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Logratios and Natural Laws in Compositional
Data Analysis1

John Aitchison2

The impossibility of interpreting correlations of raw compositional components and associated
statistical methods has been clearly demonstrated over the last four decades and alternative
statistical methodology developed. Despite this a return to the ‘‘traditional’’ use of raw compo-
nents has been advocated recently and alternative methodology such as logratio analysis strongly
criticized. This paper exposes the fallacies in this recent advocacy and demonstrates the construc-
tive role that logratio analysis can play in geological compositional problems, in particular in
the investigation of natural laws and in subcompositional investigations.
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INTRODUCTION

This paper is concerned with important statistical issues involved in the
analysis and interpretation of compositional datasets, such as major oxide
and trace element compositions of rocks and sedimentary compositions.
Such datasets inevitably display variability and so require a statistical meth-
odology appropriate to the special nature of compositions—the so-called
constant-sum property—to allow meaningful interpretation of the nature
of this variability and the consequent geological inferences. In two recent
papers presented at IAMG97, Woronow (1997a,b) explicitly and implicitly
rejects the warnings of Pearson (1897), Chayes (1949, 1960, 1962, 1971),
Sarmonov and Vistelius (1959), Krumbein (1962), Mosimann (1962, 1963),
Chayes and Kruskal (1966), Aitchison (1981, 1982, 1986, 1997), Le Maitre
(1982), Davis (1986), Pawlowsky (1986), Rock (1988), Woronow (sic, 1987),
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Woronow and Love (1990), Reyment and Savazzi (1999), and many others
that in compositional data analysis there is no meaningful way to interpret
correlations of raw components and associated forms of multivariate statisti-
cal analysis designed for unconstrained data. Not only so, but he exhorts
geologists to ignore most of the more promising developments of the last
two decades for effective compositional data analysis—in particular what
has come to be known as logratio analysis. These views were vigorously
challenged at IAMG97, but no record of the ensuing criticisms of Woro-
now’s dismissal of logratio analysis exists. This is an account to put the
record straight by exposing the many fallacies and misstatements in the
Woronow (1997a,b) papers, and by so doing to reemphasize the advantages
of designing appropriate statistical analysis suited to the nature of the
objects studied. We confine attention to questions truly compositional in
nature and not to the irrelevancies of the well-known distinction between
unconstrained data (vectors in RD) to which standard multivariate analysis
is appropriate and compositional data, which require a completely differ-
ent methodology.

Woronow’s disparagement of logratio analysis of compositions sepa-
rates into a number of common misunderstandings of the nature of logratio
analysis, and we shall take these individually in a logical sequence against
the background of Woronow’s statements and his illustrative examples.

THE NATURE OF LOGRATIO ANALYSIS

Woronow (1997a, p. 99) makes the following general statement:

(a) ‘‘Logratioing accomplishes one aim. It creates a new set of variables
that can exhibit mutual independence.’’

This is only a quarter truth. The purpose of logratioing is to supply a
meaningful, interpretable description of the interdependence of compo-
nents of compositions free from all the fallacious interpretations that
emerge from raw component analysis. As we shall see later, these are traps
that Woronow falls into in his illustrative examples. The rationale and
relevance of the logratio covariance and correlation structures have been
presented at length in many publications, for example and most recently
in Aitchison (1997), and will not be reargued here. Suffice it to recall that
the logratio covariance structure has the essential property for composi-
tional data analysis of subcompositional coherence: logratio covariances
and correlations within a subcomposition are identical to those within the
full composition. In the traditional jargon of open and closed sets, the
logratio covariance structures are identical in the open and closed sets.
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That this property does not hold for raw component correlations immedi-
ately rules out raw component analysis as a viable tool for intelligent
discussion of compositional variability.

Statement (a) of Woronow (1997a) is followed, again on p. 99, by:

(b) ‘‘The transformation cannot add information, therefore it cannot
expand the scope of questions that can be resolved with composi-
tional data, . . .’’

with a reinforcement of this on p. 101:

(c) ‘‘Although logratioing creates variables with the potential for mu-
tual independence, this or other transformations do not expand
the breadth of questions that compositional data can address, and
transformation may actually reduce that breadth.’’

