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Abstract

This paper presents Bayesian graduation models of mortality rates, using Markov chain Monte Carlo (MCMC) techniques.
Graduated annual death probabilities are estimated through the predictive distribution of the number of deaths, which is assumed to
follow a Poisson process, considering that all individuals in the same age class die independently and with the same probability. The
resulting mortality tables are formulated through dynamic Bayesian models. Calculation of adequate reserve levels is exemplified,
via MCMC, making use of the value at risk concept, demonstrating the importance of using “true” observed mortality figures for
the population exposed to risk in determining the survival coverage rate.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Complementary open pension and life insurance plans that have survival coverage (retirement benefits) require
prior approval for commercialization in Brazil. Open pension entities and life insurance companies must set the
mortality tables and interest rates that will be applied to their plans at the time of obtaining this approval. However,
the mortality tables must be valid from the adhesion of the first participant to the plan until the death of the last one, a
very long interval. In this paper, we refer generically to the plans as pension plans and to the companies that sell them
as insurers.

Among the problems faced by insurers, one of the chief ones is deciding which mortality table to establish for
survival coverage of their plans, since this must be used to calculate contributions, benefits and reserves. This problem
is aggravated by the trend toward greater longevity in the population at large and the use in Brazil of mortality tables
constructed from the experiences of other countries, particularly the United States.

Insurers constitute mathematical reserves for future liabilities based on the values of the life annuities, as we
shall see in Section 4 and the Appendix. These are calculated as a function of the interest rate and the probability
of death. Hence, to avoid constituting mathematical reserves that are insufficient to cover their future commitments,
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and consequent insolvency, due to the lack of knowledge about the true mortality of the exposed population, the
companies’ actuaries have been putting aside statistical and actuarial considerations and trying to prevent future losses
by setting reduced real interest rates, generally equal to zero. With this artifice, they hope to compensate for future
technical losses arising from poorly formulated mortality tables, i.e., by using higher death probabilities than are really
the case for the population covered by survival benefits, with financial gains from the guarantee of a low real interest
rate. In this form, the Brazilian insurance market is becoming less technically grounded.

Based on data collected from all Brazilian insurers for the four years 1998–2001, a Bayesian statistical model
is used to prepare mortality tables for both sexes that reflect the mortality rates of those exposed to risk who have
survival coverage under pension plans in Brazil. To predict the probabilities of death contained in these tables, a
Bayesian graduation process is used. The observed numbers of deaths are modelled as Poisson-distributed, assuming
that all individuals of the same age die independently and with the same probability. Graduation is fundamental to
smooth out the raw mortality rates so that the death probabilities are monotonically increasing with respect to age,
since it is well known that human mortality behaves this way from a certain age onward.

The main objective of this paper is to propose hierarchical dynamic models for formulating Bayesian mortality
tables (Gamerman and Migon, 1993). These models strongly differ from others found in literature from 1990 to 2000
since they are full Bayesian, dynamic and predictive in nature. They combine graduation with a dynamic description
for the mortality evolution throughout time allowing to incorporate improvements in mortality rate. Certainly, they
can be viewed as an extension of the graduation models introduced by Broffit (1988) and Carlin (1992). They also
extend Renshaw and Haberman (2003) and Czado et al. (2005) allowing the parameters to vary throughout time and
building mortality tables based on the predictive distribution of the number of deaths. The importance of better fitting
the mortality tables used in calculating survival coverage to the reality of the exposed population, in order to maintain
the solvency of insurers, is shown. This is done by calculating the mathematical reserve, comparing the “deterministic
method” adopted by the Brazilian insurance market with our proposed Bayesian method, via stochastic simulation
(MCMC), employing the value at risk (VaR) concept.

This paper is organized as follows. The data and concepts are presented in Section 2. In Section 3 dynamic models
for preparing mortality tables are proposed. Modern techniques in model selection are also discussed in this section.
In Section 4 the mathematical reserve is calculated by means of MCMC and value at risk concepts to demonstrate the
importance of adjusting mortality tables to the real mortality of the exposed population so that the insurer can remain
solvent. Finally, in Section 5 some conclusions and suggestions for extensions of this work are presented.

