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Compositional Data Analysis: Where Are We
and Where Should We Be Heading?1

J. Aitchison2 and J. J. Egozcue3

We take stock of the present position of compositional data analysis, of what has been achieved in the
last 20 years, and then make suggestions as to what may be sensible avenues of future research. We
take an uncompromisingly applied mathematical view, that the challenge of solving practical problems
should motivate our theoretical research; and that any new theory should be thoroughly investigated
to see if it may provide answers to previously abandoned practical considerations.

KEY WORDS: simplex geometry, Hilbert and Euclidean space, subcomposition, regression, sample
space, stay-in-the-simplex.

INTRODUCTION

As stated in a previous version of the present paper (Aitchison, 2003), the statis-
tical analysis of compositional data has gone through roughly four phases. The
pre-1960 phase rode on the crest of the developmental wave of standard multi-
variate statistical analysis, an appropriate form of analysis for the investigation
of problems with real sample spaces. Despite the obvious fact that a composi-
tional vector—with components the proportions of some whole—is subject to a
constant-sum constraint, and so is entirely different from the unconstrained vector
of standard unconstrained multivariate statistical analysis, scientists and statisti-
cians alike seemed almost to delight in applying all the intricacies of standard
multivariate analysis, in particular correlation analysis, to compositional vectors.
We know that Karl Pearson, in his definitive 1897 paper on spurious correlations,
had pointed out the pitfalls of interpretation of such activity, but it was not until
around 1960 that specific condemnation of such an approach emerged.
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In the second phase, the primary critic of the application of standard mul-
tivariate analysis to compositional data was the geologist Chayes (1960), whose
main criticism was in the interpretation of product–moment correlation between
components of a geochemical composition, with negative bias the distorting factor
from the viewpoint of any sensible interpretation. For this problem of negative
bias, often referred to as the closure problem, Sarmanov and Vistelius (1959) sup-
plemented the Chayes criticism in geological applications and Mosimann (1962)
drew the attention of biologists to it. However, even conscious researchers, instead
of working toward an appropriate methodology, adopted what can only be de-
scribed as a pathological approach: distortion of standard multivariate techniques
when applied to compositional data was the main goal of study.

The third phase was the realization by Aitchison in the 1980s that compo-
sitions provide information about relative, not absolute, values of components,
that therefore every statement about a composition can be stated in terms of ratios
of components (Aitchison, 1981, 1982, 1983, 1984). The facts that logratios are
easier to handle mathematically than ratios and that a logratio transformation pro-
vides a one-to-one mapping onto a real space led to the advocacy of a methodology
based on a variety of logratio transformations. These transformations allowed the
use of standard unconstrained multivariate statistics applied to transformed data,
with inferences translatable back into compositional statements.

The fourth phase arises from the realization that the internal simplicial opera-
tion of perturbation, the external operation of powering, and the simplicial metric,
define a metric vector space (indeed a Hilbert space) (Billheimer, Guttorp, and
Fagan, 1997, 2001; Pawlowsky-Glahn and Egozcue, 2001). So, many composi-
tional problems can be investigated within this space with its specific algebraic–
geometric structure. There has thus arisen a staying-in-the-simplex approach to
the solution of many compositional problems (Mateu-Figueras, 2003; Pawlowsky-
Glahn, 2003). This staying-in-the-simplex point of view proposes to represent
compositions by their coordinates, as they live in an Euclidean space, and to
interpret them and their relationships from their representation in the simplex.
Accordingly, the sample space of random compositions is identified to be the
simplex with a simplicial metric and measure, different from the usual Euclidean
metric and Lebesgue measure in real space.

The third phase, which mainly deals with (logratio) transformation of raw
data, deserves special attention because these techniques have been very popular
and successful over more than a century; from the Galton–McAlister introduc-
tion of such an idea in 1879 in their logarithmic transformation for positive data,
through variance-stabilizing transformations for sound analysis of variance, to the
general Box–Cox transformation (Box and Cox, 1964) and the implied transfor-
mations in generalized linear modelling. The logratio transformation principle was
based on the fact that there is a one-to-one correspondence between compositional
vectors and associated logratio vectors, so that any statement about compositions
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can be reformulated in terms of logratios, and vice versa. The advantage of the
transformation is that it removes the problem of a constrained sample space, the
unit simplex, to one of an unconstrained space, multivariate real space, opening up
all available standard multivariate techniques. The original transformations were
principally the additive logratio transformation (Aitchison, 1986, p. 113) and the
centered logratio transformation (Aitchison, 1986, p. 79). The logratio transfor-
mation methodology seemed to be accepted by the statistical community; see for
example the discussion of Aitchison (1982). The logratio methodology, however,
drew fierce opposition from other disciplines, in particular from sections of the
geological community. The reader who is interested in following the arguments
that have arisen should examine the Letters to the Editor of Mathematical Geology
over the period 1988 through 2002.