Statement (b) is, of course, true, but does not note that equally the logratio
transformation does not lose any information. This is so because there is a
one-to-one correspondence between any D-part composition (x1 , . . . , xD)
and its logratio vector (y1 , . . . , yD21), the two transformations being

(1)yi 5 log(xi/xD) (i 5 1, . . . , D 2 1)

xi 5 exp(yi)/hexp(y1) 1 ? ? ? 1 exp(yD21) 1 1j (i 5 1, . . . , D 2 1)
(2)

xD 5 1/h(exp(y1) 1 ? ? ? 1 exp(yD21) 1 1j

This means that any statement about the raw components of a composition
can be expressed as an equivalent statement in terms of logratios and
equally any statement in terms of logratios can be expressed as an equivalent
statement in terms of raw components. To claim therefore as in (c) that
the logratio transformation may reduce the breadth of problems that com-
positional data can address is obviously absurd.

The essential feature of statistical investigation of compositional data
in terms of logratios is thus that, without any loss of information about
compositional variability, the way is open to study any statement or hypoth-
esis about the nature of compositional variability free from the known
fallacies of raw compositional data analysis.

LOGRATIO LAWS IN NATURE

Following statement (b), Woronow on p. 99 continues:

(d) ‘‘Given this fact, one must ask what logratioing actually contributes
to the testing of or discovery of natural lawa and causal relation-
ships,’’
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and later on p. 100 with:

(e) ‘‘Nowhere in nature is a logratio-mixing law known.’’

These seem remarkable statements about natural laws, particularly by a
geologist. Even a statistician attempting to learn more about geology meets
in an elementary book on geochemistry (Krauskopf, 1979) as early as page
5 a logratio law, in a first example to illustrate the nature of an equilibrium
constant K. There we learn that in the reaction

H2 1 Cl2 i 2HCl

the corresponding equilibrium constant K is given by

K 5
[HCl]2

[H2][Cl2]

where the components in brackets are expressed in appropriate units of
concentration. This is nothing more nor less than an equivalent logratio con-
dition,

log([H2]/[HCl]) 1 log([Cl2]/[HCl]) 5 2 log(K)

or equivalently and more symmetrically as a logcontrast condition,

log([H2]) 1 log([Cl2]) 2 2log([HCl]) 5 2log(K) (3)

We note here that a logcontrast of a composition (x1 , . . . , xD) is of the form

(4)b1 log x1 1 ? ? ? 1 bD log xD with b1 1 ? ? ? 1 bD 5 0

which can always be expressed in terms of logratios, for example as

b1 log (x1/xD) 1 ? ? ? 1 bD21 log (xD21/xD)

Indeed, in another IAMG97 paper Woronow (1997c) himself uses such
concepts, expressible as simple logratio relationships, in studying equilib-
rium liquid lines.

For the general form of reaction

a[A] 1 b[B] 1 ? ? ? i y[Y] 1 z[Z] 1 ? ? ?

the corresponding equilibrium constant

K 5
[Y]y[Z]z. . .
[A]a[B]b. . .

has an equivalent logarithmic form:

log K 5 ylog([Y]) 1 zlog([Z]) 1 ? ? ? 2 alog([A]) 2 b log(hB]) 2 ? ? ?

Although the coefficients of such relationships in general do not satisfy the
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logcontrast condition y 1 z 1 ? ? ? 2 a 2 b 2 ? ? ? 5 0 and while
concentrations [in brackets] are not compositions, the logarithmic version
encourages the view that one sensible way to identify patterns in composi-
tional datasets is to search for constant logcontrasts of the components of
the compositions. Any such relationship may, of course, be translated back
into terms of raw components of the composition and this is likely to be
the preferred form for the geologist. The role of logratio analysis is to
provide an appropriate tool for identifying such patterns by sound statisti-
cal procedures.

Woronow (1997a, p. 101) continues with the following statement:

(f) ‘‘Therefore, whenever possible, compositional data should be ana-
lyzed within their own framework, as has been done traditionally
in geology, chemistry, physics and a variety of other hard and soft
sciences. . . .’’

