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Preface 

 

Why a course in compositional data analysis? Compositional data consist of vectors 

whose components are the proportion or percentages of some whole. Their peculiarity 

is that their sum is constrained to the be some constant, equal to 1 for proportions, 100 

for percentages or possibly some other constant  c  for other situations such as parts 

per million (ppm) in trace element compositions. Unfortunately a cursory look at such 

vectors gives the appearance of vectors of real numbers with the consequence that 

over the last century all sorts of sophisticated statistical methods designed for 

unconstrained data have been applied to compositional data with inappropriate 

inferences. All this despite the fact that many workers have been, or should have 

been, aware that the sample space for compositional vectors is radically different from 

the real Euclidean space associated with unconstrained data. Several substantial 

warnings had been given, even as early as 1897 by Karl Pearson in his seminal paper 

on spurious correlations and then repeatedly in the 1960’s by geologist Felix Chayes. 

Unfortunately little heed was paid to such warnings and within the small circle who 

did pay attention the approach was essentially pathological, attempting to answer the 

question: what goes wrong when we apply multivariate statistical methodology 

designed for unconstrained data to our constrained data and how can the 

unconstrained methodology be adjusted to give meaningful inferences.  

 

Throughout all my teaching career I have emphasised to my students the importance 

of the first step in an statistical problem, the recognition and definition of a sensible 

sample space. The early modern statisticians concentrated their efforts on statistical 

methodology associated with the all- too-familiar real Euclidean space. The algebraic-

geometric structure was familiar, at the time of development almost intuitive, and a 

huge array of meaningful, appropriate methods developed. After some hesitation the 

special problems of directional data, with the unit sphere as the natural sample space, 

were resolved mainly by Fisher and Watson, who recognised again the algebraic-

geometric structure of the sphere and its implications for the design and 

implementation of an appropriate methodology. A remaining awkward problem of 

spherical regression was eventually solved by Chang, again recognising the special 

algebraic-geometric structure of the sphere. 



 

 

 

Strangely statisticians have been slow to take a similar approach to the problems of 

compositional data and the associated sample space, the unit simplex. This course is 

designed to draw attention to its special form, to principles which are based on logical 

necessities for meaningful interpretation of compositional data and to the simple 

forms of statistical methodology for analysing real compositional data. 
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Chapter 1   The nature of compositional problems 

 

 

1.1    Some typical compositional problems 

 

In this section we present the reader with a series of challenging problems in 

compositional data analysis, with typical data sets and questions posed. These come 

from a number of different disciplines and will be used to motivate the concepts and 

principles of compositional data analysis, and will eventually be fully analysed to 

provide answers to the questions posed. The full data sets associated with these 

problems are set out in Appendix A. 

 

 

Problem 1    Geochemical compositions of rocks 

The statistical analysis of geochemical compositions of rocks is fundamental to 

petrology. Commonly such compositions are expressed as percentages by weight of 

ten or more major oxides or as percentages by weight of some basic minerals. As an 

illustration of the nature of such problems we present in Table 1.1.1a the 5-part 

mineral (A, B, C, D, E) compositions of 25 specimens of rock type hongite. Even a 

cursory examination of this table shows that there is substantial variation from 

specimen to specimen, and first questions are: In what way should we describe such 

variability? Is there some central composition around which this variability can be 

simply expressed? 

 

 A further rock specimen has composition 

 

[A, B, C, D, E] = [44.0, 20.4, 13.9, 9.1, 12.6] 

 

and is claimed to be hongite. Can we say whether this is fairly typical of hongite? If 

not, can we place some measure on its atypicality? 
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Table 1.1.1b presents a set of 5-part (A, B, C, D, E) compositions for 25 specimens of 

rock type kongite. Some obvious questions are as follows. Do the mineral 

compositions of hongite and kongite differ and if so in what way? For a new 

specimen can a convenient form of classification be devised on the basis of the 

composition? If so, can we investigate whether a rule of classification based on only a 

selection of the compositional parts would be as effective as use of the full 

composition? 

 

 

Problem 2    Arctic lake sediments at different depths 

In sedimentology, specimens of sediments are traditionally separated into three 

mutually exclusive and exhaustive constituents -sand, silt and clay- and the 

proportions of these parts by weight are quoted as (sand, silt, clay) compositions. 

Table 1.1.2 records the (sand, silt, clay) compositions of 39 sediment samples at 

different water depths in an Arctic lake. Again we recognise substantial variability 

between compositions. Questions of obvious interest here are the following. Is 

sediment composition dependent on water depth? If so, how can we quantify the 

extent of the dependence? If we regard sedimentation as a process, do these data 

provide any information on the nature of the process? Even at this stage of 

investigation we can see that this may be a question of compositional regression. 

 

Problem 3    Household budget patterns 

An important aspect of the study of consumer demand is the analysis of household 

budget surveys, in which attention often focuses on the expenditures of a sample of 

households on a number of mutually exclusive and exhaustive commodity groups and 

their relation to total expenditure, income, type of housing, household composition 

and so on. In the investigation of such data the pattern or composition of expenditures, 

the proportions of total expenditure allocated to the commodity groups, can be shown 

to play a central role in a form of budget share approach to the analysis.  Assurances 

of confidentiality and limitations of space preclude the publication of individual 

budgets from an actual survey, but we can present a reduced version of the problem, 

which retains its key characteristics. 
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In a sample survey of single persons living alone in rented accommodation, twenty 

men and twenty women were randomly selected and asked to record over a period of 

one month their expenditures on the following four mutually exclusive and exhaustive 

commodity groups: 

 

1. Housing, including fuel and light. 

2. Foodstuffs, including alcohol and tobacco. 

3. Other goods, including clothing, footwear and durable goods. 

4. Services, including transport and vehicles. 

 

The results are recorded in Table 1.1.3. 

 

Interesting questions are readily formulated. To what extent does the pattern of budget 

share of expenditures for men depend on the total amount spent? Are there differences 

between men and women in their expenditure patterns? Are there some commodity 

groups which are given priority in the allocation of expenditure?  

 

Problem 4    Milk composition study  

In an attempt to improve the quality of cow milk, milk from each of thirty cows was 

assessed by dietary composition before and after a strictly controlled dietary and 

hormonal regime over a period of eight weeks. Although seasonal variations in milk 

quality might have been regarded as negligible over this period it was decided to have 

a control group of thirty cows kept under the same conditions but on a regular 

established regime. The sixty cows were of course allocated to control and treatment 

groups at random. Table 1.1.4 provides the complete set of before and after milk 

compositions for the sixty cows, showing the protein, milk fat, carbohydrate, calcium, 

sodium, potassium proportions by weight of total dietary content. The purpose of the 

experiment was to determine whether the new regime has produced any significant 

change in the milk composition so it is essential to have a clear idea of how change in 

compositional data is characterised by some meaningful operation. A main question 

here is therefore how to formulate hypotheses of change of compositions, and indeed 

how we may investigate the full lattice of such hypotheses. Meanwhile we note that 

because of the before and after nature of the data within each experimental unit we 

have for compositional data the analogue of a paired comparison situation for real 
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measurements where traditionally the differences in pairs of measurements are 

considered. We have thus to find the counterpart of difference for paired 

compositions. 

 

Problem 5    Analysis of an abstract artist  

The data of Table 1.1.5 show six-part colour compositions in 22 paintings created by 

an abstract artist. Each painting was in the form of a square, divided into a number of 

rectangles, in the style of a Mondrian abstract painting and the rectangles were each 

coloured in one of six colours: black and white, the primary colours blue, red and 

yellow, and one further colour, labelled ‘other’, which varied from painting to 

painting. An interesting question posed here is to attempt to see whether there is any 

pattern discernible in the construction of the paintings. There is considerable 

variability from painting to painting and the challenge is to describe the pattern of 

variability appropriately in as simple terms as possible. 

 

Problem 6    A statistician’s time budget 

Time budgets, how a day or a period of work is divided up into different activities, 

have become a popular source of data in psychology and sociology. To illustrate such 

problems we consider six daily activities of an academic statistician: T, teaching; C, 

consultation; A, administration; R, research; O, other wakeful activities; S, sleep. 

Table 1.1.6 records the proportions of the 24 hours devoted to each activity, recorded 

on each of 20 days, selected randomly from working days in alternate weeks so as to 

avoid possible carry-over effects such as a short-sleep day being compensated by 

make-up sleep on the succeeding day. The six activities may be divided into two 

categories: ‘work’ comprising activities T, C, A, R, and ‘leisure’ comprising activities 

O, S. Our analysis may then be directed towards the work pattern consisting of the 

relative times spent in the four work activities, the leisure pattern, and the division of 

the day into work time and leisure time. Two obvious questions are as follows. To 

what extent, if any, do the patterns of work and of leisure depend on the times 

allocated to these major divisions of the day? Is the ratio of sleep to other wakeful 

activities dependent on the times spent in the various work activities? 
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Problem 7   Sources of pollution in a Scottish loch 

A Scottish loch is supplied by three rivers, here labelled 1, 2, 3. At the mouth of each 

10 water samples have been taken at random times and analysed into 4-part 

compositions of pollutants a, b, c, d. Also available are 20 samples, again taken at 

random times, at each of three fishing locations A, B, C. Space does not allow the 

publication of the full data set of 90 4-part compositions but Table 1.1.7, which 

records the first and last compositions in each of the rivers and fishing locations, gives 

a picture of the variability and the statistical nature of the problem. The problem here 

is to determine whether the compositions at a fishing location may be regarded as 

mixtures of compositions from the three sources, and what can be inferred about the 

nature of such a mixture. 

 
Other typical problems in different disciplines 

The above seven problems are sufficient to demonstrate that compositional problems 

arise in many different forms in many different disciplines, and as we develop 

statistical methodology for this particular form of variability we shall meet a number 

of other compositional problems to illustrate a variety of forms of statistical analysis. 

We list below a number of disciplines and some examples of compositional data sets 

within these disciplines. The list is in no way complete.  

Agriculture and farming 

Fruit (skin, stone, flesh) compositions 

 Land use compositions 

Effects of GM 

Archaeology 

 Ceramic compositions 

Developmental biology 

 Shape analysis: (head, trunk, leg) composition relative to height 

Economics 

 Household budget compositions and income elasticities of demand 

 Portfolio compositions 
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Environometrics 

 Pollutant compositions 

Geography 

 US state ethnic compositions, urban-rural compositions 

 Land use compositions 

Geology 

 Mineral compositions of rocks 

Major oxide compositions of rocks 

 Trace element compositions of rocks 

 Major oxide and trace element compositions of rocks 

Sediment compositions such as (sand, silt, clay) compositions 

Literary studies 

 Sentence compositions 

Manufacturing 

 Global car production compositions 

Medicine 

 Blood compositions 

 Renal calculi compositions 

 Urine compositions 

 

Ornithology 

 Sea bird time budgets 

 Plumage colour compositions of greater bower birds 

Palaeontology 

 Foraminifera  compositions 

 Zonal pollen compositions 

Psephology 

 US Presidential election voting proportions 
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Psychology 

 Time budgets of various groups 

Waste disposal 

 Waste composition 

 

 

1.2    A little bit of history: the perceived difficulties of compositional analysis 

 

We must look back to 1897 for our starting point. Over a century ago Karl Pearson 

published one of the clearest warnings (Pearson, 1897) ever issued to statisticians and 

other scientists beset with uncertainty and variability: Beware of attempts to interpret 

correlations between ratios whose numerators and denominators contain common 

parts. And of such is the world of compositional data, where for example some rock 

specimen, of total weight w, is broken down into mutually exclusive and exhaustive 

parts with component weights w1  , . . . , wD  and then transformed into a composition 

 

(x1, . . . , xD ) = (w1, . . . , wD )/(w1  +  . . . + wD ). 

 

Our reason for forming such a composition is that in many problems composition is 

the relevant entity. For example the comparison of rock specimens of different 

weights can only be achieved by some form of standardization and composition (per 

unit weight) is a simple and obvious concept for achieving this. Equivalently we could 

say that any meaningful statement about the rock specimens should not depend on the 

largely accidental weights of the specimens.  

 

It appears that Pearson’s warning went unheeded, with raw components of 

compositional data being subjected to product moment correlation analysis with 

unsound interpretation based on methods of ‘standard’ multivariate analysis designed 

for unconstrained multivariate data. In the 1960’s there emerged a number of 

scientists who warned against such methodology and interpretation, in geology 

mainly Chayes, Krumbein, Sarmanov and Vistelius, and in biology mainly 

Mosimann: see, for example, Chayes (1956, 1960, 1962, 1971), Krumbein (1962), 
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Sarmanov and Vistelius (1959), Mosimann (1962,1963). The main problem was 

perceived as the impossibility of interpreting the product moment correlation 

coefficients between the raw components and was commonly referred to as the 

negative bias problem. For a D-part composition [ , . . . , ]x xD1  with the component 

sum x xD1 1+ + =. . . , since  

 
cov( , . . . )x x xD1 1 0+ + =  

we have  

 

)var(),cov(...),cov( 1121 xxxxx D −=++ . 

 

The right hand side here is negative except for the trivial case where the first 

component is constant. Thus at least one of the covariances on the left must be 

negative or, equivalently, there must be at least one negative element in the first row 

of the raw covariance matrix. The same negative bias must similarly occur in each of 

the other rows so that at least D of the elements of the raw covariance matrix. Hence 

correlations are not free to range over the usual interval (-1, 1) subject only to the 

non-negative definiteness of the covariance or correlation matrix, and there are bound 

to problems of interpretation.  

 

The problem was described under different headings: the constant-sum problem, the 

closure problem, the negative bias problem, the null correlation difficulty. Strangely 

no attempt was made to try and establish principles of compositional data analysis. 

The approach was essentially pathological with attempts to see what went wrong 

when standard multivariate analysis was applied to compositional data in the hope 

that some corrective treatments could be applied; see, for example, Butler (1979), 

Chayes (1971, 1972), Chayes and Kruskal (1966), Chayes and Trochimczyk (1978), 

Darroch and James (1975), Darroch and Ratcliff (1970, 1978).  

 

An appropriate methodology, taking account of some logically necessary principles of 

compositional data analysis and the special nature of compositional sample spaces, 

began to emerge in the 1980’s with, for example, contributions from Aitchison and 

Shen (1980), Aitchison (1982, 1983, 1985), culminating in the methodological 
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monograph Aitchison (1986) on The Statistical Analysis of Compositional Data. This 

course is largely based on that monograph and the many subsequent developments of 

the subject. 

 

 

1.3 An intuitive approach to compositional data analysis 

 

A typical composition is a (sand, silt, clay) sediment composition such as the 

percentages [77.5 19.5 3.0] of the first sediment in Table 1.1.2. Standard terminology 

is to refer to sand, silt and clay as the labels of the three parts of the composition and 

the elements 77.5, 19.5, 3.0 of the vector as the components of the composition. A 

typical or generic composition [ . . . ]x x xD1 2  will therefore consist D parts with labels 

1, . . , D and components  x x x D1 2, , . . . ,  The components will have a constant sum, 1 

when the components are proportions of some unit, 100 when these are expressed as 

percentages, and so on. We shall find that the particular value of constant sum is of no 

relevance in compositional data analysis and in much of our theoretical development 

we shall standardise to a constant sum of 1. Note that we have set out a typical 

composition as a row vector. This seems a sensible convention and is common in 

much modern practice as, for example, in MSExcel where the practice is to have rows 

as cases.  

 

In the early 1980’s it seemed to the writer that there was an obvious way of analysing 

compositional data. Since compositional data provide information only about the 

relative magnitudes of the parts, not their absolute values, then the information 

provided is essentially about ratios of the components. Therefore it seemed to make 

sense to think in terms of ratios. There is clearly a one-to-one correspondence 

between compositions and a full set of ratios. Moreover, since ratios are awkward to 

handle mathematically and statistically (for example there is no exact relationship 

between var( / )x xi j  and var( / )x xj i ) it seems sensible to work in terms of logratios, 

for example reaping the benefit of simple relationships such as 

 

var{log( / )} var{log( / )}x x x xi j j i= . 

 



Chapter 1   The nature of compositional problems 
 

16 

Since there is also a one-to-one correspondence between compositions and a full set 

of logratios, for example, 

 

     [ . . . ] [log( / ) . . . log( / )]y y x x x xD D D D1 1 1 1− −=  

 

with inverse 

 

[ . . . ] [exp( ) . . . . exp( ) ] / {exp( ) . . . . exp( ) }x x x y y y yD D D1 2 1 1 1 11 1= + + +− −  

 

any problem or hypothesis concerning compositions can be fully expressed in terms 

of logratios and vice versa. Therefore, since a logratio transformation of compositions 

takes the logratio vector onto the whole of real space we have available, with a little 

caution, the whole gamut of unconstrained multivariate analysis. The conclusions of 

the unconstrained multivariate analysis can then be translated back into conclusions 

about the compositions, and the analysis is complete.  

 

This proposed methodology, essentially a transformation technique, is in line with a 

long tradition of statistical methodology, starting with McAlister (1879) and his 

logarithmic transformation, the lognormal distribution and the importance of the 

geometric mean, and more recently the Box-Cox transformations and the 

transformations involved in the general linear model approach to statistical analysis. 

There has always been opposition, sometimes fierce, to transformation techniques. 

For example, Karl Pearson became involved in a heated controversy with Kapteyn on 

the relative merits of his system of curves and the lognormal curve; see Kapteyn 

(1903, 1905), Pearson (1905, 1906). With a general mistrust of the technique of 

transformations Pearson would pose such questions as: what is the meaning of the 

logarithm of weight? History has clearly come down on the side of Wicksell and the 

logarithmic transformation and the lognormal distribution are long established useful 

tools of statistical modelling.  

 

One might therefore have expected the logratio transformation technique to have been 

an immediate happy and successful end of story. While it has eventually become so,  

immediate opposition along Pearsonian lines undoubtedly came to the fore. The 
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reader interested in pursuing the kinds of anti- transformation and other arguments 

against logratio analysis may find some entertainment in the following sequence of 

references published in the Mathematical Geology: Watson and Philip (1989), 

Aitchison (1990a), Watson (1990), Aitchison (1990b), Watson (1991), Aitchison 

(1991, 1992), Woronow (1997a, 1997b), Aitchison (1999), Zier and Rehder (1998), 

Aitchison et al (2000), Rehder and Zier (2001), Aitchison et al (2001). 

 

While much of this argumentative activity has been unnecessary and time-consuming, 

there have been episodes of progress. While the transformation techniques of 

Aitchison (1986) are still valid and provide a comprehensive methodology for 

compositional data analysis, there is now a better understanding of the fundamental 

principles which any compositional data methodology must adhere to. Moreover, 

there  is now an alternative approach to compositional data analysis which could be 

termed the staying- in-the-simplex approach, whereby the tools introduced by 

Aitchison (1986) are adapted to defining a simple algebraic-geometric structure on the 

simplex, so that all analysis may be conducted entirely within this framework. This 

makes the analysis independent of transformations and results in unconstrained 

multivariate analysis. It should be said, however, that inferences will be identical 

whether a transformation technique or a staying- in-the-simplex approach is adopted. 

Which approach a compositional data analyst adopts will largely depend on the 

analyst’s technical understanding of the algebraic-geometric structure of the simplex. 

 

In this guide we will adopt a bilateral approach ensuring that we provide examples of 

interpretations in both ways. 

 

 

1.4    The principle of scale invariance 

 

One of the disputed principles of compositional data analysis in the early part of the 

sequence above is that of scale invariance. When we say that a problem is 

compositional we are recognizing that the sizes of our specimens are irrelevant. This 

trivial admission has far-reaching consequences. 

 

A simple example can illustrate the argument. Consider two specimen vectors  
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w = (1.6, 2.4, 4.0)   and   W = (3.0, 4.5, 7.5) 

 

in R+
3  as in Figure 1.4, representing the weights of the three parts (a, b, c) of two 

specimens of total weight 8g and 15g, respectively. If we are interested in 

compositional problems we recognize that these are of the same composition, the 

difference in weight being taken account of by the scale relationship W =(15/8) w. 

More generally two specimen vectors w and W in R D
+  are compositionally equivalent, 

written W ∼ w, when there exists a positive proportionality constant p such that W= 

pw. The fundamental requirement of compositional data analysis can then be stated as 

follows: any meaningful function f of a specimen vector must be such that f(W)=f(w) 

when W∼w, or equivalently 

 

         f(pw) = f(w),   for every   p>0.           

 

In other words, the function f must be invariant under the group of scale 

transformations. Since any group invariant function can be expressed as a function of 

any maximal invariant h and since  

 

 h(w) = (w
1
 / w

D
 , . . . , w

D-1
 / w

D
) 

 

 is such a maximal invariant we have the following important consequence: 

 

 Any meaningful (scale-invariant) function of a composition can be expressed 

 in terms of ratios of the components of the composition.  

 

Note that there are many equivalent sets of ratios which may be used for the purpose 

of creating meaningful functions of compositions. For example, a more symmetric set 

of ratios such as w/g(w), where g(w) = (w
1 
. . . w

D
 )

1/D
 is the geometric mean of the 

components of w, would equally meet the scale- invariant requirement. 
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Fig. 1.4   Representation of equivalent specimen vectors as points on rays of the positive orthant 

 

 

1.5    Subcompositions: the marginals of compositional data analysis 

 

The marginal or projection concept for simplicial data is slightly more complex than 

that for unconstrained vectors in RD , where a marginal vector is simply a subvector of 

the full D-dimensional vector. For example, a geologist interested only in the parts 

(Na
2
O, K

2
O, Al

2
O

3
) of a ten-part major oxide composition of a rock commonly forms 

the subcomposition based on these parts. Formally the subcomposition based on parts 

(1, 2, . . . ,C) of a D-part composition [x
1
 , ... , x

D 
] is the (1, 2, . . . ,C)-subcomposition 

[s
1
, . . . , s

C
 ] defined by 

 

    [s
1
, . . . , s

C
 ] = [x

1
 , . . . , x

C
 ] / (x

1
 + . . . + x

C
). 

                                                         

Note that this operation is a projection from a subsimplex to another subsimplex. See, 

for example, Aitchison (1986, Section 2.5). 

 

 

1.6 Compositional classes and the search for a suitable sample space 

 

In my own teaching over the last 45 years I have issued a warning to all my students, 

similar to that of Pearson. Ignore the clear definition of your sample space at your 
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peril. When faced with a new situation the first thing you must resolve before you do 

anything else is an appropriate sample space. On occasions when I have found some 

dispute between students over some statistical issue the question of which of them had 

appropriate sample spaces has almost always determined which students are correct in 

their conclusions. If, for example, it is a question of association between the directions 

of departure and return of migrating New York swallows then an appropriate sample 

space is a doughnut. 

  

We must surely recognize that a rectangular box, a tetrahedron, a sphere and a 

doughnut look rather different. It should come as no surprise to us therefore that 

problems with four different sample spaces might require completely different 

statistical methodologies. It has always seemed surprising to this writer that the 

direction data analysts had little difficulty in seeing that the sphere and the torus 

require their own special methodology, whereas for so long statisticians and scientists 

seemed to think that what was good enough for a box was good enough for a 

tetrahedron. 