PRINCIPLES OF COMPOSITIONAL DATA ANALYSIS

Representation in the Simplex and Geometry

Two main principles of compositional data analysis are scale invariance and
subcompositional coherence. Scale invariance merely reinforces the intuitive idea
that a composition provides information only about relative values not about abso-
lute values and, therefore, ratios of components are the relevant entities to study.
This concept is easily formalized into a statement that all meaningful functions of
a composition can be expressed in terms of a set of component ratios (Aitchison,
1997, 2002). Subcompositions of compositions are the analog of marginals or
subvectors in unconstrained multivariate analysis (Aitchison, 1986, p. 33). Sub-
compositional coherence demands that two scientists, one using full compositions
and the other using subcompositions of these full compositions, should make the
same inference about relations within the common parts. Working with ratios, or
equivalently logratios, involves not only scale invariance but automatically sub-
compositional coherence, since ratios within a subcomposition are equal to the
corresponding ratios within the full composition. For details of these arguments
associated with subcompositional coherence see Aitchison (1992b, 1994, 1997,
2002).

The simplex of D parts, SD , includes all positive real vectors adding up to
a constant that for simplicity we take as the unit. Accordingly, absolute values
of components in a composition are meaningless unless they are compared—by
ratios—with other components. We use the notation SD , where the superscript
is the number of parts of the composition. However, this subscript has been also
used to indicate the dimension of the space, being D − 1.

Time has revealed the great importance of the basic operation of perturbation
within the simplex (Aitchison, 1986, p. 42) in the analysis of compositional data.
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Perturbation is computed by multiplying compositions component to component
and, afterwards, dividing each component by the sum of all of them to attain
unit sum. This last normalization is called closure and does not affect the ratios
between components. Perturbation of two elements of the simplex of D parts, SD ,
x and y, is often denoted by x ⊕ y.

Perturbation has a neutral element. This is a composition with equal com-
ponents; closure makes these components to be 1/D in a D-part simplex with
unit closure constant. Any composition perturbed by this neutral element re-
mains unaltered. The inverse operation of perturbation, denoted y � x, is merely
dividing components of a composition, y, by the corresponding components
of the other composition x; closure reduces the result to an element of the
simplex.

The underlying reason for the importance of perturbation is that it plays a role
in the simplex precisely analogous to displacement or translation in real space;
it is a mechanism for recording change. For example, if a D-part composition
x changes through whatever process to a D-part composition y, the change can
be ascribed to a perturbation p, with solution provided in terms of the inverse
perturbation operator, p = y � x. Perturbation thus plays an important role not
only in simple change as just described, but also in describing imprecision, in the
definition and computation of residual compositions in compositional regression,
and in other compositional fitting techniques. From the mathematical point of
view, the perturbation operation defines an Abelian group on the simplex. This is
the analog of translation in real spaces.

There is a second operation in the simplex, powering, the analog of scalar
multiplication in real space. Powering a composition by a real constant consists
of raising each component to the constant and then applying closure to the re-
sult. Notation for powering has changed several times but at this time we prefer
to use a � x, where a is a real constant and x a composition. Other alternative
symbols have been used, e.g. ⊗ or �, but � seems to agree both with notation for
perturbation and the familiar multiplication by scalars in real space. The opera-
tions ⊕ and � define a D − 1 dimensional vector or linear space structure on SD

(Pawlowsky-Glahn and Egozcue, 2002).
The structure can be extended to produce a metric vector space by the in-

troduction of the simplicial metric or distance �S defined by Aitchison (1983)
as

�S(x, y) =
[

D∑
i=1

{
ln

xi

g(x)
− ln

yi

g(y)

}2
]1/2

where g(·) denotes the geometric mean of the components of the enclosed vec-
tor. This distance has desirable properties, such as permutation and perturbation
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invariance, a powering effect analogous to a scalar multiplication effect in real
spaces and subcompositional dominance, which are relevant and indeed logically
necessary for meaningful statistical analysis of compositional data (Aitchison,
1992a). This constitutes SD as a metric space. A norm, ‖x‖S , and inner prod-
uct, 〈x, y〉S , consistent with this metric, complete the Euclidean structure of the
simplex. We refer to this as the finite dimensional Hilbert space structure of the
simplex, in order to distinguish it from the ordinary Euclidean structure of real
spaces (Billheimer, Guttorp, and Fagan, 1997, 2001; Egozcue and others, 2003;
Pawlowsky-Glahn and Egozcue, 2001, 2002).

As for any vector space, generating vectors, bases, linear dependence, or-
thonormal bases, and subspaces play a fundamental role and this is equally true
for the simplex metric vector space. In such concepts the counterpart of linear
combination is a power–perturbation combination. This means that a composition
can be represented by its coordinates with respect to a basis. For instance, if bi ,
i = 1, 2, . . . ,D − 1, are independent compositions with respect to operations of
perturbation and power, i.e., a basis of SD , any composition can be expressed as

x = (
x∗

1 � b1
) ⊕ (

x∗
2 � b2

) ⊕ . . . ⊕ (
x∗

D−1 � bD−1
)
,

where the asterisk denotes a coordinate.
Orthonormal bases are important because they provide a straightforward way

of computing the coefficients or coordinates of a composition. The coefficients
of a D-part composition x relative to an orthonormal basis, b1, . . . , bD−1, are
x∗

i = 〈x, bi〉S , and they are called coordinates with respect to that basis. Coordi-
nates are logratios and they were termed isometric logratios (ilr) since the corre-
sponding transformation preserves the simplicial metric in SD (Egozcue and oth-
ers, 2003). The transformation that assigns the coordinates x∗

i , i = 1, . . . , D − 1,
to the composition x, allows us the computation of distances �S , norms ‖ · ‖S

and inner products 〈·, ·〉S as ordinary Euclidean ones when using the coordinate
vectors, e.g.