There is in this statement an implication that geologists should follow the
traditional raw component techniques of other branches of hard and soft
sciences and, a fortiori, that logratio laws have no relevance in such sciences.
Let us record here simply that a deeper knowledge of these sciences may
lead to a retraction of this view. A first and obvious example is the funda-
mental 1908 Hardy–Weinberg Law in genetics, which applied for example
to (MM, NN, MN) blood group compositions can be expressed as

MM.NN 5 4 MN2

or equivalently as the logratio or logcontrast law

log MM 1 log NN 2 2 log MN 5 log 4

An elementary account of this natural logratio law and its derivation from
probabilistic axioms of genetics can be found in Edwards (1977, p. 22–24).
An illustration of how the law can be inferred from logratio analysis of an
actual hMM, NN, MN) compositional dataset is provided in Aitchison
(1999). Since the compositional form and the logcontrast form are equiva-
lent, there is no advantage or disadvantage in either. Direct derivation of
the compositional form depends on the theoretical development of some
probabilistic axioms of genetics (much as stoichiometric principles in geo-
chemistry operate). The logcontrast form arises from a simple application
of logratio analysis to an actual compositional dataset in a manner similar
to an application to olivines in the next section of this paper. No amount
of statistical analysis of raw compositional data, which implies consideration
of linear forms in the raw components, will lead to the Hardy–Weinberg
curve.

The point here is surely that if the Hardy–Weinberg law had not been
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deducible from genetic axioms, logratio analysis of actual compositional
datasets would have led to the logcontrast form and the translated-back
version would almost certainly have led geneticists to formulate the then
obvious genetic axioms. Since the processes producing compositional data-
sets in geology are so often not fully understood such logratio analysis
would seem a sensible starting point in any attempt to identify relationships
among the components of the composition, from which possible theories
of genesis might emerge.

As a second example, in what Woronow may regard as one of the softer
sciences, economics, the useful concept of income elasticity of demand in
household budget analyses is simply expressible in logratio terms. The
problem here involves compositions in the form of household budget pat-
terns, consisting of the proportions of total expenditure devoted to the
various commodity groups. An important initial question here is whether
the pattern (composition) is independent of income, or total expenditure
(size)—equivalent to asking whether all income elasticities of demand are
equal. Usually this hypothesis would be rejected, in which case the further
logratio analysis leads to the estimation of the elasticities through a logratio
form of statistical analysis. Aitchison (1986, Section 9.6) provides a simple
example. Such analyses date back to Houthakker (1960).

Since the list of successful applications of logratio analysis could be
extended easily to agriculture, industrial science, literary analysis, materials
science, medicine, physiology, psephology, psychology, and sociology, we
may be tempted to ask why Woronow has not managed to detect successful
examples in geology. The answer is perhaps to be found in the quality of
the argument he presents in his persistence in the use of an irrelevant and
meaningless form of statistical analysis in the following examples in which
he attempts to denigrate the concept of logratio analysis.

LOGRATIO LAWS AND OLIVINES

Let us examine the Woronow (1997a, p. 99) advocacy of raw compo-
nent analysis in the study of the ternary system of the three-part composition
(Fe, Mg, Si) associated with his ‘‘ideal olivine’’:

(g) ‘‘Correlations in RCD (raw component data) may directly image
underlying order. For instance, in olivine the perfect negative cor-
relation between Fe and Mg both uncorrelated with Si, faithfully
recites the mineral’s crystal chemistry. The correlations are not
anomalies introduced by the constant-sum constraint. Whether an
analyst unfamiliar with the concept of stoichiometry would ascribe
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the correlation structure to a solid solution may be questioned. A
failure to do so would speak to inherent ambiguities in inductive
reasoning, not to problems in analyzing correlations in the compo-
sitional data. Therefore, correlations in RCD are not inherently
fallacious or ambiguous. A prepared mind would be capable of
interpreting the physical causes recorded by such data.’’

This is in fact the perfect example for illustrating the folly of the raw
component argument. The argument sets

(5)corr(Fe, Mg) 5 21, corr(Fe, Si) 5 0, corr(Mg, Si) 5 0

The logical consequences of Eq. (5), easily deduced from the well-known
zero row- and column-sum property of a raw covariance matrix, is that the
raw covariance matrix for such three-part olivine compositions must take
the form

Fe Mg Si

Fe c 2c 0
Mg 2c c 0
Si 0 0 0

From var(Si) 5 0 we see that Si must be constant, so that it follows, whatever
the natural law that determines the proportions of Fe and Mg, their sum
Fe 1 Mg will be constant and so corr(Fe, Mg) will be 21. Thus the perfect
negative correlation is nothing more than an arithmetic artefact, a conse-
quence of the structure of any such raw correlation matrix and indeed
attributable to the constant-sum effect of the (Fe, Mg) subcomposition,
and therefore provides absolutely no information about the relationship
between Fe and Mg. Such arguments have, of course, been countered many
times in the literature cited. Indeed, it is trivial to construct open datasets
here with, for example, zero or even positive correlations between Fe and
Mg, which yield closed datasets exhibiting the covariance structure (5). For
example, the open data set

