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This work examines the possibility of implementing the statistical method, Compositional Data Analysis (CDA), to rock porosity mea-
surement data. The rock samples analysed are different types of sandstones from Poland. Porosimetric measurements were carried out us-
ing the mercury injection capillary pressure method, together with computer image analysis. In this paper, compositions of data
concerning pore distributions are analysed. Rock pores were distributed in 4 classes of pore dimensions: transitive pores, submacropores,
real macropores and over-capillary pores. Based on the CDA methods it was revealed that: there is no constant proportion between transi-
tive and macropores in the sandstones analyzed; the variability of the real macropores, over-capillary and transitive pores and the skeletal
grains fraction is mainly one-dimensional. The relative variation between transitive pores and real macropores determines the variability
in the sandstone stratigraphical groups; however, these groups are not very distinct as regards the pore sizes and skeletal grains propor-
tion. The rock parameters: median pore diameter; threshold pore diameter and total pore area might be used as independent variables in
equations that explain reasonable parts of variability of pore sizes and skeletal grains fraction log-ratios.
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INTRODUCTION

This study examines the use of Compositional Data Anal-

ysis implementation for rock porosity measurement data. The

rock samples analysed represent different sandstones from

Poland (regarding geological region or stratigraphical posi-

tion). Out of the 50 samples 12 are from Palaeozoic or Meso-

zoic rocks of the Holy Cross Mts., 8 are from the Sudetan

Mountains, mainly Cretaceous sandstones, 22 are from the

Late Carboniferous sandstones of Upper Silesia, 7 represent

the Cretaceous or Older Tertiary System of the Beskidy re-

gion, and 1 sample is a Cretaceous sandstone from the

Silesian-Kraków Upland.

Porosimetric measurements were carried out using the mer-

cury injection capillary pressure method, at the Oil and Gas In-

stitute in Kraków. The cumulative intrusion curves obtained of

pore volumes versus diameter enabled the determination of

percentages in different pore classes. The porosimeter pene-

trates pores from 0.01 to 100 �m. Hence, the pore classes have

been determined as follows (Pazdro, 1983; Hobler, 1977):

In a few samples the effective porosity was 0, and those

samples have not been taken into consideration. Some other

rock parameters were also determined: skeletal density, bulk

density, median pore diameter, total pore area = specific sur-

face, hysteresis and threshold pore diameter.

COMPOSITIONAL DATA ANALYSIS

CDA method is a relatively new statistical method intro-

duced by Aitchison in 1986 (Aitchison, 1986). Compositional

data consists of vectors x with non-negative parts x1,...,xD , repre-

senting proportions of some whole. Therefore they are subject to

the constraint: x1+...+xD = 1. This condition is referred to as x be-

ing a composition of D parts summing to 1 (some other constant
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can be used, e.g. 100 when using percentages). As a conse-

quence, the components of the above equation cannot be inde-

pendent since they sum to a constant. To simplify, it is stated that

the data are “closed”. Such data are very popular in geochemis-

try, petroleum chemistry, sedimentology, palynology, environ-

metrics, etc., as well as in other fields, i.e. medical statistics, ecol-

ogy, zoology, sociometrics, economics, etc.

The characteristic features of a compositional data set are

(Reyment and Savazzi, 1999):

— a compositional data set (samples of a population) may

be represented in the form of a matrix;

— each row of the data-matrix corresponds to a single spec-

imen (i.e. rock sample); this is known as a replicate (= a single

experimental or observational unit);

— each column of the data matrix represents a single chem-

ical element, a mineral species, in short, a part;

— each entry in the data-matrix is non-negative;

— each row of the data-matrix sums to 1 (proportions), or

respectively, 100 (%), (sometimes another row-constant can

be found, e.g. owing to some manipulation on the part of the

analyst);

— correlation coefficients change if one of the variables is

removed from the data-matrix and the rows made to sum to 1 or

100 again. The same effect is also produced if a new compo-

nent is added to the study.

The last property means that deleting (or adding) one or more

variables from (to) the data-set might have a significant numeri-

cal effect on the correlations between the remaining variables.

DATA VISUALISATION

One of the most widely used visualization methods in CDA

is the ternary diagram. Ternary diagrams used in geology are a

useful visual representation of the variability of 3-part compo-

sitions. For compositions with more than four parts there is not

a satisfactory way of obtaining a visual representation of the

variability. In CDA it is possible to con-

struct subcompositions of parts in order

to present data on ternary diagrams

(Aitchison, 2003a, b).

