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Concepts

compositional data

parts of some whole which only carry relative information
typical units: parts per one, percentages, ppm, molar
concentration...

X2

1

1 X1

compositional data in R2 simplex S3 ⊂ R3
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Concepts

sample space of compositional data

the simplex (for κ a constant)

SD =

{
x = [x1, . . . , xD] ∈ RD

∣∣∣∣∣ xi > 0,

D∑
i=1

xi = κ

}

compositional data are equivalence classes
⇒ the value of κ is not important

representation: ternary diagram

Closure operator: Cx normalizes to κ.
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Concepts

ternary diagram

For 3-part compositions,

X
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X
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History

milestone I: Karl Pearson, 1897

“On a form of spurious correlation which may arise when
indices are used in the measurement of organs”

Pearson was the first to point out dangers that may befall
the analyst who attempts to interpret correlations between
ratios whose numerators and denominators contain
common parts
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History

milestone II: Felix Chayes, 1960

“On correlation between variables of constant sum”

Chayes showed that correlations between closed data are
induced by numerical constraints (negative bias or closure
problem) and made attempts to separate the spurious part
from the real correlation
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History

example of negative bias and spurious correlation

scientists A and B record the composition of aliquots of soil samples;
A records (animal, vegetable, mineral, water) compositions, B records
(animal, vegetable, mineral) after drying the sample; both are absolutely
accurate (adapted from Aitchison, 2005)

sample x1 x2 x3 x4

1 0.1 0.2 0.1 0.6
2 0.2 0.1 0.2 0.5
3 0.3 0.3 0.1 0.3

sample x ′
1 x ′

2 x ′
3

1 0.25 0.50 0.25
2 0.40 0.20 0.40
3 0.43 0.43 0.14

correl x1 x2 x3 x4

x1 1.00 0.50 0.00 -0.98
x2 1.00 -0.87 -0.65
x3 1.00 0.19
x4 1.00

correl x ′
1 x ′

2 x ′
3

x ′
1 1.00 -0.57 -0.05

x ′
2 1.00 -0.79

x ′
3 1.00

x = [x1, x2, x3, x4] x′ = C[x1, x2, x3]
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History

attempts to model compositional uncertainty

hexagonal fields of variation em-
ployed in sedimentary petrology
(error polygon)
limits 90%, 95%, 99%

illustration from Weltje (2006)
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History

naive modelling

Figure: normal in R2



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

Compositions Simplicial geometry Elementary statistics Regression Conclusion

History

milestone III: John Aitchison, 1982

“The statistical analysis of compositional data”

as parts of a composition give only relative information,
Aitchison suggested to use transformations based on
log-ratios, e.g.

alr : SD → RD−1, alr(x) =
[
ln x1

xD
, . . . , ln xD−1

xD

]
clr : SD → RD, clr(x) =

[
ln x1

g(x) , . . . , ln xD
g(x)

]
where g(x) stands for the geometric mean of the parts

Aitchison (1982, 1986)
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Euclidean space

Euclidean space structure of SD

for x, y ∈ SD, α ∈ R, and C is the closure operation

perturbation: x ⊕ y = C[x1y1, . . . , xDyD]

powering: α� x = C[xα
1 , . . . , xα

D ]

inner product:

〈x, y〉a =
1
D

∑
i<j

ln
xi

xj
ln

yi

yj

associated norm and distance:

‖x‖2
a =

1
D

∑
i<j

(
ln

xi

xj

)2

d2
a (x, y) =

1
D

∑
i<j

(
ln

xi

xj
− ln

yi

yj

)2

Aitchison (1982, 1986), operations and distance

Billheimer et al. (2001); Pawlowsky-Glahn and Egozcue (2001), Aitchison et al. (2002)
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Euclidean space

compositional lines

Correspond to exponential growth or decay of masses

y = x0 ⊕ (α� x1)

x2

x1

x3

n

x2

x1

x3

n

parallel lines orthogonal lines

illustration from Egozcue and Pawlowsky-Glahn (2006)