 

In the first step of statistical modelling, namely specifying a sample space, the choice 

is with the modeller. It is how the sample space is used or exploited to answer 

relevant problems that is important. We might, as in our study of scale invariance 

above, take the set of rays through the origin and in the positive orthant as our sample 

space. The awkwardness here is that the notion of placing a probability measure on a 

set of rays is less familiar than on a set of points. Moreover we know that as far as the 

study of compositions is concerned any point on a ray can be used to represent the 

corresponding composition. The selection of each representative point x where the 

rays meet the unit hyperplane  w1 + . . . + wD = 1 with  x = w/(w1 + . . . + wD) is surely 

the simplest form of standardization possible. We shall thus adopt the unit simplex 

 

S
D
 = { [x1 , . . . , x D

 
]:  xi>0  (i = 1, . . . , D) ,  x1 + . . . + x D = 1}. 

  
 

To avoid any confusion on terminology for our generic composition x we reiterate 

that we refer to the labels 1, . . . , D of the parts and the proportions x1 , ... , xD as the 

components of the composition x. With this representation we shall continue to ensure 
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scale invariance by formulating all our statements concerning compositions in terms 

of ratios of components.  

 

Note the one-to-one correspondence between the components of x and a set of 

independent and exhaustive ratios such as 

 

  ri = xi /(x1 + . . . + xD )    (i = 1, ... , D-1), 

  rD = 1 /(x1 + . . . + xD ),       

 

 with the components of x determined by these ratios as 

 

  xi = ri /(r1 + . . . + rD-1 +1) (i = 1, ... , D-1), 

   xD = 1/(r1 + . . . + rD-1 +1).     

 

Our next logical requirement will reinforce the good sense of this formulation in 

terms of ratios. 

 

 

1.7   Subcomposional coherence 

 

Less familiar than scale invariance is another logical necessity of compositional 

analysis, namely subcompositional coherence. Consider two scientists A and B 

interested in soil samples, which have been divided into aliquots  For each aliquot A 

records a 4-part composition (animal, vegetable, mineral, water); B first dries each 

aliquot without recording the water content and arrives at a 3-part composition 

(animal, vegetable, mineral). Let us further assume for simplicity the ideal situation 

where the aliquots in each pair are identical and where the two scientists are accurate 

in their determinations. Then clearly B's 3-part composition [s
1
 , s

2
 , s

3
 ] for an aliquot 

will be a subcomposition of A's 4-part composition  [x
1
 , x

2 
, x

3
 , x

4
 ] for the 

corresponding aliquot related as in the definition of subcomposition in Section 1.5 

above with C = 3,  D = 4. It is then obvious that any compositional statements that A 

and B make about the common parts, animal, vegetable and mineral, must agree. This 

is the nature of subcompositional coherence. 
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The ignoring of this principle of subcompositional coherence has been a source of 

great confusion in compositional data analysis, The literature, even currently, is full of 

attempts to explain the dependence of components of compositions in terms of 

product moment correlation of raw components. Consider the simple data set: 

 

            Full compositions [ ]x x x x1 2 3 4              Subcompositions [ ]s s s1 2 3  

 [0.1, 0.2, 0.1, 0.6]    [0.25, 0.50, 0.25] 

 [0.2, 0.1, 0.1, 0.6]    [0.50, 0.25, 0.25] 

 [0.3, 0.3, 0.2, 0.2]    [0.375, 0.375, 0.25] 

 

Scientist A would report the correlation between animal and vegetable as corr(x
1
 , x

2
 ) 

= 0.5 whereas B would report corr(s
1
 , s

2
 ) = -1. There is thus incoherence of the 

product-moment correlation between raw components as a measure of dependence. 

  

Note, however, that the ratio of two components remains unchanged when we move 

from full composition to subcomposition: s s x xi j i j/ /= , so that as long as we work 

with scale invariant functions, or equivalently express all our statements about 

compositions in terms of ratios, we shall be subcompositionally coherent. 

 

 

1.8   Perturbation as the operation of compositional change 

1.8.1   The role of group operations in statistics 

For every sample space there are basic group operations which, when recognized, 

dominate clear thinking about data analysis. In RD the two operations, translation (or 

displacement) and scalar multiplication, are so familiar that their fundamental role is 

often overlooked. Yet the change from y to Y = y + t by the translation t or to Y = ay 

by the scalar multiple a are at the heart of statistical methodology for RD sample 

spaces. For example, since the translation relationship between y1 and Y1 is the same 

as that between y2 and Y2 if and only if Y1 and Y2 are equal translations t of y1 and y2 , 

any definition of a difference or a distance measure must be such that the measure is 

the same for (y1 , Y1 ) as for (y1 + t, Y1 + t)  for every translation t. Technically this is a 
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requirement of invariance under the group of translations. This is the reason, though 

seldom expressed because of its obviousness in this simple space, for the use of the 

mean vector ?µ = E y( )  and the covariance matrix Σ = = − −cov( ) {( )( ) }y E y y Tµ µ  

as meaningful measures of ‘central tendency’ and ‘dispersion’. Recall also, for further 

reference, two basic properties: for a fixed translation t, 

 

   E( y + t) = E(y) + t ;    V(y + t) = V(y).    

 

The second operation, that of scalar multiplication, also plays a substantial role in, for 

example, linear forms of statistical analysis such as principal component analysis, 

where linear combinations a y a yD D1 1 + +. . .  with certain properties are sought. 

Recall, again for further reference, that for a fixed scalar multiple a, 

 

               E(ay) = aE(y) ;  V(ay) = a2V(y).     

 

Similar considerations of groups of fundamental operations are essential for other 

sample spaces. For example, in the analysis of directional data, as in the study of the 

movement of tectonic plates, it was recognition that the group of rotations on the 

sphere plays a central role and the use of a satisfactory representation of that group 

that led Chang (1988) to the production of the essential statistical tool for spherical 

regression. 

 

1.8.2   Perturbation: a fundamental group operation in the simplex 

By analogy with the group operation arguments for RD the obvious questions for a 

simplex sample space are whether there is an operation on a composition x, analogous 

to translation in DR , which transforms it into X, and whether this can be used to 

characterize ‘difference’ between compositions or change from one composition to 

another. The answer is to be found in the perturbation operator as defined in 

Aitchison (1986, Section 2.8). 

 

The perturbation operator can be motivated by the following observation within the 

positive orthant representation of compositions. For any two equivalent compositions 

w and W on the same ray there is a scale relationship W = pw for some  p > 0, where 
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each component of w is scaled by the same factor p to obtain the corresponding 

component of W. For any two non-equivalent compositions w and W on different rays 

a similar, but differential, scaling relationship W 1= p1 w1, . . . , WD = pDwD  reflects 

the change from w to W. Such a unique differential scaling can always be found by 

taking  pi = Wi / wi  (i = 1, . . . , D). We can translate this into terms of the 

compositional representations x and X within the unit simplex sample space S D . 

 

If we define a perturbation p as a differential scaling operator p p p SD
D= ∈[ . . . ]1  

and denote by ⊕  the perturbation operation, then we can define the perturbation 

operation in the following way. The perturbation p applied to the composition 

x x x D= [ . . . ]1  produces the composition X given by  

 

],...[
).../(]...[

11

1111

DD

DDDD

xpxpC
xpxpxpxpxpX

=
++=⊕=

 

 

where C is the so-called closure  operation which divides each component of a vector 

by the sum of the components, thus scaling the vector to the constant sum 1. Note that 

because of the nature of the scaling in this relationship it is not strictly necessary for 

the perturbation p to be a vector in S D .  

 

In mathematical terms the set of perturbations in S D  form a group with the identity 

perturbation e D D= [ / . . . / ]1 1  and the inverse of a perturbation p being  the closure 

]...[ 11
1

1 −−− = DppCp . We use the notation x pΘ  to denote the operation of this inverse 

on x giving x p C x p x pD DΘ = [ / . . . / ]1 1 . The relation between any two 

compositions x and X can always be expressed as a perturbation operation 

X X x x= ⊕( )Θ , where X xΘ  is a perturbation in the group of perturbations in the 

the simplex S D .  Similarly the change from X to x is expressed by the perturbation 

x XΘ . Thus any measure of difference between compositions x and X must be 

expressible in terms of one or other of these perturbations. A consequence of this is 

that if we wish to define any scalar measure of distance between two compositions x 

and X , say ∆( , )x X  then we must ensure that it is a function of the ratios x1/X1. . . . , 

xD/XD . As we shall see later this, together with attention to the need for scale 
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invariance, subcompositional coherence and some other simple requirements, has led 

Aitchison (1992) to advocate the follolowing definition:  

 

∆2

2

( , ) log logx X
x
x

X
X

i

j

i

ji j
= −











<
∑  

 

as a simplicial metric, reinforcing an intuitive equivalent choice in Aitchison (1986, 

Section 8.3). 

  

1.8.3   Some familiar perturbations 

In relation to probability statements the perturbation operation is a standard process. 

Bayesians perturb the prior probability assessment x on a finite number D of 

hypotheses by the likelihood p to obtain the posterior assessment X through the use of 

Bayes’s formula. Again, in genetic selection, the population composition x of 

genotypes of one generation is perturbed by differential survival probabilities 

represented by a perturbation p to obtain the composition X at the next generation, 

again by the perturbation probabilistic mechanism. In certain geological processes, 

such as metamorphic change, sedimentation, crushing in relation to particle size 

distributions, change may be best modelled by such perturbation mechanisms, where 

an initial specimen of composition x0 is subjected to a sequence of perturbations p1, . . 

. , pn in reaching its current state nx  : 

 

x p x x p x x p xn n n1 1 0 2 2 1 1= ⊕ = ⊕ = ⊕ −, , . . . ,  

 

so that  

 

x p p p xn n= ⊕ ⊕ ⊕ ⊕( . . . )1 2 0 . 

  

It is clear that in this mechanism we have the makings of some form of central limit 

theorem but we delay consideration of this until we have completed the more 

mathematical aspects of the simplex sample space. 

 

A further role which perturbation plays in simplicial inference is in characterizing 
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imprecision or error. A simple example will suffice for the moment. In the process of 

replicate analyses of aliquots of some specimen in an attempt to determine its 

composition ξ ? we may obtain different compositions x1, . . . , xN   because of the 

imprecision of the analytic process. In such a situation we can model by setting 

 

x p n Nn n= ⊕ =ξ ( , . . . , )1 , 

where the pn are independent error perturbations characterizing the imprecision. 

 
 

1.9   Power as a subsidiary operation in the simplex 

 

The simplicial operation analogous to scalar multiplication in real space is the power 

operation. First we define the power operation and then consider its relevance in 

compositional data analysis. For any real number a R∈ 1  and any composition x S D∈  

we define 

 

]...[ 1
a
D

a xxCxaX =⊗=  

 

as the a-power transform of x. Such an operation arises in compositional data analysis 

in two distinct ways. First it may be of relevance directly because of the nature of the 

sampling process. For example, in grain size studies of sediments, sediment samples 

may be successively sieved through meshes of different diameters and the weights of 

these successive separations converted into compositions based on proportions by 

weight. Thus though separation is based on the linear measurement diameter the 

composition is based essentially on a weight, or equivalently a volume measurement, 

with a power transformation being the natural connecting concept. More indirectly the 

power transformation can be useful in describing regression relations for 

compositions. For example, the finding of Aitchison (1986, Section 7.7) of the 

relationship of a (sand, silt, clay) sediment x to depth d can be expressed in the form 

 

pdx ⊕⊗⊕= }{log βξ , 
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where β   is a composition playing the counterpart of regression coefficients and p is a 

perturbation playing the role of error in more familiar regression situations. 

  

It must be clear that together the operations perturbation ⊕  and power ⊗  play roles 

in the geometry of S D  analogous to translation and scalar multiplication in DR  and 

indeed can be used to define a vector space in S D . We shall take up the full algebraic-

geometric structure of the simplex sample space later in this guide. 

 

                   

1.10   Limitations in the interpretability of compositional data 

 

There is a tendency in some compositional data analysts to expect too much in their 

inferences from compositional data. For these the following situation may show the 

nature of the limitations of compositional data.  

 

Outside my home I have a planter consisting of water, soil and seed. One evening 

before bedtime I analyse a sample and determine its (water, soil, seed) composition as 

x = [3/6  2/6  1/6]. I sleep soundly and in the morning again analyse a sample finding 

X = [6/9  2/9  1/9]. I measure the change as the perturbation  

 

X x CΘ = =[( / ) / ( / ) ( / ) / ( / ) ( / ) / ( / )] [ / / / ]6 9 3 6 2 9 2 6 1 9 1 6 1 2 1 4 1 4 . 

 

Now I can picture two simple scenarios which could describe this change. Suppose 

that the planter last evening actually contained [18  12  6] kilos of (water, soil, seed), 

corresponding to the evening composition [3/6  2/6  1/6], and it rained during the 

night increasing the water content only so that the morning content was [36  12  6] 

kilos, corresponding to the morning composition [6/9  2/9  1/9]. Although this rain 

only explanation may be true, is it the only explanation? Obviously not, because the 

change could equally be explained by a wind only scenario, in which the overnight 

wind has swept away soil and seed resulting in content of [18  6  3] kilos and the same 

morning composition [6/9  2/9  1/9]. Even more complicated scenarios will produce a 

similar change. For example a combination of rain and wind might have resulted in a 
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combination of increased water and decreased soil and seed, say to a content of  [27  9  

4.5] kilos, again with morning composition [6/9  2/9  1/9]. 

 

The point here is that compositions provide information only about the relative 

magnitudes of the compositional components and so interpretations involving absolute 

values as in the above example cannot be justified. Only if there is evidence external 

to the compositional information would such inferences be justified. For example, if I 

had been wakened by my bedroom windows rattling during the night and I found my 

rain gauge empty in the morning would I be justified in painting the wind only 

scenario. But I slept soundly during the night. 

 

A consequence of this example is that we must learn to phrase our inferences from 

compositional data in terms which are meaningful and we have seen that the 

meaningful operations are perturbation and power. In subsequent chapters we shall 

how we may use these operations successfully. 
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Chapter 2   The simplex sample space and principles of compositional 

data analysis 

 

 

2.1 Logratio analysis: a statistical methodology for compositional data analysis 

 

What has come to be known as logratio analysis for compositional data problems 

arose in the 1980’s out of the realisation of the importance of the principle of scale 

invariance and that its practical implementation required working with ratios of 

components, This, together with an awareness that logarithms of ratios are 

mathematically more tractable than ratios led to the advocacy of a transformation 

technique involving logratios of the components. There were two obvious contenders 

for this. Let x x x SD
D= ∈[ . . . ]1 be a typical D-part composition. Then the so-called 

additive logratio transformation alr S RD D: → −1  is defined by 

 

      )]/log(...)/log()/[log()( 121 DDDD xxxxxxxalry −== , 

 

where the ratios involve the division of each of the first D – 1 components by the final 

component. The inverse transformation DD SRalr →−− 11: is 

 

]1)exp(...)exp()[exp()( 121
1

−
− == DyyyCyalrx , 

 

where C denotes the closure operation. Note that this transformation takes the 

composition into the whole of R D −1  and so we have the prospect of using standard 

unconstrained multivariate analysis on the transformed data, and because of the one-

to-one nature of the transformation transferring any inferences back to the simplex 

and to the components of the composition. 

 

One apparent drawback with this technique is the choice of the final component as 

divisor, with a much asked question. Would we obtain the same inference if we chose 
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another component as divisor, or more generally if we permuted the parts? The 

answer to this question is yes. We shall not go into any details of the proofs of this 

assertion, but the interested reader may find these in Aitchison (1986, Chapter 5). 

 

The alr transformation is asymmetric in the parts and it is sometimes convenient to 

treat the parts symmetrically. This can be achieved by the so-called centred logratio 

transformation clr S UD D: → : 

 

)}](/log{...)}(/[log{)( 1 xgxxgxxclrz D== , 

 

 where    

 

}0...:]...{[ 11 =+= DD
D uuuuU . 

 

a hyperplane of R D .The inverse transformation DD SUclr →− :1  takes the form 

 

)]exp(...)[exp( 1 DzzCx = . 

 

This transformation to a real space again opens up the possibility of using standard 

unconstrained multivariate methods. 

 

We note here that the mean vector µ = E alr x{ ( )}  and covariance matrix 

Σ = cov{ ( )}alr x  of the logratio vector alr x( )  will play an important role in our 

compositional data analysis, as will do the centred logratio analogues λ = E clr x{ ( )}  

and  cov{ ( )}clr x . 

 

So the philosophy of logratio analysis can be stated simply. 

 

1. Formulate the compositional problem in terms of the components of the 

composition. 

2. Translate this formulation into terms of the logratio vector of the 

composition. 
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3. Transform the compositional data into logratio vectors. 

4. Analyse the logratio data by an appropriate standard multivariate statistical 

method. 

5. Translate back into terms of the compositions the inference obtained at 

step 4. 

 

We shall see later many examples of this compositional methodology. 

 

 

2.2 The unit simplex sample space and the staying-in the-simplex approach 

 

Logratio analysis emerged in the 1980’s in a series of papers Aitchison (1981a, 

1981b, 1981c, 1982, 1983, 1984a, 1984b, 1985), Aitchison and Bacon-Shone (1984), 

Aitchison and Lauder (1985), Aitchison and Shen (1980, 1984) and in the monograph 

Aitchison (1986); and has been successfully applied in a wide variety of disciplines. 

Since, however, there seem an appreciable number of statisticians and scientists who 

seem, for whatever reason, uncomfortable with transformation techniques it seems 

worth considering what are the alternatives. In the discussion of Aitchion (1982), 

Fisher made the following comment: 

 

Clearly the speaker has been very successful in fitting simple models to normal 

transformed data, the counterpart to the simplicity of these models is the 

complexity of corresponding relationships among the untransformed components. 

This is hardly an original observation. Yet there are certain aromas rising from the 

murky potage of compositional data problems which are redolent of some aspects 

of problems with directional data, and herein lies the point. When attacking these 

latter problems, one is ultimately better off working within the confines of the 

original geometry (of the circle, sphere cylinder, . . .) and with techniques 

particular thereto (vector methods, etc), in terms of perceiving simple underlying 

ideas and modelling them in a natural way. Mapping from, say, the sphere into the 

plane, and then back, rarely produces these elements, and usually introduces 

unfortunate distortion. I still hold out some hope that simple models of dependence 

can be found, peculiar to the simplex. . . . Meanwhile, I shall analyse data with the 

normal transform method.   
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The lack of success in transforming the sphere into the plane is that the spaces are 

topologically different whereas the simplex and real space are topologically 

equivalent. Nevertheless there is a challenge to confine the statistical argument to the 

geometry of the simplex, and this approach has been emerging over the last decade, 

based on the operations of perturbation and power and on the already indicated 

simplicial metric. It is now certainly possible to analyse compositional data entirely 

within simplicial geometry. Clearly the success of such an approach must depend 

largely on the mathematical sophistication of the user. In the remainder of this guide 

we shall adopt a bilateral approach, attempting to interpret inferences from our 

compositional data problems both from the logratio analysis approach and the 

staying- in-the-simplex approach. 

 

First in the next section we give a concise account of the algebraic-geometric 

structure of the simplex. 

 

 

2.3   The algebraic-geometric structure of the simplex 

 

2.3.1   Introduction 

The purpose of this section is to provide a reasonably agreed account in terms of 

terminology and notation of the algebraic-geometric structure of the unit simplex as a 

standard sample space for those compositional data analysts wishing to adopt a 

staying- in-the-simplex approach as an alternative to logratio transformation 

techniques. Emphasis is placed on the metric vector space structure of the simplex, 

with perturbation and power operations, the associated metric, the importance of 

bases, power-perturbation combinations, and simplicial subspaces in range and null 

space terms. Concepts of rates of compositional change, including compositional 

differentiation and integration are also considered. For compositional data sets, some 

basic ideas are discussed including concepts of distributional centre and dispersion, 

and the fundamental simplicial singular value decomposition. The sources of the ideas 

are dispersed through the References and will not be cited throughout the text. 
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2.3.2   Compositional vectors 

Compositions, positive vectors with unit, 100 per cent or some other constant sum, are 

a familiar, important data source for geologists. Since in compositional problems the 

magnitude of the constant sum is irrelevant we assume that the data vectors have been 

standardised to be of unit sum; we then regard a generic D-part composition, such as 

ten major oxides or sedimental sand, silt, clay, to take the form of a row vector 

x x x D= [ , . . . , ],1  where the x i Di ( , . . . , )= 1 are the components, proportions of the 

available unit, and the integers 1, . . .  D act as labels for the parts. We have chosen 

the convention of recording compositions as row vectors since this conforms with the 

common practice of setting out compositional data with cases set out in rows and 

parts such as major oxides in columns. Such a convention also conforms with practice 

in such software as MSExcel. Thus a data set consisting of N D-part compositions x1, 

. . . , xN  may be set out as an N D×  matrix  X = [x1; . . . ; xN],  where the semi-colon 

is used to indicate that the next vector occurs in the next row. 

 

As in standard multivariate analysis marginal concepts are important. For 

compositions and the simplex the marginal concept is a subcomposition, such as the 

CNK (CaO, N2O, K2O)-subcomposition of a major oxide composition. For example 

the (1, . . . C)-subcomposition of a D-part composition [ , . . . , ]x xD1 is defined as 

 

)..../(],...,[],...,[ C],...,[ 1111 CCCC xxxxxxss ++==  

 

Note that the ‘closure’ operator C standardises the contained vector by dividing by the 

sum of its components so that a subcomposition consists of components summing to 

unity. In geometric terms formation of a subcomposition is geometrically a projection. 

 

2.3.3   The algebraic-geometric structure of the unit simplex 

The sample space associated with D-part compositions is the unit simplex: 

 

}.1...),,...,1(0:],...,{[ 11 =++=>= DiC
D xxDixxxS  

 

The fundamental operations of change in the simplex are those of perturbation and 

power transformation. In their simplest forms these can be defined as follows. Given 
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any two D-part compositions DSyx ∈,  their perturbation is 

 

where C is the well known closure or normalizing operation in which the elements of 

a positive vector are divided by their sum; and given a D-part composition x ∈ DS   

and  a  real number, a the power transformed composition is 

 

Note that we have used the operator symbols ⊕ and ⊗ to emphasize the analogy with 

the operations of displacement or translation and scalar multiplication of vectors in 

R D . It is trivial to establish that the internal ⊕ operation and the external ⊗ ?operation 

?define a vector or linear space structure on DS . In particular the ⊕  operation defines 

an abelian group with identity e D= [ , . . . , ] /1 1 . We record a few of the simple 

properties of ⊕  and ⊗ : 

 

    x y y x x y z x y z a x y a x a y⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊗ ⊕ = ⊗ ⊕ ⊗, ( ) ( ), ( ) ( ) ( ).  

