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Summary

It is often necessary to predict the distribution of mineral particles in soil between size fractions, given

observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values

constitute a composition, which we may assume is drawn from a random compositional variate. Elements

of a D-component composition are subject to non-stochastic constraints; they are constrained to lie on

a D – 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random

variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use

ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the composi-

tional constraints on data on particle size fractions are not always accounted for by soil scientists.

The additive log-ratio (alr) transform can be used to transform data from a compositional variate into

a form that can be treated as a realization of an unbounded random variable. Until now, while soil

scientists have made use of the alr transform for the spatial prediction of particle size, there has been

concern that the simple back-transform of the optimal estimate of the alr-transformed variables does not

yield the optimal estimate of the composition. A numerical approximation to the conditional expectation

of the composition has been proposed, but we are not aware of examples of its application and it has not

been used in soil science.

In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at

test sites by ordinary cokriging of the alr-transformed data followed by both the direct (biased) back-

transform of the estimates and the unbiased back-transform. We also computed estimates by ordinary

cokriging of the untransformed data (which ignores the compositional constraints on the variables) for

comparison.

In one of our case studies, the benefit of using the alr transform was apparent, although there was no

consistent advantage in using the unbiased back-transform. In the other case study, there was no consis-

tent advantage in using the alr transform, although the bias of the simple back-transform was apparent.

The differences between these case studies could be explained with respect to the distribution on the

simplex of the particle size fractions at the two sites.

Introduction

The distribution ofmineral particles between size fractions, typ-

ically designated sand, silt and clay (although finer divisions are

also used), is commonly recorded as a basic property of the soil.

The particle size distribution (psd) affects many properties of

the soil, including its structure, water relations, chemistry,

organic carbon dynamics andmechanical properties. It is there-

fore a property that we may often need to predict at unsampled

sites.

One complication in the analysis of data onpsd is that the data

are almost always available only as a composition. A composi-

tion is a variate whose elements necessarily sum to one (or

100%). It might be possible to express the basic information

from which the psd is derived as a basis. The basis might be

the set of dry weights of the mineral particles in each size frac-

tion obtained from sample units of fixed support at a particu-

lar depth. The support of a sample unit is its size and shape

and orientation (e.g. a vertical cylindrical core of specified

length and diameter). One can obtain the composition from

the basis (by dividing each element in the latter by the sum of

all the elements), but the basis cannot be derived from the

composition alone, because the total dry weight of mineral

particles in the sample is, in effect, not constrained and varies

between samples that differ in their bulk density and content

of stones and organic matter. As we note above, most data on

the psd are available as a composition only, and we rarely

have all the information required to recover the basis.
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A composition (unlike a basis) cannot be analysed like the

variates we commonly study in soil science, where the constitu-

ent variables can be treated as random numbers drawn from

unbounded distributions such as the normal. This is because

the elements of a composition are subject to non-stochastic con-

straints. A random variate composition with three elements

(such as the proportions of sand, silt and clay in a soil sample)

is not drawn from the real space R3, but from the two-dimen-

sional simplex plane embedded in this space. This simplex

plane is familiar to soil scientists as the triangular ternary dia-

gram in which the textural classes of soil are customarily dis-

played. As Aitchison (1986) points out, these constraints not

only invalidate the assumption that our variables are drawn

from unbounded random processes, but also induce spurious

negative correlations between our variables. In the context of

spatial prediction, there are further practical problems. We

may estimate the elements of a composition at an unsampled

site by ordinary kriging, but there is no guarantee that the sep-

arate estimates will sum to one (or 100%). This was found in

practice by Odeh et al. (2003).

Compositional kriging, as proposed by de Gruitjer et al.

(1997), sets out to ensure that the basic constraints on the ele-

ments of a composition are honoured in the kriged estimates.

To do this, conditions, in addition to the unbiasedness condi-

tion, are imposed on the ordinary kriging system. The con-

strained kriging equations must be solved numerically and this

is somewhat cumbersome. Chang (2002) has proposed a devel-

opment of compositional cokriging in which the composition

is estimated multivariately rather than by an assemblage of

univariate kriging estimators. An alternative approach has

been proposed by Pawlowsky et al. (1995) and Pawlowsky-

Glahn & Olea (2004). This is additive log-ratio (alr) cokriging.

Aitchison (1986) proposes that compositional variates are

transformed into log-ratios before analysis. It has been seen that

a basis cannot be recovered from the composition alone, but it is

clear that the ratio of two elements in the composition will be

identical to the corresponding ratio of elements in the basis. For

convenience, we transform the ratios to their natural logarithms.

The alr transform is one of these log-ratio transforms and, as

shall be seen, it has desirable properties for kriging. Odeh et al.

(2003) applied ordinary kriging to alrs of the soil particle size

fractions and found that the resulting predictions had smaller

bias and root mean square errors than those obtained with

compositional kriging or ordinary kriging of the untrans-

formed compositions. However, a problem with this approach

is that the simple back-transform of the estimates of the alr of

the composition is biased in the sense that the estimated condi-

tional expectation of the composition at some location is not

obtained by applying the back-transformation to the esti-

mated conditional expectation of the transformed variable.