�S(x, y) =
√(

x∗
1 − y∗

1

)2 + · · · + (
x∗

D−1 − y∗
D−1

)2
,

where x∗
i and y∗

i are the coordinates of x and y with respect to the same or-
thonormal base. Within the ilr framework we can get different transformations
corresponding to different orthonormal bases. Coordinates are by definition or-
thogonal logcontrasts (Aitchison, 1986, p. 85), involving ratios of compositional
components in a more complicated way than simple logratios and so may pose
more difficult problems in interpretation.
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Later, we shall see that selection of adequate orthonormal bases plays a central
role in a data-analytic sense in terms of the simplicial singular value decomposition
of a compositional data set.

Clearly, in compositional processes, rates of change of compositions are
important and here we review the basic ideas. Suppose that a composition depends
on some continuous variable t such as time, length, or depth. Then, the rate of
change of the composition with respect to t , or simplicial derivative, can be defined
as the limit

Dx(t) = lim
dt→0

1

dt
� [x(t + dt) � x(t)] = C

[
exp

(
d

dt
ln x(t)

)]
,

where d/dt denotes ordinary differentiation with respect to t . This derivative
has all the standard properties of derivatives. Similarly, simplicial integration
with respect to t can be defined. These definitions are equivalent to representing
the compositional function x(t) by its coordinates in some orthonormal basis
of the simplex; performing the calculus (derivatives, integrals, etc.) using the
coordinate representation; and, then, returning to the compositional representation.
This equivalence is the principle of the staying-in-the-simplex way of dealing with
compositional data. For further details of this algebraic–geometric structure of the
simplex see Pawlowsky-Glahn and Egozcue (2001, 2002), Barceló-Vidal, Martı́n-
Fernández, and Pawlowsky-Glahn (2001), Aitchison (2002), Aitchison and others
(2002), and Egozcue and others (2003).

Probability, Statistics, and Data Analysis

A first important step in any statistical problem is to determine a suitable
sample space for available data. Frequently, real spaces are adequately adopted
as sample spaces, thus providing both geometric background and sigma-field
structure needed for defining events in a probabilistic framework. However, the
nature of compositional data prevents the adoption of such an automatic sample
space. Simplicial geometry has been shown to represent the main features of
compositional data well and it is, therefore, the natural candidate to be chosen as
the sample space of random compositional data. A necessary consequence of such
a selection is the need to use probability models (distributions, densities) supported
on the simplex and to ensure that events to which probability is relevant are also
included in the space. Moreover, the use of the simplex as sample space invites us
to use simplicial geometry when describing and modelling compositions.

A second step is to define a measure of central tendency. Inspired on
Kullback–Leibler directed divergence concept, Aitchison (1997) defined the center
of a random composition. Now, we can consider that definition as a consequence
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of using simplicial geometry. It can be defined as the point, ξ , in the simplex that
minimizes the mean value of the squared simplicial distance, E[�2

S(X, ξ )], i.e.
cen[X] = ξ (Pawlowsky-Glahn and Egozcue, 2001, 2002). Therefore, the center
plays the role of the expected value in real sample spaces. The center can be
expressed as

cen[X] = C[exp(E[ln X])] ,

also called the geometric mean. A natural estimator of the center, ξ̂ , is simply
the closed vector of the geometric means of each component of the composition
running over the sample. Consistent with this mean value there are a variety of
equivalent measures of dispersion and covariance: the logratio covariance matrix
(Aitchison, 1986, p. 76), the centred logratio covariance matrix (Aitchison, 1986, p.
79), and the variation matrix (Aitchison, 1986, p. 76). Importantly, these dispersion
characteristics are consistent with the simplicial metric defined above and the
estimator ξ̂ of the center is a best linear unbiased estimator from a stay-in-the-
simplex point of view (Pawlowsky-Glahn, 2003; Pawlowsky-Glahn and Egozcue,
2002).

A further result in compositional data analysis based on simplicial geometry
is the simplicial version of the singular value decomposition, on which much of
multivariate statistical methodology is based. Consider a compositional data set,
typically an N × D matrix, with n-th row composition xn. Any compositional
data matrix can be decomposed in a power–perturbation form as follows

xn = ξ̂ ⊕ (un1p1 � b1) ⊕ (un2p2 � b2) ⊕ · · · ⊕ (unRpR � bR) ,

where ξ̂ is the estimate of the center of the data set; pi , i = 1, 2, . . . , R, are
positive singular values in descending order of magnitude; bi , i = 1, 2, . . . , R,
are orthonormal compositions; R is a readily defined rank of the compositional
data set; and the u’s are power components specific to each xn. In practice, R is
commonly D − 1, the full dimension of the simplex. In a way similar to that for real
data sets, we may consider an approximation of order r < R to the compositional
data set given by

x(r)
n = ξ̂ ⊕ (un1p1 � b1) ⊕ (un2p2 � b2) ⊕ · · · ⊕ (unrpr � br ), r < R ≤ D − 1 .