Apart from ternary diagrams, very

popular in CDA is the biplot (Ait-

chison and Greenacre, 2002). It was in-

troduced by Gabriel (1971) and is now

a widely applied method to visualize

rows and columns of many different

kinds of data matrices.

Generally speaking, a biplot enables a

graphical display of observations and vari-

ables on the same chart, in a way that ap-

proximates their correlation. In a biplot the

observations are usually marked with

points, and variables by rays (vectors) em-

anating from the origin. Both their lengths

and directions are important to the inter-

pretation (Fig. 1).

A biplot consists of an origin, O, which represents the cen-

tre of the compositional data set, a vertex i for each of the parts,

and a case marker, cn , for each of the cases. The join of O to a

vertex i is called a ray Oi, and the join of two vertices i and j is

termed the link ij. Depending on the amount of variability ex-

plained by the biplot, the links and rays provide information on

the covariance structure of the data set. For compositional data,

the biplot is obtained using transformed parts; i.e. for each sam-

ple the parts are divided by the geometric mean of the row and

logarithms are taken. The main properties of the biplot and its

interpretation are shown below, after Aitchison (2003a) and

Aitchison and Greenacre (2002).

1. Distances between column points in the biplot approxi-

mate to the standard deviation of the corresponding log-ratios

(logarithms of ratios between relevant pairs of components). A

short link between column points indicates that the component

ratio is relatively constant in the data, while a large link indi-

cates a large relative variation:

� �i j x xi j

2
� var log( / )

and also: � �� �� �Oi x g x
2

1� var log /

where: g(x) is the geometric centre.

2. Angle cosines between links in the biplot approximate to

correlations between log-ratios. If links ij and kl intersect in a

point M then:

� � � �� �cos log / , log /iMk corr x x x xi j k l	

This means that in a case where two links are at a right an-

gle,cos iMk � 0, and there is zero correlation of the two log-ra-

tios. This feature is useful in investigation of possible inde-

pendence of subcompositions involved.

348 Ma³gorzata Labus

Fig. 1. Interpretation parameters of a general biplot

T — transitive pores, S — submacropores, R — real macropores, O — over-capillary pores,

Re — skeletal grains



3. The centre O is the centre of gravity of the D vertices

1,…,D. The biplot for any subcomposition is formed by select-

ing the vertices corresponding to the parts of the subcomposition

and taking the centre O, of the subcompositional biplot as the

centroid of the vertices. This operation is possible since ratios are

preserved under the formation of subcompositions.

4. If a subset of vertices (1,…,C) is co-llinear, the associated

subcomposition has a biplot that is one-dimensional, and this

leads to the conclusion that the subcomposition has one-dimen-

sional variability. In case the column points are located along a

straight line, a model describing this interdependency can be de-

duced from the relative lengths of their links. This means that if

three transformed components A, B and C lie in an approximate

straight line with distances AB and BC equal to 
 and �, respec-

tively, then the constant log-contrast is of the form:

� log(A) + 
 log(C) – (
 + �)log(B) = const;

thus (A/B)�~ (B/C)


where: A, B, and C stand for the corresponding original, non-transformed

parts.

5. Case markers have the property that the inner product

Ocn
.ji represents the departure of log(xi/xj) for case cn from the

average of this log-ratio over all cases. For illustration, con-

sider Figure 2. Let be P the orthogonal projection of the centre

O on the link ji and Pn the corresponding projection of the

compositional marker cn. Furthermore, consider the link ji as

divided into positive and negative parts by the point P, the

positive part being in the direction of the vertex j from P. If Pn

falls on the positive (or negative) side of this line then the

log-ratio of log(xni/xnj) of the n-th composition exceeds (falls

short of) the average value of this log-ratio over all cases. The

further Pn is from P, the greater is this exceedance (shortfall).

If Pn coincides with P then the compositional log-ratio coin-

cides with the average.

It must be underlined that that the links are the fundamental

elements of compositional biplot interpretation, contrary to the

case of variation diagrams for unconstrained data, where the

role of rays is more meaningful. The complete set of links, by

specifying all the relative variances, determines the compo-

sitional covariance structure and provides information about

subcompositional variability and independence.

STATISTICAL INTERPRETATION

In this paper compositions concerning pore distribution (4

classes of pore dimensions and the share of skeletal grains) are

analysed, as well as subcompositions of the data matrix.