This is because the transform is non-linear and the estimate of

the conditional expectation of the transformed variable has an

associated error. An unbiased back-transform is not known,

but Pawlowsky-Glahn & Olea (2004), following Aitchison

(1986) for the general problem of the estimation of composi-

tions, have recently proposed a numerical method to obtain it

in the case of kriging. The purpose of this paper is to demon-

strate and evaluate this procedure for the spatial prediction of

soil psd.

Methods

Let z denote a composition that we observe and assume to be

a realization of a random variate Z.

In this paper, we are concerned with regionalized composi-

tions, Z(s), where s is a vector of spatial coordinates, but for

conciseness in notation we insert the coordinate vector only

when it is essential. The composition consists of D elements,

z ¼ ½z1; z2; . . . ; zD�T;

such that

zi > 0 " i ¼ 1; 2; . . . ;D

and

+
D

i¼1
zi ¼ 1:

The alr transform of z gives us the variate x:

x ¼ alrðzÞ ¼
�
ln
z1
zD
; ln

z2
zD
; . . . ; ln

zD � 1

zD

�
: ð1Þ

This transform therefore maps from to RD–1. We define

a vector w where

w ¼
�
xT; 0

�T
:

This allows us to write the inverse of the alr transform, the

additive generalized logistic (agl) transform, as

z ¼ expðwÞ
jTexpðwÞ

; ð2Þ

where exp(w) denotes the vector ½expðw1Þ; expðw2Þ; . . . ;
expðwD � 1Þ; 1� and j is a vector of length D with all elements

equal to one.

Other log-ratio transforms exist and their properties when ap-

plied to regionalized compositions are discussed by Pawlowsky-

Glahn & Olea (2004). A critical finding for our purposes is that

the cross-covariance structure of the alr-transformed variable,

X(s), contains all the information on the spatial dependence

of Z(s) that is provided by other transforms, and (unlike the

centred log-ratio transform) the covariance matrices are not

singular. Under the intrinsic hypothesis, the alr auto- and

cross-variograms [i.e the variograms of X(s)] completely spec-

ify the cross-covariance structure, and they have no dis-

advantages other than the assumption of symmetry and the
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problems of modelling the variograms that apply equally to

the geostatistical analysis of any variates. We therefore use the

alr transform here and estimate the variograms of the trans-

formed variates in the usual way (see, for example, Webster &

Oliver, 2001).

The alr-transformed variablesmay be estimated at unsampled

sites by cokriging. As with non-compositional variates, we may

either assume that the mean is known (simple cokriging) or

unknown (ordinary cokriging), although it is not obvious what

conditions would justify the former assumption in practice.

Pawlowsky-Glahn & Olea (2004) show that alr cokriging has

the attractive property of permutation invariance. That is to

say, our estimates are not affected if we change the order of

the elements in the composition (and so define the alr transform

with a different element as the denominator in each log-ratio).

Pawlowsky et al. (1995) and Odeh et al. (2003) applied alr cok-

riging and univariate ordinary kriging respectively to predict

a composition at unsampled sites. They used the agl transform

to back-transform the elements of the estimated variates. How-

ever, this back-transform is biased, and the unbiased back-

transform is unknown (Pawlowsky-Glahn & Olea, 2004). This

was one reason why de Gruitjer et al. (1997) developed compo-

sitional kriging. However, Pawlowsky-Glahn & Olea (2004)

show that a back-transform can be obtained numerically

(although they do not use it in their case study). If we denote

by �mZ the conditional expectation of Z at some site, then

�mZ ¼ E½Z� ¼
Z
SD

Zf ðZÞdZ; ð3Þ

which is a multivariate integration in the simplex space. If �mX is

our corresponding expectation for the alr-transformed vari-

able X, with a covariance matrix CX, then we can write the

probability density function (pdf) of Z as

f ðZÞ ¼ ð2pÞ�
D � 1

2 jCXj�
1
2

 YD
i¼1

Zi

!�1

� exp

�
�1

2
½alrðZÞ � �mX�

T
C �1

X ½alrðZÞ � �mX�
)
; ð4Þ

with the explicit assumption that X is a multivariate normal

random variate comprising D – 1 variables. Equation (4) is

recognizable as the multivariate normal pdf for a variate with

a mean vector �mX and a covariance matrix CX with an addi-

tional term ð
QD

i¼1 ZiÞ, which is the Jacobian of the agl trans-

form, as is shown by Pawlowsky-Glahn & Olea (2004). The

Jacobian and its role in the computation of the pdf of the back-

transformed variable are explained in Appendix 1 of this paper.

We must evaluate the integral in Equation (3) numerically.