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

Compositions Simplicial geometry Elementary statistics Regression Conclusion

orthogonal coordinates

consequences

in an Euclidean space an orthonormal basis always exists

operations and metrics in the simplex are equivalent to
ordinary operations and metrics in coordinates

x ∈ SD, Coordinates: y = h(x) ∈ RD−1

x1 ⊕ x2 ⇔ y1 + y2

α� x ⇔ α · y

〈x1, x2〉a = 〈y1, y2〉
da(x1, x2) = d(x1, x2)
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orthogonal coordinates
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orthogonal coordinates

example of orthogonal coordinates

example of orthonormal basis in S3:

e1 = C
�
exp

1√
2

, exp
−1√

2
, 1
�

, e2 = C
�
exp

1√
6

, exp
1√
6

, exp
−2√

6

�

coordinates for x = [x1, x2, x3] ∈ S3 in this basis:

y1 =
1√
2

ln
x1

x2
, y2 =

1√
6

ln
x1 · x2

x3 · x3
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orthogonal coordinates

parallel lines

x2

x1

x3

n

-4

-2

0

2

4

-4 -2 0 2 4

in S3 coordinate representation
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orthogonal coordinates

circles and ellipses

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3

in S3 coordinate representation
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orthogonal coordinates

building an orthonormal basis

the intuitive approach

example: for x ∈ S5 define a sequential binary partition and
obtain the coordinates in the corresponding orthonormal basis

order x1 x2 x3 x4 x5 coordinate

1 +1 −1 +1 +1 −1 y1 =
q

3·2
3+2 ln (x1·x3·x4)1/3

(x2·x5)1/2

2 0 +1 0 0 −1 y2 =
q

1·1
1+1 ln x2

x5

3 +1 0 −1 −1 0 y3 =
q

1·2
1+2 ln x1

(x3·x4)1/2

4 0 0 +1 −1 0 y4 =
q

1·1
1+1 ln x3

x4
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orthogonal coordinates

balances

coordinates in an orthonormal basis obtained from a sequential
binary partition:

yi =

√
ri · si

ri + si
ln

(
∏

j∈Ri
xj)

1/ri

(
∏

`∈Si
x`)1/si

where i = order of partition, Ri and Si index sets,
ri the number of indices in Ri , si the number in Si

Egozcue et al. (2003)

Egozcue, Pawlowsky-Glahn (2005,2006)
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Centre and total variance

centre and total variance

Metric variability with respect to a point z
X random composition with values in SD

Var[X; z] = E[d2
a (X, z)] = E[d2(h(X), h(z))]

Center or mean in the simplex: value of z minimizing Var[X; z]

Cen[X] = h−1(E[h(X)]) = C exp(E[ln X])

Total or metric variance: minimum variability

Var[X] = Var[X; Cen[X]] = E[d2(h(X), E[h(X)])]

Pawlowsky-Glahn, Egozcue (2001)
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Centre and total variance

Estimators of centre and variance

Compositional sample: x1, x2, . . . , xn

sample centre: closed geometric mean

Ĉen[X] = C exp

(
1
n

∑
i

ln x i

)
Sample total variance: trace of sample covariance matrix of
coordinates.

Bias and mean-squared-error, when θ ∈ SD

Bias (θ̂) = Cen[θ̂ 	 θ] = h−1(E[h(θ̂)− h(θ)])

MSE(θ̂) = E[d2
a (θ̂, θ)] = E[‖h(θ̂)− h(θ)‖2]

Pawlowsky-Glahn, Egozcue (2002)
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Probability densities in SD

normal in the simplex

Simple idea: Model the distribution of coordinates!

h(X) ∼ N(µ,Σ) ⇔ X ∼ NS(h−1(µ),Σ)

Central limit theorem: Independent Xi with
Cen[Xi ] = h−1(µ), Cov[h(Xi)] = Σ,

1
n
�

n⊕
i=1

Xi ≈ NS(h−1(µ), n−1Σ)

for large n.

Aitchison (1982,1986), Mateu-Figueras (2003)
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Probability densities in SD

normal on the simplex (logistic-normal)

SD ⊂ RD, Lebesgue measure as reference

x
1

x
2

x
3
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Probability densities in SD

normal on the simplex (logistic-normal)

SD as Euclidean space, Aitchison measure as reference

x
1

x
2

x
3
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Probability densities in SD

example: aphyric Skye lavas (modified)

SD ⊂ RD SD as Euclidean space
F'

A'                                                                                            M'

F'

A'                                                                                            M'

logistic normal normal on SD

Lebesgue measure λ Aitchison measure λa
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Probability densities in SD

predictive regions for data and confidence regions
for the mean (limits 90%, 95%, 99%)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

6−1/2 ln((Al
2
O

3
)2/(FeO*MgO)