2. Graduation of mortality rates

The data used refer to participants in pension plans in Brazil with survival coverage for the years 1998–2001. We
consider these data with the following structure: Dt = (x, ex,t , dx,t ), where x is the age of the individuals in years, ex,t
is the central number of those exposed to risk observed at age x in year t , and dx,t is the number of deaths observed at
age x in year t , for t = 1, . . . , 4, already corrected for any notification delays.

In the period under study, there were nearly 5.6 million men at risk and 2.9 million women. Of these 94% were
between 20 and 60 years of age. In the same period, nearly 7600 men died and 2800 women, with the great majority,
approximately 97%, doing so between the ages of 25 and 90. These data are available from the corresponding author
on request. One would expect the mortality rate to behave regularly, with older individuals having higher probabilities
of dying than younger people. In practice, however, the crude rates do not behave this way in relation to age, but form
a noisy, irregular sequence. To be used in pension plans, the rates must be smoothed out. This process of smoothing
out crude mortality rates is called graduation.

Graduation, besides correcting the problem mentioned above, serves to overcome the lack of information for some
ages studied. The crude rates are smoothed so that the annual probabilities of death (qx ) are monotonically increasing
with advancing age. This is a well accepted fact for human mortality rates, for ages xl (the lower age value, for
example xl = 20 or 30) and above.

The crude mortality rates were graduated as a function of the force of mortality, i.e., the instantaneous variation in
the intensity of death. Assuming that all individuals with the same age die independently and with the same probability,
then the number of deaths observed, dx,t , for each year and age, is Poisson-distributed with mean

E[dx,t |µx,t ] = ex,t µx,t
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where µx,t is the force of mortality at age x at time t , and ex,t denotes the exposed population, which is assumed
known.

Since the aim of the graduation process is to obtain the annual probabilities of deaths for each age class and we
are graduating as a function of the force of mortality, we consider these to be constant over constant age intervals and
work with the following relation (Gerber, 1997):

qx = 1 − exp(−µx ). (1)

To estimate the smoothed mortality rates, the literature suggests parametric and non-parametric graduation, in
the nomenclature of Haberman and Renshaw (1996), or global and local models, respectively. The local models are
related to a semi-parametric spline smoothing (Kohn and Ansley, 1987). Graduations are performed, in this paper,
through parametric models, which we call global models, by adjusting the probabilities of death or of mortality
forces to a mathematical model. The most common mathematical models represent survival functions based on laws
of mortality, such as those of de Moivre, Gompertz, Makeham and Weibull (Bowers et al., 1986). A broad class of
Bayesian generalized growth models, which accommodates the mortality law mentioned before, is described in Migon
and Gamerman (1993).

In this paper, however, we propose dynamic Bayesian models, with two prior modelling alternatives: local
and global, to take care of the smoothness of the crude rates. The Bayesian approach to the graduation process
involves statistical estimation of the unknown parameters, where initial knowledge of the parameters of interest (prior
distribution) is aggregated to the data. Some works have already appeared on Bayesian graduation, among them
Kimeldorf and Jones (1967), Broffit (1988), Carlin (1992) and Mendoza et al. (2001).

3. Proposed models

A mortality table is defined as a set of annual probabilities of death graduated by age. Its construction must consider
a period of study greater than one year. Haberman and Renshaw (1996) and Renshaw and Haberman (2003) use four
years, and some tables available in the market use up to six years of data. Our models can also consider any number
of years of data but give more strength to the recent ones, recognizing that present data are more informative than
the older ones. A broad class of dynamic models for preparing Bayesian mortality tables to apply to the exposed
population having survival coverage in Brazil is proposed. We extend the model presented by Broffit (1988) to include
the temporal dimension. Hence, to describe the relation between the number of observed deaths and the corresponding
ages, we use the following model:

dx,t ∼ Po(ex,tµx,t ), x = xl , . . . , xu (2)

where xl and xu denote, respectively, the lower and the upper age limits considered, t = 1, . . . , T , the number or
periods of observation, µx,t > 0 and ex,t are known constants and Po(λ) denotes a Poisson distribution with mean
λ > 0. Two alternatives are used in the modelling: local and global.