 

The operator Θ , the inverse of ⊕ , is simply defined by 

 

    ]/,...,/[ 11 DD yxyxCyx =Θ  

 

and plays an important role in compositional data analysis, for example in the 

construction of compositional residuals.  

 

The structure can be extended by the introduction of the simplicial metric  

 

∆: S D × S D → 0≥R  

 

defined as follows:  
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where g( ) is the geometric mean of the components of the composition. The metric 

∆  satisfies the usual metric axioms: 

 

M1  Positivity :  )(0),(),(0),( yxyxyxyx ==∆≠>∆  

M2  Symmetry :  ),(),( xyyx ∆=∆       

M3  Power relationship: ),(||),( yxayaxa ∆=⊗⊗∆  

M4  Triangular inequality: ),(),(),( yxyzzx ∆≥∆+∆  

 

The fact that this metric has also desirable properties relevant and logically necessary, 

such as scale, permutation and perturbation invariance and subcompositional 

dominance, for meaningful statistical analysis of compositional data is now well 

established and the relevant properties are recorded briefly here: 

M5   Permutation invariance: ),(),( yxyPxP ∆=∆ , for any permutation matrix P. 

M6   Perturbation invariance: ),(),( yxpypx ∆=⊕⊕∆ , where p is any 

perturbation. 

M7  Subcompositional dominance:  if sx and sy  are similar, say (1, . . . , C)-

subcompositions of x and y, then ),(),( yxss DC SyxS
∆≤∆ . 

 

It is possible to go to even more mathematical sophistication for the unit simplex if 

either theoretical or practical requirements demand it. For example, consistent with  

the metric ∆  is the norm ||x||, defined by 

and the inner product, defined by 
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where )}(/log{ bgba =  and so a aD1 0+ + =. . . . Thus inner products play the role of 

logcontrasts, well established as the compositional ‘linear combinations’ required in 

many forms of compositional data analysis such as principal component analysis and 

investigation of subcompositions as concomitant or explanatory vectors.  

 

2.3.4   Generators, orthonormal basis and subspaces 

As for any vector space generating vectors, bases, linear dependence, orthonormal 

bases and subspaces play a fundamental role and this is equally true for the simplex 

vector space. In such concepts the counterpart of ‘linear combination’ is a power-

perturbation combination such as 

 

)(...)( 11 CCuux ββ ⊗⊕⊕⊗=  

 

and such combinations play a central role. In such a specification the β ’s are 

compositions regarded as generators, and the combination generates some subspace of 

the unit simplex as the real number u-coefficient vary. When this subspace is the 

whole of the unit simplex then the β ’s form a basis. Generally a basis should be 

chosen such that the generators are ‘linearly independent’ in the sense that Cββ ,...,1  

are linearly independent if and only if 

 

0...)(...)( 111 ===⇒=⊗⊕⊕⊗ CCC uueuu ββ . 

 

For S D , which is essentially a (D –1)-dimensional space, a linearly independent basis 

has D –1 generators, and important among such basis are those which form an 

orthonormal basis, say with generators 11 ,..., −Dββ  which have unit norm 

)1,...,1(1|||| −== Diiβ , and are orthogonal in the sense that )(0, jiji ≠=〉〈 ββ . 

As on any vector space a set of C  orthonormal generators can be easily extended to 

form an orthonormal basis of S D . Later in Section 2.3.7 we shall see that orthonormal 

i

D

i

D

i
i

ii xa
xg

x
bg

b
log

)(
log

)(
log

1 1
∑ ∑

= =

=



Chapter 2   The simplex sample space 
 

37 

bases a central role in a data-analytic sense in terms of the simplicial singular value 

decomposition of a compositional data set. 

 

As in standard multivariate analysis range and null spaces play an important and 

complementary role in such areas of data investigation as compositional regression , 

principal logcontrast component analysis and in the study of compositional processes. 

The set ];...;[ 1 Cββ=Β  of linearly independent generators identifies a range space  

 

)},...,1(),(...)(:{)( 1
11 CiRuuuxxrange iCC =∈⊗⊕⊕⊗==Β ββ   

 

namely the subspace of dimension C generated by the compositions in Β .  Similarly 

associated with Β  can be defined a null space 

 

}0,,...,0,:{)( 1 =〉〈=〉〈=Β xxxnull Cββ   

 

a subspace of dimension D – C – 1. Range and null spaces are essentially equivalent 

ways of expressing certain constraints which may apply to compositions. The 

relationship of these equivalences is simple. For example, the null space 

corresponding to range( )Β above is null( )Β⊥ where Β⊥  is the comple tion of a basis 

orthogonal to Β ; similarly null range( ) ( )Β Β= ⊥ . As defined, these range and null 

spaces contain the identity e of S D . It is often convenient to allow a displacement so 

that they contain a specified compositionξ : all that this requires is the specification of 

the range space above to start with ξ  -i.e., )(Brangex ⊕= ξ -,  and the zero values of 

the inner products in the specification of the null space to be replaced by 

〉−〈〉−〈 ξβξβ xx C ,,...,,1 . 

 

 
2.3.5   Differentiation, integration, rates of change 

Clearly in compositional processes rates of change of compositions are important and 

here we define the basic ideas. Suppose that a composition )(tx  depends on some 

continuous variable t such as time or depth. Then the rate of change of the 

composition with respect to  t  can be defined as the limit 
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)))(log
d

(exp(C=x(t)))((
1

lim)( 0 tx
dt

dttx
dt

tDx dt Θ+⊗= >−  

 

where d/dt denotes ‘ordinary’ derivation with respect to t.   Thus, for example, if 

x t h t( ) ( )= ⊕ ⊗ξ β , then Dx t h t( ) '( )= ⊗ β . There are obvious extensions through 

partial differentiation to compositional functions of more than one variable. We note 

also that the inverse operation of integration of a compositional function )(tx  over an 

interval (t0, t) can be expressed as  

 

2.3.6   Distributional concepts in the simplex 

For statistical modelling we have to consider distributions on the simplex and their 

characteristics. The well-established ‘measure of central tendency’ ξ ∈S D  which 

minimizes E(∆(x, ξ)) is  

 

 

satisfying certain necessary requirements, such as cen a x a cen x( ) ( )⊗ = ⊗  and 

cen x y cen x cen y( ) ( ) ( ).⊕ = ⊕  
 

There are a number of criteria which dictate the choice of any measure V(x) of 

dispersion and dependence which forms the basis of characteristics of compositional 

variability in terms of second order moments: 

 

(a) Is the measure interpretable in relation to the specific hypotheses and 

 problems of interest in fields of application?  

(b) Is the measure conformable with the definition of center associated with the 

 sample space and basic algebraic operation? 

(c)  Is the measure invariant under the group of basic operations, in our case the 

group of perturbations? Is  )()( xdisxpdis =⊕  for every constant perturbation 

)).)(log(exp()(
0

∫ ∫=
t

t
dttxCdttx

)))(log(exp()( xECxcen ==ξ
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p? (Recall the result in Section 1.8.1 that for DRy ∈
 
 the covariance matrix V 

is invariant under translation: V(t + y) = V(y)). 

(d) Is the measure tractable mathematically? 

 

To ensure a positive answer to (a) we must clearly work in terms of ratios of the 

components of compositions to ensure scale invariance. At first thought this might 

suggest the use of variances and covariances of the form  

 

var(xi/xj) and cov(xi /xj , xk / xl ). 

 

Unfortunately these are mathematically intractable because, for example, there is no 

exact or even simple approximate relationship between var(xi/xj) and var(xj/xi). 

Fortunately we already have a clue as to how to overcome this difficulty in the 

appearance of logarithms of ratios of components both in the central limit theorem at 

Section 1.8.3 and in the definition of the center of compositional variability. It seems 

worth the risk therefore of apparently complicating the definition of dispersion and 

dependence by considering such dispersion characteristics as 

  

  var{log(xi /xj )}, cov{log(xi /xj )} , log(xk /xl ) .                               

 

Obvious advantages of this are simple relationships such as  

 

var{log(xi/xj)} =  var{log(xj/xi)} 

cov{log(xi /xj ) , log(xl /xk )} = cov{log(xi /xj ) , log(xl /xk ). 

 

There are a number of useful and equivalent ways (Aitchison, 1986, Chapter 4) in 

which to summarize such a sufficient set of second-order moment characteristics. For 

example, the logratio covariance matrix? 

 

 ])}/log(),/[cov{log())(cov()( DjDi xxxxxalrx ==Σ  

 

using only the final component xD as the common ratio divisor, or the centered 
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logratio covariance matrix  

 

  G(x) = cov{clr(x)} = [cov{log(xi /g(x)), log(xj /g(x))}].   

 

My preferred summarizing characteristic is what I have termed the variation matrix  

 

   T(x) = [t ij] = [var{log(xi /xj )}].     

 

Note that  T is symmetric, has zero diagonal elements, and cannot be expressed as the 

standard covariance matrix of some vector. It is a fact, however, that S, G and T are 

equivalent: each can be derived from any other by simple matrix operations 

(Aitchison, 1986, Chapter 4).  A first reaction to this variation matrix characterization 

is surprise because it is defined in terms of variances only. The simplest statistical 

analogue is in the use of a completely randomized block design in, say, an industrial 

experiment . From such a situation information about var(yi - yj) for all i, j is a 

sufficient description of the variability for purposes of inference. 

 
So far we have emphasized criteria (a), (b) and (d). Fortunately criterion (c) is 

automatically satisfied since, for each of the dispersion measures )()( xdisxpdis =⊕  

for any constant perturbation p. We should also note here that the dimensionality of 

the covariance parameter is ½ D(D -1) and so is as parsimonious as corresponding 

definitions in other essentially (D-1)-dimensional spaces.      

 

To sum up, importantly these dispersion characteristics are consistent with the 

simplicial metric defined above and satisfy the following properties: 

 

dis a x a dis x( ) | | ( )⊗ = 2 , for any scalar  a in R; 

dis x p dis x( ) ( )⊕ = , for any  constant perturbation  p;   

dis x y dis x dis y( ) ( ) ( )⊕ = + , for independent x, y. 

 

2.3.7   Relevance to compositional data sets 
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There are substantial implications in the above development for the analysis of a 

N D×  compositional data set X x x N= [ ; . . . ; ]1 . A main feature is that the estimate 

of the centre ξ  is given by $ ( , . . . , )ξ = C g gD1 , gi is the geometric mean of the ith 

component of the N compositions. Measures of dispersion are simply estimated from 

the estimated variances of the appropriate logratios.  

 

There is for the simplex a central result, analogous to the singular value 

decomposition for data sets associated with the sample space RD, which plays a 

central role. Any N x D compositional data matrix X with nth row composition xn can 

be decomposed in a perturbation-power form as follows 

 

where ξ is the centre of the data set, the s’s  are positive ‘singular values’ in 

descending order of magnitude, the β ’s are compositions, m  ( 1−≤ D ) is a readily 

defined rank of the compositional data set, and the u’s are power components specific 

to each composition. In a way similar to that for data sets in RD we may consider an 

approximation of order r <m to the compositional data set given by  

 

 

Such an approximation retains a proportion  

 

of the total variability of the N × D compositional data matrix as measured by the 

trace of the centered logratio covariance matrix or equivalently in terms of total 

mutual distances as  

 

We may also note here that the power-perturbation expression of the singular value 

decomposition has exactly the same form as regression of a composition on some set 

)(...)( 111 mmnmnn susux ββξ ⊗⊕⊕⊗⊕=

).(...)( 111
)(

rrnrn
r

n susux ββξ ⊗⊕⊕⊗⊕=

).../()...( 22
1

22
1 mr ssss ++++

).,())1(( '
'

21
nn

N

nn

xxNN ∑
<

− ∆−



Chapter 2   The simplex sample space 
 

42 

of variables. The form is exactly that of what would obtained if the logratio form of 

regression analysis  in Aitchison (1986, Chapter 7) were transformed back into terms 

of the simplex.  

 

 

2.4 Useful parametric classes of distributions on the simplex 

 

2.4.1 Introduction 

In this section we first present some results in distributional calculus leading to a 

central limit theorem analogous to the role of the multivariate normal limit in real 

space. This leads us to the definition of a number of useful parametric classes of 

distributions on the simplex sample space. 

 

2.4.2 Generating functions for simplicial distributions 

The characteristic and moment generating functions for distributions in R
D
 are  

familiar useful tools of distributional analysis. It is relatively easy to design the 

analogous tools for the study of simplicial distributions in S 
D
. The transform which 

seems to be most suited to this purpose is a multivariate adaptation of the Mellin 

transform. Let   

 

U u u u uD
D D= + + ={[ . . . ]: . . . }1 1 0 . 

  

Suppose that a composition x S D∈  has density function f x( ) . Then define its Mellin 

generating function M U Rx
D: → +

1  by the relationship 

 

M u x x f x dxx
u

S D
u

D
D( ) . . . ( )= ∫ 1

1 . 

 

Note that the restriction of the vector u to the hyperplane U D  rather than R D  is 

dictated by the need to meet the requirement of scale invariance, here ensured by the 

fact that integrand is expressible in terms of ratios of the components of x. The Mellin 

generating function has perturbation, power and limit properties similar to additive 
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and scale properties of characteristic and moment generating functions for 

distributions in RD. 

 

Property M1. M x ( ) .0 1=  

 

Property M2. If x and y are independent compositions then    

 

              M u M u M ux y x y⊕ =( ) ( ) ( ). 

 

Property M3. If a R∈ 1  is a scalar then M u M aua x x⊗ =( ) ( ).  

 

Property M4. If b is a fixed perturbation then  

 

   M u b b M ub x
u

D
u

x
D

⊕ =( ) . . . ( ).1
1  

 

Property M5. Combining M2 and M3, if  x  and  y  are independent compositions 

then 

).()()()( buMauMM yxybxa =⊗⊕⊗  

 

Property M6. Moment generating properties. In a manner similar to the use of 

moment-generating functions in RD we can obtain expansions which produce 

moments of any order  

log ( ) logM u u uTux i
i

D

i
t= − +

=
∑

1

1
4ξ terms of higher order, 

where ξ  and Τ  are the centre and D D×  variation matrix with (i, j) element 

var{log( / )}x xi j  of the distribution. Moments can also be found through a 

differentiation process but we shall not pursue that here; see Aitchison (2001, 

Section 6) for details. 

 

Property M7. A limit property. Let {xn} be a sequence of compositions with density 

functions {fn} and  Mellin transforms {Mn}. If M u M un ( ) ( )→  and M(u) is the 

Mellin transform of f(x) then fn converges in distribution to f. 
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2.4.3   Central limit theorem for compositions 

An obvious question to ask about compositional variability is whether there is an 

analogue of the well known limiting results for sequences of additive and 

multiplicative changes leading to normal and lognormal variability through the central 

limit theorems. As we have already noted the relationship in Section 1.8.3  depicts the 

result of a sequence of independent perturbations. In exactly the same way as moment 

generating functions can be used to establish central limit theorems in RD so we could 

use the above properties of the Mellin generating function to establish a similar result 

for xn in (???). A simple version for the case where  pr  (r = 1, 2, . . .  ) are 

independently and identically distributed with centre cen pr D( ) [ . . . ]= =ξ ξ ξ1  and 

variation matrix Τ Τ( )pr =  leads to the following limiting Mellin generating function 

for y n xn n= −1 2/ : 

 

M u u uTui
i

D

ii
T( ) exp log= −









=
∑

1

1
4ξ . 

 

Alternatively we can very simply use transformation techniques to obtain an additive 

central limit theorem by rewriting the perturbation sequence it in terms of logratios: 

 

log(xni/xnD) = {log(p1i/p1D) + . . . + log(pni/pnD)} +  log(x0i/x0D)    (i = 1, ..., D - 1). 

 

If the perturbations are random then the sum within the brackets will, under certain 

regularity conditions which need not divert us here, tend for large n towards a 

multivariate normal pattern of variability. It is a simple application of distribution 

theory to deduce the form of the probability density function f x( )  on the unit 

simplex as 

 

}))(())((exp{)...()2det()( 1
2
11

1
2/1 T

D xalrxalrxxxf µµπ −Σ−−Σ= −−−  

 

where µ  is (D – 1) row vector, Σ  a positive definite square matrix of order D-1. This 
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is the parametric class of additive logistic normal distributions LD −1( , )µ Σ described 

by Aitchison and Shen (1980). This result differs from the Mellin transform result 

only in the parameterization of the parameters. We use the notation LD ( , )ξ Τ  to 

denote the distribution in this parameterization. 

 

2.4.4   Parametric classes of distributions 

The emergence of the logistic normal distribution LD −1( , )µ Σ  or LD ( , )ξ Τ   in a central 

limit theorem ensures for this parametric class of distributions a central role in the 

study of distributions on the simplex in a way similar to the multivariate normal and 

lognormal distributions in DR  and DR+ . In particular, in addition to simple logistic 

normal subcompositional and conditional properties, this class of distributions has the 

essential and useful properties of being closed under the basic simplex operations of 

perturbation and power; see Aitchison (1986, Chapter 6) for details. 

 

In contrast the popular Dirichlet class Di( )α on the simplex with density function 

 

f x x x x XD
DD( ) , , , ( )∝ ∈1

1α α  

 

has so many drawbacks that it has virtually no role to play in simplicia l inference. For 

example, it has no simple perturbation or power transformation properties and so is 

ill-suited to the basic operations of the simplex. Moreover, it has so many inbuilt 

independence properties that, apart from being a model of extreme independence, it 

has almost no role to play in the investigation of the nature of the dependence 

structure of compositional variability. 

 

There are other classes of distributions on S D . The fact that the LD −1( , )µ Σ  class is 

simply related to the multivariate normal class in R D −1  by way of the alr  

transformation led Aitchison (1986) to consider other transformations from S D  to 

R D −1 to define other logistic-normal classes of distributions, the multiplicative and 

partitioned classes, which are directed at specific practical problems in compositional 

data analysis; see Aitchison (1986, Sections 6.14, 6.18) for details. Also Aitchison 

d

d
xxxf αα)(

1
1∝ K
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(1985, 1986, Section 13.4) extends the LD −1( , )µ Σ  class by the introduction of a 

single parameter to produce a generalization which includes both the Dirichlet class 

and the logistic normal class. While this is a useful extension it is somewhat restricted 

by computational problems involving multiple integrals. A more promising 

generalization, which is simpler computationally, is an extension based  on the 

recently introduced multivariate skew normal class of distributions (Azzalini and 

Della Valle, 1997). In terms of a class of distributions on the simplex a composition x 

can be said to have a logistic skew normal distribution if alr(x) has a multivariate 

skew normal distribution. For recent applications of this class to compositiona l data 

problems, see Mateu-Figueres, Barceló-Vidal and  Pawlowsky-Glahn (1998), 

Aitchison and Bacon-Shone (1999). 

 

For comparison with the fitting of parametric distributions to simplicial data or for use 

when there is no satisfactory parametric class, resort may be made to a non-parametric 

approach through kernel density estimation (Aitchison and Lauder, 1985). 

 

 

2.5   Logratio analysis and the role of logcontrasts 

 

In unconstrained multivariate analysis with sample space RD substantial use is made 

of  properties of linear combinations (transformations) of the components of vector 

observations, for example in all techniques involving eigen-analysis. Inspection of the 

forms involved in the definitions of geometric centre, dispersion matrices, Mellin 

generating function, and the distribution emerging from the central limit theorem 

suggest that the simplex analogue of a linear combination is a logcontrast (Aitchison, 

1983) of a composition x defined by  

 

a x a xD D1 1log . . . log+ + , where a aD1 0+ + =. . . . 

 

Such linear contrasts have also emerged naturally as inner product in our study of the 

algebraic-geometric structure of the simplex space. Just as linear combinations can be 

used to define subspaces of the vector space RD by way of null spaces or range spaces, 

so logcontrasts can be used to identify subspaces of the already identified vector 
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space S D  through, for example, logcontrast principal component analysis. We shall 

see later the role that such logcontrasts play in statistical analysis. The main 

distributional result for logcontrasts can be expressed as follows. 

 

Property L1. If composition x has geometric center ? and variation matrix ? then the 

vector   l = [l1, . . . , lC] ∈RC , where 

  

 

has moment generating function G(t), where t = [t1, . . . , tC], given by Gl (t) = 

Mx(tAT ), where A = [ari]. A corollary of this result is that, if x follows a LD(?,?) 

distribution, then l follows a N A A AC T{(log ) , }ξ − 1
2 Τ  distribution. 

 

We may comment here on the negative signs that appear in this last result. This is 

because of the nature of the variation matrix ?. This can easily be shown to have a 

restricted form of negative definiteness in the sense that, for any u U D∈ ,  u?uT
 , so 

that the covariance matrix − 1
2 A AT Τ  in the above result is positive definite. 

 

 

2.6 Simple estimation 
 
Compositional data, in the form of N compositions each with D parts can be set out in 

the form of a N D×  matrix X xni= [ ] , where xni  is the ith component of the nth 

composition. In such a compositional data matrix compositions are set out in the rows 

and the part components are set out in the columns. We shall denote the nth row of the 

matrix, the nth composition, by xn .  

 

The estimation of such central characteristics as µ λ,  and dispersion matrices Σ Γ,  is 

straightforward. The transformation alr and clr produce vectors in real space so that 

mean vectors and covariance matrices are estimated exactly as in standard 

unconstrained  multivariate statistics. In matrix notation, with j N  denoting a N-row 

vector with unit elements, we have estimates as follows: 

),,1(log
1

Crxal
D

i
irir K== ∑

=
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µ
∧

= ( / ) ( ),1 N j alr XN
T  

Σ
∧ ∧ ∧

= − −{ / ( )}{ ( ) ( ) }1 1N alr X alr X NT
T

µ µ , 

 

 

         Γ
∧ ∧ ∧

= − −{ / ( )}{ ( ) ( ) }1 1N clr X clr X NT
T

λ λ . 

 

Considerable insight can be given to the transformation technique by considering a 

simple application. We choose as a data set the (A, B, C) subcomposition of the 

hongite data of Table 1.1.1a. Such three-part compositions can be plotted in a 

triangular or ternary diagram in the following way. Figure 2.6.a shows an equilateral 

triangle with vertices 1, 2, 3 and with unit altitude. In such a diagram a three-part 

composition such as [ ]x x x1 2 3  can be represented by a point P in the triangle where 

x x x1 2 3, ,  are the lengths of the perpendiculars from P to the sides 23, 31, and 12, the 

sides opposite the vertices 1, 2 and 3. The sum of such perpendiculars for any point 

within the triangle is always 1 (this result is apparently known as Viciani’s theorem) 

and roughly speaking the nearer the point P is to any vertex the greater is the 

corresponding component. The triangle and its four-part counterpart have proved 

useful in giving some visual insight into compositional variability. Triangular graph 

paper is available commercially for such purposes. 

