Simulated daraser, with 6y = 0, f = (.3,

and f/y = 0.3. For this choice, these are realisations from an Ising model. Figure 3 displays
one such lattice. This plot shows characteristic behavior of the Ising model, namely, that
there are distinct homogeneous regions of like valued points, since the interaction parameter
fly = 0.3 is quite large.

For each of the 15 lattices we have estimated maximum likelihood estimates of #, and
f! ; for the pseudo-likelihood, top x bottom and true likelihood methods. For each method we
present the corresponding mean values together with corresponding standard errors. These
may be seen in Table 2.

To compare the estimates we can consider the mean square errors of each method
relative to that of the true likelihood method. Here the pseudo-likelihood estimation method
has relative efficiencies in the range 5-17% compared with the true likelihood method,
concurring with the view that the pseudo-likelihood can be unreliable and with the results
of Gu and Zhu (2001) for the Ising model.

These results show that both the true likelihood and top xbottom methods perform
better than the pseudo-likelihood method. The standard errors for both parameter values
are considerably smaller than the corresponding standard errors for the pseudo-likelihood.
The true likelithood method performs somewhat better than top x bottom, but at the expense
of increased computational time. The top x bottom method has efficiencies in the range 52—
60%. We also considered other values of the parameters and results are given in Table 3 and
summary mean square error efficiencies given in Table 4. From Table 4 we note a consistent

Table 2. Means, Standard Errors, and Mean Squared Errors of Estimates of 6y and ¢; for 15 Realiza-
tions From an Autologistic Model With Parameters #; = 0.0 and #, = 0.3, for Each of the
Three Estimation Procedures

True likelihood Top x bottom  FPseudo-likelihood

Mean of g 0.014 0.018 0.015

St. error for p  0.00337 0.00441 0.01134
MSE for fj 0.000366 0.000616 0.002154
Mean of 4, - 0.304 0.297 0.310

St. error for 8y 0.00216 0.00322 0.01007

MSE for 6 0.000086 0.000165 0.001621
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Table 3. Means, Standard Errors, and Mean Squared Errors of Estimates of #y and ¢y for 15 Real-
izations From an Autologistic Model with Various Different Parameter Values, for Each of the
Three Estimation Procedures

True likelihood Top x bottom  Pseudo-likelihood

Mean of Ay -0.012 0.014 0.033
By = 0.0 St. error for fg 0.00293 0.00366 0.0104
MSE for g 0.000273 0.000397 0.00272
Mean of &; —0.291 —0.284 —0.285
#; = —0.3 St. error for & 0.00340 0.00399 0.0119
MSE for 4, 0.000254 0.000495 0.00234
Mean of 0 0.00100 0.0190 0.0230
6 = 0.0 St. error for gy 0.00361 0.00354 0.00869
MSE for 6, 0.000196 0.000549 0.00166
Mean of 8, 0.0920 0.0940 0.0880
¢ = 0.1 St. error for 0.00416 0.00501 0.0128
MSE for 6, 0.000324 0.000413 0.00262
Mean of fg —0.0200 ~-0.0180 —0.0210
o = 0.0 St error for fg 0.00395 0.00417 0.0132
MSE for g 0.000634 0.000585 0.00304
Mean of —0.0930 —0.0910 —0.0810
6= —0.1  St. error for 6; 0.00472 0.00518 0.0134
MSE for &, 0.000383 0.000483 0.00489
Mean of 6, 0.267 0.253 0.219
6y = 0.3 St. error for fg 0.00869 0.00921 0.0163
MSE for 0.00222 0.00348 0.0105
Mean of 4, 0.331 0.335 0.384
8, =0.3 St. error for &; 0.00929 0.0127 0.0173
MSE for 6, 0.00226 0.00664 0.0115
Mean of f 0.326 0.343 0.393
8o = 0.3 St. error for g 0.00970 0.0117 0.0183
MSE for f; 0.00209 0.00391 0.0137
Mean of &, —0.319 —0.322 (.97
#; = —0.3 St error for 6; 0.00881 0.00912 0.0173
MSE for 6, 0.00153 0.00173 0.00533
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Table 4. Ratios of Mean Squared Errors for Both Top x Bottom and Pseudo-Likelihood to the Mean
Squared Error for the True Likelihood