3.1. Local dynamic model

To model the evolution over time of the mortality forces, we use generalized dynamic models (West et al., 1985),
considering µx,t related through multiplicative perturbations:

log(µx,t ) = log(µx,t−1) + ωt , ωt ∼ N [0, Wt ]

where x = xl , . . . , xu, t = 2, . . . , T , Wt is modelled through non-informative Inverse Gamma distribution. We stress
that if Wt = 0, we revert to a static model. The above equation explicitly considers that death probability evolves
in time smoothly. In dynamic modelling and Bayesian forecasting nomenclature, this is called a first order or steady
state model. In this case, the data over the years are considered with the same relevance, as if it were a regression
with replications in each age bracket. The model is completed by specifying vague prior Gamma distributions for the
parameters µx,1. So, we have:

µx,1 ∼ Ga(α, β)I(µx−1,1,µx,1)(µx,1), x = xl , . . . , xu
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where IA(y) is the indicator function, assuming the values 1, if y ∈ A and zero otherwise. The hyperparameters
α, β > 0 are assumed known, unlike in Carlin (1992), only because of the computational limitations of present
version of WinBUGS (Spiegelhalter et al., 2003). Nevertheless, the posterior estimates of the mortality rates are
almost insensitive to variations on the hyperparameters α and β.

It should be observed that, by graduating µx,1, all µx,t , ∀t ≥ 2 will also be graduated, due to the evolution of
the parameters (2). Besides this, Bayes’ Theorem assures that the restrictions on the prior will also be valid for the
posterior (Carlin, 1992), in this way producing graduated Bayesian estimators for all age classes through time. A
more recent application of these concepts, in the context of estimating demographic models with restrictions in the
parameters, can be found in McDonald and Prevost (1997).

3.2. Global dynamic model

The graduation in this case is done by adjusting the mortality rates to Makeham’s Law (Bowers et al., 1986),
permitting the parameters to evolve smoothly over time:

µx,t = αt + βtδ
x
t , (3)

with x = xl , . . . , xu and t = 1, . . . , T .
Starting from the canonic link function (ηx,t ) of the Poisson distribution, as in generalized dynamic linear models,

we obtain the structure:

ηx,t = log(ex,t ) + log(αt + βtδ
x
t ),

with x = xl , . . . , xu and t = 1, . . . , T , where µx,t > 0 and ex,t are known constants.
The time evolution of the parameters that constitute Makeham’s Law are described by

log(αt ) = log(αt−1) + ωα,t

log(βt ) = log(βt−1) + ωβ,t

log(δt ) = log(δt−1) + ωδ,t , t = 2, . . . , T

with ωθ,t ∼ N [0, Wθ,t ], where θ generically denotes the state parameter and Wθ,t is modelled through non-
informative Inverse Gamma distribution. Once again, static models are a particular case corresponding to Wα,t =

0, Wβ,t = 0 and Wδ,t = 0. The model is completed by attributing non-informative prior normal distributions to the
parameters: αt , βt and δt , t = 1, satisfying the restrictions imposed by Makeham’s Law. Allowing the parameters α,
β and δ to be time varying ensures that the more recent data are considered in the estimate process with large weights.
Then, any improvement in mortality rates will be taken into account.

3.3. Predictive distribution of the number of deaths

The predictive distribution of the number of deaths at time T + 1, for each age class, x = xl , . . . , xu , is given by

p(dx,T +1|DT ) =

∫
p(dx,T +1|µx,T +1)p(µx,T +1|DT )dµx,T +1 (4)

since dx,T +1 ⊥ DT |µx,T +1, where µx,t > 0, T is the number of observation periods and represents the total available
information. In this way all the uncertainties associated with the non-observable parameters are incorporated in this
calculation.

The predictive distributions for the probabilities of death of each age class, involved in the calculation of the k-year
pure endowment (see the Appendix), are obtained based on the concept of predictive distribution described in Eq. (4),
and applying the simplification described in Eq. (1), assuming that ex,t are known constants:

qx,T +1 = 1 − exp(µx,T +1), x = xl , . . . , xu . (5)

Hence, the means of the predicted sample values for this quantity are considered the Bayesian estimators of the
probabilities of future deaths.
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Table 1
Results of the comparison methods of the proposed models, for both sexes (103)

Dynamic models EPD DIC LS

G(m) P(m) D(m) D̄ pD DIC L S

Male
Local 30.50 8.12 38.62 2.17 0.024 2.19 −1.13
Global 20.94 7.67 28.61 1.78 0.007 1.79 −0.91