 

x2

1

2 3

x3

x1

P

 
 

Fig. 2.6.a  Representation of a 3-part composition [ ]x x x1 2 3  in the reference triangle 123 

 

λ
∧

= ( / ) ( ),1 N j clr XN
T
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Figure 2.6.b shows the 25 (A, B, C) subcompositions of hongite as 25 points within a 

ternary diagram. Note the apparent curved nature of the data points; this curvature in 

the naïve geometry of the simple is quite common, and is another reason why linear 

methods such as product-moment correlations are unsuccessful. Figure 2.6.d shows 

the plot of the additive logratio vectors in the two-dimensional plane. Note that the 

curved nature of the data set in the triangle has been changed to a more elliptical 

scatter in the real space.  

 

Albita

Blandita Cornita

 
 

Fig. 2.6.b   ABC subcompositions for 25 hongite specimens 
 

 

Let us now consider the estimation process with the alr transformation. The estimate 

µ
∧

 of µ = E alr x{ ( )}  is [1.600  0.799], and this is shown as the point Q (red) in 

Figure 2.6.d. The question of interest is how this point transforms back into the 

appropriate simplex sample space, in this case triangle ABC. This is achieved by 

computing 

 

alr-1[1.600  0.799] =   [0.606    0.272    0.122], 

 

and this composition is shown as the point G (red) in the triangle ABC of Figure 

2.6.c. It clearly lies within the cluster of data points within the triangle. 

 

This estimated centre is in sharp contrast to what is almost universally quoted in raw 

compositional data analysis, namely the arithmetic mean vector of the compositional 

data set: ( / )1 N j XN
t , which, for the (A, B, C) subcomposition of hongite, is [0.443    
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0.229 0.148], substantially different from the centre arrived at through the 

transformation process. This composition is plotted as the point A (green) in the 

triangle ABC of Figure 2.6.c, and compared with centre G is more like an outlier than 

a central characteristic. 

 

Albita

Blandita Cornita

Arithmetic Mean

Geometric Mean

 
Fig. 2.6.c  Arithmetic average composition (A = green) and the geometric centre (G = red) for 3-part 

compositional data set in a ternary diagram 
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Fig. 2.6.d  Arithmetic average composition (A = green) and the geometric centre (G = red) for 3-part 
compositional data set in the logratio diagram.  
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This estimation by alr and alr-1 transformation leads to an estimate of ξ = cen x( ).  If 

[ . . . ]g g D1  denote the geometric means of the D columns of the compositional data 

matrix  X  then it is easy to show that 

 

)]/log(...)/[log( 11 DDD gggg −

∧

=µ  

 

and then  

]...[)( 1
1

DggCalr =
∧

− µ , 

 

 which is the estimate of centre. 

 

For the set of full hongite compositions this centre 

 

[0.489    0.220    0.099    0.104    0.088], 

 

compared with an incorrect use of the arithmetic mean 

 

 

[0.443    0.230    0.148    0.096    0.083], 

 

again showing a substantial discrepancy. 

 

We give below  the estimates of Σ Γ Τ, , for the hongite compositional data matrix: 

Σ
∧

=  
      0.1386     0.2641     -0.2233      0.1214 
      0.2641     0.6490     -0.7020      0.1444 
    -0.2233    -0.7020      0.9476      0.0116 
      0.1214     0.1444      0.0116      0.1871 
 

Γ
∧

=  
     0.0644      0.1791     -0.2441     0.0145     -0.0140 
     0.1791      0.5530     -0.7337     0.0266     -0.0249 
     -0.2441     -0.7337      0.9803    -0.0419      0.0394 
     0.0145      0.0266     -0.0419     0.0475     -0.0467 
     -0.0140     -0.0249      0.0394    -0.0467      0.0462 
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Τ
∧

=  
       0          0.2593      1.5329      0.0828       0.1386 
       0.2593     0           3.0007      0.5473       0.6490 
       1.5329     3.0007      0           1.1115       0.9476 
       0.0828     0.5473      1.1115      0            0.1871 
       0.1386     0.6490      0.9476      0.1871       0 
 
 
We shall see later as we develop our methodology the various ways in which these 

measures of dispersion come into play. For the moment we concentrate on a simple 

point. Hopefully by now early warners of the fallacy of using raw product-moment 

correlations such as Chayes (1960, 1962), Krumbein (1962), Sarmanov and Vistelius 

(1959) have reinforced Karl Pearson’s century-old warning and have at least raised 

uneasiness about interpretations of product-moment correlations cov(xi , xj). Relative 

variances such as var{log(xi /xj )} provide some compensation for such deprivation of 

correlation interpretations. For example, var{log( / )}x xi j = 0  means a perfect 

relationship between x i and x j in the sense that the ratio x xi j/  is constant, replacing 

the unusable idea of perfect positive correlation between x i  and x j  by one of perfect 

proportionality. Again, the larger the value of  var{log( / )}x xi j  the more the 

departure from proportionality with  var{log( / )}x xi j = ∞   replacing the unusable 

idea of zero correlation or independence between  xi and xj. For scientists who are 

uneasy about scales that stretch to infinity we can easily provide a finite scale by 

considering 1 − −exp( )τ ij  as a measure of relationship between components x i  

and x j . The scale is now from 0 (corresponding to lack of proportional relationship ) 

and 1 (corresponding to perfect proportional relationship). Note that if we are really 

interested in hypotheses of independence these are most appropriately expressed in 

terms of independence of subcompositions. For example independence of the (1, 2, 

3)-  and (4, 5)-subcompositions would be reflected in the following statements: 

 

cov{log(x1/x3), log(x4/x5)}= 0,    cov{log(x2/x3), log(x4/x5)} = 0. 

 

Finally we can provide an analogue of the rough-and-ready normal 95 percent range 

of mean plus and minus two standard deviations. This is expressed in terms of ratios 

xi/xj and a signed version of a coefficient of variation:   
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where ji gg ,  are the geometric means of the ith and jth components. 

 

In the study of unconstrained variability in R
D
 it is often convenient to have available 

a measure of total variability, for example in principal component analysis and in 

biplots. For such a sample space the trace of the covariance matrix is the appropriate 

measure. Here we might consider trace(G) the trace of the symmetric centered 

logratio covariance matrix. Equally we might argue on common sense grounds that 

the sum of all the possible relative variances in Τ , namely  

 

var{log( / )}x xi
i j

j
<
∑ , 

 

would be equally good. These two measures indeed differ only by a constant factor 

and so we can define totvar(x), a measure of total variability, as 

 

totvar ∑
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We may also note here that our scalar measure of distance, the simplicial metric, is 

compatible with the above definitions of covariance analogous to the compatibility of 

Euclidean distance with the covariance matrix of an unconstrained vector. As an 

illustration of this consider how we might construct a measure of the total variability 

for a N D×  compositional data set . The above definition suggests that we may 
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obtain such a total measure, totvar1 say, by replacing each var{log( / )}x xi j in the 

definition of totvar its standard estimate. An alternative intuitive measure of total 

variation  is surely the sum of all the possible distances between the N compositions, 

namely  

 

totvar2 ),()( 2
nm

nm

xxx ∑
<

∆= , 

 

where here x xm n,  denote the mth and nth compositions in X. The easily established 

proportional relationship totvar1 = [D/{N(N-1)}] totvar2 confirms the compatibility 

of the defined covariance structures and scalar measures of distance for compositional 

variability. 

 

Note on subcomposional analysis.   If interest may be in subcompositions of the full 

composition then the relative variation array is particularly useful. This is because the 

variation array of any subcomposition is simply obtained by picking out all the 

logratio variances associated with the parts of the subcomposition. 

 

A caveat on the use of the centred logratio covariance matrix. Because of the 

symmetry of the centred logratio covariance Γ  there is a temptation to imagine that 

corr x g x x g xi j[log{ / ( )}, log{ / ( )}]  is somehow a sound measure of a relationship 

between x xi j, . Although the centred logratio covariance and correlation matrices 

possess scale invariance, any correlation interpretation is subcompositionally 

incoherent. This is because the geometric mean divisor changes with the move from 

full composition to subcomposition. A simple example can illustrate this. For hongite, 

the centred correlation matrix associated with the (A, B, D, E) subcompositions is 

 
   A  B    D    E    

A  1,00000   0,74025  -0,86129  -0,02096 
B  0,74025   1,00000  -0,89208  -0,34832 
D -0,86129  -0,89208   1,00000  -0,08899 
E -0,02096  -0,34832  -0,08899   1,00000 

 
whereas the (A, B, D, E) correlations extracted from the centred logratio correlation 

matrix for the full composition (A, B, C, D, E) is 
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   A  B    c    D  E  
A   1,00000   0,94865  -0,97117   0,26291  -0,25602 
B   0,94865   1,00000  -0,99656   0,16410  -0,15593 
C  -0,97117  -0,99656   1,00000  -0,19412   0,18519 
D   0,26291   0,16410  -0,19412   1,00000  -0,99765 
E  -0,25602  -0,15593   0,18519  -0,99765   1,00000 

 
Notice the substantial differences, particularly in the correlation between A and D, 

from 0.26291 in the full composition to –0.86129 in the subcomposition. It is clear 

that two scientists, one working with full compositions and the other with the (A, B, 

D, E) subcompositions will not agree using centred logratio correlations. Despite this 

we shall see that the centred logratio covariance matrix does have a useful role to play 

in compositional data analysis. 

 

 

2.7   Simple hypothesis testing: the lattice approach 

 

2.7.1   Introduction 

In most of our applications we shall be assuming that there is a sufficiently general 

parametric model which is the most complex we would consider as capable of 

explaining, or useful in explaining, the experienced pattern of variability. We are 

hesitant, however, to believe that the complexity of the model with its many 

parameters is really necessary and so postulate a number of hypotheses which provide 

a simpler explanation of the variability than the model. These hypotheses place 

constraints on the parameters of the model or equivalently allow a reparametrisation 

of the situation in terms of fewer parameters than in the model. We can then usually 

show the hypotheses of interest and their relations of implication with respect to each 

other and the model in a diagrammatic form in a lattice. The idea is most simply 

conveyed by a simple example.  

 

2.7.2   Example 

Suppose that our data set consists of the measurements of some characteristic of a 

sediment, such as specific gravity or, in a compositional problem, logratio of sand to 

clay components, at different depths in a lake bed. Suppose that our aim is to explore 

the nature of the dependence, if any, of characteristic y on depth u, and that we are 

prepared to assume that the most complex possible dependence is with expected 
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characteristic of the form α β γ δ+ + +u u u2 log . The lattice of Figure 2.7.a provides 

a number of possible hypotheses for investigation. Note the following features of such 

a lattice. The hypotheses and model have been arranged in a series of levels. At the 

highest level is the model with its four parameters; at the lowest level is the 

hypothesis of no dependence on depth, of essentially random unexplained variation of 

the characteristic with only one parameter α  representing the mean of the random 

variation. At intermediate levels are hypotheses of the same intermediate complexity, 

requiring the same number of parameters for their description: for example, the two 

hypotheses at level 2 correspond to a logarithmic dependence and lineard dependence 

α β+ u  on depth. When a hypothesis at a lower level implies one at a higher level, 

the lattice shows a line joining the two hypotheses: for example, the hypothesis 

γ δ= = 0   at level 2 implies γ = 0  and implies δ = 0  at level 3 and so the associated 

joins are made, whereas β γ= = 0  at level 2 does not implyδ = 0  at level 3 and so no 

join is made. In short, the lattice displays clearly the relative simplicities and the 

hierarchy of implication of the hypotheses and their relation to the model. 

 

There is much to be said for having a clear picture of the lattice of hypotheses of 

interest before attempting any statistic analysis of data and indeed before embarking 

on any experimental or observational exercise. 
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Fig.  2.7.a  Lattice of hypotheses within the model with expected characteristic of the form 

α β γ+ + +u u u2 log . 
 
 

2.7.3   Testing within a lattice  

Once the model and relevant hypotheses have been set out in a lattice how should we 

proceed to test the various hypotheses? The problem is clearly one of multiple 

hypotheses testing with no optimum solution unless we can frame it as a decision 

problem with a complete loss structure, a situation seldom realised for such problems. 

Some more ad hoc procedure is usually adopted. In our approach we adopt the 

simplicity postulate of Jeffreys (1961), which within our context maybe expressed as 

follows: we prefer a simple explanation, with few parameters, to a more complicated 

explanation, with many parameters. In terms of the lattice of hypotheses, therefore, 

we will want to see positive evidence before we are prepared to move from a lower 

level to one at a higher level. In terms of standard Neyman-Parson testing the setting 

of the significance level ε  at some low value may be viewed as placing some kind of 

protection on the hypothesis under investigation: if the hypotheses is true our test has 

only a small probability, at most ε , of rejecting it. With this protection, rejection of a 

hypothesis is a fairly positive act: we believe we really have evidence against it. This 
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is ideal for our view of hypothesis testing within a lattice under the simplicity 

postulate. In moving from a lower level to a higher level we are seeking a mandate to 

complicate the explanation, to introduce further parameters. The rejection of a 

hypothesis gives us a positive reassurance that we have reasonable grounds for 

moving to this more complicated explanation. 

 

Our lattice testing procedure can then be expressed in terms of the following rules. 

 

1. In every test of a hypothesis within the lattice, regard the model as the 

alternative hypothesis. 

2. Start the testing procedure at the lowest level, by testing each hypothesis at 

that level within the model. 

3. Move from one level to the next higher level only if all hypotheses at the 

lower level are rejected. 

4. Stop testing at the level at which the first non-rejection of a hypothesis occurs. 

All non-rejected hypotheses at that level are acceptable as ‘working models’ 

on which further analysis such as estimation and prediction may be based. 

 

 

 

2.7.4 Construction of tests 

For the construction of ha hypothesis h within a model m in an unfamiliar situation, 

we shall adopt the generalised likelihood ratio principle. In simple terms let L X( | )θ  

denote the likelihood of the parameter θ  for data and θ
∧

h X( ) and  θ
∧

m X( )  denote the 

maximum likelihood estimates, and  

 

L X L X Xh h( ) { ( )| )=
∧
θ   and  L X L X Xm m( ) { ( )| )=

∧
θ  

 

denote the maximised likelihood under the hypothesis (h) and the model (m), 

respectively. The generalised likelihood ratio test statistic is then 

 

R X L X L Xm h( ) ( ) / ( )= , 
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and the larger this is the more critical of the hypothesis h we shall be. When the exact 

distribution of this test statistic under the hypothesis h is not known, we shall make 

use of the Wilks (1938) asymptotic approximation under the hypothesis h which 

palaces  c  constraints on the parameters, the test statistic  

 

Q X R X( ) log{ ( )}= 2  

 

is distributed approximately as χ 2 ( )c . 

 

 

2.8 Compositional regression, residual analysis and regression diagnostics 

 

In terms of the transformation technique of logratio analysis little need be said. 

Transformation from compositional vectors to logratio vectors places the analyst in 

the position of facing  a multivariate linear modelling situation which can be proceed 

with in a standard way, with standard unconstained multivariate tests and the usual 

forms of residual analysis. We shall see an example of this for the Arctic lake 

sediment data in the next chapter. 

 

For the staying in the simplex approach compositional regression uses the power and 

perturbation operations in the following way: for a composition x regressing on a real 

concomitant  u  we would set 

 

x u p= ⊕ ⊗ ⊕ξ β( ) , 

 

where ξ β, , p  are all compositions, ξ  playing the role of ‘constant’, β  the role of 

‘regression coefficient’ and p the role of the ‘error term’. The relation to the 

transformation version is simply seen since 

 

alr x alr ualr( ) ( ) ( )= + +ξ β error, 

 

which could obviously be reparametrised as 
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alr x u( ) = + +α γ  error. 

 

Obviously the estimation of ξ β,  can be obtained as )(),( 11 γα −− alralr  from an 

application of the transformation technique.  

 

Although the staying- in-the-simplex and the transformation technique lead to the 

same inferences a main difference will lie in the nature of the interpretation. In the 

staying- in-the-simplex approach, for example, the definition of residual will be 

x xΘ $ , where )(ˆ
∧∧

⊗⊕= βξ ux . We shall see in the next chapter through an example 

how all these ideas fit into place. 

 

 

2.9   Some other useful tools 

 

2.9.1   The predictive distribution as the fitted distribution 

In much of statistical work we fit models to describe patterns of variability of our 

observed data and there has been much discussion in statistical circles as to what the 

appropriate distribution should be. It is clearly beyond the scope of this guide to argue 

any case here but let us direct our attention to the use of what have become known as 

the predictive distributions. Instead of simply inserting the maximum-likelihood 

estimates in the logistic-normal LD ( , )µ Σ  density function (the estimative method), as 

it were putting all our eggs in one basket, we average all the possible logistic-normal 

density functions taking account of the relative plausibilities of the various ( , )µ Σ  

parametric combinations. The resulting predictive distribution is what can be termed a 

logistic-Student distribution with density function  

 

f x data x x alr x N N alr xD
N( | ) ( . . ) [ { ( ) }[( )( ) ] { ( ) } /∝ + − − + −−

∧
−

∧
−

∧

1
1 1 1 21 1 1µ µΣ  

 

for compositional data matrix X. For large data sets there is little difference between 

estimative and predictive fitted distributions, but for moderate compositional data sets 

the difference can be substantial. The fact that geological sets often have N  small (a 
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few rock specimens) and D large (ten or more major oxides) should recommend the 

use of the predictive distribution in applications to compositional geology.  

 

2.9.2   Atypicality indices 

The fitted density function assigns different plausibilities to different compositions. 

Figure 2.9.1 shows a 3-part compositional data set in a ternary diagram with some 

contour lines of the fitted predicative distribution. A composition such as C near the 

center is clearly more probable than one such as B in the less dense area: B is more 

atypical than C of the past experience. We can express this in terms of an atypicality 

index, which  is, roughly speaking, the probability that a future composition will be 

more typical (be associated with a higher probability density) than the considered 

composition. Technically the atypicality index A x( )* of a composition x *  is given by 

 

∫=
R

dxdataxfxA )|()( * , where R x f x data f x data= >{ : ( | ) ( | )}* , 

 

and this is easily evaluated in terms of standard incomplete beta functions; for details 

see Aitchison (1986, Section 7.10). Atypicality indices lie between 0 and 1, with near-

zero corresponding to a composition near the center of the distribution and near 1 

corresponding to an extremely atypical composition lying in a region of very low 

density. Atypicality indices are therefore useful in detecting possible outliers or 

anomalous compositions. For inspection of a given data set it is advisable to use the 

now standard jackknife or leaving-one-out technique to avoid resubstitution bias in 

assessing the atypicality index of any composition in the data set. Again atypicality 

indices for such a procedures are readily computable. 
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Chapter 3   From theory to practice: some simple applications 

 

 

3.1   Simple hypothesis testing: comparison of hongite and kongite 

 

A general question that we asked in Example 1 of Section 1.1 was whether any 

differences could be detected between the hongite and kongite compositional 

experience. After an alr logratio transformation of the compositional vectors we are 

then faced with two multivariate normal samples with questions about equality of 

mean vectors and covariance matrices. We have already obtained the estimates for 

hongite in Section 2.6. The corresponding estimations for kongite are as follows. 

 

The kongite centre is [0.486  0.201  0.114   0.105  0.094], again quite different from 

the arithmetic mean [0.438    0.214    0.165    0.097    0.086].  

 

The estimates of Σ Γ Τ, , for the kongite compositional data matrix are: 

 

Σ
∧

=     0.1131    0.2352   -0.2008    0.0961 
     0.2352    0.6554   -0.7231    0.1061 
      -0.2008   -0.7231    1.0504    0.0911 
      0.0961    0.1061    0.0911    0.1951 
 

Γ
∧

=   0.0646    0.1807   -0.2441   -0.0014    0.0002 
 0.1807    0.5949   -0.7724    0.0026   -0.0058 
 0.2441   -0.7724    1.0123   -0.0012    0.0054 
-0.0014    0.0026   -0.0012    0.0487   -0.0487 

       0.0002   -0.0058    0.0054   -0.0487    0.0489 
 

 Τ
∧

=     0        0.2981    1.5652    0.1161    0.1131 
     0.2981   0         3.1520    0.6384    0.6554 
      1.5652   3.1520    0         1.0634    1.0504 
      0.1161   0.6384    1.0634    0         0.1951 
      0.1131   0.6554    1.0504    0.1951    0 
 
 
Following the lattice strategy we can set out the model of two completely different 

distributions and the hypotheses within that model in a self explanatory lattice 

diagram (Figure 3.1). We are now within the structure of standard multivariate 
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analysis apart from the constraints of the simplicity postulate in the order and nature 

of the hypothesis testing within the model. To simplify matters here we use the 

asymptotic forms of the generalised likelihood ratio test statistics, the Q of Section 

2.7, to be compared against appropriate chi-squared percentiles.. The computational 

procedures are uninteresting and can be found in Aitchison (1986, Section 7.5). The  

only unusual feature is the computation for the hypothesis µ µ1 2=  with different 

covariance matrices, commonly referred to as the Fisher-Behrens problem. 

 

 
Model 

L

L

5
1 1

5
2 2

( , )

( , )

π

µ

Σ

Σ
 

No of parameters 28 
 

 
 
 µ µ1 2=                     Σ Σ1 2=  
No of parameters 24   Level 2  No of parameters 18 
Test statistic 160.8      Test statistic 10.7 
 
 
 
     Level 1 

µ µ1 2

1 2

=
=Σ Σ

 

    Test statistic 46.7 
 
 

Fig. 3.1   Lattice of hypotheses for comparison of hongite and kongite compositions 
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The sequence of tests are then as follows. The hypothesis at level 1, that the hongite 

and kongite distributions are identical compares the value of the Q-statistic 46.7 

against the 95 percentile of χ 2 14( ) , namely 23.7, and so we reject this hypothesis and 

move up to testing the hypotheses at level 2. The hypotheses that the mean vectors are 

equal, allowing different covariance matrices, has a Q-statistic value of 160.8, to be 

compared with the 95 percentile of χ 2 34( ) , namely 36.4, and so again this 

hypothesis has to be rejected. Finally the hypothesis that the covariance matrices are 

equal but that the mean vectors are different has a Q-statistic value of 10.7 to be 

compared with the 95 percentile of χ 2 6( ) , namely 12.6. Thus we cannot reject this 

hypothesis and so would conclude that a reasonable working model would assume 

equal covariance structure for hongite and kongite but with different mean vectors. 
 