Aitchison (1986) proposed that this is done by Gauss–Hermite

(G–H) quadrature. Gauss–Hermite quadrature is a standard

method for numerical integration. It is based on the result that,

for some function g(�), of a multivariate variable Y, the multi-

variate integral on the left-hand side of Equation (5) below is

approximated by the multiple summation on the right-hand

side, Z
RD

gðYÞ expð�YTYÞdY

� +
k

i1¼1
+
k

i2¼1
. . . +

k

iD¼1
li1li2 . . . liDgðYi1Yi2 . . . YiDÞ; ð5Þ

when the variable Y is a particular auxiliary function obtained

as the k zeroes of the Hermite polynomial of order k (i.e. the

roots of the equation obtained by equating the polynomial to

zero). The l are associated weights derived from the Hermite

polynomial. Values of Y and the weights l are tabulated for

differing k (e.g. by Abramowitz & Stegun, 1964, in their table

25.10). In order to apply this method, it is necessary to find

some function g(�) such that the expression that we want to

integrate can be written down in the same form as the left-

hand side of Equation (5). Pawlowsky-Glahn & Olea (2004),

following Aitchison (1986), show that we can obtain an

approximation to �mZby evaluating Equation (5) with

gðYÞ ¼ p� D � 1
2 agl

� ffiffiffi
2

p
RTY þ �mX

�
; ð6Þ

where �mX is our cokriged estimate of X, and R is a factor of

CX, the covariance matrix of the cokriging errors. The reader

who wants a fuller account of how Equation (6) is obtained is

directed to Appendix 2 of this paper. A similar expression can

be provided to obtain the covariance matrix of �mZ.

Case studies

Sandford transect

These are data from the transect near Sandford in Central

England, reported by Webster & Cuanalo (1975). The soil was

sampled at points on a regular transect, of spacing 10 m. There

were 321 sample sites, and at each the soil was sampled from

three layers, each 5 to 6 cm thick, centred at depths 8, 30 and

65 cm. In this paper, we report on the analysis of the particle

size fractions (sand, silt and clay) for the second of these depth

intervals. The summary statistics of these data are presented

in Table 1, and Figure 1 shows them as a ternary diagram.Note

that the mean values of compositional variates are a poor de-

scription of the location of the data (Pawlowsky-Glahn & Olea,

2004). We include them for completeness, but also report

median values and the first and third quartiles.

Every third datum (observations at sites 3, 6, 9, . . .) was

removed from the data for subsequent validation, and the re-

maining prediction data set was used for geostatistical analysis.

We computed the alr transformof the clay and silt contents, with

the sand content as the denominator of the ratio. We then

computed the auto- and cross-variograms of these trans-

formed variables and fitted a linear model of coregionalization

(LMCR) using the simulated annealing program presented by
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Lark & Papritz (2003). The estimated variograms with fitted

models are shown in Figure 2(a).

We followed the same procedure with the untransformed data

on clay and silt contents, and these variograms are shown in

Figure 2(b).

Having fitted the LMCR, we could then compute the struc-

tural correlations between the variables. These are the correla-

tions of the separate components of the coregionalization

model, each associated either with the nugget (spatially uncor-

related) variation or a spatially dependent component with

a particular variogram function (Webster & Oliver, 2001). The

advantage of the structural correlations is that they allow us to

measure the relationship between the spatially dependent com-

ponents of variation in two or more variables, filtering out the

uncorrelated variation, which often includes measurement

error.

We thencomputed estimates of theparticle size fractionsof the

soil at the unsampled sites using the following three procedures.

1 The clay and silt contents were estimated by ordinary cok-

riging from the raw data. The estimate of the sand content was

then derived by difference. The choice of sand as the variable

to be obtain in this way was arbitrary.

2 The alr-transformed values for clay and silt content were

estimated by ordinary cokriging. These estimates were then

back-transformed to values of clay, silt and sand by means of

the agl transform in Equation (2) then re-expressed as percen-

tages.

3 The alr-transformed values for clay and silt content were

estimated by ordinary cokriging. These estimates were then

back-transformed to values of clay, silt and sand by means of

the unbiased back-transform through G–H quadrature, dis-

cussed in the previous section. The values of the auxiliary

function Y and the weights l are standard numbers. We took

them from table 25.10 of Abramowitz & Stegun (1964). We

followed Aitchison (1986) in selecting a sufficiently large value

of k such that increasing it to larger values caused no change in

the resulting estimates. In both case studies, k ¼ 7 was satisfac-

tory.

We then compared the estimates of the three size fractions to

the measured values at the validation sites. First, we computed

the mean square error for each fraction, as a measure of the

precision of the predictions. Secondly, we followed Pawlowsky-

Glahn & Olea (2004) and computed the standardized residual

sum of squares (STRESS) as a measure of the overall similarity

of the kriged estimate and the validation data. Let di, j be some

distance measure between two observed compositions yi and

yj, and let d*i,j be the same measure for what, in mathematical

terms, is a projection of the compositions onto a lower dimen-

sional space. In practical terms, this could be a spatial smooth-

ing of the original data. The STRESS between the observations

yi, i ¼ 1, 2, . . ., and the smoothed values y*i, i ¼ 1, 2, . . ., (on

the projection) is

STRESS ¼
(
+i< j

�
di;j � d�i;j

�2
+i< j

	
di;j

2

)1
2

: ð7Þ

Note that STRESS is defined only if di,j > 0 for at least one

combination {i, j}.