Female
Local 9.38 2.96 12.34 1.65 0.019 1.67 −0.87
Global 7.09 2.82 9.91 1.41 0.008 1.42 −0.73

3.4. Implementation and analysis of convergence

The models introduced before do not allow for full inference in so far the posterior and predictive distributions
of the unknown quantities of interest are not available in closed form. Often analytical unsolved problems in
Bayesian inference can be approximately solved by sampling from the relevant posterior distribution. The distributions
involved here are too complex for directly drawing samples from. A stochastic simulation approach, named Markov
chain Monte Carlo (MCMC), is used in this application. A complete consideration of MCMC at an expository
level can be found in Gamerman (1997). This is a collection of sampling techniques that have revolutionized
the Bayesian statistics in the last decades. Roughly it deals with sampling from a complex distribution in two
steps: (i) firstly, a Markov chain with a transition kernel such that the limiting distribution is given by the joint
posterior distribution is constructed; (ii) in the next step, a trajectory is sampled from this chain. For a suitably
large iteration, values are virtually sampled from the posterior distribution. The two most used transition kernels
are Gibbs sampling and component-wise Metropolis–Hastings steps. In the first case the kernel is composed of
product of the posterior full conditionals of parameters divided in blocks, while in the second case, the kernel
is still composed of products of proposal full conditionals, not necessarily derived from the posterior. It is also
a common practice to implement many parallel chains, starting at different points of the parameter space hoping
they mix.

We implemented the proposed models through MCMC, particularly Gibbs sampling, using WinBUGS version 1.4
(Spiegelhalter et al., 2003). Due to the characteristics of the data, we estimated the probabilities of death for ages
between 25 and 90 years (xl = 25 and xu = 90), considering an observable horizon of four years (T = 4), between
1998 and 2001. We should mention that there were no recorded deaths for some of these ages. These are dealt with
easily in the inference process used in this paper. In implementing Gibbs sampling, we used three parallel chains with
different initial values, seeking to keep the samples generated from clustering in regions around a local mode, in the
case of posterior multimodality, as described in Gamerman (1997). Verification of convergence is an important step in
applying these methods. Here we use three informal graphical analysis techniques (density, autocorrelation function
and traces) and the Gelman–Rubin statistic, as modified by Brooks and Gelman (1998), and as applied by Migon and
Moura (2005). For each parameter we generated a sample of 120,000 observations, through three parallel chains, of
which the first 60,000 were discarded. It took around 15 min to implement the local dynamic model, on a PC with
1.8 GHz and 512 MB of RAM. The global dynamic model took roughly three times as long.

3.5. Selection of models and analysis of results

Selection of models is fundamental in modern statistics (Gelfand and Ghosh, 1998) due to computational advances
that allow fine-tuning multiple complex and alternative models. We apply three model selection methods to our data
to identify the best model for preparing mortality tables. Besides the Bayes factor, calculated from the predictive log
likelihood (LS) of each model estimated by the harmonic mean of the likelihood values (Newton and Raftery, 1994),
we use two other methods. These criteria simultaneously consider the fitting of the observed data and the prediction
of replicated data, and are EPD (expected predictive deviance), proposed by Gelfand and Ghosh (1998), and DIC
(deviance information criterion), developed by Spiegelhalter et al. (2002). Table 1 shows the results obtained by the
methods of comparison of the proposed models.
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Fig. 1. Quantile–quantile plots for observed versus estimated probabilities of death (logarithmic scale) for males based on: (a) local dynamic model
and (b) global dynamic model.

Fig. 2. Estimated probabilities of death (logarithmic scale) based on the proposed models for males, from the global dynamic model (solid line)
and local dynamic model (dotted line).

In Fig. 1 we present the quantile–quantile plots for observed versus fitted death probabilities obtained using the
local and global models, for males. The global model is slightly better than the local one.

We conclude that regardless of gender and the comparison method employed, the global model is the best for
preparing Bayesian mortality tables. The estimated probabilities of death, as well as their 95% probability intervals
obtained by this model, for males and females, can be obtained on request. Besides this, we can see that the estimated
probabilities of death by this model are smoother than those obtained with the local model (Fig. 2).