Fe Mg Si Fe Mg Si

3.30 26.88 20.12 1.99 13.41 10.27
1.38 11.42 8.53 10.40 123.75 89.44
4.90 34.41 26.20 10.39 70.63 54.02
5.49 47.77 35.51 4.36 33.19 25.04

has corr(Fe, Mg) 5 0.919, corr(Fe, Si) 5 0.932, corr(Mg, Si) 5 0.999,
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whereas the composition formed as the closed set of the above open data
has the ideal olivine correlations, corr(Fe, Mg) 5 21, corr(Fe, Si) 5 0,
corr(Mg, Si) 5 0.

Rather than continue discussion of this so-called ideal olivine, it seems
more constructive to see how logratio analysis can deal with actual olivine
compositional datasets in the search for natural laws. We have examined
eleven such datasets, as set out in Table 1. A simple logratio technique
here is to perform a logcontrast principal component analysis (Aitchison,
1983, 1986, Sections 8.3–4). Applied to the first dataset this produces eigen-
values l1 and l2 and corresponding logcontrasts:

l1 5 0.2622 20.809 log Fe 1 0.501 log Mg 1 0.308 log Si

l2 5 0.0093 0.111 log Fe 1 0.645 log Mg 2 0.756 log Si

The near zero eigenvalue associated with the second logcontrast implies
that this logcontrast is almost constant. Scaling this so that the coefficient of
log Si is 1, to allow comparison with other datasets, we have the relationship

0.147 log Fe 1 0.853 log Mg 2 log Si 5 constant

where the constant is estimated from the sample compositions. This can
be expressed in a more familiar way, in the form analogous to equilibrium
constant forms, as

SFe
SiDaSMg

Si Db

5 c (6)

where a 5 0.147, b 5 0.853, c 5 0.958. Table 1 gives the (a, b, c) combinations

Table 1. Sources of Olivine Compositional Datasets and Estimated Combinations
(a, b, c) in the Relationship (Fe/Si)a (Mg/Si)b 5 c

Source a b c

Eissen and others (1989, Table 2b) 0.147 0.853 0.958
Chai and Naldrett (1992, Table 2) 0.167 0.833 0.896
Allan and others (1989, Table 3) 0.369 0.631 0.720
Beard and Day (1988, Table 2) 0.291 0.709 0.842
Fan and Hooper (1989, Table 3) 0.118 0.882 0.998
Fan and Hooper (1991, Table 5) 0.251 0.749 0.877
Kamenetsky and others (1995, Table 1) 0.163 0.837 0.924
Deer, Howie, and Zussman (1982, Table 4) 0.111 0.889 1.034
Deer, Howie, and Zussman (1982, Table 5) 0.089 0.911 1.013
Deer, Howie, and Zussman (1982, Table 7) 0.709 0.291 0.845
Deer, Howie, and Zussman (1982, Table 8) 0.870 0.130 0.907
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for the eleven olivine data sets. Since a and b are always both positive, we
see in these logratio laws the typical Fe–Mg exchange feature of olivines.
Increases in Mg are at the expense of Fe and vice versa. The laws are
quantitative and similar in structure to those abounding in olivine literature
as in Deer, Howie, and Zussman (1982). Is it not reasonable in an experi-
mental or observational science dependent on the analysis of compositional
data to explore for laws similar to Eq. (6) above? It certainly seems to an
outside observer that for new compositional datasets Eq. (6) is a useful
starting point. For example, what stoichiometric considerations are neces-
sary to explain the variation in the (a, b, c) configurations in Table 1?
The configurations are significantly different and demand some sort of
geological explanation.

Woronow (1997a) cites another ideal chemical reaction involving 4-
part compositons (albite, kaliophilite, orthoclase, nepheline) in support of
his antilogratio thesis, with corr(albite, kaliophilite) 5 0, corr(orthoclase,
nepheline) 5 0, and corr(albite 1 kaliophilite, orthoclase 1 nepheline) 5
21 supposedly being the crucial correlations. The argument here is equally
fallacious with the perfect negative correlation arising as a logical conse-
quence of the fact that in such a four-part composition albite 1 kaliophilite
5 1 2 (orthoclase 1 nepheline), whatever the natural laws obtaining in
the determination of the compositions.

