Análise de Dados Composicionais Via Árvore de Regressão

Ana Beatriz Tozzo Martins¹

Cesar Augusto Taconeli²

Paulo Justiniano Ribeiro Jr³

Antônio Carlos Andrade Gonçalves⁴

¹PPGMNE/UFPR- Departamento de Estatística, UEM; ²Departamento de Estatística, UFPR; ³Laboratório de Estatística e Geoinformação, LEG- DES/UFPR; ⁴Departamento de Agronomia, UEM

abtmartins@uem.br

1. Introdução

1.1 Dados composicionais

 Ciências da Terra: É comum os dados serem expressos como frações ou porcentagens.

Aitchison (1986).

• Exemplo: textura de solos ou granulometria que se refere a proporção de areia, silte e argila do solo.

Walvoort, D. J. J. e Gruijter, J.J. (2001).

• Literatura:

Dados Composicionais: Aitchison (1986);

Análise Geoestatística de Dados Composicionais: Pawlowsky-Glahn e Olea (2004);

Inferência Bayesiana de Dados Composicionais Sem Efeito Espacial: Obage (2007);

Inferência Bayesiana Espacial: Tjelmeland e Lund (2003).

• Composição: Vetor $\underline{Y} = (Y_1, Y_2, ..., Y_B)'$ satisfazendo:

$$Y_1 \geqslant 0, \dots, Y_B \geqslant 0;$$

 $Y_1 + Y_2 + \dots + Y_B = 1.$

Espaço Amostral:

$$\mathbb{S}^B = \{ \underline{\mathbf{Y}} \in \mathbb{R}^B; Y_i > 0, i = 1, ..., B; \underline{\mathbf{j'Y}} = 1 \}$$

• Base: Vetor $\underline{W}(\underline{x})$, $\underline{x} \in \Omega \subset \mathbb{R}^n$ com componentes medidos na mesma escala e positivos

Espaço Amostral:
$$\mathbb{R}^B_+ = \{ \underline{\mathbf{W}}(\underline{\mathbf{x}}) \in \mathbb{R}^B; \ W_i(\underline{\mathbf{x}}) > 0, \ i = 1, ..., B \}$$

◆ Operador fechamento: Base ⇒ Composição

- Operações que definem uma estrutura de espaço vetorial de dimensão B-1 no simplex: Perturbação e Potência.
- Transformação razão log-aditiva (ALR):

$$\begin{aligned} \mathsf{ALR}: \ \mathbb{S}^B & \longrightarrow \mathbb{R}^{B-1} \\ & \underline{\mathbf{Y}}(\underline{\mathbf{x}}) & \longrightarrow \mathsf{ALR}[\underline{\mathbf{Y}}(\underline{\mathbf{x}})] = \left(\ln \frac{Y_1(\underline{\mathbf{x}})}{Y_B(\underline{\mathbf{x}})}, \dots, \ln \frac{Y_{B-1}(\underline{\mathbf{x}})}{Y_B(\underline{\mathbf{x}})} \right)'. \end{aligned}$$

Pawlowsky e Olea (2004).

• Distância de Aitchison:

$$d(\mathbf{Y}_1, \mathbf{Y}_2) = \sqrt{\sum_{i=1}^{B} \left(\ln \left(\frac{Y_{1i}}{g(\mathbf{Y}_1)} \right) - \ln \left(\frac{Y_{2i}}{g(\mathbf{Y}_2)} \right)^2 \right)}$$

1.2 CART-Classification and Regression Trees

 Modelagem não paramétrica de uma variável resposta categorizada (classificação) ou numérica (regressão) com base em um conjunto de covariáveis e interações entre as mesmas;

Breiman et al. (1984).

• Literatura:

Árvores de Classificação e Regressão - CART: Breiman et al. (1984);

CART para Análise de Dados Multivariados: Segal (1992), Zhang (1998), De'Ath (2002) e Lee (2005), Taconeli (2008).

 Execução de sucessivas partições binárias de uma amostra, buscando a constituição de sub-amostras menos heterogêneas.

Construção do Modelo

Partição dos nós;

Minimizar a heterogeneidade dos nós produzidos; Baseada em uma medida de impureza.

Poda;

Obtenção de uma seqüência aninhada de árvores.

Seleção do modelo;

Baseada em alguma medida de qualidade preditiva.

Caracterização dos nós finais.