4. Effect of Bayesian mortality tables in the reserve evaluation

In this section we show the importance of adjusting the mortality table used in survival coverage to the real mortality
rates of the exposed population in order for insurers to remain solvent. We do this by calculating the mathematical
reserve by means of MCMC, using value at risk (VaR) concepts. These reserves reflect the future commitment of
the insurer less that of participants, and is divided into the mathematical reserve for benefits to be granted (RBG),
constituted before granting the benefit, and the mathematical reserve for benefits already granted (RBAG), constituted
while the beneficiary is receiving benefit. The RBAG reflects only the insurer’s total future obligations, since the
beneficiaries are no longer contributing to the plan, and is calculated by multiplying the value of the benefit by the
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value of the life annuity. In Brazil, payments are usually made monthly and the RBAG is calculated and accounted for
monthly. Hence, the monthly calculation of this value consists of multiplying the value of the monthly benefit by the
value of the monthly life annuity.

A life annuity is defined as the present actuarial value of a series of unit-value payments. There are various types
of life annuities, which can be classified regarding frequency of payment, form of payment, payment schedule (at the
start or end of each period).

Regardless of their classification, life annuities are calculated based on the mortality tables, interest rate and
methodology established in the pension plan, subject to approval by the Brazilian regulatory agency.

We now compare the mathematical reserve for benefits already granted, considering benefit is to be paid for life at
the start of each month, obtained by means of the “deterministic method” used by the insurance market, considering
the mortality table established in the plan; and also by calculating the predictive distribution of the life annuity obtained
by stochastic simulation. We use the Bayesian mortality table chosen in the previous section and the concept of value
at risk (VaR) to determine the amount necessary to guarantee the insurer’s solvency.

The “deterministic” calculation of the monthly whole life annuity-due to a life aged x , usually denoted 12ä12
x , is

summarized in the Appendix. It represents the present actuarial value of the unit-value payments made for life at the
start of each month to an individual of age x .

Our goal, in this application, is to use the MCMC outputs to obtain the predictive distribution of the life annuity-
due, denoted by L Ax = 12ä12

x (see Eq. (6) in the Appendix). This is a function of the interest rate, i , (assumed known
and fixed) and of the probabilities of death from age x up to age xu , (qx , . . . , qxu )T +1. These probability are obtained
from the MCMC outputs. Denote the full available information by D∗

T = DT ∪ {eT +1}, the state parameters of the
graduation model by θ and use, at time T + 1, the following steps:

(i) given some initial values for (θ (0), d(0)), for each age class x , draw:
(a) the θ ’s from the full conditional posterior,

θ ( j)
∼ p(θ |θ ( j−1), D∗

T ),

(b) the future number of deaths d( j) from

d( j)
∼ p(d|θ ( j−1), D∗

T ), ∀ j = 1, . . . , N .

(ii) calculate µ( j)(θ ( j)) using Eq. (4) and q( j)
x via Eq. (5).

(iii) obtain L A( j)
x as a function of the (q( j)

x , . . . , q( j)
xu , i).

These steps complete the MCMC algorithmic cycle and determine the desired predictive distribution of the life
annuity-due, p(L Ax | DT ). The value at risk (VaR), percentile of order 1 − α (α is the level of risk) of the above
predictive distribution will be denoted by L Ax,α and is easily obtained from the MCMC outputs. It corresponds to a
point estimated of the life annuity for age x . The level of risks to be used must be chosen in accordance with company
management or the decision maker. So, the RBAG value necessary for the insurer to remain solvent is calculated by
multiplying the VaR by the monthly lifetime benefit. The difference between this and the RBAG calculated by means
of the mortality table, using the “deterministic” methodology approved in the plan, must be borne by the insurer. This
amount corresponds to the additional reserve for solvency, which is called reserve for insufficient contribution (RIC).
Constitution of such a reserve is mandatory by force of specific regulation. Below we exemplify the importance of
adjusting the mortality table by calculating the reserve, making use of value at risk concepts.