LOGRATIOS IN HYPOTHESIS TESTING

The Missing-One-Out Fallacy Revisited

In his second IAMG97 paper Woronow (1997b) attempts to demon-
strate that the naive device of omitting one of the components of a composi-
tional vector is a satisfactory approach to compositional problems involving
regression and discriminant analysis. He appears to regard the problem as
being solely due to the singularity of the raw covariance matrix and on
page 158 makes the following statement:

(h) ‘‘The trick that overcomes the singular-matrix problem is trivial—it
does not require logratios or any otherdata transformation—simply
delete one compositional variable then execute the analysis.’’

Woronow’s claim to success is that in a regression analysis such as his
example of regressing the Easting on Darss Sill granulometric compositional
data the same regression results occur whichever of the components is
dropped. Indeed, he would have obtained exactly the same results if he
had retained all the components and used a pseudo-inverse, such as the
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Moore–Penrose inverse, in his analysis. The equivalence is a mathematical
tautology, a logical consequence of the singularity of the raw convariance
matrix arising from the multicollinearity of the data, not an overcoming of
the compositional problem. A simple analogy, devoid of any compositional
or constant-sum argument, may help in pinpointing the nature of this equiv-
alence. Suppose that in a woodland survey a sample of trees is measured
for height H, diameter D, and circumference C at a specified height and,
after felling, usable volume V of timber. The objective is to try to predict
usuable volume given the other three measurements. Let us suppose that
the analyst proposes the regression model:

V 5 a 1 bH 1 cD 1 dC 1 error

The covariance matrix here of the covariates H,D,C is singular because of
the relationship C 5 fD. Despite this, we shall obtain the same regression
results whether we drop D or drop C or retain D and C, and use a Moore–
Penrose inverse in our regression calculations.

What is being forgotten in all this manipulation of singular matrices
is that uniqueness of result is not the real criterion of successful regression
but the quality of the regression—for example, the reliability of usuable
volume prediction based on the covariates. In this example, we are clearly
likely to do better by using a different form of regression predictor, taking
into account the physical nature of the problem and using a multiplica-
tive model

V 5 aH bDc 3 error

dropping the superfluous C, or equivalently,

log V 5 « 1 blogH 1 clogD 1 error

where « 5 loga. May it not be the case that improved reliability will be
provided if we take account of the special nature of compositions? We can
regress not on a reduced set of raw components but on a logcontrast of
the components, with a model expressing the response z, say, in terms of
the D-part compositions (x1 , . . . , xD) as

(7)z 5 a 1 b1logx1 1 ? ? ? 1 bDlogxD 1 error

where b1 1 ? ? ? 1 bD 5 0 is the logcontrast condition ensuring that we
deal exclusively with logratios. For the Darss Sill example this is indeed
so. With the amalgamated Darss Sill data set used by Martin-Fernandez,
Barcelo-Vidal, and Pawlowsky-Glahn (1997) we find that the residual sum
of squares of the logcontrast regression model is 2.4667 3 1011 compared
with 2.8452 3 1011 for the raw component regression model, a reduction
of 13.3%.



Logratios and Natural Laws in Compositional Data Analysis 573

Logratio Analysis of Subcompositional Hypotheses

Improved reliability of regression is by no means the only reason for the
use of logcontrast models. As Woronow (1997b, p. 159) admits in his
statement:

(i) ‘‘The fact that deleting any single, arbitrary component yields the
same quality regression is the good news. The bad news is that
different values of the coefficients ensue when different variables
are deleted. This does not imply that something is wrong with the
method for arriving at a predictive equation. However, it makes
clear that it is impossible to interpret the relative importance of
variables from the magnitude or signs of their regression coeffi-
cients. . . . A corollary is that it is equally impossible to concoct
a reliable geo-story for the values of these coefficients. Any such
story lacks statistical basis, whether it makes use of the coefficients’
raw magnitudes, their partial F-values or their beta coefficients.’’