Such an approximation retains a proportion (p2
1 + p2

2 + · · · + p2
r )/(p2

1 + p2
2 +

· · · + p2
R) of the total variability of the N × D compositional data matrix as

measured by the trace of the estimated centered logratio covariance matrix or,
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equivalently, in terms of the total mutual squared distances as

1

N (N − 1)

D∑
m<n

�2
S(xn, xm).

We should remark that the singular value decomposition of a compositional data
matrix is equivalent to identify orthogonal directions in the simplex such that the
first one is the maximum variability direction of the sample; remaining variability
has maximum variability in the second direction, and so on. Moreover, singular
value decomposition in the simplex identifies a particular orthonormal basis in
the simplex bi , i = 1, 2, . . . , R, that should be completed up to D − 1 with other
arbitrary orthonormal vectors if necessary. The coordinates, i.e., the ilr transform,
of each composition xn in the data matrix with respect to that orthonormal basis are
also provided: they are un1p1, un2p2, . . . , unRpR , completed with null coordinates
if the basis was completed up to D − 1 elements.

One of the most relevant consequences of expressing a composition by its
coordinates with respect to some basis, preferably orthonormal, is that many
standard multivariate problems that are stated in the simplex can be translated
into coordinates and then formulated in the real space of those coordinates.
A very important example is the comparison of the centers of two or more
populations. Once all compositions have been expressed in coordinates, the
problem reduces to a standard analysis of variance problem. These multivari-
ate problems were initially discussed from the logratio transformation point
of view (Aitchison and Ng, 2003; Buccianti, Nardi, and Potenza, 2003; Buc-
cianti and Pawlowsky-Glahn, 2003; Pawlowsky-Glahn and Buccianti, 2002), but
can now be thought of as a routine consequence of the staying-in-the-simplex
methodology.

Beyond these algebraic–geometric applications to data analysis, adoption
of the simplex as the sample space has required the study of distributions sup-
ported on the simplex. Among classical distributions, the Dirichlet distribution
was initially the only one directly defined on the simplex. Various classes of
parametric distributions on the simplex were consequently studied: the additive
logistic normal (ALN) (Aitchison, 1986, p. 113), the multiplicative logistic nor-
mal (Aitchison, 1986, p. 130), the partitioned classes (Aitchison, 1986, p. 132),
and the Dirichlet-embracing generalization ((Aitchison, 1985, 1986). A welcome
addition is the multivariate logistic skew normal (Mateu-Figueras, 2003; Mateu-
Figueras, Barceló-Vidal, and Pawlowsky-Glahn, 1998) based on the multivariate
skew normal class introduced by Azzalini and Dalla Valle (1996) and further de-
veloped by Azzalini and Capitanio (1999). This allows for skewness in the logratio
transformed data and promises more extensive study of methods which depend
on distributional forms. For some uses of this distribution in compositional data
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analysis see Aitchison and Bacon-Shone (1999) and Mateu-Figueras, Barceló-
Vidal, and Pawlowsky-Glahn (1998).

Testing for distributional form and outlier detection has also been developed
(Aitchison, Mateu-Figueras, and Ng, 2004; Barceló, Pawlowsky-Glahn, and Grun-
sky, 1996). It is also worth remembering that kernel density estimation is available
for compositional data (Aitchison and Lauder, 1985).

The increased understanding of the algebraic–geometric structure of the un-
derlying simplex sample space has opened up the possibility of a staying-in-the-
simplex approach to compositional data analysis, as within a metric vector space,
ideas such as minimum variance, unbiasedness, and least squares estimation, are
available (Pawlowsky-Glahn, 2003; Pawlowsky-Glahn and Egozcue, 2002). It
consists in using all geometric properties of the simplex as a Hilbert space. The
consequences of this approach can be summarized as:

(a) Compositions have a double representation: the raw one, using vectors
of parts, and the coordinate representation in some orthonormal basis.
Log-ratios are not viewed as transformations of compositions but as coor-
dinates or as linear combinations of them.

(b) The sample space of random compositions is the simplex and probability
distributions of random compositions are supported on it.

(c) The simplicial metric (distance) between compositions demands consistent
definitions of central tendency and dispersion measures.

(d) The simplicial measure (associated with the simplicial metric) is adopted
to define probability densities. The usual Lebesgue measure associated
with the Euclidean metric is no longer used as a reference. It only appears
when dealing with coordinates, which are in a real space.