Pawlowsky-Glahn & Olea (2004) propose that the STRESS

be used to compare observed values of a compostion, z, with

corresponding kriged estimates, z*. This is sensible because we

may think of the kriging estimates as a projection of the data

Table 1 Summary statistics of data in case studies

Clay Silt Sand

alr Clay alr Silt%

Sandford

Mean 34.6 24.9 40.5 – 0.198 – 0.493

Median 34 20 25 0.134 0.0

Quartile 1 15 10 15 – 1.427 – 1.540

Quartile 3 50 35 70 1.099 0.693

Standard 23.9 17.8 31.1 1.827 1.648

deviation

Skewness 0.37 0.68 0.66 0.44 0.65

East Creek

Mean 49.8 11.3 38.9 0.250 – 1.293

Median 50.6 11.75 38.2 0.277 – 1.226

Quartile 1 46.9 8.7 34.7 0.119 – 1.563

Quartile 3 54.1 13.7 41.8 0.440 – 0.953

Standard 7.02 3.88 6.66 0.307 0.480

deviation

Skewness – 0.85 – 0.05 1.1 – 1.11 – 1.07

Octile skew – 0.1 – 0.12 0.1 – 0.08 – 0.13

Clay

Sand Silt

Figure 1 Ternary diagram for the soil on the Sandford transect.

Note that all ternary diagrams in this paper are labelled according to

the following convention. The vertex labelled ‘Clay’ is the position in

the simplex where the clay content of the soil is 100% and no other

fractions are found. At all positions on the opposite edge of the sim-

plex, the clay content is zero. Lines of equal clay content are parallel

to this edge.
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onto a subspace of a Hilbert space (Olea, 1999). In more intui-

tive terms, the kriged estimates are a more or less smoothed

version of the data, and the STRESS will measure how far the

estimates reproduce the variations of the observations. At one

limit, z and z* correspond exactly, and STRESS is zero. At the

other limit, the z vary spatially but the z* are uniform, and

STRESS is one.

We used the Aitchison distance as our distance metric to

compute the STRESS where the square Aitchison distance for a

comparison of two compositions, z and z*, is defined as

d2aðz; z�Þ ¼ +
D

i¼1

�
ln
zi
z̆
� ln

z�i
z̆�

�2

; ð8Þ

where zi are elements of the composition z, z*i are elements of

the composition z*, and z̆ denotes the geometric mean of the

elements of the composition

z̆ ¼
 YD

i ¼ 1

zi

!1
D

:

The Aitchison distance is the Euclidean distance between the

centred log-ratio transform of the compositions. This is an alter-

native log-ratio transform to the alr thatwe are using for kriging.

We use it here because while, as we note above, alr cokriging is

unaffected by the order of elements in the composition, a dis-

tance metric based on the alr transform of z and z* would not

be. Because the centred log-ratio transform uses all elements in

the composition, the Aitchison distance as defined in Equation

(8) is permutation invariant. The Aitchison distance is preferred

to the Euclidean distance between the untransformed composi-

tional variables because it reflects the constraints on their joint

variation. This is discussed in detail by Aitchison (1992).

These summary statistics are all presented in Table 2.

Figure 3 shows plots of the cokriged estimates obtained with

no transformation and the alr-cokriging estimates with theG–H

back-transform (the alr-cokriging estimates with the simple

back-transform are not shown because they were very similar

to the estimates with the G–H back-transform).

Themost notable effect of the alr transformon the variograms

is that, while the relationship between the untransformed

variables is very weak (with small negative values of the cross-

variogram, and a structural correlation of -0.08 for the spatially

dependent components of variation), the transformed variables

are strongly (positively) correlated (a structural correlation of

0.81). There is also a difference between the predictions obtained

with and without the alr transform. The mean square errors

and the STRESS are smaller for predictions from the alr-

transformed data then for our predictions that ignore the com-

positional structure of the data; note particularly the mean

square error for the predictions of clay content. However, in

this case, there is no evidence for an improvement in

predictions when the conditional expectation is computed by

G–H integration, rather than by the simple agl transform of

the estimates. Figure 3 shows that the largest differences

between the predictions for the methods are where the clay or

sand contents are large, see for example near position 190.

Here, the alr cokriging is closer to the observations than cok-

riging of the untransformed data.

East Creek data

These are data from a portion of a 74-ha paddock called ‘East

Creek’ in northern New South Wales, Australia. The data are

from samples collected on two occasions. The first was in April

1996 when 110 soil cores were collected by stratified, random

sampling: see Shatar & McBratney (1999) for full details. The

second was inMarch 1999 when 109 soil cores were collected by

simple random sampling: see Bishop & McBratney (2001) for
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Figure 2 Auto- and cross-variograms for clay and silt content on the Sandford transect with (a) alr transformation and (b) no transformation.

Fitted models are shown by solid lines.

Table 2 Results for prediction at validation sites for the Sandford data

Kriging method

Mean square error

STRESSClay Silt Sand

Cokriginga 99.3 61.6 93.5 0.21

alr cokrigingb 87.1 56.4 93.0 0.19

alr cokrigingc 87.1 57.4 91.9 0.19

aDirect cokriging of the composition.
balr cokriging, with direct agl back-transformation.
calr cokriging, with back-transformation byGauss–Hermite quadrature.
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full details. In this paper, we report the analysis of the particle

size fractions of the 15–30 cm depth layer.