Along the lines of Section 2.9 we could apply the leaving-one-out technique to 

compute the atypicality indices of the hongite and kongite sets. For example, for the 

hongite set theses are: 

 

Speciment A B C D E Atypicality 
index 

1 48,8 31,7 3,8 6,4 9,3 0,7122 
2 48,2 23,8 9,0 9,2 9,8 0,0171 
3 37,0 9,1 34,2 9,5 10,2 0,1990 
4 50,9 23,8 7,2 10,1 8,0 0,0318 
5 44,2 38,3 2,9 7,7 6,9 0,7086 
6 52,3 26,2 4,2 12,5 4,8 0,8284 
7 44,6 33,0 4,6 12,2 5,6 0,8822 
8 34,6 5,2 42,9 9,6 7,7 0,9689 
9 41,2 11,7 26,7 9,6 10,8 0,1000 

10 42,6 46,6 0,7 5,6 4,5 0,9873 
11 49,9 19,5 11,4 9,5 9,7 0,1678 
12 45,2 37,3 2,7 5,5 9,3 0,7012 
13 32,7 8,5 38,9 8,0 11,9 0,8148 
14 41,4 12,9 23,4 15,8 6,5 0,7405 
15 46,2 17,5 15,8 8,3 12,2 0,2679 
16 32,3 7,3 40,9 12,9 6,6 0,7508 
17 43,2 44,3 1,0 7,8 3,7 0,7298 
18 49,5 32,3 3,1 8,7 6,3 0,1454 
19 42,3 15,8 20,4 8,3 13,2 0,5135 
20 44,6 11,5 23,8 11,6 8,5 0,3501 
21 45,8 16,6 16,8 12,0 8,8 0,0990 
22 49,9 25,0 6,8 10,9 7,4 0,0739 
23 48,6 34,0 2,5 9,4 5,5 0,8282 
24 45,5 16,6 17,6 9,6 10,7 0,2800 
25 45,9 24,9 9,7 9,8 9,7 0,2864 
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The hongite specimens with atypicality index in excess of 0.95 are specimens no 8 

(0.97) and no 10 (0.99). From inspection of the components we can see that for no 8 

the atypicality probably arises from the relatively low value of the B component, and 

for no 10 the relatively low value of the C component. Clearly we should place these 

in a possible outlier category and refer the question of possible reasons to the 

geologist. 

 

What remains is to answer the question as to whether the new composition [44.0, 

20.4, 13.9, 9.1, 12.6] can be regarded as typical of the hongite experience. Here a 

straightforward application of the new case atypicality computation of Section 2.9 

produces an atypicality index of  0.997, raising substantial doubt as to the hongiteness 

of this new specimen. 

 

 

3.2 Compositional regression analysis: the dependence of Arctic lake sediments on 

depth 

 

We asked the question in Example 2 of Section 1.1 whether the Arctic lake sediments 

of Table 1.1.2 were dependent of depth and, if so, what is the nature of the 

dependence. Again the alr transformation of the 3-part sediment compositions 

produces two-dimensional vectors in real space and we can then consider a 

straightforward multivariate (bivariate) regression on some function of depth. In this 

respect we follow the two-dimensional counterpart of the lattice used as an 

introductory example in Section 2.7. This is shown in Fig 3.2.a in which the various 

hypotheses on the functional form of the regressand and their rela tionships to each 

other are detailed. The tests of these hypotheses within the model (based on ratios of 

determinants of residual matrices) are a familiar part of unconstrained multivariate 

analysis and need not be dwelt on here; details can be found in Aitchison (1986, 

Sections 7.6-7.9).  
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Fig. 3.2.a   Lattice of hypotheses for investigation of the dependence of Arctic lake sediments on water 

depth, showing residual determinants |Rh| and significance probabilities Ph. 
 

The test at level 1 dismisses the hypothesis of no dependence on depth. Stepping up to 

level 2 the linear hypothesis is dismissed, but the simple logarithmic hypothesis 

cannot be dismissed. If we had in fact reached level 3 we would have found the 

quadratic and linear- logarithmic dependence hypotheses also acceptable. Lattice 

testing prefers the logarithmic dependence because it provides a simpler working 

model with only four regression parameters, compared with the six parameters of the 

hypotheses at level 3. 

 

The working model in alr logratio terms can thus be expressed in the following terms: 

 

log( / ) log( )
log( / ) log( )

sand clay depth error
silt clay depth error

= + +
= + +

α δ
α δ

1 1 1

2 2 2
 , 
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with fitted model: 

 

log( / ) . . log( )
log( / ) . . log( )

sand clay depth
silt clay depth

= −
= −

9 70 2 74
4 80 110

 . 

 

It should be emphasised here that this compositional regression is permutation 

invariant. In particular, a different choice of divisor in the alr transformation would 

have led to compatible results. Indeed the log(sand/silt) regression expression can be 

obtained by a simple subtraction of the two forms above, giving 

 

log( / ) . . log( )sand silt depth= −4 90 1 64 . 

 

The working model here clearly conforms to theories that as depth increases sand 

gives way to silt and more so to clay with these differential effects decreasing with 

depth. It would be interesting to compare the rates of change associated with such 

processes for different locations. 

 

The stay-in-the-simplex versions of these are the compositional regression 

 

    composition depth= ⊕ ⊗[ . . . ] log( ) [ . . . ]0 9928 0 0071 0 0001 0 046 0 238 0 716 . 

 

This provides the same interpretation of the regression as the transformation 

regression: as depth increases sand gives way to silt and more so to clay with 

differential effects decreasing with depth. Which  characterisation of the regression is 

chosen may well depend on personal choice. 

 

Here we can show the regression line within the  [sand  silt  clay]  ternary diagram as 

in Figure 3.2.b. The fit is obviously reasonably convincing. 
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Sand

Silt Clay

 
 

Fig. 3.2.b   Arctic sediments and regression line of sediment on logarithm of depth. 
 

Residual analysis can obviously be carried out either in terms of the transformed 

regression or in a stay- in-the simplex format. Since the latter is less familiar we 

demonstrate it briefly. This simply involves computation and investigation of the 

residual compositions, namely composition fitted compositionΘ . The residual 

compositions here are: 

 
sediment sand silt clay res_sand res_silt res_clay 

1 77,5 19,5 3,0 0,3661 0,2596 0,3744 
2 71,9 24,9 3,2 0,3766 0,3028 0,3206 
3 50,7 36,1 13,2 0,1583 0,2257 0,6160 
4 52,2 40,9 6,6 0,2304 0,3523 0,4173 
5 70,0 26,5 3,5 0,5081 0,2751 0,2168 
6 66,5 32,2 1,3 0,5550 0,3614 0,0836 
7 43,1 55,3 1,6 0,3727 0,5461 0,0812 
8 53,4 36,8 9,8 0,3692 0,2728 0,3580 
9 15,5 54,4 30,1 0,0837 0,2665 0,6499 
10 31,7 41,5 26,8 0,2044 0,2180 0,5776 
11 65,7 27,8 6,5 0,6040 0,2036 0,1924 
12 70,4 29,0 0,6 0,7652 0,2181 0,0166 
13 17,4 53,6 29,0 0,1518 0,2952 0,5530 
14 10,6 69,8 19,6 0,1670 0,4747 0,3583 
15 38,2 43,1 18,7 0,5052 0,2329 0,2619 
16 10,8 52,7 36,5 0,1816 0,3118 0,5066 
17 18,4 50,7 30,9 0,3110 0,2885 0,4005 
18 4,6 47,4 48,0 0,0760 0,2743 0,6497 
19 15,6 50,4 34,0 0,3182 0,2887 0,3931 
20 31,9 45,1 23,0 0,6110 0,2031 0,1858 
21 9,5 53,5 37,0 0,2530 0,3338 0,4132 
22 17,1 48,0 34,9 0,4127 0,2595 0,3278 
23 10,5 55,4 34,1 0,2996 0,3424 0,3580 
24 4,8 54,7 41,0 0,1518 0,3736 0,4746 
25 2,6 45,2 52,2 0,1206 0,3371 0,5423 

Direction of 
increasing depth 
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sediment sand silt clay res_sand res_silt res_clay 
26 11,4 52,7 35,9 0,4164 0,3019 0,2818 
27 6,7 46,9 46,4 0,2910 0,3060 0,4030 
28 6,9 49,7 43,4 0,3047 0,3236 0,3716 
29 4,0 44,9 51,1 0,2353 0,3277 0,4371 
30 7,4 51,6 40,9 0,4057 0,3178 0,2764 
31 4,8 49,5 45,7 0,3051 0,3473 0,3476 
32 4,5 48,5 47,0 0,3157 0,3438 0,3406 
33 6,6 52,1 41,3 0,4375 0,3190 0,2435 
34 6,7 47,3 45,9 0,4725 0,2808 0,2467 
35 7,4 45,6 46,9 0,5020 0,2585 0,2395 
36 6,0 48,9 45,1 0,4587 0,2994 0,2418 
37 6,3 53,8 39,9 0,4711 0,3210 0,2080 
38 2,5 48,0 49,5 0,2877 0,3893 0,3229 
39 2,0 47,8 50,2 0,2677 0,4088 0,3235 

 

These should be spread around the centre of a ternary diagram, as in Figure 3.2.c. The 

question of outliers among these residuals obviously arises. We report that there are 

two sediment compositions -S12 and S7- with residual atypicality indices of 0.9998 

and 0.9990, respectively. 

 

sand

silt clay

Arithmetic Mean
Geometric Mean

 
 

Fig. 3.2.c   Residuals of the Arctic sediments fitted by the regression line of sediment on logarithm of 
depth 
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3.3 Compositional invariance: Economic aspects of household budget patterns 

 

In the literature of consumer demand analysis there have been only a few attempts to 

incorporate compositional analysis directly into the analysis of household budgets. 

This technique has many advantages and provides opportunities for new forms of 

investigation. Suppose the w is a record of household expenditure on D mutually 

exclusive and exhaustive commodity groups so that t w wD= + +1 . . .  is total 

expenditure and x C w= ( ) is the proportional pattern of allocation to the groups. 

 

Logcontrast linear modelling with p x t( | )  of L tD ( log , )α β+ Σ form has interesting 

consequences. First, the sometimes troublesome budget constraint or Engel 

aggregation (Brown and Deaton, 1972, 1163), that for each household total 

expenditure should equal the sum of all commodity expenditures, is automatically 

satisfied. Secondly, the hypothesis of compositional invariance β = 0 , that 

composition is independent of size, has a direct interpretation in terms of the income 

elasticities ε ∂ ∂i iw t i D= =log / log ( , . . , )1  of demand, if for the moment and for 

simplicity we identify household total expenditure with household income. In 

expectation terms 

 

β ε εi i D i D= − = −( , . . ., )1 1  

 

so that compositional invariance, not surprisingly, corresponds to equality of all D 

income elasticities. Thirdly, whether or not there is compositional invariance, the 

modelling can clearly be extended to a full consumer demand analysis by the 

incorporation of commodity prices and other covariates such as household type and 

household composition into the mean parameter of the logistic normal distribution. 

Indeed, such an extension can be shown to be identical with the Houthakker (1960) 

indirect addilog model of consumer demand (Brown and Deaton, 1972, Equation 

115), 

 

In the above discussion we have identified household total expenditure t with 

household income s. This is not an essential feature of the modelling since we could 

approach it through the conditioning p s t x p s p t s p x s t( , , ) ( ) ( | ) ( | , )=  with perhaps a 
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reasonable assumption that, for given total expenditure t, the pattern x is independent 

of income s, leading to the above concentration on p x t( | ) . 

 

As a simple start to our analysis of the household budgets of Table 1.1.3 let us first 

apply tests of compositional invariance separately to the 20 single male households 

and to the 20 single female households. Estimation and testing follows standard 

unconstrained multivariate analysis, with the result that we reject the hypothesis of 

compositional invariance for both single male and single female households. Thus for 

each set there is strong evidence against the hypothesis of compositional invariance: 

in other words, the patterns of expenditures do appear to depend on total expenditure. 

 

From the relationship above we see that although the D ‘income’ elasticities are not 

determined by the D – 1 regression coefficients they can at least be placed in order of 

magnitude. The commodity groups arranged in increasing order of elasticity, that is, 

in conventional economic terminology from necessity to increasing luxury groups are 

(for each gender): 

 

1. Foodstuffs, including alcohol and tobacco 

2. Housing, including fuel and light 

3. Services, including transport and vehicles 

4. Other goods, including clothing, footwear and durable goods 

 

The fact that the ordering is the same for males and females raises the question of 

whether the dependence of pattern on total expenditure is really different for males 

and females. This suggests that it might have been more fruitful to consider 

hypotheses expressed in terms of the parameters of the model 

 

y tM M= +α β log  + error,    for males; 

y tF F= +α β log  +  error,     for females. 

 

Note that the separate compositional invariance hypotheses tested above are the 

hypotheses βM = 0  and βF = 0  at level 2. All the hypotheses of the lattice can be 

tested within the standard framework of multivariate linear modelling. We omit the 
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details here but show on the lattice the significance probabilities associated with each 

hypothesis, noting that we can move up the lattice by rejection until level 3 where we 

would fail to reject the hypothesis α α= F . 

 

Before we leave this example we point out that it would be straightforward to 

introduce some concomitant feature such as age on which pattern may depend and test 

hypotheses within the associated more general model. 

 

 

3.4   Testing perturbation hypotheses: Change in cows’ milk  

 

The data of Table 1.1.4 are of a before- and after-nature. Each cow has had milk 

composition determined at the beginning and at the end of the trial and so we have 

essentially, in standard statistical analysis terms, paired comparisons. The major 

difference is that we require to use a measure of difference appropriate to 

compositional change and we have seen this to be perturbation. Thus for each cow we 

record the set of perturbations below. 

 

Control group: compositional change  
Ident_cow pr mf ch Ca Na K 

C1 0,1389 0,2278 0,1553 0,1699 0,1400 0,1680 

C2 0,1377 0,1661 0,1540 0,2066 0,1549 0,1807 

C3 0,1464 0,1525 0,1672 0,1976 0,1572 0,1792 

C4 0,1950 0,1564 0,1562 0,1993 0,1163 0,1768 

C5 0,1988 0,1423 0,1507 0,1869 0,1470 0,1742 

C6 0,1498 0,1979 0,1858 0,1782 0,1237 0,1645 

C7 0,1467 0,1552 0,1828 0,1778 0,1564 0,1812 

C8 0,1109 0,2690 0,1466 0,2046 0,0996 0,1693 

C9 0,1198 0,2005 0,1351 0,1984 0,1654 0,1807 

C10 0,2164 0,1624 0,1687 0,1818 0,1111 0,1597 

C11 0,1792 0,1585 0,1358 0,1907 0,1645 0,1713 

C12 0,1650 0,1836 0,1401 0,1896 0,1477 0,1740 

C13 0,1744 0,1999 0,1742 0,1608 0,1310 0,1597 

C14 0,1319 0,1689 0,1338 0,2055 0,1713 0,1886 

C15 0,1482 0,2426 0,1544 0,1524 0,1476 0,1549 

C16 0,1857 0,1891 0,1810 0,1829 0,1042 0,1571 

C17 0,1497 0,1552 0,1419 0,2027 0,1623 0,1883 

C18 0,1518 0,1703 0,1412 0,1656 0,2064 0,1646 

Ident_cow pr mf ch Ca Na K 

C19 0,1582 0,1437 0,1682 0,1852 0,1733 0,1713 
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C20 0,1683 0,1832 0,1618 0,1659 0,1643 0,1565 

C21 0,1394 0,2128 0,1999 0,1619 0,1336 0,1523 

C22 0,1687 0,1570 0,1399 0,1883 0,1632 0,1829 

C23 0,1988 0,1436 0,1529 0,1809 0,1537 0,1700 

C24 0,1870 0,1770 0,1561 0,1754 0,1424 0,1622 

C25 0,1243 0,2008 0,1520 0,2043 0,1346 0,1840 

C26 0,1686 0,2286 0,1465 0,1641 0,1373 0,1549 

C27 0,1512 0,1692 0,1658 0,1865 0,1508 0,1766 

C28 0,2033 0,2042 0,1676 0,1460 0,1344 0,1445 

C29 0,1455 0,1817 0,1783 0,1519 0,1798 0,1628 

C30 0,1451 0,2350 0,1886 0,1696 0,1195 0,1422 
 

Treatment group: compositional change   

Ident_cow pr mf ch Ca Na K 

T1 0,1753 0,1459 0,1552 0,2122 0,1642 0,1473 

T2 0,2090 0,0937 0,1313 0,2341 0,1717 0,1603 

T3 0,2387 0,1207 0,1497 0,1832 0,1652 0,1426 

T4 0,2398 0,1345 0,1726 0,2310 0,0896 0,1326 

T5 0,1173 0,1647 0,1535 0,2482 0,1577 0,1586 

T6 0,1701 0,1063 0,1524 0,2508 0,1826 0,1379 

T7 0,2018 0,1109 0,1166 0,2800 0,1471 0,1436 

T8 0,2142 0,0944 0,1472 0,2488 0,1536 0,1418 

T9 0,1890 0,1622 0,2066 0,2182 0,0965 0,1274 

T10 0,2097 0,1431 0,1706 0,2082 0,1435 0,1249 

T11 0,1562 0,1611 0,1901 0,2452 0,1126 0,1349 

T12 0,1292 0,2046 0,1977 0,2104 0,1313 0,1268 

T13 0,2538 0,1314 0,1499 0,1665 0,1655 0,1328 

T14 0,1959 0,1289 0,1612 0,2324 0,1370 0,1448 

T15 0,2154 0,1707 0,1713 0,2456 0,0875 0,1095 

T16 0,1748 0,1715 0,1458 0,1959 0,1795 0,1326 

T17 0,1446 0,1634 0,1757 0,2265 0,1375 0,1523 

T18 0,1690 0,1918 0,1625 0,2510 0,0992 0,1264 

T19 0,1791 0,1607 0,1792 0,1990 0,1221 0,1599 

T20 0,2149 0,1210 0,1446 0,2589 0,1090 0,1516 

T21 0,1799 0,1545 0,1605 0,2272 0,1408 0,1371 

T22 0,1723 0,1566 0,1638 0,2460 0,1299 0,1314 

T23 0,1778 0,1285 0,1905 0,2468 0,1161 0,1403 

T24 0,2045 0,1670 0,1612 0,2124 0,1248 0,1301 

T25 0,2063 0,1206 0,1428 0,2287 0,1461 0,1555 

T26 0,2709 0,1018 0,1207 0,2491 0,1226 0,1349 

T27 0,2099 0,1188 0,1450 0,2617 0,1047 0,1598 

T28 0,2046 0,1370 0,1325 0,2779 0,1111 0,1369 

T29 0,2808 0,1252 0,1390 0,1813 0,1328 0,1408 

T30 0,1245 0,1871 0,1554 0,2084 0,1573 0,1672 
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We can address the problems that we face here in three stages by posing three 

questions. 

 

Question 1.   Is there any evidence of seasonal change in milk composition. In other 

words is there any evidence of differences in the milk compositions of the control 

group between the beginning and end of the trial? Phrased as a compositional 

hypothesis this is simply a question of whether the centre of the control group 

perturbations is the identity perturbation. Transformed into logratio terms this is 

simply asking whether the mean of the  alr  vectors is a zero vector, a hypothesis 

easily tested under standard multivariate analysis. The Q-statistic value is 32.5, which 

when compared with the 95 percentile of χ 2 15( ) , namely 25.0, shows significant 

departure from the identity perturbation. We thus conclude that there is some 

evidence of a seasonal change which justifies the insistence of having a control group. 

The centre of the control group perturbations is 

 

[pr   mf   ch   Ca   Na   K]control = [0.1595  0.1835  0.1599  0.1818  0.1458  0.1695]. 

 

Question 2.   Is there similar evidence of a change in the treatment group? Here the Q-

statistic value is even larger, 75.6, again to be compared against the same percentile 

value, and so we have real evidence of change, with the centre of the treatment group 

perturbations being   

 

[pr   mf   ch   Ca   Na   K]treat  = [0.1928  0.1416  0.1589  0.2309  0.1338  0.1420]. 

 

Question 3.   The remaining question is to ask whether there are differences between 

the control and treatment group perturbations and this question can be answered by 

using a separate sample lattice identical to that for the hongite-kongite comparison of 

Section 3.1. The three Q-statistics in the same order as for the previous example are 

153.7, 45.6 and 212.0 to be compared against 95 percentiles of the chi-squared 

distribution at 20, 15 and 5 degrees of freedom, all giving significant differences. 

Thus there is strong evidence of differences between control and treatment changes.  
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A good indication of what the nature of this change is can be obtained by computing 

the perturbation difference between the control and treatment perturbation centres, 

namely 

 

[pr   mf   ch   Ca   Na   K]treat-control = [0.2015  0.1286  0.1656  0.2117  0.1529  0.1397]. 

 

Thus we can see that relatively there is enhancement of protein, carbohydrate and 

calcium, presumably a successful nutritional result. 

 

 

3.5   Testing for distributional form 

 

3.5.1   Introduction 

For compositional problems in which the analysis depends in an assumption of 

distributional form tests can be applied to assess the multivariate normality of the 

transformed logratio vectors. For this purpose there is a whole battery of such tests: 

univariate marginal tests, bivariate angle tests, multivaria te radius tests, with different 

forms of test statistics: Anderson-Darling, Cramer-von Mises, Watson, with 

accompanying useful graphical plots. All of these are examined in great detail in 

Aitchison (1986) and need not divert us here from the main task of presenting 

principles and practice of compositional data analysis. There has been discussion of 

whether the choice of divisor in the alr transformation is crucial to the result. So here 

we present a simple alternative avoiding this problem and which may also provide 

some measure of the degree of success of the normality assumption. 

 

 

3.5.2   A useful characterisation of compositional distributional forms 

The form of the simplicial singular value decomposition suggests a useful way in 

which to characterise compositional distributions. Suppose that we express a generic 

D-part composition  x  in the form  

 

x u uD D D= ⊕ ⊗ ⊕ ⊕ − − −ξ π β π β( ) . . . ( )1 1 1 1 1 1  
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Now if we assume that u =  [u1 . . .  uD-1] follows a (D-1)-dimensional normal 

distribution N D-1(0, ID-1), then it is simple to establish that  x  follows a logistic 

normal distribution with center ξ  and centred logratio covariance matrix Γ  

expressible in terms of )(πdiag=Π  and Β as ,)()( Tclrclr ΒΠΒ=Γ where clr denotes 

the operation of forming centred logratios from the rows of Β . Similarly a logistic-

Student distribution is obtained with the same centre and covariance matrix and with 

ν  degrees of freedom when  u  follows a ),0,( 1
1

−
−

D
D ISt ν distribution. Further a 

logistic skew normal distribution for  x  is obtained if u follows a multivariate skew 

normal distribution with density function ).(),0|( 1
1 T

D
D uIu γφ Φ−

−  

 

We note at this point that this characterisation in terms of the u-distribution is useful 

for simulation purposes since it requires only simple simulation algorithms for 

standardised distributions. Simulated data is here useful for testing the effectiveness 

of the distributional form tests.  

 

3.5.3   Testing procedures 

The remaining problem is how to exploit these characterisations for the purpose of 

testing distributional forms. We shall have available a compositional data set, a 

DN ×  matrix X  whose rows Nxx ,...,1  are N D-part compositions and the first step 

in testing is to arrive at the appropriate N (D-1)-real vectors u on which to base the 

tests. This is easily done through the compositional singular value decomposition of 

X. 