Let us illustrate item (d) with an example. Assume that D = 3 and that a
composition x = [x1, x2, x3] is represented by two orthonormal coordinates, e.g.,

x∗ = [x∗
1 , x∗

2 ] , with x∗
1 = 1√

2
ln

x1

x2
, x∗

2 = 1√
6

ln
x1x2

x2
3

.

If x∗ is assumed to follow a normal distribution, N(0,�∗), then x follows an
ALN distribution (Mateu-Figueras, 2003). If we want to represent the probability
density of x on a ternary diagram using the simplicial measure as a reference,
i.e., the Radon–Nykodym derivative of the probability measure with respect to the
simplicial measure, we get the probability density

fx(x) = 1

2π |�∗|1/2
exp

(
−1

2
x∗ (�∗)−1 x∗t

)
,
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where the coordinate vector x∗ is interpreted as a function of x, the corresponding
composition. Contours of this density are easily computed. We say that this kind
of probability density corresponds to a normal distribution on SD from a stay-in-
the-simplex point of view. We realize that no Jacobian appears in this probability
density; contrarily, if we take the usual Lebesgue measure on the simplex as
reference measure we need to insert the Jacobian of the transformation from x into
x∗ in the expression of the density.

The experience of researchers in compositional data analysis has some lessons
for workers with other forms of data. The importance of the identification of the
principles such as scale invariance and subcompositional coherence, the clear
definition of an appropriate sample space and recognition of the basic operations
of change such as perturbation and power, have led us to meaningful systems
of statistical inference. The same has been true of the analysis of directional
data based on the special algebraic–geometric structure of the sphere. It is now
being recognized that many, even most, standard multivariate data problems are
concerned with positive (or nonnegative) vectors and that perhaps we should pay
particular attention to the peculiar properties of the appropriate sample space, as
discussed in Mateu-Figueras, Pawlowsky-Glahn, and Martı́n-Fernández (2002),
Pawlowsky-Glahn and Egozcue (2002), Mateu-Figueras and Pawlowsky-Glahn
(2003), Pawlowsky-Glahn (2003), Pawlowsky-Glahn, Egozcue and Burger (2003),
and Tolosana-Delgado, Pawlowsky-Glahn and Mateu-Figueras (2003).

QUESTIONS, MODELS, AND APPLICATIONS

Limitations in the Interpretability of Compositional Data

There is a tendency in some compositional data analysts to expect too much
in their inferences from compositional data. For these, the following situation
may show the nature of the limitations of compositional data. We have a planter
consisting of water, soil, and seed. One evening a sample was taken and its
(water, soil, seed) composition was determined as x1 = [3/6, 2/6, 1/6]. In the
morning again we analyzed a sample, finding x2 = [6/9, 2/9, 1/9]. We measured
the change as the perturbation

p = x2 � x1 = C
[

(3/6)

(6/9)
,

(2/6)

(2/9)
,

(1/6)

(1/9)

]
=

[
1

2
,

1

4
,

1

4

]
.

Now we can picture two simple scenarios which could describe this change.
Suppose that the planter last evening actually contained [18, 12, 6] kg of (water,
soil, seed), corresponding to the evening composition [3/6, 2/6, 1/6], and it rained
during the night increasing the water content only, so that the morning content
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was [36, 12, 6] kg, corresponding to the morning composition [6/9, 2/9, 1/9].
Although this rain-only explanation may be true, the change could equally be
explained by a wind-only scenario, in which the overnight wind had swept away
soil and seed resulting in content of [18, 6, 3] kg and the same morning composition
[6/9, 2/9, 1/9]. Even more complicated scenarios will produce a similar change.
The point here is that compositions provide information only about the relative
magnitudes of the compositional components and so interpretations involving
absolute values as in the above example cannot be justified. Only if there is
evidence external to the compositional information would such inferences be
justified. For example, if it is known that strong winds and no rain occurred that
night, the wind-only scenario would be justified. A consequence of this example is
that we must learn to phrase our inferences from compositional data in terms which
are meaningful and we have seen that the meaningful operations are perturbation
and powering.

This example may also illustrate the convenience of asking ourselves is my
problem only compositional? Imagine that preservation of mass of seed is the goal
of our analysis. If we only look to the compositional results we arrive at the (wrong)
conclusion that wind and rain scenarios cause similar loss of seed. However, the
mass data show that in the rain scenario no loss of seed occurred. Our particular
goal is related to mass and then the problem is not only compositional. It requires
the use of additional data such as masses in combination with compositions.

Compositional Processes

Most scientists are interested in the nature of the process which has led to
the data they observe. For example, geological language contains many terms to
describe a whole variety of envisaged processes, such as denudation, diagenesis,
erosion, gravity transport, metasomatism, metamorphism, mixing, orogenesis,
polymetamorphism, sedimentation, transportation, weathering. Unfortunately, the
scientist is seldom in the position of observing a closed system where fundamental
principles such as conservation of mass and energy apply. Commonly the only
data available take the form of compositional data providing information only
on relative magnitudes of the constituents of the specimens, e.g., percentages by
weight or chemical concentrations. Thus, there is a need to extend compositional
data analysis to provide satisfactory models to describe such processes.