4.1. Example of calculating reserve for a single participant

Given a hypothetical pension plan that guarantees 6% real interest per year and uses the AT-83 Male table, let us
calculate the reserves for a x = 60-year old male beneficiary who receives a monthly lifetime benefit at the start of
each month of R$1000.00. Applying Eq. (6) in the Appendix, we obtain a monthly whole life annuity-due of 141.34.
The mathematical reserve for benefits already granted is R$141,340.00. Using the outputs of the MCMC implemented
in WinBUGS, we obtain the predictive distribution shown in Fig. 3.

Setting the level of risk, we can obtain the value of the RBAG necessary for the insurer to remain solvent and the
reserve to be constituted (RIC). Table 2 shows these quantities for different values of the level of risk. We can also
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Table 2
Calculation of life annuities and reserves, in Brazilian currency (reais), using the VaR concept, for different levels of risk

Level of risk (%) L Ax,α RBAG RIC

50 159.6 159,600.00 18,260.00
25 160.0 160,000.00 18,660.00
10 160.3 160,300.00 18,960.00

5.0 160.5 160,500.00 19,160.00
2.5 160.6 160,600.00 19,260.00
1.0 160.8 160,800.00 19,460.00

Fig. 3. Predictive density distribution of the monthly whole life annuity-due to a male, age 60.

Fig. 4. RBAG necessary for an insurer to remain solvent, in Brazilian currency (reais), as a function of the level of risk.

verify the evolution of the RBAG calculated by the Bayesian method as a function of the increase in the level of risk by
analyzing Fig. 4.

Analyzing Table 2 and Fig. 4, we can see that the lower the risk the insurer wants to incur, the greater the RBAG
necessary for it to remain solvent and the greater the RIC it must fund. Hence, the task of choosing the level of risk is
very important to manage the company with an adequate safety margin.
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5. Conclusion

In this paper we implement Bayesian graduation models of mortality rates using MCMC techniques, calculated
with WinBUGS. The probabilities of future deaths are estimated by means of the predictive distribution of the number
of deaths for each age, which is modelled as being Poisson-distributed, considering that all individuals of the same
age die independently and with the same probability. To construct Bayesian mortality tables, we propose two dynamic
models – local and global – considering the temporal evolution of mortality occurring in the sample population in the
years 1998–2001 to estimate the death probabilities for 2002. After comparing the models, we find that the dynamic
global model is best for preparing Bayesian mortality tables for both sexes.

With the aim of exemplifying the importance of adjusting the mortality table used in survival coverage to the
real mortality of the exposed population in order to avoid future insolvency, we compare the calculations of the
mathematical reserves for benefits already granted, obtained by the following methods:

1. “Deterministic” (employed by the insurance market), using a known mortality table; and
2. Bayesian, using MCMC techniques and VaR concepts.

From this comparison we calculate the additional reserve (RIC) insurers should constitute to remain solvent. We
hope with this to help insurers evaluate the true mortality rates of their exposed populations, by proposing graduated
Bayesian models implemented through a statistical package (WinBUGS) that can be obtained at no cost. This will
enable them to adopt mortality tables that are better adjusted to reality and hence to adequately constitute their reserves
to avoid future insolvency. A natural extension of this work, in view of the tendency for people to live longer, would be
to model the mortality reduction factor, as done by Renshaw and Haberman (2003), but with a Bayesian and predictive
focus, unlike the model described by these authors. However, since we have only four years of data for the Brazilian
market, at the moment this modeling is impossible.

Appendix A

Let us succinctly describe the deterministic calculation of the monthly whole life annuity-due to a life aged
x (12ä12

x ), which represents the present actuarial value of the unit-value payments made for life at the start of each
month to an individual of age x . We let k E x denote the value of the actuarial discount, i.e., the present value of a unit
value of benefit owed at time k to a life aged x . This is called k-year pure endowment:

k E x =
1

(1 + i)k k px

where 0 Ex = 1, i is the real interest rate per year and k px is the probability that an individual of age x will survive
until age x + k.

Hence, the annual whole life annuity-due to a life aged x is given by

äx =

∞∑
k=0

k E x =
Nx

Dx

where Nx =
∑

∞

k=0 Dx+k, Dx = lx
1

(1+i)x , and lx = lx−1qx−1, with lx the number of survivals to each age x and l0
the root of the table, set, without loss of generality, at 10,000. On the other hand, the monthly whole life annuity-due
to a life aged x will be (Bowers et al., 1986)

12ä12
x =

∞∑
k=0

1

(1 + i)
k
12

k
12

px ' 12
(

äx −
11
24

)
(6)

where ä12
x is the present actuarial value of a life annuity-due of 1 payable twelve times a year to a life aged x .