2−
1/

2  ln
(F

eO
/M

gO
)

Al
2
O

3

FeO MgO 

data from Kilauea Iki lava lake, Hawaii, cited in Rollinson (1995)
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model

regression model

Data: for i = 1, 2, . . . , n
compositional response, x i ∈ SD,
real covariates, t i = [t0, t1, t2, . . . , tr ], t0 = 1

Statement: find compositional coefficients βj ∈ SD, minimizing

SSE=
n∑

i=1

‖x̂(t i)	 x i‖2
a ,

x̂(t) = β0 ⊕ (t1 � β1)⊕ · · · ⊕ (tr � βr ) =
r⊕

j=0

(tj � βj) ,
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model

regression model in coordinates

Select a basis in SD, e.g. using sbp;

Represent responses in coordinates: x∗i = h(x i) ∈ RD−1;

Solve D − 1 ordinary regression problems in coordinates to obtain
coordinates of coefficients;

Back-transform results into SD

For k = 1, 2, . . . , D, find β∗ minimizing

SSEk =
nX

i=1

|x̂∗
k (t i)− x∗

ik |2 , k = 1, 2, . . . , D − 1 ,

x̂∗
k (t) = β∗

0k + β∗
1k t1 + · · ·+ β∗

rk tr

Back-transform: βj = h−1(β∗
j )
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example: statement

Vulnerability of a dike:

Safety level or design d (wave-height-design)

External actions h (wave-height of a storm)

Outputs after an action θk , k = 0, 1, . . . , 4

Vulnerability description: x(d , h) = P[θk |d , h]

Available data (from Monte Carlo simulations):

x(di , hi) = P[θk |di , hi ] , i = 1, 2, . . . , n

affected by errors, especially, for low probabilities.
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example: data set

Number of data: n = 11
Number of parts: D = 4
Number of covariates: r = 2

  d        h        theta0        theta1         theta2         theta3
!diseño   Hs(m)     servicio   daño moderado   daño consid        colapso       
 3.0      3.0     8.9206E-01     8.9206E-02     1.7841E-02     8.9206E-04
 3.0     18.0     6.6529E-05     1.9959E-03     3.3265E-01     6.6529E-01
15.0      3.0     9.9889E-01     9.9889E-04     9.9889E-05     9.9889E-06
15.0     18.0     7.4074E-02     3.7037E-01     5.1852E-01     3.7037E-02
 5.0      5.0     8.4602E-01     1.2690E-01     2.5381E-02     1.6920E-03
 6.0     10.0     8.2645E-03     1.2397E-01     8.2645E-01     4.1322E-02
 9.0      4.0     9.7551E-01     1.9510E-02     4.8776E-03     9.7551E-05
10.0      7.0     9.1058E-01     8.1952E-02     7.2846E-03     1.8212E-04
11.0     18.0     1.0988E-04     1.0988E-02     4.3951E-01     5.4939E-01
12.0      7.0     9.7838E-01     1.9568E-02     1.9568E-03     9.7838E-05
 7.0     14.0     4.8757E-04     2.4378E-02     4.8757E-01     4.8757E-01

1
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motivation for a simplicial linear model

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

0.0
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1.0

3 5 7 9 11 13
H(m) borrasca
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0: no fallo 1,2,3: fallos medios 4: colapso
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motivation for a simplicial linear model

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):
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motivation for a simplicial linear model

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

Original line

0 1,2,3

4
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motivation for a simplicial linear model

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):
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example: linear model of vulnerability of a dike

Diseño 3.0
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example: linear model of vulnerability of a dike

Diseño 13.0
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conclusion

Compositional data (CoDa) should be treated in the
simplex with its specific geometry
Ordinary multivariate statistics should not be directly
applied to CoDa
The simplex has its own Euclidean structure: cartesian
coordinates are available
Multivariate statistical models and methods work properly
on coordinates of CoDa
Problem (or advantage): interpretation of coordinates

CoDa analysis is easy!

Just transform CoDa into coordinates;
analyze whatsoever;

back-transform and interpret the results!
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further reading and activities

Mathematical Geology Vol. 37 Nr. 7 (2005) – special
issue on compositional data analysis

Compositional data analysis in the Geosciences: From
theory to practice (October 2006) — special
publication of the Geological Society (SPE 264)

CoDaWork’08 , Girona (Spain), May 2008
(http://ima.udg.es/Activitats/CoDaWork08/)
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