In other words, raw regression can achieve nothing other than a prediction
of sorts, not necessarily a reliable one. This brings into focus the relevance
of the logcontrast type of regression. First it does allow investigation of
the importance of the parts of the composition by allowing the investigation
of subcompositional hypotheses. When we say that part D of a D-part
composition is unimportant we are really saying that the subcomposition
consisting of the parts 1, . . . , D 2 1 achieves the same explanation as the
full composition. Even in the Darss Sill example with D 5 8 we could, for
example, ask if the last granulometric component is really contributing to
the prediction. We can do this within model (7) by simply testing the
hypothesis that b8 5 0, involving a simple statistical F test. The residual
sum of squares under the hypothesis is 2.4668 3 1011, leading to an F value
of 0.042 at (1,1274) degrees of freedom, clearly not significant. We can thus
conclude that part 8 of the granulometric composition contributes nothing
to the Easting prediction. If, however, we ask if the subcomposition con-
sisting of parts 1, . . . , 6 is sufficient for predictive purposes, we then test
the hypothesis that b7 5 b8 5 0. The residual sum of squares under this
hypothesis is 2.8869 3 1011, giving a highly significant F-value of 108.5 at
(2,1274) degrees of freedom. Hence we would conclude that component 7
cannot be dropped from the prediction process in addition to component 8.

This ability of the logcontrast regressor to explore the whole lattice
of subcompositional hypotheses is in stark contrast to the failure of the
linear regressor that essentially cannot deal with subcompositions because
of its basic subcompositional incoherence. With the use of the logcontrast
regressor, preserving ratios whatever subcompositional hypothesis is con-
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sidered, we have an ideal mechanism for the study of the importance of the
different parts of the composition. Moreover, as has been pointed out many
times(Aitchison, 1983,1986,1997) logcontrasts havetheability to capturethe
often curved nature of compositional datasets, while also providing excellent
approximations to linear configurations. This linear approximation results
from the fact that the graph of the logarithmic function is almost linear over
part of its range. To argue that the linear model could be extended to allow
curvature by including quadratic terms would be using a sledge hammer to
crack a predictive nut while at the same time confounding further any possi-
bility of detecting the important predicting subcompositions.

What has been said above about regression applies equally well to
discriminant analysis, where again in Woronow’s (1997b) example of Era-
them categorizing siltstones from their (CaO, MgO, FeO) compositions is
discussed. No new issues arise in this dropping-one-out example and it
seems pointless to investigate subcompositions in a situation where there
is poor discrimination, 58.6% according to Woronow (1997b), a little better
than coin-tossing assignment. For such discriminant analysis an excellent
model—for example, for two categories—is the binary regression model
with logcontrast predictor as in Eq. (7). For an example of the use of this, see
Aitchison (1986, Section 12.6), where a whole lattice of subcompositional
hypotheses is explored for discrimination between Permian and post-Per-
mian rocks, with a 6-part subcomposition being found to be as successful
as the full 10-part composition. An even more striking example is to be
found in discriminating between two types of limestone from the Northern
and Central Highlands of Scotland. Thomas and Aitchison (1997) show
that of the 17-part (major-oxide, trace element) composition a simple major-
oxide subcomposition (CaO, Fe2O3 , MgO) provides excellent discrimina-
tion, equal to that of the full composition. Such a discovery that there is a
simple and geologically interpretable explanation of the difference between
the limestones can certainly be ascribed to logratio analysis and would
not be discernible from the dropping-one-out techniques advocated in the
Woronow (1997b) paper.

DISCUSSION

The final paragraph of Woronow (1997b, p. 162) has the following con-
clusion:

(j) ‘‘Logratioing or other data transformations that decrease the num-
ber of independent variables also can remove the degeneracy. How-
ever, they do not facilitate interpreting the importance of a single
compositional variable, and may complicate the matter further by
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sacrificing the simplicity of working with the natural units of the
composition. Why go to unnecessary measures to accomplish the
same end?’’

We have seen in the constructive role that logratio analysis plays in ad-
dressing the whole range of compositional problems the fallacies in the
above conclusion. First, the logratio transformation because of its one-to-
one relationship with raw compositions in no way reduces the number of
independent variables. Instead, by providing a sound, interpretable depen-
dence structure for describing actual patterns of compositional variability,
which allows the coherent investigation of subcompositional variability, the
logratio transformation is admirably suited to investigating the importance
or irrelevance of individual components. Instead of sacrificing the natural
units of compositions, it in fact works explicitly with them. For it must
surely be obvious that the essential nature of a composition is that relative,
not absolute, magnitudes of components are the relevant ‘‘units’’ under
study. It is these relative magnitudes or ratios that logratio analysis ad-
dresses, with the only role of the logarithm being the huge advantage
in statistical tractability and interpretation that it brings. Logratios and
logcontrasts also provide a simple and effective way of capturing the natural
curvature that is often found in compositional data sets.