 

The first step is to estimate the parameters in the above characterisation. This is easily 

done from the standard singular value decomposition of the doubly centred matrix Z 

constructed form the log X. Suppose that the standard singular value decomposition of 

Z is TUPVZ = , where U and V have zero-sum orthonormal columns and 

),...,( 11 −= DppdiagP , where 11 ,..., −Dpp  are the singular values in descending 

order of magnitude. Then it is easy to see that our estimates of the parameters ξ, ,Π Β 

in the power-perturbation characterization  are cen(X), 1/ −NP  and   

)(1 TVclr − . Also, and importantly for our distributional form testing here the  u  

vectors for the individual compositions are given as the rows of  .1−NU   
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The aim is then to test these  uni  (i = 1, . . . , D; n = 1, . . . , N) for compositional form.  

Let us take the specific case of  testing the compositional data set for additive logistic 

normality. The philosophy behind the testing procedure described below is that 

through the singular value decomposition we have a picture of the dimensionaly of 

the data set with known proportions of the total variability explained by increasing 

degrees of approximation. We would surely be reasonably happy if we were sure that 

for 99 percent of the variability we had satisfied ourselves of additive logistic 

normality. In this procedure the first column of $U represents the first order 

approximations with a proportion p1 explained, the first two columns of $U the second 

order approximation with a proportion p2 explained, and so on. Thus in terms of the 

marginal, bivariate and radius tests as described in Aitchison (1986, Section 7.3) the 

sequence of testing proceeds as follows. 

 

First order tests.  Subject the first column of $U to marginal tests. 

Second order tests.  Subject the second column of $U to marginal tests; columns 1, 2 

to bivariate angle tests; and columns 1, 2 to radius test. 

Third order tests.  Subject the third column of $U to marginal tests; columns 1,3 

and 2, 3 to bivariate angle tests; and columns 1, 2, 3 to radius tests.  

 

And so on until the desired degree of approximation is achieved.  

 

 

3.6 Related types of data 

 

3.6.1 Probability statement data 

Statisticians will readily recognize that all the above arguments relating to 

compositional data equally apply to probabilistic statements. It is clear that the 

standard practice of measuring probabilities on the scale of 0 to 1 is merely a 

convention and that any meaningful probabilistic statement can be expressed in terms 

of ratios, equivalently odds. 
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For example, subcompositional coherence is simply conditional probability 

coherence. A clinician may be faced with a differential diagnostic problem among 

five forms (1, 2, 3, 4, 5) of which 1, 2, 3, are malignant and 4, 5 benign. At a stage in 

the diagnostic process the clinician,  having ruled out the benign forms 4 and 5, may 

wish to make a conditional probabilistic statement involving only the malignant states 

1, 2, 3. The process of moving from the full probabilistic statement to the conditional 

probability statement is exactly analogous to the closure operation of forming a 

subcomposition from a full composition. Moreover, clearly there is also a principle of 

conditional coherence, analogous to the subcompositional coherence principle, that 

must apply here. 

 

In relation to probability statements the perturbation operation is a standard process. 

Bayesians perturb the prior probability assessment x on a finite number D of 

hypotheses by the likelihood  p  to obtain the posterior assessment  X  through the use 

of Bayes’s formula. Again, in genetic selection, the population composition x of 

genotypes of one generation is perturbed by differential survival probabilities 

represented by a perturbation p to obtain the composition X at the next generation, 

again by the perturbation probabilistic mechanism .  

 

3.6.2 Granulometric data 

Granulometric data obtained by sieving techniques are not histograms, as commonly 

defined, but are weight (or volume)_x_diameter profiles. Mathematically they are 

third moment distributions of the basic grain diameter distribution, a fact apparently 

first noted by Hatch (1933); see also Aitchison and Brown (1956) for further details 

and its relation to the Kolmogorov (1941) breakage model. Thus it could be argued 

that fitting a probability distribution to such an object is every bit as weird as 

considering the profile as a composition. Indeed to move from a weight_x_diameter 

profile to a diameter histogram is nothing more than a perturbation operation. For 

example if the weight_ x_diameter profile has H diameter intervals I1 , . . . , IH , with 

centers d1, . . . , dH  and with associated proportional weights p1 , . . . , pH, then on the 

assumption of uniform specific gravity, the diameter histogram q1 , . . . , qH  is 

approximated by the perturbation [d1
-3, . . . , dH -3] ⊕  [p1 , . . . , pH]. A consequence of 

the perturbation invariance property of the compositional metric is that the distance 

between profiles is the same as between histograms, a clearly desirable property. 
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Whether grain-size data is considered as grouped ordinal data and some class of 

univariate distributions is used to characterize each such ‘histogram’ or each 

histogram is considered a compositional vector is certainly an open question. In  

situations where the objective is to compare a number of weight_x_diameter profiles, 

until a satisfactory class of distributions giving good fits to the histogram emerges, the 

treatment of such data as compositional is certainly viable, with possibilities of 

inferring the nature of an underlying process through the study of possible differential 

perturbation processes. 
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Chapter 4  Developing appropriate methodology for more complex 

compositional problems 

 

 

4.1  Dimension reducing techniques: logcontrast principal components 

 

In unconstrained multivariate analysis principal component analysis is a popular 

means of investigating the dimension of the variability and of hopefully arriving at 

linear combinations of variables, which may have some interpretation within the 

particular discipline. In variation in R D  principal components are the natural 

algebraic form as the inner product of the vector space, namely linear combinations of 

the components. As we have seen in Section 2.3.3 the inner product takes the form of 

a logcontrast of the components of the form: 

 

a x a xD D1 1log . . . log+  , where a aD1 0+ + =. . . . 

 

The variance of such a logcontrast is a a TΓ , where Γ  is the centred logratio 

covariance matrix, and the successive principal logcontrasts are obtained from the 

eigenvectors (corresponding to the non-zero eigenvalues) of the estimate of Γ , and 

have the usual properties of orthogonality and with variances simply related to the 

eigenvalues.  

 

Applied to the hongite experience of Table 1.1.1a we have 51 ,...,aa  coefficients as 

rows of 

  
     log A     log B    log C   log D     log E 
   ----------------------------------------------- 
1st logcontrast  0.1945    0.5876   -0.7840    0.0341   -0.0322 
2nd logcontrast -0.0672    0.0867   -0.0112   -0.7069    0.6986 
3rd logcontrast  0.7899   -0.5598   -0.2295   -0.0707    0.0701 
4th logcontrast -0.3656   -0.3658   -0.3640    0.5423    0.5531 
 
 
with eigenvalues 38.26, 2.186, 0.142, 0.004. The measure of total variability is 1.69 

and the first principal logcontrast ‘explains’ 94.2 percent of this variability, the second 

bringing this to 99.6 percent. Thus we would be justified in regarding the variability 
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of hongite as being largely two-dimensional. Inspection of the first two logcontrasts 

suggests that the first is involved largely in explaining variability within the (A, B, C) 

subcomposition and the second variability within the (D, E) subcomposition, and that 

these variations are orthogonal to each other. The writer can divulge that he had 

forgotten how he had simulated the hongite data set and that this analysis reminded 

him exactly of the details of the simulation.  

 

 

4.2   Simplicial singular value decomposition 

 

For the record we give the staying- in-the-simplex version of logcontrast principal 

component analysis. This is by way of the simplicial singular value decomposition. It 

could reasonably be argued that the major statistical tool in the analysis of 

multivariate data associated with a metric vector space such as R R SD D D, ,+ must be 

the associated singular value decomposition. For a N D×  compositional data matrix 

X with nth composition xn  this, as we have already seen in Chapter 2, takes the form 

 

x u un n nR R R= ⊕ ⊗ ⊕ ⊕ ⊗ξ π β π β( ) . . . ( )1 1 1 . 

 

It is interesting to apply this to a simple compositional data set such as hongite. The 

details of the process of estimation will be taken up in the next section. Here we 

simply record the results. 

 

$ξ =  [0.489    0.220     0.099    0.104    0.088], 

=]ˆ...ˆ[ 41 ππ  [6.185    1.478    0.377    0.066], 
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with the N D× −( )1 set of u coefficients given by  
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Specimen u1 u2 u3 u4 

1 0,1529 0,2871 0,1325 -0,2833 
2 0,0177 0,1155 -0,0512 0,0403 
3 -0,2512 0,0646 0,0109 0,0705 
4 0,0493 -0,0258 0,1437 0,0351 
5 0,2046 0,0752 -0,2816 -0,2748 
6 0,1314 -0,3607 0,2511 -0,2053 
7 0,1359 -0,2561 -0,4477 -0,0110 
8 -0,3336 -0,1047 0,5093 0,0235 
9 -0,1928 0,0984 0,0224 0,0122 
10 0,4027 0,0494 0,1957 0,4844 
11 -0,0298 0,0803 0,1656 -0,1737 
12 0,2084 0,3751 -0,0332 -0,1205 
13 -0,2796 0,2203 -0,1642 0,3033 
14 -0,1612 -0,3733 -0,2201 0,0101 
15 -0,0858 0,2479 0,0340 -0,1349 
16 -0,2951 -0,2955 -0,1939 -0,0771 
17 0,3560 -0,2078 -0,0156 -0,1994 
18 0,1847 -0,0418 0,1284 -0,0841 
19 -0,1311 0,2812 -0,1400 0,1719 
20 -0,1750 -0,1090 0,2042 -0,1500 
21 -0,0952 -0,0859 -0,0731 0,1594 
22 0,0614 -0,0949 0,0350 0,1608 
23 0,2174 -0,1375 0,1050 0,4186 
24 -0,1035 0,1131 -0,0370 -0,2569 
25 0,0114 0,0848 -0,2802 0,0808 

 
    

The connection between this and the logcontrast principal components is simply that 

the eigenvalues correspond to the squares of the π ’s, and that the a-coefficients of the 

logcontrast approach are the clr transforms of the β ’s. The interpretation remains the 

same.  

 

 

4.3   Compositional biplots and their interpretation 

 

The biplot (Gabriel, 1971, 1981) is a well established graphical aid in other branches 

of statistical analysis. Its adaptation for compositional data is simple and can prove a 

useful exploratory and expository tool. For a compositional data matrix X the biplot is 

based on a singular value decomposition of the doubly centered logratio matrix Z = 

[zri], where 

  

∑
=

−−=
N

r
rrirriri xgxNxgxz

1

1 )}..(/log{)}(/log{
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Let Z = U diag(k1, . . . , kR) V t be the singular value decomposition, where m is the 

rank of Z, in practice usually m = D – 1, and where the singular values k1`, . . . , km are 

in descending order of magnitude. The biplot (Figure 4.3.a) then converts the second 

order approximation to Z given by the singular value decomposition into a graphical 

display. Figure 4.3.a consists of an origin O which represents the centre of the 

compositional data set, a vertex at position (k1vi1, k2 vi2)/(N – 1)1/2 for each of the parts, 

labelled 1, . . . , D, and a case marker at position at (N – 1)1/2(ur1, ur2)  for each of the 

N cases, labelled c1, . . . , cN . We term the join of O to a vertex i the ray Oi, and the 

join of two vertices i and j the link ij. These features constitute a biplot with the 

following  main properties for the interpretation of the compositional variability. 

 

 
Fig. 4.3.a   The basic elements of a compositional biplot 
 

 
Links, rays and covariance structure. The links and rays provide information on the 

covariance structure of the compositional data set. 

 

| | var{log( / )}ij x xi j
2 ≈ , 

        )}](/var[log{|| 2 xgxOi i≈ , 

)}](/log{)},(/[log{)cos( xgxxgxcorriOj ii= . 
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It is tempting to imagine that this last relation can be used to replace discredited 

corr(xi, xj) as a measure of  the dependence between two components. Unfortunately 

this measure does not have subcompositional coherence.  

 

A more useful result is the following. If links ij and kl intersect in M then  

 

cos( ) {log( / ), log( / )}iMk corr x x x xi j k l≈ . 

 

A particular case of this is when the two links are at right angles so implying that 

cos( )iMk ≈ 0  and there is zero correlation of the two logratios. This is useful in 

investigation of subcompositions for possible independence.  

 

Subcompositional analysis.  The center O is the centroid (center of gravity) of the D 

vertices 1, . . ., D. Since ratios are preserved under formation of subcompositions it 

follows that the biplot for any subcomposition s is simply formed by selecting the 

vertices corresponding to the parts of the subcomposition and taking the center Os of 

the subcompositional biplot as the centroid of these vertices.  

 
Coincident vertices.  If vertices i and j coincide or nearly so this means that 

var{log(xi/xj)} is zero or nearly so, so that the ratio xi /xj is constant or nearly so. 

 

Collinear vertices.  If a subset of vertices, say 1, . . . , C is collinear then we know 

from our comment on subcompositional analysis that the associated subcomposition 

has a biplot that is one-dimensional, and then a technical argument leads us to the 

conclusion that the subcomposition has one-dimensional variability. Technically this 

one-dimensionality is described by the constancy of  C–2 logcontrasts of the 

components x1, . . . , xC . Inspection of these constant logcontrasts may then give 

further insights into the nature of the compositional variability. 

 

Case markers and recovery of data. Such markers have the easily established property 

that  Ocn . ji  represents the departure of log(xi  /xj) for case cn from the average of this 

logratio over all the cases.  Let  P and Pn in Figure 4.3.b denote the projections of the 
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center O and the compositional marker cc on the possibly extended link ji . Then  

Ocn . ji = ± |PPn| | ji |, 

where the positive sign is taken if the directions of PPn and ji are the same, otherwise 

the negative sign is taken. A simple interpretation can be obtained as follows. 

Consider the extended line ji as divided into positive and negative parts by the point 

P, the positive part being in the direction of  ji from  P. If  Pn falls on the positive 

(negative) side of this line then the logratio of log(xni /xnj)  of the nth composition 

exceeds (falls short of) the average value of this logratio over all cases and the further 

Pn is from P the greater is this excedance (shortfall); if Pn coincides with P then the 

compositional logratio coincides with the average.  

 

 
Fig. 4.3.b   Interpretation of case markers in a compositional biplot 

 
 

A similar form of interpretation can be obtained from the fact that Ocn.Oi represents 

the departure of the centered logratio log{xni /g(xn)} of the nth composition from the 

average of this centered logratio over all replicates.  

 

It must be clear from the above aspects of interpretation that the fundamental 

elements of a compositional biplot are the links, not the rays as in the case of variation 
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diagrams for unconstrained multivariate data. The complete set of links, by specifying 

all the relative variances, determines the compositional covariance structure and 

provides direct information about subcompositional variability and independence. It is 

also obvious that interpretation of the relative variation diagram is concerned with its 

internal geometry and would, for example, be unaffected by any rotation or indeed 

mirror- imaging of the diagram. 

 

Another fundamental difference between the practice of biplots for unconstrained and 

compositional data is in the use of data scaling. For unconstrained data if there are 

substantial differences in the variances of the components, biplot approximation may 

concentrate its effort on capturing the nature of the variability of the most variable 

components and fail to provide any picture of the pattern of variability within the less 

variable components. Since such differences in variances may simply arise because of 

scales of measurement a common technique in such biplot applications is to apply 

some form of individual scaling to the components of the unconstrained vectors prior 

to application of the singular value decomposition. No such  individual scaling is 

necessary for compositional data when the analysis involves logratio transformations. 

Indeed, since for any set of constants (c1, . . . , cD), we have  

 

cov{log(cixi /cjxj),log(ckxk /clxl)} = corr{log(xi /xj),log(xk /xl)} 

 

it is obvious that the covariance structure and therefore the compositional biplot are 

unchanged by any differential scaling or perturbation of the compositions. This, of 

course, is simply an aspect of the perturbation invariance of measures of dispersion 

for compositional data. Only the centering process is affected by such differential 

scaling. Moreover any attempt at differential scaling of the logratios of the 

components would be equivalent to applying differential power transformations to the 

components of the compositions, a distortion which would prevent any compositional 

interpretation from the resulting diagram. 

 

4.4  The Hardy-Weinberg law: an application of compositional biplots and         

logcontrast principal component analysis 
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In the MN blood group system there are three genotypes, namely MN, MM, NN, and 

the proportions of these genotypes within a population provide a blood group 

composition for that population. Table 4.4.1 shows these compositions for 24 native 

populations; the data are reconstructed from Figure 12 of Gower (1987). Let us 

suppose that we know nothing about gene tic theory and decide to explore this data set 

by the construction of a relative variation biplot (Fig. 4.4.a) as described in Section 

4.3. For such a 3-part compositional data set the biplot retains all the variability and 

provides an exact representation of the pattern of variability. The approximate 

collinearity of the vertices MN, MM, NN  indicates that the variability is mainly one-

dimensional and suggests a logcontrast principal component analysis to determine the 

form of the constant logcontrast. Such a principal component analysis (Aitchison, 

1986, Section 8.3) yields the following eigenvalues and logcontrasts 

 

  λ1 2 74= . ,   0.0031 log MN - 0.7091 log MM + 0.706 log NN; 

  λ2 0 079= . ,   0.816 log MN - 0.406 log MM - 0.411 log NN. 

 

Cumulative proportion explained:
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Fig. 4.4.a Biplot of the MN blood group data 
 

 

 

The near-constant logcontrast arises from the near-zero second eigenvalue. Moreover 

the fact that the coefficient 0.816 is approximately twice the coefficients 0.406 and 

0.411 suggests that we can obtain a substantial simplification to our interpretation if 
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we consider the constant logcontrast 

 

2 log MN - log MM -  log NN = constant 

 

We can obtain an estimate 1.348 of the constant from the average value of the 

logcontrast over the sample of 24 compositions. Moreover the fact that this is 

approximately log 4 encourages the following conjecture, 

 

2 log MN - log MM -  log NN = log 4, 

 

a relationship which can be written as 

 

MN 
2
 = 4MM × NN. 

 

Thus through examination of the relative variation biplot and its clear indication of 

the need for a logcontrast principal component analysis we have been led to the 

rediscovery of the fundamental Hardy-Weinberg equilibrium curve. 

  

With this set of 3-part compositions the one-dimensionality of the pattern of 

variability and the Hardy-Weinberg curve are obvious from the well-known 

representation of such compositional data sets in a triangular diagram as in Figure 

4.4.b. Note that the three cases 1, 5 and 19, circled in the biplot of Figure 4.4.a and 

having atypicality indices 0.97, 0.97 and 0.99, are the cases which appear to depart 

most from the Hardy-Weinberg curve in Figure 4.4.b. Omission of any or all of these 

three cases does not materially affect the form of the Hardy-Weinberg curve. 
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Cum. prop. expl.:

0,97

1

Pr. Components:

0,28 0,14 0,58
0,63 0,19 0,18

MN

MM NN

 
 
Fig. 4.4.b The ternary plot of the MN blood group compositions and the Hardy-Weinberg ‘curve’. 

 

We have deliberately used this simple example to demonstrate the effectiveness of 

logratio analysis and its associated relative variation biplot since there seems to 

remain some misunderstanding about the transformation involved. For example, 

Gower (1987, p. 38) mistakenly claims that the logratio transformation fails to cope 

with the curvature in the data. His confusion lies in not distinguishing between 

logarithmic and logratio transformations. He correctly points out that a logarithmic 

transformation, which considers logarithms of components, removes neither the 

constraint nor the curvature in the data. The logarithmic transformation is, however, 

not the relevant transformation for compositional data, which provide information 

only on the relative values or ratios of the components. For successful analysis a 

logratio transformation involving only ratios of components is required, and as we 

have seen above this is highly successful not only in taking account of the unit-sum 

constraint but in modelling the curvature of the Hardy-Weinberg curve. 

 

 

4.5   A geological example: interpretation of the biplot of goilite 

 

Table 4.5.1 reports a compositional data set which will be new to everyone and so no 

preconceived ideas will dictate our analysis. It consists of 20 6-part mineral 

compositions of goilite rocks from a site on the edge of Loch Goil near Carrick 

Castle. I am told that this is an interesting site so let us see what we can discover 
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about it.    

  

Inspection of the variation array of Table 4.5.2 provides little insight into the nature of 

variability of the goilite compositions of Table 4.5.1. In contrast, the relative variation 

biplot of Figure 4.5.a, retaining 98.2 per cent of the total compositional variability, 

allows easy identification of a number of characteristics. For simplicity in our 

interpretation we shall use only the initial letters to identify the mineral parts. First, 

we see that the de link is by far the longest indicating the greatest relative variation in 

the ratios of components is between d and e. Secondly, the near coincidence of the 

vertices a and c implies that the a and c are in almost constant proportion with the 

approximate relationship of  a/c = 0.55 easily obtained from Table 4.5.1 or from the 

estimate -0.605 for E{log(a/c)} in the variation array of Table 4.5.2. Note that in the 

ternary diagram of the abc subcomposition in Figure 4.5.b the representative 

compositional points lie roughly on a ray through the vertex b. Applying the 

approximate 95 percent range formula and noting that 

 

[ga  gb  gc  gd  ge  gf ]   = [0.157   0.207   0.288   0.102   0.055   0.162] 

 

and coefficients of variation  for log(e/f) and log(a/e) are -0.716 and -0.214 we  obtain 

the ranges 

0.073 <  e / f  < 1.59;   0.42 <  a / c  < 0.71. 
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Fig. 4.5.a   Biplot of goilite mineral compositions 
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Arkaigite

Broomite Carronite

Geometric Mean

 
 
Fig. 4.5.b   Ternary diagram for (arkaigite, broomite, carronite) subcompositions showing the near 

proportionality of arkaigite to carronite  
 

Thirdly and most strikingly we see the near-orthogonality of the ab (or cb) link and 

the links de, df and ef.   We can immediately infer that the ratios d/e, d/f and e/f are 

independent of the ratio of a/b or c/b. Another way of expressing this feature is to 

state that the subcompositions [c,d,e] and [a,b] are independent. A formal test of this 

hypothesis of subcompositional independence (Aitchison, 1986, Section 10.3) results 

in a significance probability 0.27 confirming our conclusion. Fourthly, the collinearity 

of the three mineral links de, df and ef and the consequent one-dimensionality of the 

pattern of variability of this (d, e, f)-subcomposition, confirmed by the corresponding 

subcompositional ternary diagram of Figure 4.5.c, implies some relationship between 

the proportions of the minerals d, e and  f. Direct investigation by logcontrast principal 

component analysis leads to the following eigenvalues and corresponding logcontrast 

principal components: 

 

.log792.0log225.0log567.0,567.0
;log194.0log785.0log587.0,79.12

2

1

fed
fef

+−−−=
+−=

λ
λ
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Dhuite

Eckite Fyneite

Geometric Mean

 
 
Fig. 4.5.c   Ternary diagram of the (dhuite, eckite, fyneite) subcompositions showing the one-

dimensional pattern of variability of this subcomposition 
 

The near-constant logcontrast arises from the near-zero second eigenvalue. Moreover 

the fact that the coefficients are roughly in the ratios of  -2 : -1 : 3  suggests that we 

can make a substantial simplification to our interpretation if we consider the constant 

logcontrast 

 

-3 log d - log e + 4 log f  =  constant  =  2.46, 

 

where the constant value is estimated from the sample average of the logcontrast. This 

can be simply converted into the approximate relationship; 

 

    e / f = 0.85 × (f / d)
3

     

 

Whether this suggested 'cubic hypothesis' is worth further investigation as a 

geological finding is a matter for geologists not an ingeolate statistician. 