The calculus available in the simplex—perturbation, powering, derivatives,
and integrals—allows us to propose sound models for processes influencing com-
position. The simplest one is the compositional straight-line, parametrized by
some external variable like time, space, or depth. For instance a t-dependent com-
position may be modelled as x(t) = x0 ⊕ (t � p), where x0 is a point in the line,
eventually the initial condition, and p the direction of the line. This simple process
is the general solution of the compositional differential equation Dx(t) = p. Lines
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in the simplex can be interpreted as compositional evolution of an exponential
mass growth or decay. The simplicity of lines in the simplex promotes attempts to
discover simple natural laws from compositional observations. The tools for such
discovery are again either principal logcontrast analysis or, equivalently, singular
value decomposition. For details of such discoveries through principal logcon-
trast analysis see Aitchison and Thomas (1998), Aitchison (1999), Buccianti and
others (1999), Egozcue and others (2003), Thomas and Aitchison (2003), von
Eynatten, Barceló-Vidal, and Pawlowsky-Glahn (2003) and through biplot anal-
ysis see Aitchison and Greenacre (2002). However, further work is required in
this field because, in fact, differential models in the simplex may provide models
exceeding the simplicity of the line such as oscillations or periodicities.

Compositional Regression

Compositional regression, where the composition is the regressand and we
seek an explanation of its variability in terms of factors and/or a concomitant vari-
able, has been extensively discussed and illustrated in Aitchison (1986, 7.6–7.9)
and need not be further discussed here. Such linear modelling within the logratio
transformation methodology is simple and can rely on standard multivariate tech-
niques. The expression of compositional regression by the staying-in-the-simplex
approach is by way of power–perturbation combinations. A composition y depends
on compositional concomitants x1, x2, . . . as

y = a ⊕ (t1 � x1) ⊕ (t2 � x2) ⊕ · · · ⊕ p ,

where the composition a is the analog of the intercept in ordinary regression,
the real constants t1, t2, . . . are the analogs of the regression coefficients, and
p is the perturbation error. Clearly, interpretation here is dependent on a sound
mathematical appreciation of the algebraic–geometric structure of the simplex.

With actual compositional data, the regression either in logratio terms or in
staying-in-the-simplex mode is easily accomplished. The important feature here
is the possibility of alternative approaches to interpretation. For further details and
an application see Aitchison and Thomas (1998) and for further developments
see Aitchison and Barceló-Vidal (2002) and Daunis-i-Estadella, Egozcue and
Pawlowsky-Glahn (2002).

Binary Logistic Discrimination

The classification-diagnostic problem illustrates how this technique may be
developed. For two classes of compositions, (θ = 0, θ = 1), x = [x1, x2, . . . , xD],
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a useful model is the binary logistic model, using a logcontrast

lc(a, x) = a0 + a1 ln x1 + a2 ln x2 + · · · + aD ln xD,

D∑
i=1

ai = 0

as the regressor. More specifically,

P[θ = k|x] = exp[lc(a, x)]

1 + exp[lc(a, x)]
, k = 0, 1 .

Maximum likelihood estimation of the parameter a is straightforward. The beauty
of this model is that the adequacy of a subcomposition (say the parts 1, · · · , C) as a
substitute for the complete composition in the process of classification can readily
be tested since this hypothesis can be expressed as aC+1 = aC+2 = · · · = aD = 0.
Thus the whole lattice of subcompositional hypotheses can be investigated and
any adequate subcomposition identified (Aitchison, 1986, 12.6, 12.7; Thomas and
Aitchison, 1998, 2003).

Extensions to more classes of compositions are straightforward. An example
of this is sequential discrimination. Even with more than two classes, the above
binary logistic regression approach may be possible, even sensible. A geologi-
cal example of related techniques can be found in Tolosana-Delgado and others
(2002).

Convex Linear Mixing Processes

A popular way of studying compositional data, such as sedimentology and
environmental pollution studies, is in terms of convex linear mixing processes.
Such an approach is based on some such assumption as conservation of mass.
There is, of course, no way that compositional data can be used to support such
a mass conservation hypothesis since compositions carry no information about
mass. Compositions can, however, be analyzed within models which assume
conservation of mass. All these models assume that there are source compositions,
say z1, z2, . . . zC , from which a generic observed composition arises as a convex
linear combination

x = a1z1 + a2z2 + · · · + aCzC ,

where a = [a1, a2, . . . , aC] ∈ SC is the vector of mixing proportions. The form of
modelling obviously depends on the extent of the information about the number of
sources and the source compositions. In some cases, neither the number of sources
nor their compositions are known, the so-called endmember problem as discussed,
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for example, by Renner (2003) and Weltje (1997). At the opposite extreme, the
problem may be to test a hypothesis that the sources are specified compositions z1,

z2, . . . zC . Many intermediate situations can be visualized: an example is the pollu-
tion problem analyzed by Aitchison and Bacon-Shone (1999), where there are not
only samples from the target set but also sampled compositions from the sources.
Note that the basic operation here is an additive one, so that all the nice distribu-
tional properties associated with perturbation and powering are not available, i.e.,
mixing or convex linear combination is not a linear operation in the simplex. For
example, given that z1, z2, . . . zC are independently distributed as additive logistic
normal and that a is a constant vector or has some given logistic normal distri-
bution, no explicit form for the distribution of the convex linear mixture can be
found. It was only by the determination of good approximations to the distribution
that Aitchison and Bacon-Shone (1999) resolved their pollution problem.