Subcomposition means composition of a subset of selected

parts. An important property of compositional data is that the

ratio of any two components of the subcomposition is the same

as the ratio of the corresponding two components in the full,

original composition.

Figure 3 presents the biplot of the available compositions

(47 samples).

A rough interpretation of the biplot for 47 compositions

(Fig. 3) might be the following:

1. The T–R link is the longest, which indicates that proba-

bly the greatest relative variation in the ratios of components

is between the transitive and real macropores. i.e. the large

distance between the vertices T and R is indicative of signifi-

cant variability of the log-ratio — log(T/R), which means that

there is no constant proportion between transitive pores and

macropores.

2. The near-orthogonality of the S–O link and the T–R link

implies that the log-ratio of transitive to real macropores

might be independent of the ratio S–O (submacropores and

over-capillary). This feature can be expressed also in an

equivalent way: the subcompositions T–R and S–O might be

independent. However, this hypothesis of subcompositional

independence could not be assessed, as the normality of the

log(S/O) distribution was not confirmed by a formal test (dis-

cussed later in the paper).

3. The approximate co-linearity of the vertices R, O,

T, Re, indicates that probably the variability of the corre-

sponding subcomposition is mainly one-dimensional,

and suggests the possibility of a log-contrast principal

component analysis to determine the form of the con-

stant log-contrast (discussed later).

4. In Figure 3 “Cum. prop. expl.” (cumulative propor-

tion explained) is the cumulative variance explained by the

(D-1) principal components (for D analyzed parts), given

that all the principal components together explain 100% of

the sample variation. In the example, the first of the compo-

nents explains 67% of variance, whereas in the second it is

22%, adding up to 89% of total variability explained,

which is also the variability explained by the biplot.

5. Four compositions of pore sizes (samples 11, 26, 33

and 35, marked as outliers in Fig. 3) have atypicality indi-

ces greater than 0.95. From the position of the case marker

for composition 11, it is obvious that this atypicality is due

to the combination of unusually high ratios of over-capil-

lary pores to submacropores (O–S) and transitive to real

macropores (T–R). In the case of the remaining outliers
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Fig. 2. Case markers interpretation

For explanations see text



(three samples), their position on the biplot is less apparent;

however, their atypicality is due to high ratios of skeletal grains

and transitive pores (Re–T), and over-capillary and skeletal

grains (O–Re), respectively. These outliers were excluded,

prior to the next stages of interpretation.

The interpretation of the 43 compositions set, that was left

after the exclusion of outliers, is presented below in detail:

The graphical results of the biplot (i.e. the length of links)

should be compared to the numerical results of the

compositional variation array that provides a useful descriptive

summary of the variability pattern of compositions (Aitchison,

2003b). Table 1 presents the variation array of the analyzed

composition; its upper triangle displays the log-ratio variances:

� �� �
�

	 ij ri rjx xvar log / , while the lower one a shows the

log-ratio means: � �� �
�

	�
ij

ri rjE x xlog / .

It can be seen from Table 1 that the most significant varia-

tion is between transitive (T) and real macropores (R), with
�

	TR
568. . A similar conclusion could be drawn from the

analysis of the biplot in Figure 4, where the longest link, TR, in-

dicates that the greatest relative variation in the ratios of com-

ponents might be between the transitive and real macropores.

The negative value of

�

	 ��
TR

079. suggests that the T values

are smaller than the R values in an average sense. The inequal-

ity:
� �

� �ij TR
proves that for a substantial number of sam-

ples the log(T/R) value is positive with the corresponding per-

centage of transitive (T) exceeding that of real macropores (R).

The relative variation between Re (skeletal grains) and S

(submacropores) is one of the smallest:
�

	ReS
0583. , see also

the S–Re link in the biplot (Fig. 4). The positive values of
�

	�
TR

346. , and
� �

� �ij TR
, are consistent with the obvious

domination of the skeletal grains (Re) over the pore volumes

in any of the samples.