The data on clay, silt and sand contents are shown as a ternary

diagram in Figure 4 and the summary statistics are in Table 1.

We noted that the coefficient of skew is increased by alr trans-

formation.However, it is clear from the ternary diagram that the

sand content (which is the denominator in the transform)

includes some extreme values. The histograms of the alr-trans-

formed data are shown in Figure 5.

These could plausibly be interpreted as normal random vari-

ables with some (small) outlying values. The coefficient of skew

is sensitive to outlying values because it is based on moments of

the data, and it can therefore bemisleading about the underlying

distribution of a variable. We therefore computed the octile

skew of the data (Brys et al., 2003). The octile skew is a meas-

ure of skew that is insensitive to outliers. When applied to data

drawn from a basic distribution, with some added con-

taminants, the octile skew reflects the symmetry or assymetry

of the basic distribution. It is defined as

ðP0:875 � P0:5Þ � ðP0:5 � P0:125Þ
P0:875 � P0:125

; ð9Þ

where Pq is the value of the ordered datum such that the pro-

portion q of the data is smaller than Pq. The octile skew is zero

if the first and seventh octiles are symmetric about the median.

Data with an absolute conventional coefficient of skew larger

than 1.0 are usually transformed (Webster & Oliver, 2001). In

previous simulation studies, it has been found that random

variables drawn from distributions in Tukey’s g family with

a conventional coefficient of skew of 1.0 have an octile skew

close to 0.2 (Lark et al., 2006), so a rule of thumb, equivalent

to that of Webster & Oliver (2001), is to consider data for

transformation if the octile skew exceeds 0.2.

The octile skews are shown in Table 1. Note that all are

smaller than 0.2 and that the octile skews for alr-transformed

clay and silt are equal to or slightly smaller (closer to zero) than

the values for the untransformed contents of these fractions. For

this reason, we conclude that the alr-transformed variables can

be assumed to be normally distributed but with some outliers.

We do not wish to remove these outliers because there is no

reason to believe that they are erroneous; rather we expect that

they reflect real soil variation. The outliers are located at posi-

tions on the northern boundary of the paddock where the soils

are formed in coarse-textured colluvium and sorted alluvium,

much coarser than the parent material elsewhere in the field.
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Figure 3 Cokriged estimates of textural fractions at validation sites

on the Sandford transect by ordinary cokriging with no trans-

formation (solid line), alr transformation and G–H back-trans-

formation (broken line). The solid points are the observed values.

Clay

Sand Silt

Figure 4 Ternary diagram for the soil at East Creek. Note that all

ternary diagrams in this paper are labelled according to the following

convention. The vertex labelled ‘Clay’ is the position in the simplex

where the clay content of the soil is 100% and no other fractions are

found. At all positions on the opposite edge of the simplex, the clay

content is zero. Lines of equal clay content are parallel to this edge.

768 R. M. Lark & T. F. A. Bishop

# 2006 Rothamsted Research Ltd.

Journal compilation # 2006 British Society of Soil Science, European Journal of Soil Science, 58, 763–774



However, we do not want the outliers unduly to influence the

fitted variograms because these will bias the kriging variances

and also the covariance matrix of kriging errors, CX, which is

required to compute the G–H back-transform. We therefore

used a robust estimator of the auto- and cross-variograms,

ĝMu;vðhÞ proposed by Lark (2003) in addition to the standard

estimators (Webster & Oliver, 2001). These estimators were

applied to a subset of 169 prediction data drawn at random

from the full data set. The remaining 50 data were retained for

validation. Figure 6 shows the estimates of the cross- and

autovariograms of the alr-transformed data (robust and stan-

dard estimators) and the untransformed clay and silt contents

(standard estimators). The LMCR, fitted as for the Sandford

data, is also shown (solid lines).

Estimates of the clay, silt and sand content at the 50 validation

points were obtained by the same three approaches used with

the Sandford data. In addition to this, we predicted the alr-

transformed values for clay and silt content by ordinary cokrig-

ing using the variogram models fitted to the robust estimates

of the auto- and cross-variogram. These predictions were then

back-transformed to values of clay, silt and sand bymeans of the

unbiased back-transform through G–H quadrature. The same

validation statistics used for the Sandford data were computed

at the 50 validation sites, and these results are presented in

Table 3.

In addition, we predicted the particle size fractions at a fine

grid across the study field by alr cokriging with the unbiased

back-transform (using a robust LMCR). The results are shown

in Figure 7.

The LMCRs fitted to the transformed and untransformed

data differ, as we observed in the Sandford case study, although

here the structural correlations of the spatially dependent com-

ponents of variation are all weak: – 0.35 for the untransformed

data in contrast to 0.35 (standard estimator) or 0.3 (robust esti-

mator) for the transformed data.