The additive nature of such modelling does not mean that basic principles
of compositional data analysis should be neglected in these mixing problems.
In solutions of the endmember problem there has been a tendency to avoid the
simplicial metric and to revert to Euclidean distance and classical least squares in
estimating mixture vectors. This is certainly not necessary and the more appro-
priate simplicial metric may be used. For example, an approach to the so-called
endmember problem where a set of say C endmember compositions z1, z2, . . .

zC is sought such that each composition xn, n = 1, . . . , N , of the data set can
be expressed as a convex linear combination of z1, z2, . . . zC . In order to find
out suitable values of a the optimality criterion used may be expressed in terms
of simplicial distances as �S(xn, x(a)), n = 1, 2, . . . , N , where x(a) is a convex
linear combination of the C endmember compositions and a is a vector containing
the C unknown coefficients. See Aitchison and Barceló-Vidal (2002) for further
details and an example of a method of comparing the adequacy of differential
perturbation and convex linear mixing processes, or Tolosana-Delgado and others
(2005) for a possible alternative approach based on simplicial factor analysis. In
the computation for such analysis a basic algorithm is obviously required for the
maximization or minimization of a function on the simplex and we now have
efficient search algorithms based on perturbation techniques.

Graphical Aids

Visual representation of compositional data and their features requires special
graphical aids. Available techniques may be summarized in some few categories
as follows.

Harker and Related Diagrams

It is now over four decades since Felix Chayes warned geologists of the dan-
gers of attempting to interpret Harker and similar diagrams where one component
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of a composition is plotted against another. Yet a recent search of the web under
Harker diagram produced some 60 sites, many of them instructing students in the
use of such a graphical tool. The only legitimate use of such diagrams is in terms
of the ratios, that is in terms of the rays from the origin to the data points. In our
view, Harker diagrams are best condemned as misleading and best left out of any
attempts to interpret compositional variability.

Ternary Diagrams

Like Harker diagrams these should be treated with caution. For example,
in the past there has been substantial discussion on the nature of data sets with
apparent curvature within a ternary diagram (Butler, 1979). Are these trends or
not? With our knowledge of the algebraic–geometric structure of the simplex
we now know that constant logcontrast curves are indeed the straight lines of
the simplex and so any interpretation of curvature within the ternary diagram
should be treated with substantial care. See Aitchison and Thomas (1998) and
Buccianti and others (1999) for examples where such curvature can be interpreted
as a trend or compositional process. However, ternary diagrams, complemented
with centering and scaling techniques (Martı́n-Fernández and others, 1999; von
Eynatten, Pawlowsky-Glahn and Egozcue, 2002) are one of the most important
and practical tools to represent compositional data.

Ratio and Logratio Scatter-Plots

If scatter-plots are to be used in interpreting compositional data then because
of the necessity to meet the demands of the principle of scale invariance they should
involve ratios or logratios. A good example of how such diagrams can be used for
exposition is to be found in the discriminatory example in Thomas and Aitchison
(1998). But care should be taken when visualizing distances because they may be
different from the simplicial ones, specially when a common denominator is used.

Compositional Biplots

The development of biplot techniques for compositional data is a substantial
advance in the study of compositional data sets. The biplot (Gabriel, 1971, 1981)
is a well-established graphical aid in other branches of statistical analysis. Its
adaptation for compositional data is simple and can prove a useful exploratory
and expository tool. For a compositional data set the biplot is based on a singular
value decomposition of the doubly centered logratio matrix. For details of bi-
plot construction see Aitchison (1990, 1997, 2002) and Aitchison and Greenacre
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(2002). Such biplots, consisting of vertices, rays, links, and case markers, allow
an overall view of compositional covariance structure, subcompositional analysis,
the relationship of individual compositions to parts, and provide useful interpre-
tations of near-coincident vertices, collinear vertices, and orthogonal links. There
are obvious extensions of biplot methodology to bicompositions and to conditional
biplots.

Coordinate Scatter-Plots

They consist in representing coordinates of compositions with respect to some
orthonormal basis in a 1D, 2D, or 3D plot. They are a special class of logratio
scatter-plots when the selected logratios are orthonormal. Ordinary Euclidean
distance on the plot is equivalent to simplicial distance so overcoming scale
problems in other kind of logratio scatter-plots (Egozcue and others, 2003). It
should be pointed out, however, this gain in visualizing distance may in practice
be offset by the fact that the coordinates are necessarily orthogonal logcontrasts
and so may be substantially more complicated to interpret than simple logratios.