Segundo a distribuição dos resultados em cada nó.

1.3 Objetivo

Modelar dados composicionais via CART por meio de uma extensão da proposta apresentada em Taconeli (2008), considerando a distância de Aitchison ao invés de dissimilaridades.

2. Metodologia

- Dados: Gonçalves (1997), ESALQ-USP.
- CART Extensão multivariada: Taconeli (2008), ESALQ-USP.
- Integração das metodologias:

Utilização da distância de Aitchison como medida de impureza e de qualidade preditiva na construção dos modelos.

- Seja $d(Y_k, Y_{k'})$ a distância de Aitchison calculada para duas composições $k \in k'$.
- Medida de impureza de um nó $t(\phi_{Dis}(t))$:

$$\phi_{Dis}(t) = \left(\frac{n_t(n_t - 1)}{2}\right)^{-1} \sum_{k=1}^{n_t} \sum_{k < k'} d(\mathbf{Y}_k, \mathbf{Y}_{k'})$$

sendo n_t o número de composições em t.

Medida de qualidade de predição:

$$\phi_{Dis}(\underline{\mathbf{Y}}^*) = \sum_{k \subset t} \frac{d(\underline{\mathbf{Y}}^*, \underline{\mathbf{Y}}_k)}{n_t}$$

 Análise Fatorial: estimação das cargas fatorais e escores por componentes principais - mínimos quadrados ordinários com rotação varimax.

Estimativas dos escores fatoriais incorporadas como covariáveis no modelo de regressão por árvores.

3. Resultados

Tabela 1: Cargas fatoriais

Variável	F1	F2	F3	Comunalidade
Ph-CaCl2	0,876			0,85
Matéria orgânica		-0,848		0,77
Fósforo		-0,711		0,61
Potássio		-0,531		0,36
Cálcio	0,806			0,82
Magnésio	0,783			0,83
Hidrogênio+Alumínio	-0,873			0,79
Densidade global			0,765	0,75
Densidade da partícula			-0,807	0,68
Porosidade total			-0,965	0,98
Altura do terreno		-0,681		0,70
Var. Acum	0, 29	0,52	0,74	

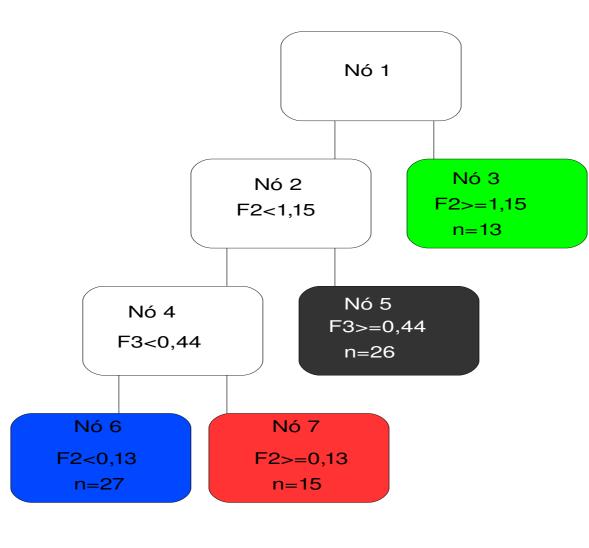


Figura 1: Árvore de regressão.

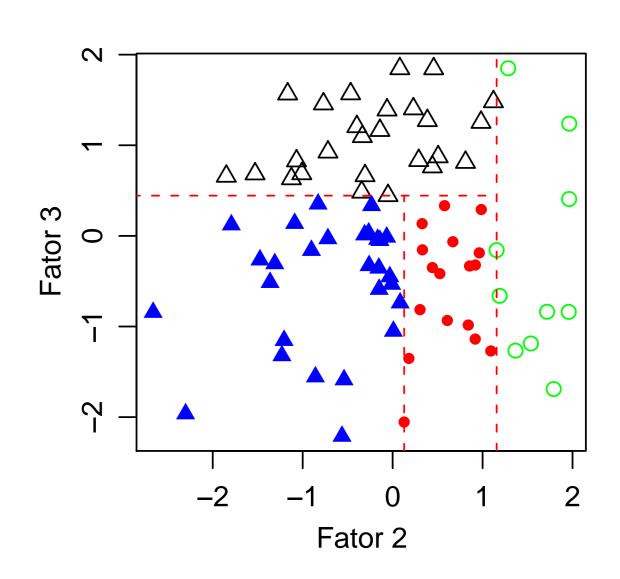


Figura 2: Gráfico de dispersão dos escores fatoriais para o segundo e terceiro fatores.