There is little difference between the validation statistics for

the four approaches to estimation. The STRESS values are iden-

tical. The mean square errors are slightly smaller when the

back-transform is done by G–H quadrature (robust or stan-

dard variogram estimators) than when the simple agl trans-

form is applied to the estimates. However, there is no

consistent advantage of these unbiased back-transformed

results over ordinary cokriging on the untransformed data.

Thekrigedmapsof theparticle size fractionsareplausiblegiven

our pedological knowledge. The field includes two main soil

types, a heavy-texturedGreyVertosol (Isbell, 1996) that is found

along the southern boundary and in the eastern half of the field,

shown as the darker colours in the map of clay content and as

lighter colours in the map of sand content (Figure 7). A coarse-

textured Red Chromosol (Isbell, 1996) is also found in the field,

particularly in the northwestern corner of the field. In addition,

as explained earlier, the northern boundary of the field has been

heavily eroded and the soil here is very coarse, as shown by the

darker colours in the map of sand content (Figure 7).

Discussion and Conclusions

In the Sandford case study, there was an advantage of alr co-

kriging over cokriging the untransformed variables, particularly

as measured by the mean square error of the predictions of clay

content, but no consistent difference between the simple agl

back-transform and the unbiased back-transform by G–H

quadrature. In the case of East Creek, the unbiased back-trans-

formwas better than the agl, but showed no consistent improve-

ment over the simple cokriging of untransformed variables.

A likely reason for the differences between the two study sites

can be seen in Figure 8.

Here, we plot the particle size fractions for both sites on a ter-

nary diagram, superimposed on contours that join points in the

simplex where the compositional Mahalanobis distances from

the mean vector of the alr-transformed data are equal. The

Mahalanobis distance has been widely used in soil science for

multivariate analysis (Webster & Oliver, 1990). It is a distance

measure that reflects how the variables are correlated. The com-

positional Mahalanobis distance, dm, is the Mahalanobis dis-

tance between two compositions after alr transformation. On

(a) (b)

Figure 5 Histograms of alr-transformed (a)

clay content and (b) silt content at East Creek.
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Figure 8, the contoured value at a point on the simplex that

corresponds to composition z is

dmðz; �xÞ ¼
n
½alrðzÞ � �x�TS�1½alrðzÞ � �x�

o1
2

; ð10Þ

where SX is the covariance matrix of the data set after the alr

transform, and �x is the vector of mean values of the alr-trans-

formed data.

If alr(Z) is a multivariate normal random variable, then two

observations that correspond to the same probability density

of this variable will be at the same Mahalanobis distance from

the mean. When these contours are projected onto a real

plane, they will take an ellipsoidal shape, reflecting the correla-

tion between the variables on the plane. However, the pro-

jection onto the simplex shows distortion due to constraints on

the distribution of the data near the edges and vertices of the

simplex. This is apparent on Figure 8.

It is instructive to compare the two study sites on Figure 8.

Consider first the (Figure 8b) plot for East Creek. Here, most of

the data are distributed in a small ellipsoidal cluster on the sim-

plex.Within this region, the distortion of the contours of dm, due
to the proximity of an edge of the simplex, is rather limited. In

short, for most of the observations, the assumption that the

untransformed data (on the simplex) be treated as a realization

of an unconstrained multivariate normal process seems rea-

sonable. In contrast, the data from Sandford (Figure 8a) are

distributed over much of the simplex and many are found near

the vertices, where the distortion of the contours of dm, due to
compositional constraints, is greatest. However, quite a few of

the data are near the centre of the simplex, where the depar-

ture of the contours from an ellipsoid is much less marked.

From this, we can see that to treat the data from East Creek,

the raw compositions, as approximately normally distributed in

real space and to ignore the compositional constraints is not

unreasonable. This is because their dispersion is relatively small

and they are not centred near a vertex of the simplex. It is there-

fore not surprising that the STRESS of the estimates obtained by

the different methods are the same and that the differences in

the mean square errors are small. In contrast, many of the

data at Sandford are near the vertices (particularly for large

sand contents), where the effects of the compositional con-

straints, as shown by the contours of dm, are most marked.

For this reason, there is an advantage in using alr cokriging,

and Figure 3 shows that this is generally most apparent where

the clay contents are locally very large or very small. However,

many of the observations are near the centre of the simplex,
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Figure 6 Auto- and cross-variograms for clay and silt content at East

Creek with: (a) alr transformation; (b) alr transformation and robust

estimator; and (c) no transformation. Fitted models are shown by

solid lines.

Table 3 Results for prediction at validation sites for the East Creek data

Kriging method

Mean square error

STRESSClay Silt Sand

Cokriginga 49.2 20.5 30.0 0.34

alr cokrigingb 50.1 22.2 29.3 0.34

alr cokrigingc 48.6 21.3 29.2 0.34

alr cokrigingd 49.1 21.6 29.1 0.34

aDirect cokriging of the composition.
balr cokriging, with direct agl back-transformation.
calr cokriging, with back-transformation by Gauss–Hermite quadra-

ture.
dalr cokriging, with back-transformation by Gauss–Hermite quadra-

ture, robust LMCR.
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Figure 7 Cokriged estimates of textural fractions across East Creek obtained by alr cokriging and G–H back-transformation. Coordinates are in

metres according to the Map Grid of Australia.
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where the distortion is small, so the advantage of the alr trans-

form is not the same everywhere.