Problems of Zero Components

Neither logratio analysis nor the stay-in-the-simplex approach can deal with
compositional data for which some component is recorded as a zero. Often this
occurs because the recording device was unable to detect the proportion of such
a part. In these cases replacement of the zero value by a small nonzero value
may overcome the problem. The replacement method (Aitchison, 1986, p. 266)
of rounded or trace zeros is not subcompositionally coherent and should now be
replaced by the method arrived at independently by Fry, Fry, and McLaren (2000)
and Martı́n-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), which pre-
serve the ratios of nonzero components. Such nonparametric replacement pro-
cedures still appear to be the most viable methods available provided sensitivity
analysis over a sensible range of replacement values is used as a check. For a para-
metric approach, see Martin-Fernández, Paladea-Albadalejo and Gómez-Garcı́a
(2003).

One of the tantalizing remaining problems in compositional data analysis lies
in how to deal with data sets in which there are components which are essential or
structural zeros. By an essential or structural zero we mean a component which
is truly zero, not something recorded as zero simply because the experimental
design or the measuring instrument has not been sufficiently sensitive to detect
a trace of the part. Such essential zeros occur in many compositional situations;
typical examples can be found in paleontological or palynological taxa. Devices
such as nonzero replacement and amalgamation are almost invariably ad hoc and
unsuccessful. An alternative approach through ranking of components is given by
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Bacon-Shone (1992). For some essential or structural zeros careful consideration
of the questions being asked can sometimes remove the problem; see for example
the predator–prey example in Aitchison (1986, 11.7).

Research is under way to attempt to construct two-stage models for the
treatment of essential or structural zeros. In such modelling it seems sensible to
build up a model in two stages, the first determining where the zeros will occur
and the second how the unit available is distributed among the nonzero parts. Two
reports on this promising line of research were presented in CODAWORK-03
workshop by Aitchison and Kay (2003) and Bacon-Shone (2003).

Reduction of Dimensionality

The number of parts of large compositional vectors should be frequently
reduced both to remove undesired information and to get interpretable results.
Singular value decomposition, as presented in a previous section, is the main
tool for such a reduction and is parallel to principal component analysis for
real multivariate data. Data are projected on the first principal directions and the
remaining components are removed or considered as residuals. This projection
is an orthogonal one in the simplicial sense. The biplot is the result of such an
approach when two principal components are chosen to represent the data. For an
example see Tolosana-Delgado and others (2005).

Principal component analysis projects data into a subspace of a given di-
mension that is chosen to explain the most of the variance of data. However,
there are alternative criteria to obtain a reduction of the dimension. The most
standard one is that of subcompositional analysis which causes a drastic di-
mensionality reduction in a well-established framework (Aitchison, 1986, p. 33–
73).

Another reduction technique is the partition analysis as described in Aitchison
(1986, p. 38). A compositional vector is partitioned into groups of parts. The com-
ponents within a group are amalgamated and these amalgamated parts constitute
a new compositional vector of reduced dimension, with as many parts as groups
were obtained in the partition. However, amalgamation of components in a compo-
sitional vector is not a linear operation from the simplicial point of view and such
techniques are under discussion. Most arguments arose in the workshop on com-
positional data analysis, CODAWORK-03, held in Girona (Spain) 2003, where
several contributors used amalgamation to reduce dimensionality of their data
(Thió-Henestrosa and Martı́n-Fernández, 2003). An alternative to amalgamation
of parts is presented in a paper in this issue (Egozcue and Pawlowsky-Glahn,
2005).

Almost all issues in standard multivariate statistical analysis may have their
compositional version. While their use does not involve new computational prob-
lems because logratio analysis transform them into a standard one, interpretation
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of results may introduce new challenging difficulties that should be discussed in
the framework of their respective applications.

A VIEW OF THE FUTURE OF COMPOSITIONAL DATA ANALYSIS

We think that the interesting future of compositional data analysis will lie in
statisticians searching for real applied problems in as many disciplines as possible.
A recent search of the web under compositional data located over 3000 sites
varying over a wide variety of disciplines, so there are plenty of challenges in this
direction. Equally important is that applied workers in these disciplines should
search out statisticians and present them with the challenge of answering their
compositional questions. Tchebycheff, in his Theory of Maps has the fundamental
idea: Real progress is made when theory and the needs of application go hand in
hand.

A substantial problem for those of us who have tried to promote understand-
ing of the special features of compositional data analysis has been the inertia of
statistical practice established along more than a century. These resistances range
from those who think that the simplex is nothing more than a subset of real space
and there isn’t a special problem, through those who insist that the new method-
ology should be doing little more than corroborating views already obtained and
firmly held from previous analysis, to some who have used averages, raw correla-
tions, and ordinary Euclidean distances for compositional data analysis and now
realize that their work is being attacked.

These circumstances point out that a further effort should be made to explain
the soundness of models based on the structure of the simplex and giving tools to
interpret obtained results. Difficulties coming from the fact that representation of
compositional data is done by coordinates, mainly logratios, and the interpretation
remains in the original compositions, should be overcome and this can only be
done by a rigorous and continued effort in applications that presumably range
across all fields of science and technology.
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