  

As a final comment here we note that any subcomposition can be viewed as a set of 

logcontrasts (Aitchison, 1984) and so are included in any logcontrast principal 

component analysis for study of the dimensionalty of the pattern of compositional 

variability.             
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4.6   Abstract art: the biplot search for understanding 

 

Inspection of the variation array of Table 2 provided little insight into the nature of 

variability of the colour compositions of Table 1.1.5. In contrast, the relative variation 

biplot of Figure 4.6.a, retaining 98.2 per cent of the total compositional variability, 

allows easy identification of a number of characteristics. First, we see that the red-

yellow link is by far the longest indicating that the greatest relative variation in the 

pictures is between red and yellow. Secondly, the near coincidence of the vertices 

black and other implies that the artist uses black and the non-primary colour in almost 

constant proportion with the approximate relationship of other/black = 1.85 easily 

estimated from Table 1.1.5 or from the estimate 0.605 for E{log(other/black)} in the 

variation array of Table 2. Thirdly only two compositions, those of paintings 14 and 

22, have atypicality indices 0.999 and 0.953 greater than 0.95. From the position of 

the marker for composition 14 in Figure 4.6.a it is clear that this atypicality is 

probably due to a combination of its unusually high ratios of yellow to blue with that 

of white to black, facts easily confirmed from Table 1.1.5. Composition 22 is atypical 

because of its high blue to yellow, white to black and white to other ratios. 

 

Cumulative proportion explained:
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Fig. 4.6.a Biplot of the 22 colour compositions of an abstract artist 

 

Fourthly and most strikingly we see the near-orthogonality of the black-white link (or 

other-white link) and the links blue-red, blue-yellow, red-yellow associated with the 
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primary colours. Thus, we can immediately infer that the ratios in which the artist 

uses the primary colours are independent of the ratio of black to white, or other to 

white. Another way of expressing this feature is that the subcompositions (blue, red, 

yellow) and (black, white) are independent; a formal test of this hypothesis of 

subcompositional independence (Aitchison, 1986, Section 10.3) results in a 

significance probability 0.27 confirming our conclusion. Fifthly, the collinearity of 

the three primary colour links and the consequent one-dimensionality of the pattern of 

variability of the primary subcomposition, confirmed by the corresponding 

subcompositional triangular diagram of Figure 4.6.b implies some relationship 

between the proportions of the primary colours used. Investigation along the lines of 

the previous example leads to an approximate relationship 

 

3 log(blue) + log(red) - 4 log(yellow)  = constant, 

  

or, in terms of ratios of colour use, red/yellow ∝  (yellow/blue)
3
. Whether this 

suggested 'cubic rule' is worth further investigation as an artistic principle is 

questionable, but such relationships can play an important role in compositional 

analysis (Aitchison, 1998). 

 

blue

red yellow

 
 
Fig. 4.6.b Ternary diagram of (blue,red,yellow)-subcompositions of an abstract artist 
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4.7   Tektite mineral and major oxide compositions  

 

As a further example to illustrate compositional biplot technique and to provide some 

unusual features which require care in interpretation we consider a data set for 21 

tektites (Chao, 1963; Miesch et al, 1966), set out in Table 4.7.1, for which the two 

compositions are 8-part major-oxide compositions and 8-part mineral compositions. 

These are subcompositions of the original data set, this reduction being adopted for 

the sake of simpler exposition. While experimentally these two types of compositions 

are determined by completely different processes they are obviously chemically 

related since the minerals are themselves more complicated major oxide compounds. 

The challenge of the conditional biplot of Figure 4.7, with mineral composition as the 

response and major-oxide composition as the covariate, is whether it can at least 

identify these relationships from the compositional data alone, without any additional 

information about the chemical formulae of the minerals, and hopefully provide other 

meaningful interpretations of the data. 

 

 
 
Fig. 4.7    Conditional biplot showing the dependence of the mineral composition on the major 

oxide compositions for tektite compositions 
 
 

A striking feature of the diagram is that it is indeed successful in identifying which 

oxides are associated with which minerals. From Table 4.7.2, which provides the 



Chapter 4   More complex compositional problems 
 

97 

chemical association between minerals and major oxides, we see that, apart from 

SiO
2
, each of the other seven major oxides is associated with only one of the minerals, 

for example MgO is contained only in enstatite. In the biplot diagram each of these 

seven major oxide vertices is close to its corresponding mineral vertex. This means 

that the link associated with any two of these major oxides is nearly parallel to the 

link of the corresponding minerals and so the mineral logratios are all highly 

correlated with the corresponding major oxide logratios. It is in this sense that the 

conditional biplot identifies the chemical relationships. Moreover even SiO
2
, which is 

a constituent of all eight minerals is nevertheless primarily identified with quartz 

which is simply its oxide self. 

 

Table 4.7.2    Oxides and associated minerals in tektite study 
_________________________________________________________________ 
 
 Oxide  Mineral  Abbreviation  Formula 
_________________________________________________________________ 
 SiO2  Quartz   qu   SiO2 
 K2O  Orthoclase  or   KAlSi3O8 
 Na2O  Albite   al   NaAlSi3O8 
 CaO  Anorthite  an   CaAl2Si2O8 
 MgO  Enstatite  en   MgSiO3 
 Fe2O3  Magnetite  ma   Fe3O4 
 TiO    Ilmenite  il   FeTiO3 
 P2O5  Apatite  ap   Ca5(F,Cl)(PO4)3 
__________________________________________________________________ 
 
 

All of this seems splendid until the quality of the approximation is investigated. The 

proportion of the covariance matrix G which is retained by the biplot is only 0.204. 

The reason is not too difficult to detect. The singular value decomposition has 

singular values 1.00, 1.00, 1.00. 0.999, 0.994. 0.868, 0,060 and it would require a 

fourth order approximation and a four-dimensional biplot to raise the quality to a 

reasonable 0.911 proportion retained. The reason for this disappointing quality is 

easily determined. It lies in the fact that within the constraints of compositional data 

each mineral is almost independently related to its major oxide, in the sense that each 

mineral logratio is almost perfectly linearly related to the corresponding major-oxide 

ratio. An analogous situation with unconstrained data would be the assemblage of 
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independent univariate regressions, each with a different response and different 

covariate, into a multivariate regression. The apparent success of the conditional 

biplot lies more in the strength of the individual logratio regressions than in the 

quality of the biplot. It is important here to distinguish between the quality of the 

biplot and the reliability of the logratio regression of mineral on major oxide 

composition. The proportion of the mineral variability explained by the regression can 

be shown to be 0.983. 

 

4.8   Subcompositional analysis 

 

A common problem in compositional data analysis appears to be marginal analysis in 

the sense of locating subcompositions of greatest or of least variability. For this 

purpose the measure of total variation provides for any subcomposition s of a full 

compositions x the estimate of the ratio  

 

trace s trace x{ ( )} / { ( )}Γ Γ  

 

as the proportion of the total variation explained by the subcomposition. In such forms 

of analysis it should be noted that a (1, . . . , C–1)-subcomposition is a set of C–1 

particular logcontrasts and so the variability explained by a C-part subcomposition 

can also be compared with that achieved by the first C–1 principal logcontrasts.  

 

We can illustrate this simply for the hongite experience of  Table 1.1.1a. For example 

for 3-part subcompositions we have the 10 possible subcompositions in ascending 

order of variability (where 1=A. . . . , 5=E): 
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Subcompositions 
Proportion of 

variability 
explained 

A D E 0.08 
A B D 0.17 
A B E 0.20 
B D E 0.27 
C D E 0.44 
A C E 0.51 
A C D 0.53 
B C E 0.90 
B C D 0.91 
A B C 0.94 

 
 

We may note here that the (A,B,C)–subcomposition is the most variable, in 

concurrence with our interpretation of the first logcontrast principal component of 

Section 4.1. We may also note that this proportion 0.94 is comparable to that obtained 

by the first principal logcontrast component. 

 

 

4.9   Compositions in an explanatory role  

 

Another interesting form of subcompositional analysis is where the composition plays 

the role of regressor, for example in categorical regression, where we wish to examine 

the extent to which, for example, type of rock depends on full major oxide 

composition or some subcomposition. For binary regression a sensible approach is to 

set the conditional model of type t, say 0 and 1, for given composition  x  as follows: 

 

)log()|0(1)|1(
10 i

D

i i xFxtprxtpr ∑ =
+==−== αα , where α ii

D

=∑ =
1

0 . 

 

Hypotheses that the categorization depends only on a subcomposition, for example on 

the subcomposition formed from parts 1, . . . , C is then simply specified by 

α αC D+ = = =1 0. . . , and so the whole lattice of subcompositional hypotheses can be 

readily and systematically investigated.  

 

A striking example of the use of this technique is to be found in discriminating 
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between two types of limestone. Thomas and Aitchison (1998) show that of the 17-

part (major-oxide, trace element) composition a simple major-oxide subcomposition 

(CaO,Fe2O3,MgO) provides excellent discrimination, equal to that of the full 

composition. Figures 4.9.a and 4.9.b show the separation in logratio and ternary 

diagram space, respectively. 
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Fig. 4.9.a   Scattergram of logratios log(CaO / MgO) and log(Fe2O3/ MgO) for Scottish limestones  
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Fig. 4.9.b   Ternary diagram of ‘centre perturbed’ (CaO, Fe2O3, MgO) subcompositions of Scottish 

limestones  
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4.10  Experiments with mixtures 

 

Another range of problems where compositional data play a role as comcomitants is 

in experiments with mixtures. Here the usual aim is to determine whether and in way 

a quantitative response depends on the composition of a mixture of ingredients. A 

simple and typical example is where the experiment is aimed at determining how the 

microhardness (kg/mm2) of glass depends on the relative proportions of Ge, Sb, Se 

used in its manufacture. Such problems are quite common in many disciplines. There 

is no reason why the response should be univariate. Aitchison and Bacon-Shone 

(1984) give an example of an investigation into how the brilliance and vorticity of  

girandole fireworks may depend on a 5-part mixture of light producing, propellent 

and binding components. Indeed the response may be a composition.  

 

The simplest model for such investigations is clearly when the expected response is a 

logcontrast of the ingredients and it is clear from the discussion of the previous 

section how investigation of subcompositional hypotheses would proceed. It is, 

however, possible to have a more general model involving second power terms in 

logratios, together with a hierarchy of hypotheses of inactivity of parts, of partition 

additivity , completely additive. For full details on the motivation for such definitions, 

for the practical meaning of the hypotheses and for implementation of a testing lattice, 

see Aitchison and Bacon-Shone (1984) and Aitchison (1986, Sections 12.4-5).  

 

 

4.11 Forms of independence 

 

Because of the constant sum constraint, equivalently because of the nature of the 

simplex sample space, independence hypotheses must clearly take radically different 

forms from those associated with R D . For example, the analogue of complete 

independence of components in unconstrained space is for compositional data 

complete subcompositional independence, in which any subset of non-overlapping 

subcompositions is independent. These, of course can be specified in terms of 

associated logratios and in fact result in a particular parameterisation of the 
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covariance structure. Tests of such hypotheses are readily available; see, for example, 

Aitchison (1986, Chapter 10). 

 

We use the time budgets of Table 1.1.6 to provide a very simple example, and 

examine the hypothesis that the work and leisure subcompositions are independent. 

This is almost clear in the biplot of Figure 4.11, in which the links of the working 

parts are roughly at right angles to the links of the leisure parts, indicating lack of 

correlation. The formal test involves testing whether the correlations between work 

logrations and leisure logratios are all zero.  This is easily assessed and results in a 

significance probability of 0.56, so that we cannot reject the hypothesis of 

independence of work and leisure parts of the statistician’s day. 
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Fig.  4.11 Biplot of the time budgets of the statistician’s day 
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Chapter 5  Compositional processes: a statistical search for 

understanding 

 

5.1   Introduction 

 

Most scientists are interested in the nature of the process which has led to the data 

they observe, not least geologists in their search for explanations of how our planet 

has developed geologically. Unfortunately they are seldom in the fortunate position of 

observing a closed system where fundamental principles such as conservation of mass 

and energy apply. Commonly the only data available take the form of compositional 

data providing information only on relative magnitudes of the constituents of the 

specimens. In some disciplines there is a wide variety of terminology associated with 

such realised or hypothetical compositional processes. For example, geological 

language contains many terms to describe a whole variety of envisaged geochemical 

processes, such as denudation, diagenesis, erosion, gravity transport, metasomatism, 

metamorphism, orogenesis, polymetamorphism, sedimentation, transportation, 

weathering. Often the data for the study of such possible processes consist of variable 

compositional vectors, such as major oxide compositions, major and minor element 

compositions, granulometric weight by diameter profiles such as (sand, silt, clay) 

sediments or palaeontological compositions such as foraminifera abundances. It is our 

purpose here to study a variety of ways in which statistical analysis of the variability 

in such data sets may be directed towards quantification of such processes and also, 

where there may be rival hypotheses as to the nature of the geological process, the 

extent to which the nature of the variability may be used to distinguish between the 

hypotheses. 

 

 

5.2   Differential perturbation processes 

 

Many of the terms used by geologists to describe the processes they study appear to 

envisage some kind of differential change in the components of the composition – 

denudation, erosion, sedimentation, metamorphism, weathering. Since differential 
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change in compositions is simply characterised by the simplex operation of 

perturbation this seems the sensible tool for the mathematical statistical study of such 

processes. The fundamentals for such a study were set out in Aitchison and Thomas 

(1998). Briefly the argument went as follows. 

 

Consider a process which results in an observable D-part composition x(t) = [x1(t) , . . 

. ,  xD(t)] which varies with some ordered variable such as time t. Since processes are 

commonly assumed to take place continuously over time we can attempt to describe 

such a process in a time-differential way by relating the composition x(t + dt) at time t 

+ dt to the composition x(t) at previous time t in terms of a small perturbation. Since 

such an infinitesimal perturbation will be a slight departure from  the identity 

perturbation (1/D, . . . , 1/D ) the process can be set out as  

 

x t dt x t D t dt t dtD( ) ( ) ( / )[ ( ) , . . . , ( ) ]+ = ⊕ + +1 1 11δ δ  

 

Sometimes  it is convenient to assume that such a perturbation is in the D-simplex but 

since the perturbation operation is invariant with respect to scale there is strictly no 

need for such a requirement. The original development then moved to a set of 

differential  equation in logratios for which the solution is   

 

{ } )],,...,1()([exp)()(
0

0 Diduutxtx
t

t i =⊕− ∫ δ  

      

where x t( )0 is the known or assumed composition at time t 0 . With differentiation 

now defined on the simplex we note that an alternative expression of the process is in 

terms of the simple differential equation ],...,1:)([exp()( DitCtDx i == δ  with the 

known value at t 0  being the ‘boundary condition’. 

 

An interesting and important special case is where δ γi it h t( ) ( )= , when the 

relationship takes the form of a simple compositional regression in a power-

perturbation form as 

 

    x t x t H t( ) ( ) ( ) ,= ⊕ ⊗0 β   
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where ∫=
t

t
dtthtH

0

)()(  and ].,...,1:)[(exp( DiC i == γβ   

With actual compositional data the regression either in logratio terms or in staying in 

the simplex mode is easily accomplished. The important feature here is the possibility 

of alternative approaches to interpretation. 

 

 

5.3   A simple example: Arctic lake sediments 

 

We continue the example used by Aitchison and Thomas (1998) to illustrate various 

ways of describing the process by which the variability of Arctic lake sediments may 

depend on depth. The previous study arrived at logratio regression equations 

 

log{sand(t) / clay(t)} = 9.70 -2.74 log t;  log{silt(t) / clay(t)} = 4.80 - 1.10 log t, 

 

and differential perturbation relationship 

   

x t dt x t t t t( ) ( ) [ . / ), , / , . / ].+ = ⊕ − + +1
3 1 146 1 018 1 128  

 

The stay-in-the-simplex versions of these are the compositional regression 

 

x t t( ) [ . . . ] log [ . . . ]= ⊕ ⊗0 9928 0 0071 0 0001 0 046 0 238 0 716  

 

and the compositional differential equation 

 

Dx t t( ) ( / ) [ . . . ]= ⊗1 0 046 0 238 0 716  

 

All provide the same interpretation of the process: as depth increases sand gives way 

to silt and more so to clay with differential effects decreasing with depth. Which  

characterisation of the process is chosen may well depend on personal choice. 
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 5.4   Exploration for possible differential processes 

 

Given a compositional data set ];..;.,[ 1 NxxX = forming some possible process but 

with no obvious driving variable such as time, temperature or pressure, it is of interest 

to explore the possibility that there may be some unknown process at work. A suitable 

tool for such an investigation is the simplicial singular value decomposition 

(Aitchison et al, 2002). With each xn  expressible in power-perturbation form: 

 

x u s u sn n n D D D= ⊕ ⊗ ⊕ ⊕ ⊗− − −ξ β β( ) . . . ( ),1 1 1 1 1 1  

 

where ξ  is the centre of the data set. Here the hope is that the singular values are 

decreasing so rapidly that the variability will be described by a low order truncation of 

the power-perturbation combination. 

 

Suppose that for the Arctic lake sediments we were unaware of the possibility of 

depth as a process variable. Then the application of the singular value decomposition 

gives a representation  

 

x u s u sn n n= ⊕ ⊗ ⊕ ⊗ξ β β( ) ( ),1 1 1 2 2 2  

 

where 

].175.0629.0196.0[],560.0304.0136.0[
];258.0564.0178.0[;85..1,51,9

21

21

==
===

ββ
ξss

 

 

The second order approximation explains 96.3 of the total variability. This should 

encourage the search for a possible driving variable. If depth is considered and plotted 

against the resulting u’s a log- like scatter of points is obtained confirming the nature 

of the earlier regression analysis.  

 

The expression of a process in terms of a power-perturbation combination is in 

simplicial terms a range space description. It should be realised that for any range 

space description say range( )Β  there is available a corresponding null space 
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description null( )Β⊥ . This is convenient if the objective is to produce some law-like 

description of the process. This was the situation in Aitchison and Thomas (1998) in 

the study of olivines. There, for example for kimberlitess, the range space approach 

would have resulted in  

 

[ , , ] ( [ . . . ])Fe Mg Si u= ⊕ ⊗ξ 0128 0461 0411  

 

corresponding to the null space law-like description 

 

=−+ SiMgFe log738.0log67222.0log065.0  constant 

 

or equivalently in equilibrium form 

 

.13.1
011.0089.0

=















Si
Mg

Si
Fe

 

 

As a further illustrative analysis of the 25 5-part hongite compositions of Aitchison 

(1986) provides an interesting insight into the variability. The simplicial singular 

value decomposition gives the following results 

 

 

 

The consequence is that the second order power-perturbation approximation explains 

94 percent of the total variability. Moreover the nature of β1  and β2 indicate that the 

first order approximation is associated with stability of the (4,5)-subcomposition with 

the second order complementing this with a subprocess involving the stability of the 

(1, 2, 3)-subcomposition.    

 

s =
=

=
=
=
=

[ . . . . ]
[ . . . . . ]

[
[
[
[

6185 1478 0377 0066
0489 0 220 0 099 0104 0088

1

ξ

β
β
β
β

0.222    0.329    0.084    0.189    0.177]
0.170    0.198    0.179    0.089    0.364]
0.395    0.103    0.143    0.167    0.192]
0.125    0.125    0.125    0.311    0.314]
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5.5   Convex linear mixing processes 

 

Another popular way of studying compositional data is in terms of convex linear 

modelling processes. Such an approach is based on some such assumption as 

conservation of mass There is, of course, no way that compositional data can be used 

to support such a mass conservation hypothesis since compositions carry no 

information about mass. Compositions can, however, be analyzed within models 

which assume conservation of mass. All these models assume that there are source 

compositions, say ξ ξ1 , . . . , C , from which a generic observed composition x arises as a 

convex linear combination 

 

x C C= + +π ξ π ξ1 1 . . .    

 

where π π π= ∈[ , . . . , ]1 C
CS is the vector of mixing proportions. The form of 

modelling obviously depends on the extent of the information about the number of 

sources and the source compositions. At the ‘ignorance end’ neither the number of 

sources nor their compositions are known – the so-called endmember problem as 

presented, for example, in Renner (1993) and Weltje (197). At the opposite extreme 

the problem may be to test a hypothesis that the sources are specified ompositions 

ξ ξ1 , . . . , C . Many intermediate situations can be visualised: an example is the pollution 

problem analysed by Aitchison and Bacon-Shone (1999), where there are not only 

samples from the target set but also sampled compositions from the source. 

 

The additive nature of such modelling does not mean that basic principles of 

compositional data analysis are thereby neglected.  For example an approach to the 

so-called endmember problem where a set of say C endmember compositions 

ξ ξ1 , . . . , C  is sought such that each composition xn
  (n = 1, . . . , N) of the data set can 

be expressed as a convex linear combination nΠ  of ξ ξ1 , . . . , C  , uses as criterion of 

success the magnitude of  

 

∑
=

∆
N

n
nnx

1

2 ),( ξ  
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while monitoring the magnitude of  

 

      ).,(2
cb

cb

ξξ∑
<

∆  

 
All that are required to implement such a procedure are good algorithms for the 

minimisation of functions over a product of simplices. Our own, still at the testing 

stage, are based on an iterative search program where each step involves perturbations 

of the attained position,  For the hongite data set for example on the supposition that 

there are three endmembers these turn out to be  

 

ξ
ξ
ξ

1

2

3

0 358 0 052 0265 0 059 0266
0507 0351 0004 0 085 0053
0 374 0055 0 392 0146 0033

=
=
=

[ . . . . . ]
[ . . . . . ]
[ . . . . . ]

 . 

 

 

5.6   Distinguishing between alternative hypotheses 

 

Each of the processes – differential perturbation and convex linear mixing – will 

result in fitted compositions, say xn
P  and xn

C , for each of the observed compositions 

xn .The goodness of fit G P and GC of each of these processes may then be reasonably 

judged in terms some such measures as  

 

).,(),,(
1

2

1

2 C
nn

N

n

CP
nn

N

n

P xxGxxG ∑∑
==

∆=∆=  

 
In such a comparison, of course, we would be comparing processes of the same order 

of complexity. We do not attempt here to develop any formal statistical test for such a 

comparison. That would certainly involve many assumptions about the nature of the 

residual variability and possibly lead to more argument than any simple sensible 

comparison of the goodness of fit measures. 

 

For the hongite data set we can compare these goodness of fit measures at various 

orders of approximation: 
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      Differential  Convex lineal 
      perturbation                   mixing 
 Order   G P     GC  
    2          2.332           3.731 
    3          0.146           1.851 
    4          0.004           0.402 
    5    0    0    
 

It is fairly clear that for this data set the differential perturbation model has the edge 

over the convex linear model. This is in concurrence with the known method by 

which the data set was originally simulated. 
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Postlude 

 

Pockets of resistance and confusion 

 

There are a number of well-defined categories of response to the problems of 

compositional data analysis. I hope readers do not recognize  their position in any of 

the categories. 