Above all, logratios and logcontrasts provide an excellent means of
identifying or testing natural geological laws, such as those that involve
equilibrium constants or the development of geological processes through
time. Such exploration and testing has recently been reinforced by the
development of models for geological processes in the form of differential
perturbation processes (Aitchison, 1999; Aitchison and Thomas, 1998). In
these the natural perturbation operator for describing compositional change
(Aitchison, 1986, Section 2.8; 1997) forms the basis of a simple differential
equation for describing the progress of a compositional process. The appli-
cation of such models to compositional data sets for inference purposes
leads inevitably to consideration of data in logratio and logcontrast form.

In all compositional data analysis, particularly in geology, the analyst
should be aware that the observed compositions are often end products at
various stages of some possibly long and unknown or poorly understood
process. In such circumstances, although compositionial data may be unable
to reveal the whole truth about the underlying process, they certainly form
a substantial source of evidence. The validity of any hypothesis about the
process should surely be converted into an equivalent hypothesis about
these compositions and tested statistically against these compositional ob-
servations. On the other hand, if the compositional data is to be used to
suggest possible hypotheses about the underlying process, then the nature
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of the variability among the compositions has to be suitably modeled and
the consequent statistical analysis has to recognize the special nature of
compositional data. In this second aspect, for example, the role of logcon-
trast principal component analysis may identify logratio-type laws similar
to (6) which, in themselves or when converted into terms of concentrations,
may give insights into the nature of the underlying process.

There have been a number of successful recent applications of logratio
analysis in geology. The following selection gives an indication of the breadth
of application. Anderson (1997) removes limitationsof the Zn ratio in charac-
terizing volcanic-hosted massive sulphide deposits by introducing a logratio
version of the ratio. Cole and Drummond (1986), in a comprehensive study
of precious metal ore deposits, investigate effects of various conditions on Ag
and Au through the use of the Ag/Au logratio. Barcelo-Vidal, Pawlowsky-
Glahn, and Grunsky (1997), Buccianti (1997), Buccianti, Vaselli, and Szabo
(1997), Cardenas and others (1986), Grunsky and others (1992), Thomas
(1997), and Zhou (1997) all use logratio analysis to resolve a variety of geolog-
ical discrimination problems. None of these exploit the ability of logratio
analysis to explore whether some subcomposition may achieve the same dis-
criminatory power as the full composition. It might be of interest to investi-
gate this subcompositional possibility along the lines of Thomas and Aitchi-
son (1997). In geomorphologic studies, Ridenour and Giardano (1995a,b)
use logratio analysis to identify the nature of hydraulic geometry. Renner
(1991) and Weltje (1997) rely on a logratio analysis of residuals in assessing
the success of endmember resolutions of compositional data.

As has been mentioned elsewhere, commitment to modeling patterns
of variability of compositional data in terms of classes of distributions
involving logratio covariance structures in no way limits their relevance to
tackling hypotheses that are truly linear in character. We have given exam-
ples of these in Aitchison (1997) in relation to linear hypotheses and convex
linear modelling in endmember analysis.

Denigrators of logratio techniques in compositional data analysis
should perhaps reread the history of other transformations in statistical
analysis. In particular, the logarithmic transformation, scoffed at by Karl
Pearson and others with such questions as ‘‘What can be the meaning of
the logarithm of a length?’’, has become standard practice in most branches
of science for particular data types, such as trace elements in geology, for
example in the use of kriging techniques. Moreover, more exotic transfor-
mations, such as the Box–Cox transformation (Box and Cox, 1964), have
now become standard tools in general linear modeling, even in geology
(Barcelo, Pawlowsky, and Grunsky, 1996; Iyengar and Day, 1997).

Logratioing is a necessary measure for compositional data analysis and
necessary measures are indeed required if the same uninterpretable ends
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as have been traditionally pursued by raw compositional data analysts over
the last hundred years are to be replaced by sound scientific argument.
Twice in Woronow (1997a, p. 99; 101) we are told that a prepared mind
can readily interpret raw component analysis. It is surely reasonable to ask
geologists to concentrate their prepared minds on relevant and reliable
statistical inference.
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