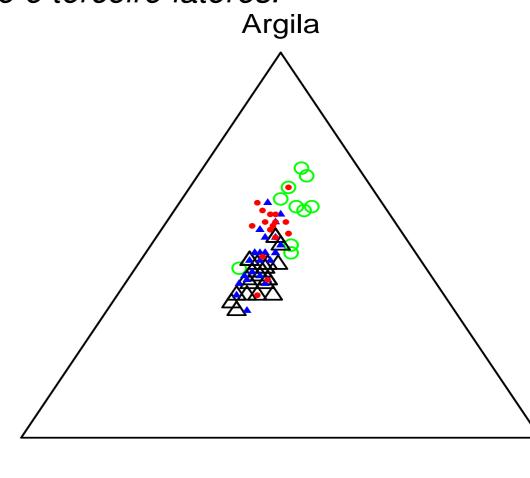


Figura 3: Diagrama ternário das porcentagens de areia, silte e argila.

Silte

Areia

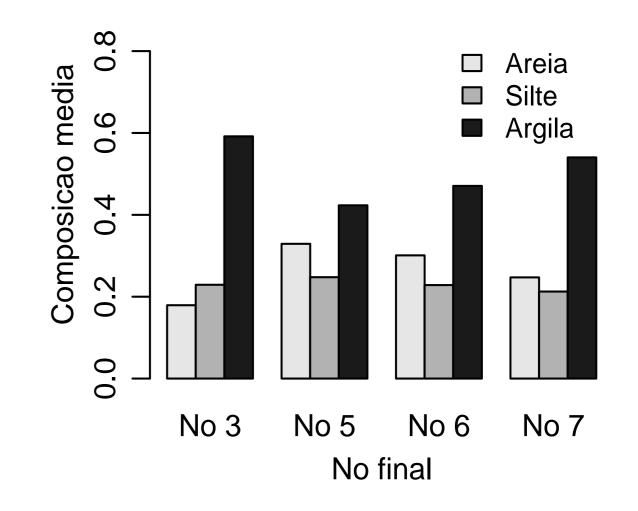


Figura 4: Composição média segundo os nós.

Tabela 2: Resultados

Nó	Técnica	Descrição do nó
3	AF	Menos matéria orgânica, menos fósforo e menos potássio e áreas
		com menores alturas.
	CART	Solos argilosos, mais silte do que areia.
5 AF	AF	Elevada densidade global, reduzidas densidade de
		partícula e porosidade total.
	CART	Solos pouco argilosos, areia, silte e argila equilibrados
6 AF	AF	Mais matéria orgânica, fósforo, potássio e áreas com
		maiores alturas. Reduzida densidade global,
		elevadas densidade de partícula e porosidade total.
	CART	Composição intermediária.
7	AF	Menos matéria orgânica, menos fósforo, menos potássio e áreas
		com menores alturas.
	CART	Mais argila e menos areia que nó 6.

4. Conclusão

Resultados produzidos permitiram identificar propriedades do solo associadas às composições, estabelecendo hierarquia entre as variáveis físico-químicas na explicação das frações granulométricas.

Referências Bibliográficas

AITCHISON, J. The statistical analysis of compositional data. New Jersey: The Blackburn Press, 1986, 416 p.

BREIMAN, L.; FRIEDMAN, J. H.; OLSHEN, R. A.; STONE, C. J. Classification and regression trees. California: Wadsworth International Group, 1984. 358p.

OBAGE, S. C. Uma análise bayesiana para dados composicionais. 2007. 69p. Dissertação (Mestrado em Estatística) - Universidade Federal de São Carlos, São Carlos.

PAWLOWSKY-GLAHN, V.; OLEA, R. A. Geostatistical analysis of compositional data. New York: Oxford University Press, Inc., 2004.

TACONELI, C. A. Árvores de classificação multivariadas fundamentadas em coeficientes de dissimilaridade e entropia. 2008. 99p. Tese (Doutorado em Estatística e Experimentação Agronômica) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

TJELMELAND, H.; LUND, K. V. Bayesian modelling of spatial compositional data. **Journal of Applied Statistics**, v.30, n.1, p.87–100, 2003.