Appendix B

See Table 3.
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Table 3
Central number of exposed to risk (ex ) and number of deaths observed (dx ) from 1998 to 2001 (Male: M, Female: F)

x M F x M F x M F
ex dx ex dx ex dx ex dx ex dx ex dx

0 1.457 0 1.149 0 39 191.767 131 93.594 33 78 6.513 172 3.814 56
1 2.002 0 1.594 0 40 189.534 138 91.644 48 79 5.239 165 3.182 50
2 2.290 0 1.877 0 41 189.988 131 92.189 31 80 4.132 101 2.586 45
3 2.207 0 1.843 0 42 187.871 151 90.231 40 81 3.165 75 2.142 53
4 2.149 0 1.852 0 43 181.762 142 87.304 47 82 2.233 59 1.489 24
5 2.112 0 1.788 0 44 179.907 158 85.047 42 83 1.602 91 1.073 33
6 2.023 0 1.789 0 45 169.827 147 80.524 30 84 1.231 41 797 20
7 1.950 0 1.736 0 46 165.711 143 77.097 42 85 972 45 603 17
8 1.853 0 1.668 2 47 158.260 137 72.922 59 86 728 19 465 18
9 1.883 0 1.628 0 48 148.063 165 67.730 76 87 644 32 388 11

10 1.902 0 1.733 0 49 138.978 151 62.511 59 88 517 19 288 5
11 1.945 0 1.716 0 50 127.568 183 57.626 52 89 433 19 206 6
12 1.814 0 1.682 0 51 118.329 149 54.355 55 90 330 15 153 5
13 1.781 0 1.653 0 52 107.069 161 49.756 49 91 205 12 118 6
14 2.362 1 2.074 0 53 98.261 162 45.502 40 92 139 11 90 5
15 4.397 0 3.735 3 54 86.882 140 41.577 48 93 86 8 72 2
16 7.537 3 6.117 6 55 78.143 140 37.983 56 94 55 4 46 0
17 11.602 3 9.251 2 56 69.787 148 34.244 34 95 41 4 33 1
18 17.668 10 13.668 10 57 61.254 148 29.809 56 96 23 0 24 1
19 27.282 15 20.373 5 58 54.390 140 26.609 70 97 14 0 17 0
20 39.187 22 26.421 7 59 49.762 117 23.674 47 98 16 0 27 0
21 52.114 21 32.970 14 60 44.583 136 21.699 53 99 10 0 18 2
22 63.735 34 38.559 11 61 41.545 146 20.216 38 100 8 1 5 0
23 71.537 42 42.467 19 62 36.775 132 18.005 39 101 3 1 3 0
24 79.096 48 46.490 9 63 33.728 125 16.471 42 102 0 1 1 0
25 86.551 53 50.129 13 64 30.998 134 15.066 56 103 0 0 0 0
26 94.143 66 54.948 19 65 27.926 116 13.777 54 104 0 0 0 0
27 104.969 64 60.760 12 66 24.595 93 12.696 46 105 0 0 0 0
28 114.155 57 65.441 18 67 21.735 119 11.593 42 106 0 0 0 0
29 125.502 64 72.160 29 68 19.791 105 11.251 60 107 0 0 0 0
30 132.145 83 74.291 21 69 18.174 109 10.590 50 108 0 0 0 0
31 142.684 84 78.735 25 70 15.824 126 9.683 47 109 0 0 0 0
32 149.030 90 79.380 21 71 13.606 93 8.616 58 110 0 0 0 0
33 160.011 88 83.987 24 72 11.522 102 7.608 66 111 0 0 0 0
34 169.838 115 88.296 29 73 10.142 100 6.739 65 112 0 0 0 0
35 179.808 111 91.186 44 74 9.311 109 6.104 70 113 0 0 0 0
36 188.322 115 94.700 28 75 8.779 129 5.504 72 114 0 0 0 0
37 191.326 122 95.452 31 76 8.015 130 4.871 64 115 1 0 0 0
38 191.510 130 94.608 45 77 7.233 187 4.213 57 116 1 0 0 0
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