In the biplot of the set of 43 compositions (Fig. 4), the first

of the components explains 80% of variance, whereas the sec-

ond explains 11%, adding up to 91% of total variability ex-

plained, which is a rather high value. The S–Re link and the

T–R link are nearly orthogonal. This geometrical relationship

suggests that the log-ratio of transitive to real macropores

might be independent of the ratio S–Re (submacropores and

skeletal grains). In other words:

subcompositions T–R and S–Re might be

independent. This possible sub-

compositional independence requires

confirmation by a formal test, based on

procedures assuming multivariate nor-

mality of transformed compositions

(alr-transformed compositions). In the

first step, the tests of logistic normality

were performed in a manner suggested

by Pawlowsky-Glahn and Buccianti

(2002) and Aitchison (2003b). Marginal

and bivariate angle test statistics were ap-

plied. The relevant formulae and the criti-

cal values are shown in Tables 2 and 3.
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Fig. 3. Biplot of pore and skeletal grains distribution —

47 compositions

Cm — Cambrian quartzite sandstone (Holy Cross Mts.), C — late Car-

boniferous sandstones (Upper Silesia), T — Triassic sandstones (Holy

Cross Mts.), J — Jurassic sandstones (Holy Cross Mts.), K — Cretaceous

sandstones (Lower Silesia), K-flysch — late Cretaceous flysch sand-

stones (Beskidy region), K-Mirów — Cretaceous sandstone from Mirów

(Silesian-Kraków Upland); symbols as in Figure 1

Fig. 4. Biplot of pore and the skeletal grains — 43 compositions set

Symbols as in Figure 1

T a b l e 1

Compositional variation array for the 43 compositions set

Re T S R O

Re – 0.71 0.58 3.12 0.23

V
ar

ia
n

ce
sT 4.18 – 1.11 5.68 1.32

S 3.46 –0.72 – 3.36 0.73

R 3.39 –0.79 –0.07 – 2.42

O 5.51 1.33 2.05 2.12 –

Means



For the i-th marginal distribution of the log-ratio composi-

tion the observations are: yri=log(xri/xrN), with r=1,…,N. The

value of zi is calculated from the following formula:

� �� �� y y s zi i1 1 1 1� 	/

where: s stands for the standard deviation, and �(.) is the cumulative distri-

bution function of N(0;1).

Values of zi used in the bivariate angle distribution tests are

calculated as zi=�i/(2�), where �I=arctan(ui2/ui1) +

0.5{1–sign(ui1)}�) + 0.5 {1+sign(ui1)}{1–sign(ui2)}�, and:
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The signum function (sign) is defined as:

sign x

if x

if x

if x

( ) 	
� �

	
� �

�

�
�

��

1 0

0 0

1 0

The sequences of zi values (different for the marginal and

for bivariate angle test), rearranged in ascending order of mag-

nitude, are used in the expressions of QA for the Anderson-Dar-

ling, QC for the Cramer-von Mises, and QW for the Watson test,

and compared with the critical values. The larger the values of

the statistics are, the smaller is the significance level.

In the next step, the dependence between the transformed

compositions — log (T/R) and log(S/Re), assuming their logis-

tic normality, was tested by means of the test for

subcompositional independence (Aitchison, 2003b).

This test compares:

N ln ln
� �

� �

� �

�

�
�

�

�
� �

�

�
�

��

 

!
�

"�
# # # #

# #
11 22

11 12

21 22

against upper percentage points of the x2{(c–1)(d–c)} distri-

bution, where:
�

# ij
— sample covariation matrices; d — stands

for the number of dimensions of the whole of the composition; c

— is the number of the first subcomposition dimensions.

Results of the tests, applied to the composition without out-

liers, are shown in the following table (Table 4).

Comparison of the computed values of modified distribu-

tion function test statistics with the corresponding critical val-

ues (Tables 2 and 3) shows no significant departure from addi-

tive logistic normality at the significance level of over 5 per-

cent, in all of the tests. This means, that there is no reason to re-

ject the hypothesis of multivariate normality for the variables

analyzed: log (T/R) and log(S/Re). The significance probability

of 0.776 obtained from the subcompositional independence test

(Table 4) allows rejection of the hypothesis of dependence be-

tween log(T/R)–log(S/Re), i.e. the subcompositions (T, R) and

(S, Re) can be assumed to be independent. This can be inter-

preted as follows: the proportion of T to R is independent of the

proportion of S to Re.
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T a b l e 2

Marginal test statistics and their critical values

Significance level [%] 10 5 2.5 1

Anderson-Darling Q
N

i z z N
N

A i N i

i

N

	 � � � � � � �� �
	
${ ( )[log log( )] }(

1
2 1 1 1

4 25
1

1 N 2
) 0.656 0.787 0.918 1.092

Cramer-von Mises Q z
i

N N N
C i

i

N

	 � � � � �
	
$[ ( ) ]( )