MSE true likelihood MSE true likelihood
MSE top = bottom MSE pseudo-likelihood

flo = 0.0 0.594 0.170
6= 0.3 0.521 0.053
6 = 0.0 0.688 0.100
6= —0.3 0.513 0.109
0o = 0.0 0.357 0.118
g, = 0.1 0.785 0.124
B = 0.0 1.084 0.209
6, = —0.1 0.793 0.078
6o = 0.3 0.638 0.210
;= 0.3 0.340 0.196
fo = 0.3 0.534 0.153
;= —0.3 0.880 0.286

pattern across parameter values that the top xbottom method has efficiency around 60%
with range 34-108% while pseudo-likelihood estimation has efficiency about 15% with
range 5-29%. These results suggest that the top xbottom method is substantially superior
to pseudo-likelihood without recourse to computer intensive simulation.

4.3 DISCUSSION

For the endive data, with quite extreme values of the parameters, estimates for the two
model parameters differ by amounts which are statistically significantly different for the
various methods. Comparing each of the estimates 1n terms of the log-likelihood values,
calculated via the true likelihood method, it would appear that the top xbottom estimates
are closer to the true likelihood estimates than those for the pseudo-likelihood estimates.
While the top x bottom estimate 1s not statistically different from the true likelihood estimate
(deviance difference 3.72 on two degrees of freedom) that of the pseudo-likelihood estimate
1s (deviance difference 15.5 on two degrees of freedom).

For simulated data we have found that the true likelihood and top x bottom methods both
estimate model parameters very efficiently. Standard errors of these estimators, obtained
from 15 simulated lattices with the same model parameters, were of the same order with
the statistical efficiency (in terms of mean square error) of the topxbottom method in the
range 34—108%. In comparison the pseudo-likelihood method estimated parameters with
less precision, as illustrated by considerably higher standard errors of model parameters,
having an efficiency in the range 5-29%.

It should be noted that for the endive data there may be some doubt as to the appro-
priateness of the autologistic model. For example, Besag (2000) suggested, using a Monte
Carlo test, that the autologistic model gives a very poor fit to the endive data. This gives
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more weight to the conclusions arising from the analysis of the simulated data, that the
true likelihood method performs slightly better than the topxbottom method, at the ex-
pense of considerable computation time, and that both perform substantially better than the
pseudo-likelthood method.

5. CONCLUSION

We have presented a computationally efficient but intensive method for calculating the
normalizing constant for the autologistic model and incorporated this into a full likelihood
analysis of binary spatial data allowing for estimation and inference for unknown model
parameters. We have also presented a computationally efficient approximation to the true
likelihood normalizing constant based on the product of two true likelihood normalizing
constants, one for each split of the lattice into two sub-lattices. Finally, both of these methods
are compared with the computationally fast estimation based on pseudo-likelihoods. The
computational times for these methods vary in turns by orders of magnitude.

We suggest our remarks here would carry over to Bayesian analyses where use of
the pseudo-likelihood could give misleading inference for model parameters. For exam-
ple, Heikkinen and Hogmander (1994) used a single-parameter Ising model and pseudo-
likelihood to carry out a so-called full Bayesian analysis of the presence/absence of Finnish
toads which leads to substantial smoothing. Weir and Pettitt (2000) gave an alternative full
Bayesian analysis of the data which leads to little spatial smoothing.

In short we suggest that our methods provide improvements to the widely used pseudo-
likelihood approach giving substantially more accurate inference, but at the price of some
computational resources.
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