What practical conclusions should be drawn from these case

studies? An advantage of alr cokriging over cokriging of

untransformed data is expected in theory, but was not seen con-

sistently. However, the differences are explicable given the dis-

tribution of the data on the simplex (Figure 8). Statistical

methods are not developed by induction from case studies,

although useful rules of thumb (such as how critical certain

assumptions are) can be generated this way. The fact that the

alr cokriging, with the G–H back-transform, has a strong theo-

retical background gives us confidence in using it as a general

method. We conjecture that the practical advantages of the

method over ordinary cokriging of the raw compositions would

be much larger than seen here in a study area where the size

fractions are centred near a vertex of the simplex. A plot of the

data on a ternary diagramwith the contours of dmmight be used

as a diagnostic tool to decide when the more complex analysis

is needed. Such practical guidelines can only emerge as soil sci-

entists acquire experience of these methods with a range of data.

In the meantime, we must note that alr cokriging has one clear

advantage. If we ignore the compositional nature of our data,

then we have to make some arbitrary decisions. If we cokrige,

then we must decide which fraction to exclude from the estima-

tion (and determine by difference afterwards) because the covari-

ance matrix of the full composition is singular. If we determine

each variable separately by ordinary kriging, then an arbitrary

renormalization of the results (to ensure that they sum to 100%)

is still needed. In alr cokriging, this is avoided altogether, as one

of the fractions is used as the denominator of the transform to

RD–1 space, but as we note above, the alr-cokriging estimates are

not affected by this decision.

Large improvements were not achieved, in the case studies,

from the use of numerical quadrature to approximate the con-

ditional expectation of the composition from the cokriged alr

values. However, there is some advantage over the straight agl

back-transform in the East Creek case. In general, an advantage

of using the transform is that we can obtain an estimation var-

iance for our predictions in the original units, although these

have to be interpreted with caution.

Pawlowsky-Glahn & Olea (2004) point out that, under the

assumption that our composition is a normal random variable

under alr transformation, the simple agl back-transform of the

kriged estimate of the alr variables gives an estimate of the

median andmode of the conditional distributionof each element

of the composition.The simple back-transformmay therefore be

optimal in some sense other than the least squares (it provides an

estimate of the ‘centre’ of the conditional distribution). Thismay

be suitable for some purposes. For example, it may be entirely

satisfactory to predict the memberships in fuzzy classes created

by k-means clustering (which constitute a composition), as

done by McBratney et al. (1992).

Other issues require further research. In principle, it should be

possible to include variables other than the alr-transformed ele-

mentsof the composition in the cokriging system, and sowemight

improvepredictionsof the soil textureby includingothervariables

such as remote sensor data or data on soil electrical conductivity.

Similarly, it shouldbe possible to compute an empirical best linear

unbiased prediction (E-BLUP) from a linear mixed model for the

alr-transformed data that includes a spatial trend or a regression

on some external drift variable. The only complication would be

to compute correctly the covariance matrix of the co-prediction

errors of the alr terms, required for the back-transform.

To conclude, soil particle size fractions can be predicted from

compositional data by alr cokriging, and this has advantages

over ordinary cokriging without transformation. The extent of

these advantages seems to depend on how far the distribution of

the data in real space is actually constrained by the simplex. For

many purposes, there are also advantages if the back-transfor-

mation of the alr-cokriged estimates is computed by numerical

quadrature to approximate the conditional expectation.

Figure 8 Ternary diagram for (a) Sandford data and (b) East Creek.

In each case, contours of equal compositional Mahalanobis distance

from the mean are superimposed. Note that all ternary diagrams in

this paper are labelled according to the following convention. The

vertex labelled ‘Clay’ is the position in the simplex where the clay

content of the soil is 100% and no other fractions are found. At all

positions on the opposite edge of the simplex, the clay content is

zero. Lines of equal clay content are parallel to this edge.
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Appendix 1: Transformation and back-transformation
of a random variate

We summarize here results on the pdf of the transform of a random

variate. These are needed to follow the computation of the unbiased

back-transform of the estimates of the alr transform of a composition.

More details can be found in textbooks of multivariate analysis, such

as the one by Krzanowski (1988).

Let X be a random variate comprising p variables; we denote by x

an observed variate that we assume to be a particular realization of

this random process. The elements of x are x1, x2, . . ., xp. We may obtain

the variate z with elements z1, z2, . . ., zp by a transformation of x:

z1 ¼ f1

	
x1; x2; . . . ; xp



� �
� �
� �
zp ¼ fp

	
x1; x2; . . . ; xp



:

The Jacobian of this transform is a scalar quantity, the determinant of

the matrix of partial derivatives of each element of zwith respect to each

element of x:

JfðxÞ ¼

@z1
@x1

@z2
@x1

� � � @zp
@x1

@z1
@x2

@z2
@x2

� � � @zp
@x2� � � � � �

� � � � � �
� � � � � �

@z1
@xp

@z2
@xp

� � � @zp
@xp

����������������

����������������

:

The Jacobian of the transform is used to determine its properties, such as

the existence of a back-transform. If the back-transform exists, then we

denote it by the following expression,

x1 ¼ F1

	
z1; z2; . . . ; zp



� �
� �
� �
xp ¼ Fp

	
z1; z2; . . . ; zp



;

and its Jacobian is JU(z) ¼ J –1f(x).