2 1

2

1

12
1

1

2

2

1

0.104 0.126 0.148 0.178

Watson Q Q N z
N

W C	 � � �( ) ( )
1

2
1

1

2

2 , where z
N

zi

i

N

	
	
$1

1

0.096 0.116 0.136 0.163

T a b l e 3

Bivariate angle test statistics and their critical values

Significance level [%] 10 5 2.5 1

Anderson-Darling Q
N

i z z NA i N i

i

N

	 � � � � �� �
	
$1

2 1 1 1

1

( )[log log( )] 1.933 2.492 3.070 3.857

Cramer-von Mises Q z
i

N N N N N
C i

i

N

	 � � � � � � �
	
${[ ( ) ]

. .
}( )

2 1

2

1

12

0 4 0 6
1

12

1
2 0.347 0.461 0.581 0.743

Watson Q z
i

N
N z

N N

N
W i

i

N

	 � � � � � � � �

	
$[ ( ) ( )

. .
](

.2 1

2

1

2

0 2

12

0 1 02

1

2

2

8

N
) 0.152 0.187 0.221 0.267



Apart from the biplot, the ternary diagrams of centred

subcompositions of the data matrix are interpreted. The lines

inside the graphs (Figs. 5 and 6) represent axes of principal

components — log-contrast principal axes in the sense of

Aitchison (2003b), which may be understood as “regression

lines” in a regression model for compositions (Billheimer et al.,

1998). Numbers (summing to 1) near the explanations of each

of the principal components are the values of the regression pa-

rameter vectors.

In Figure 3, the link TR was almost perpendicular to the link

SO. This suggested that the subcomposition formed by

submacropores and over-capillary pores might be independent

of the subcomposition formed by transitive pores and

macropores. The correlation between log-ratios log(T/R) and

log(S/O) equals approximately to 0. The link TR goes nearly

through O; the log-contrast: � log(T) + 
 log (R) – (

+�)log(O) = const, has the following form: 1.857 log(T) + log

(R) – 2.857 log (O) = const. or, after rounding the coefficients

in such a way that the sum of all of them is zero, 2log(T) + log

(R) – 3 log(O) = constant. This is equivalent to (T2 R / O3) =

constant.

In Figure 4, however, showing the compositional biplot

without the outliers, the link TR is almost perpendicular to the

link SRe. This suggests that the subcomposition formed by

submacropores and skeletal grains is independent of the
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T a b l e 4

Tests on multivariate normality and the compositional independence test of log(T/R) and log(S/Re)

Tests Anderson-Darling Cramer-von Mises Watson

log(T/R) — marginal distribution 0.776 0.116 0.114

log(S/Re) — marginal distribution 0.709 0.115 0.099

Bivariate angle test statistics 0.862 0.170 0.089

log(T/R) — log(S/Re) compositional independence test 0.776

Fig. 5. Ternary diagram of pore sizes and skeletal grains distribution

— subcomposition of skeletal grains, transitive and real macropores

Symbols as in Figures 1 and 4

Fig. 6. Ternary diagram of pore sizes and skeletal grains distribution

— subcomposition of skeletal grains, real macropores

and over-capillary pores

Symbols as in Figures 1 and 4

Fig. 7. Confidence regions (�=0.95) and geometric means

for sandstone groups

Symbols as in Figures 1 and 4



subcomposition formed by transitive pores and macropores, as

confirmed by the presented tests. The correlation between

log-ratios log(T/R) and log(S/Re) equals approximately to 0.

Now, the link TR goes through Re; the log-contrast: â log(T) +


log (R) – (
 +�)log(Re) = const., has the following form: 2,71

log(T) + log (R) – 3.71 log (Re) = const., leading to (T 3 R/ Re 4) =

const. This relationship is also presented in triangular coordi-

nates for the 3-part composition in Figure 5, showing a good fit

to the data, explaining 0.95% of the total variability in the

subcomposition.

At this point we are led to answer a question whether the

presented log-contrast has any geological meaning. From the

petrological point of view such an equation could not be ex-

plained by any of the existing laws and rules. But it would be

worth testing, if log-contrasts may serve as characteristics

(“codes”), for various clastic rocks (different in the sense of

age, lithology, and diagenesis).

From Figure 7 it appears clear that stratigraphical groups of

sandstones are not distinct, as regards the pore sizes and skeletal

grains proportion. On the other hand the points which represent

the geometrical means of the sandstone groups lay on the line

corresponding to the trend of pore sizes distribution (the axis of
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Fig. 11. Log-ratios log(Re/R) (above) and log(S/R) (below)

as a function of the median pore diameter

Fig. 8. Biplot of pore and skeletal grains distribution —

showing geometrical centres of stratigraphical groups

Symbols as in Figures 1 and 4

Fig. 9. Log-ratios log(Re/R) (above) and log(T/R) (below)

as a function of the threshold pore diameter

Fig. 12. Log-ratios log(Re/T) (above) and log(O/T) (below)

as a function of the median pore diameter

Fig. 10. Log-ratios log(Re/T) (above) and log(O/T) (below)

as a function of the total pore area



the first principal component on Fig. 4). The share of transitive

pores decreases in favour of real macropores in the following di-

rection: J~>K>T>C>K-flysch. This trend is modified by the

variance of skeletal grains, on average the greatest in Carbonifer-

ous sandstones. This interpretation, however, might be inaccu-

rate owing to differences in the sample sizes of groups.

On the next biplot (Fig. 8), the geometrical centres of strati-

graphical groups of sandstones are shown against the back-

ground of the biplot rays. (This picture is to some extent similar

to the ternary diagram in Figure 7). The position of the group

centres shows that the share of transitive pores (T) is decreas-

ing, with growth of real macropores (R), arranging the samples

in the known order: J~>K>T>C>K-flysch. The falling fraction

of the tiny, transitive pores (T) may be connected with the de-

crease in the degree of diagenesis, which is dependent on the

age of sandstones. The older rocks would contain less pores of

large volume.

In order to describe the possible process by which the pore

sizes variability may depend on rock parameters (skeletal den-

sity; bulk density, median pore diameter, total pore area = spe-

cific surface, hysteresis and threshold pore diameter) some

log-ratio regression equations were defined. It was found that

median pore diameter; threshold pore diameter and total pore

area might be used as independent variables in these equations,

explaining reasonable parts of the variability of the log-ratios

examined. Testing of the goodness of fit (accepted at 
= 0.05;

p<0.01) of the regression lines was performed using the least

squares method.

The growth of the threshold pore diameter value leads to

decrease of the log-ratios analyzed: log(Re/R) and log(T/R),

seen in Figure 9, possibly due to the growth of the real

macropores fraction in the subcomposition analyzed.

The growing value of the total pore area is connected with

the decrease of the log-ratios analyzed — log(Re/T) and

log(O/T), seen in Figure 10, This might be easily explained by

the close relationship between the area parameter and the vol-

ume of the smallest (transitive) pores.

The increasing value of the median pore diameter value

causes the decrease of the analyzed log-ratios — log(Re/R) and

log(S/R) — relationship (Fig. 11), similar to the one already de-

scribed in the cases of log(Re/R) and log(T/R).

The growth of the median pore diameter value leads to the

increase of the analyzed log-ratios —log(Re/T) and log(O/T), by

the increase of the smallest pores fraction as seen in Figure 12.

CONCLUSIONS

1. For the sandstones analyzed, the greatest relative varia-

tion in the ratios of components is between the transitive and

real macropores; this means that there is no constant proportion

between transitive pores and macropores.

2. Subcompositions of transitive and macropores, and

submacropores and skeletal grains can be assumed to be inde-

pendent. This hypothesis was confirmed by the test of

compositional independence.

3. There is probably some relationship between the propor-

tions of the real macropores, transitive pores and the skeletal

grains fraction. Their variability is mainly one-dimensional.

4. Stratigraphical groups of sandstones are not distinct as re-

gards the pore sizes and skeletal grains proportion; however, the

points which represent geometric means of the sandstone groups

lay on the line corresponding to the trend of pore sizes distribu-

tion. The share of transitive pores decreases in favour of real

macropores in the following direction: J~>K>T>C>K-flysch.

This trend is modified by the variance of skeletal grains, on aver-

age the greatest in Carboniferous sandstones.

5. The falling fraction of the tiny, transitive pores (T) — the

order: J~>K>T>C>K-flysch — may be connected with the de-

crease in the degree of diagenesis, which is dependent on the

age of sandstones.

The median pore diameter; threshold pore diameter and to-

tal pore area might be used as independent variables in equa-

tions that explain reasonable parts of the variability of log-ra-

tios of pore sizes and skeletal grains fraction.
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