Now, assume that we know the pdf of X, f ðXÞ. Our objective is to

obtain the pdf f ðZÞ. To compute the probability density for some par-

ticular vector of values of the variables in Z, z1, z2, . . ., zp, we compute

the corresponding values of x1, x2, . . ., xp with the transform Ui, then

we obtain the pdf for these values from f ðXÞand multiply the result by

Jf(x)
–1 .

Thus, in Equation (4), the pdf of our compositional variate (Z) is

obtained by substituting alrðZÞfor the transformed variable (X) in the

p-variate Gaussian pdf and multiplying by the inverse of the Jacobian

of the agl transform.
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Appendix 2: The derivation of Equation (6) for the
Gauss-Hermite back-transform

We need to factorize our integral in Equation (3) so that it can be pre-

sented in the form of Equation (5). This is done by setting

YTY ¼
�
1

2
½alrðZÞ � �mX�

T
C �1

X ½alrðZÞ � �mX�
�
: ðA1Þ

The covariance matrix of cokriging errors,CX, is a positive definite matrix

(Webster & Oliver, 1990) because its elements are computed from cross-

and auto-variograms that constitute an authorised LMCR (Webster &

Oliver, 2001). It follows from this (see, for example, Healy, 1986) that we

can compute a factorization of CX into the product of an upper and

lower triangular matrix (i.e. matrices with all zeros either above or

below the main diagonal), one of which is the transpose of the other:

CX ¼ RTR:

This is the Cholesky decomposition or lower–upper (LU) factorization

of CX. Other properties of the LU factorization include

C �1
X ¼

	
RTR


�1 ¼ R�1	RT

�1 ¼ R�1	R�1
T;

so we can write Equation (A1) as

YTY¼
�

1ffiffiffi
2

p ½alrðZÞ��mX�
T
R�1 1ffiffiffi

2
p
	
R�1
T½alrðZÞ� �mX�

�
; ðA2Þ

so

Y ¼ 1ffiffiffi
2

p
	
R�1
T½alrðZÞ � �mX�; ðA3Þ

therefore

ffiffiffi
2

p
Y ¼

	
R�1
T½alrðZÞ � �mX�;

therefore ffiffiffi
2

p
RTY ¼ ½alrðZÞ � �mX�;

therefore ffiffiffi
2

p
RTY þ �mX ¼ alrðZÞ;

therefore

Z ¼ agl
� ffiffiffi

2
p

RTY þ �mX
�
: ðA4Þ

We now require the Jacobian of the transform

X ¼
ffiffiffi
2

p
RTY þ �mX;

where

Z ¼ aglðXÞ:

Now ����@X@Z
���� ¼

 YD
i¼1

Zi

!�1
; ðA5Þ

i.e. the inverse of Jalr(Z).

����@X@Y
���� ¼ ���@

ffiffiffi
2

p
RTY þ �mX
@Y

���
¼
���@

ffiffiffi
2

p
RTY

@Y

���;
because �mX is constant with respect to Y, and so

����@X@Y
���� ¼ ffiffiffi

2
p D�1��RT

�� ¼ 2
D � 1

2

��RT
��; ðA6Þ

because the determinant of a triangular matrix is the product of its

diagonal elements.

From Equation (A5), we may write

@Z ¼
 YD

i ¼ 1

Zi

!
@X:

Substituting in from Equation (A6) gives us

@Z ¼
� QD

i ¼ 1

Zi

�
2
D � 1

2

��RT
��@Y

¼
� QD

i ¼ 1

Zi

�
2
D � 1

2

��CX

��12@Y;
ðA7Þ

because
��RT

�� ¼ ��R�� ¼ ��CX

��12.
From this, we can write

@Y ¼ 2�
D � 1

2

 YD
i ¼ 1

Zi

! � 1��CX

�� � 1
2
@Z: ðA8Þ

We can now write out an expression for the term under the integration

sign in Equation (3) by substituting in from Equation (A4) for Z, from

Equation (4) for f(Z) and from Equation (A7) for @Z ¼ . . .@Y. This

gives us

agl
� ffiffiffi

2
p

RTY þ �mX
�
ð2pÞ� D � 1

2 jCXj�
1
2

 YD
i ¼ 1

Zi

!�1

� exp

� YTY

� YD
i ¼ 1

Zi

!
2
D � 1

2

��CX

��12@Y:
We can therefore write

�mZ ¼
Z
RD� 1

p� D� 1
2 agl

� ffiffiffi
2

p
RTYþ �mX

�
exp

�YTY

�
dY: ðA9Þ

Inspecting Equation (5), we see that the above integral can be evaluated

by setting

gðYÞ ¼ p� D � 1
2 aglð

ffiffiffi
2

p
RTY þ �mXÞ: ðA10Þ
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