 

The wishful thinkers 
 No problem exists (Gower,1987) or, at worst, it is some esoteric mathematical 

statistical curiosity which has not worried our predecessors and so should not worry 

us.  Let us continue to calculate and interpret correlations of raw components. After 

all if we omit one of the parts the constant-sum constraint no longer applies. 

Someday, somehow, what we are doing will be shown by someone to have been 

correct all the time. 

 

The describers 
As long as we are just describing a compositional data set we can use any 

characteristics. In describing compositional data we can use arithmetic means, 

covariance matrices of raw components and indeed any linear methods such as 

principal components of the raw components. After all we are simply describing the 

data set in summary form, not analyzing it (Le Maitre, 1982). 

 

The openers 
The fact that most compositions are recorded by first arriving experimentally at an 

'open vector' of quantities of the D parts constituting some whole and then forming a 

'closed vector', the composition, seems to have led to a particular form of wishful 

thinking. All will be resolved if we can reopen the closed vector in some ideal way 

and then perform some statistical analysis on the open vectors to reveal the inner 

secrets of the compositions. The notion that there is some magic powder which can be 

sprinkled on closed data to make them open and unconstrained dies hard. Most 

recently Whitten (1995) takes as closed vectors major-oxide compositions of rocks 
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expressed as percentages by weight, scales by whole rock specific gravities to obtain 

'open vectors' recorded in g/100cc. His argument depends on attempts to establish that 

whole rock specific gravity is independent of the composition of the rock (To 

someone with virtually no knowledge of geology a seemingly naive concept) by a 

series of regression studies in which whole rock specific gravities are regressed 

against at most two of the constituent major oxides. Percentages of explanation of 

over 50 per cent are cavalierly regarded as indications of independence. And why we 

may ask was not a regression on the complete set of major oxides considered. These 

would certainly have led to even higher percentages of explanation. Apart from this 

statistical criticism the consequent open vectors are peculiarly placed geometrically, 

being only minor displacements from a different constraining hyperplane. If only such 

openers would realize that in any opened composition the ratios of components are 

the same as in the closed  composition so that any scale invariant procedure applied 

to the opened composition will be identical to that procedure applied to the closed 

composition. Opening compositions is indeed superfluous folly. 

 

The null correlationists 
 Pearson was the originator of this school. The idea developed from a study of  the 

composition (shape) of Plymouth shrimps; see Aitchison (1986, Chapter 3) for an 

account of his ingenious early bootstrap experiment. Others, in particular Chayes and 

Kruskal (1966) and Darroch and Ratcliff (1970, 1978) have attempted this approach. 

The basic idea here is related to the openers’ ideas. Because of the ‘negative bias’ in 

correlations of raw components of compositions, zero correlation obviously does not 

have its usual meaning in relation to independence. There must be some non-zero 

value of such a correlation, called the null correlation, which corresponds to 

‘independence’. Usually the null correlation is surmised by some opening out 

procedure, as for example the oft-quoted Chayes-Kruskall method. The concept of 

null correlation is spurious and indeed unnecessary. All meaningful concepts of 

compositional dependence and independence can be studied within the simplex and in 

relation to the logratio covariance structures already specified.     

 

The pathologists 
A study of the compositional literature suggests that much of compositional data 
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analysis in the period 1965-85 was directed at trying to find some inspiration from 

calculation of crude correlations and other linear methods. Those who were aware that 

things go wrong with crude correlations attempted to describe the nature of the 

disease instead of trying to find a cure. Thus we have many papers with titles such as 

‘An effect of closure on the structure of principal component’ (Chayes and 

Trochimczyk, 1978) and ‘The effect of closure on the measure of similarity between 

samples’ (Butler, 1979). 

 

The non-transformists 
Despite his warning about the spuriousness of correlations of crude proportions, 

Pearson would have been unhappy about the solution through logratio 

transformations. He had bitter arguments (Pearson, 1905, 1906) with some of the 

rediscoverers (for example, Kapteyn, 1903 ) of the lognormal distribution. This lay in 

his distrust of transformations: what can possibly be the meaning of the logarithm of 

weight? I had hoped that we were now sufficiently convinced, particularly in geology, 

that the lognormal distribution has a central role to play in many geological 

applications. But the mention of a logratio of components still brings forth that same 

resistance. What is the meaning of such a logratio is a question posed by Fisher in the 

discussion of Aitchison (1982) and even more recently by Whitten (1995). We hope 

that the analogy with the lognormal distribution and the comments earlier that every 

piece of compositional statistical analysis can be carried out within the simplex may 

mean that this resistance will soon collapse. 

 

The sphericists 
There have been various attempts to escape from the unit simplex to what are thought 

to be simpler or more familiar sample spaces. One popular idea (Atkinson and 

Stephens in the discussion of Aitchison (1982), and Stephens(1982)) is to move from 

the unit simplex DS
 

to the positive orthant of the unit hypersphere by the 

transformation zi = iu   (i = 1, . . . , D) and then to use established theory of 

distributions on the hypersphere. There are two insuperable difficulties about such a 

transformation. First, the transformation is only onto part of the hypersphere and so 

established distributional theory, associated as it is with the whole hypersphere, does 
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not apply. There is clearly no way round this since the simplex and hypersphere are 

topologically different: there is no way of transforming a triangle to the surface of a 

two-dimensional sphere. As serious a difficulty is the impossibility of representing the 

fundamental operation of perturbation on the simplex as something tractable on the 

hypersphere. This is not surprising since the fundamental algebraic operation on the 

hypersphere is rotation and this bears no relationship to the structure of perturbation. 

The additional step of Stanley (1990) in transforming z to spherical polar coordinates 

further complicates such issues. Although the angles involved are scale invariant 

functions of the composition their relationship to the composition is bewilderingly 

complicated. Moreover there would be no subcompositional coherence since in terms 

of our previous discussion scientist B would be transforming onto a hypersphere of 

lower dimension with impossibly complicated relationships between the angles used 

by scientist A and B. 

 

The Dirichlet extenders 
Many statisticians are attempting to extend the Dirichlet class of distributions on the 

simplex in the hope that greater generality will bring greater realism than the simple 

Dirichlet class. Unfortunately I think they are likely to fail, since even the simple 

Dirichlet class with all its elegant mathematical properties does not have any exact 

perturbation properties. 

  

Conclusion 
The only sensible conclusion, it seems to me, is to reiterate my advice to my students. 

Recognize your sample space for what it is. Pay attention to its properties and follow 

through any logical necessities arising from these properties. The solution here to the 

apparent awkwardness of the sample space is not so difficult. The difficulty is facing 

up to reality and not imagining that there is some esoteric panacea.  
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Appendix  Tables 
 
 
 
Table 1.1.1a    Compositions of 25 specimens of hongite 
 
___________________________________________ 
 Specimen    Percentages by weight of minerals  
      no             A          B           C         D         E 
___________________________________________ 
 
    1        48.8      31.7       3.8       6.4        9.3 
    2       48.2      23.8       9.0       9.2        9.8 
    3       37.0        9.1     34.2       9.5      10.2 
    4        50.9      23.8       7.2     10.1        8.0 
    5        44.2      38.3       2.9       7.7        6.9 
     
    6        52.3      26.2       4.2      12.5       4.8 
    7        44.6      33.0       4.6      12.2       5.6 
    8        34.6        5.2     42.9        9.6       7.7 
    9        41.2      11.7     26.7        9.6     10.8 
   10        42.6      46.6       0.7        5.6       4.5 
 
   11        49.9      19.5     11.4        9.5       9.7 
   12        45.2      37.3       2.7        5.5       9.3 
   13        32.7        8.5     38.9        8.0     11.9 
   14        41.4      12.9     23.4      15.8       6.5 
   15        46.2      17.5     15.8        8.3     12.2 
 
   16        32.3        7.3     40.9      12.9       6.6 
   17        43.2      44.3       1.0        7.8       3.7 
   18        49.5      32.3       3.1        8.7       6.3 
   19        42.3      15.8     20.4        8.3     13.2 
   20        44.6      11.5     23.8      11.6       8.5 
 
   21        45.8      16.6     16.8      12.0       8.8 
   22        49.9      25.0       6.8      10.9       7.4 
   23        48.6      34.0       2.5       9.4        5.5 
   24        45.5      16.6     17.6       9.6       10.7 
   25               45.9      24.9       9.7       9.8        9.7 
___________________________________________ 
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Table 1.1.1b    Compositions of 25 specimens of kongite 
 
_____________________________________________ 
 
 Specimen   Percentages by weight of minerals  
       no       A    B          C          D         E 
_____________________________________________ 
 
    1           33.5       6.1     41.3       7.1     12.0 
    2           47.6     14.9     16.1     14.8       6.6 
    3           52.7     23.9       6.0       8.7       8.7 
    4          44.5     24.2     10.7     11.9       8.7 
    5          42.3     47.6       0.6       4.1       5.4 
 
    6           51.8     33.2       1.9       7.0       6.1 
    7           47.9     21.5     10.7       9.5     10.4 
    8           51.2     23.6       6.2     13.3       5.7 
    9           19.3       2.3     65.8       5.8       6.8 
   10           46.1     23.4     10.4     11.5       8.6 
 
   11           30.6       6.7     43.0       6.3     13.4 
   12           49.7     28.1       5.1       8.0       9.1 
   13           49.4     24.3       7.6       8.5     10.2 
   14           38.4       9.5     30.6     14.8       6.7 
   15           41.6     19.0     17.3     13.8       8.3 
 
   16           42.3     43.3       1.6       5.9       6.9 
   17           45.7     23.9     10.3     11.6       8.5 
   18           45.5     20.3     13.6     10.9       9.7 
   19           52.1     17.9     10.7       7.9      11.4 
   20           46.2     14.3     18.5     12.2        8.8 
 
   21           47.2     30.9       4.6       6.3     11.0 
   22           45.4     33.3       4.0     11.9       5.4 
   23           48.6     23.4       8.7     10.7       8.6 
   24           31.2       4.5     47.0     10.2       7.1 
   25           44.3     15.0     19.4     10.5     10.8 
___________________________________________ 
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Table 1.1.2    (sand, silt, clay) compositions (percentages by weight) and water depth     
                       (m) of 39 Arctic lake sediments 
 
_____________________________________________ 
Sediment            Percentages by weight             Water  
     no               sand            silt            clay          depth 
_____________________________________________ 
   1          77.5      19.5       3.0       10.4 
      2           71.9      24.9       3.2       11.7 
      3           50.7      36.1           13.2      12.8 
      4           52.2      40.9       6.6       13.0 
      5           70.0      26.5       3.5       15.7 
  6           66.5      32.2       1.3             16.3 
  7           43.1      55.3       1.6             18.0 
  8           53.4      36.8       9.8             18.7 
  9           15.5      54.4           30.1       20.7 
    10           31.7      41.5           26.8       22.1 
 
    11           65.7      27.8        6.5      22.4 
    12           70.4      29.0        0.6      24.4 
    13           17.4      53.6      29.0      25.8 
    14           10.6      69.8      19.6      32.5 
    15           38.2      43.1      18.7      33.6 
    16           10.8      52.7      36.5      36.8 
    17           18.4      50.7      30.9      37.8 
    18              4.6      47.4      48.0      36.9 
    19           15.6      50.4      34.0      42.2 
    20           31.9      45.1      23.0      47.0 
 
    21             9.5      53.5      37.0      47.1 
    22           17.1      48.0      34.9      48.4 
    23           10.5      55.4      34.1      49.4 
    24             4.8      54.7      41.0      49.5 
    25             2.6      45.2      52.2      59.2 
    26           11.4      52.7      35.9      60.1 
    27              6.7      46.9      46.4      61.7 
    28              6.9      49.7      43.4      62.4 
    29              4.0      44.9      51.1      69.3 
    30             7.4      51.6      40.9      73.6 
 
    31              4.8      49.5      45.7      74.4 
    32             4.5      48.5      47.0      78.5 
    33             6.6      52.1      41.3      82.9 
    34             6.7      47.3      45.9      87.7 
    35              7.4      45.6      46.9      88.1 
    36             6.0       48.9      45.1      90.4 
    37             6.3       53.8      39.9      90.6 
    38             2.5       48.0      49.5      97.7 
    39             2.0       47.8      50.2         103.7 
_____________________________________________  
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Table 1.1.3    Household expenditures (HK$) on four commodity groups of 20 single  
                       men (M) and 20 single women (W) 
 
 
_________________________________________________________________ 
 
      Commodity group         Commodity group 
ID    1          2         3          4  ID          1           2          3          4            
no      no 
_________________________________________________________________ 
 
M1    497  591  153  291  W1  820  114  183  154 
M2  839  942  302  365  W2  184    74      6    20 
M3  789    1308  668  584  W3  921    66    1686  455 
M4  892  842  287  395  W4  488    80  103  115 
M5      1585  781    2476    1740  W5  721    83  176  104 
 
M6  755  764  428  438  W6  614    55  441  193 
M7  388  655  153  233  W7  801    56  357  214 
M8  617  879  757  719  W8  396    59    61    80 
M9  248  438    22    65  W9  864    65    1618  352 
M10    1641  440    6471    2063  W10  845    64    1935  414 
 
M11    1180    1243  768  813  W11  404    97    33    47 
M12   619     684    99  204  W12  781    47    1906  452 
M13   253  422    15    48  W13  457  103  136  108 
M14   661  739    71  188  W14    1029    71  244  189 
M15     1981  869    1489    1032  W15    1047    90  653  298 
 
M16     1746  746    2662    1594  W16   552    91  185  158 
M17 1865  915    5184    1767  W17   718  104  583  304 
M18   238  552    29    75  W18   495  114    65    74 
M19 1199   1095  261  344  W19   382    77  230  147 
M20 1524  964    1739    1410  W20 1090    59  313  177 
_________________________________________________________________ 
 

1 Housing, including fuel and light 
2 Foodstuffs, including alcohol and tobacco 
3 Other goods, including clothing, footwear and durable goods 
4 Services, including transport and vehicles 
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Table 1.1.4  Dietary compositions of the milk of 60, thirty in the control group and 30 
in the treatment group  (pr = protein, mf = milk fat, ch = carbohydrate) 

 
 
Control group before 
______________________________________________ 
       pr           mf            ch          Ca          Na            K 
                                                  10-2 x     10-2 x     10-2 x   
____________________________________________     
 
    0.3098    0.2237    0.4410    0.0103    0.0025    0.0127 
    0.2679    0.3687    0.3377    0.0084    0.0030    0.0144 
    0.2583    0.3392    0.3747    0.0074    0.0047    0.0157 
    0.2450    0.2614    0.4617    0.0090    0.0090    0.0140 
    0.3715    0.1477    0.4514    0.0098    0.0032    0.0163 
    0.2451    0.2987    0.4263    0.0104    0.0032    0.0163 
    0.3797    0.2268    0.3660    0.0064    0.0080    0.0131 
    0.2286    0.2723    0.4709    0.0097    0.0026    0.0159 
    0.2381    0.2182    0.5199    0.0100    0.0016    0.0122 
    0.3731    0.1937    0.4051    0.0109    0.0020    0.0153 
    0.1988    0.4113    0.3632    0.0056    0.0080    0.0131 
    0.3178    0.1908    0.4678    0.0058    0.0067    0.0111 
    0.2446    0.2976    0.4272    0.0114    0.0018    0.0175 
    0.2680    0.2357    0.4731    0.0041    0.0085    0.0106 
    0.3448    0.2428    0.3840    0.0098    0.0040    0.0148 
    0.2107    0.4630    0.2955    0.0154    0.0016    0.0138 
    0.2767    0.1796    0.5177    0.0040    0.0089    0.0130 
    0.3286    0.2883    0.3584    0.0065    0.0038    0.0143 
    0.2168    0.3149    0.4421    0.0083    0.0043    0.0136 
    0.2325    0.2858    0.4544    0.0049    0.0066    0.0157 
    0.3140    0.1600    0.4967    0.0092    0.0053    0.0149 
    0.3007    0.2313    0.4451    0.0084    0.0016    0.0131 
    0.1966    0.3840    0.3933    0.0101    0.0031    0.0128 
    0.1207    0.5170    0.3328    0.0075    0.0042    0.0179 
    0.1728    0.4103    0.3892    0.0112    0.0015    0.0150 
    0.1655    0.5171    0.2841    0.0094    0.0066    0.0173 
    0.3257    0.1735    0.4761    0.0059    0.0044    0.0142 
    0.2177    0.3711    0.3788    0.0147    0.0021    0.0155 
    0.2628    0.3019    0.4022    0.0131    0.0035    0.0164 
    0.3754    0.1718    0.4256    0.0112    0.0009    0.0150 
______________________________________________ 
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Table 1.1.4  (continued) 
 
 
 
Treatment group before 
______________________________________________ 
       pr           mf            ch          Ca          Na            K 
                                                  10-2 x     10-2 x     10-2 x   
____________________________________________     
 
    0.3270    0.1956    0.4500    0.0068    0.0083    0.0123 
    0.3758    0.1720    0.4267    0.0071    0.0057    0.0125 
    0.2473    0.3304    0.3924    0.0086    0.0059    0.0156 
    0.2624    0.2719    0.4344    0.0090    0.0054    0.0169 
    0.2811    0.2700    0.4226    0.0042    0.0108    0.0112 
    0.3456    0.2318    0.4003    0.0039    0.0069    0.0115 
    0.4216    0.1417    0.4138    0.0080    0.0024    0.0125 
    0.2465    0.3286    0.3980    0.0087    0.0046    0.0135 
    0.2468    0.3266    0.3945    0.0092    0.0052    0.0178 
    0.3486    0.1670    0.4575    0.0118    0.0015    0.0135 
    0.3217    0.2407    0.4055    0.0069    0.0126    0.0128 
    0.2165    0.3268    0.4260    0.0111    0.0035    0.0161 
    0.3296    0.2173    0.4197    0.0092    0.0110    0.0133 
    0.2324    0.3370    0.4026    0.0086    0.0022    0.0172 
    0.2252    0.3160    0.4245    0.0099    0.0072    0.0171 
    0.1756    0.4177    0.3797    0.0091    0.0037    0.0143 
    0.3169    0.2167    0.4373    0.0051    0.0116    0.0125 
    0.2226    0.3809    0.3668    0.0064    0.0088    0.0145 
    0.2820    0.2373    0.4514    0.0085    0.0040    0.0168 
    0.2180    0.3414    0.4138    0.0066    0.0042    0.0161 
    0.3460    0.2307    0.3926    0.0106    0.0046    0.0155 
    0.3065    0.2337    0.4336    0.0125    0.0014    0.0122 
    0.2522    0.2965    0.4227    0.0141    0.0016    0.0130 
    0.3312    0.1541    0.4896    0.0073    0.0048    0.0130 
    0.2800    0.2365    0.4562    0.0115    0.0015    0.0144 
    0.2704    0.2809    0.4256    0.0119    0.0009    0.0104 
    0.5041    0.0875    0.3808    0.0104    0.0027    0.0146 
    0.3187    0.2490    0.4041    0.0111    0.0037    0.0134 
    0.2396    0.3502    0.3793    0.0106    0.0033    0.0170 
    0.2424    0.2725    0.4592    0.0117    0.0015    0.0127 
_______________________________________________ 
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Table 1.1.4  (continued) 
 
 
 
Control group after 
______________________________________________ 
       pr           mf            ch          Ca          Na            K 
                                                  10-2 x     10-2 x     10-2 x   
____________________________________________     
 
    0.2582    0.3057    0.4107    0.0105    0.0021    0.0128 
    0.2381    0.3954    0.3356    0.0112    0.0030    0.0168 
    0.2405    0.3291    0.3985    0.0093    0.0047    0.0179 
    0.2877    0.2461    0.4342    0.0108    0.0063    0.0149 
    0.4395    0.1251    0.4049    0.0109    0.0028    0.0169 
    0.2040    0.3285    0.4400    0.0103    0.0022    0.0149 
    0.3427    0.2165    0.4115    0.0070    0.0077    0.0146 
    0.1469    0.4245    0.4000    0.0115    0.0015    0.0156 
    0.1941    0.2976    0.4779    0.0135    0.0018    0.0150 
    0.4360    0.1699    0.3690    0.0107    0.0012    0.0132 
    0.2302    0.4212    0.3186    0.0069    0.0085    0.0145 
    0.3338    0.2230    0.4174    0.0070    0.0063    0.0123 
    0.2351    0.3279    0.4102    0.0101    0.0013    0.0154 
    0.2475    0.2789    0.4435    0.0059    0.0102    0.0140 
    0.2942    0.3392    0.3415    0.0086    0.0034    0.0132 
    0.2112    0.4724    0.2886    0.0152    0.0009    0.0117 
    0.2809    0.1890    0.4981    0.0055    0.0098    0.0166 
    0.3244    0.3192    0.3291    0.0070    0.0051    0.0153 
    0.2164    0.2855    0.4692    0.0097    0.0047    0.0147 
    0.2310    0.3091    0.4341    0.0048    0.0064    0.0145 
    0.2411    0.1875    0.5468    0.0082    0.0039    0.0125 
    0.3304    0.2364    0.4056    0.0103    0.0017    0.0156 
    0.2461    0.3472    0.3786    0.0115    0.0030    0.0137 
    0.1321    0.5356    0.3041    0.0077    0.0035    0.0170 
    0.1276    0.4896    0.3516    0.0136    0.0012    0.0164 
    0.1447    0.6130    0.2158    0.0080    0.0047    0.0139 
    0.3044    0.1814    0.4878    0.0068    0.0041    0.0155 
    0.2352    0.4027    0.3373    0.0114    0.0015    0.0119 
    0.2248    0.3225    0.4217    0.0117    0.0037    0.0157 
    0.3039    0.2252    0.4477    0.0106    0.0006    0.0119 
_______________________________________________ 
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Table 1.1.4  (continued) 
 
 
 
Treatment group after 
______________________________________________ 
       pr           mf            ch          Ca          Na            K 
                                                  10-2 x     10-2 x     10-2 x   
____________________________________________     
 
    0.3575    0.1780    0.4357    0.0090    0.0085    0.0113 
    0.5056    0.1038    0.3607    0.0107    0.0063    0.0129 
    0.3635    0.2455    0.3616    0.0097    0.0060    0.0137 
    0.3510    0.2040    0.4182    0.0116    0.0027    0.0125 
    0.2246    0.3028    0.4419    0.0071    0.0116    0.0121 
    0.3966    0.1662    0.4115    0.0066    0.0085    0.0107 
    0.5544    0.1024    0.3145    0.0146    0.0023    0.0117 
    0.3587    0.2107    0.3980    0.0147    0.0048    0.0130 
    0.2509    0.2850    0.4385    0.0108    0.0027    0.0122 
    0.4076    0.1332    0.4351    0.0137    0.0012    0.0094 
    0.2939    0.2268    0.4510    0.0099    0.0083    0.0101 
    0.1521    0.3636    0.4580    0.0127    0.0025    0.0111 
    0.4641    0.1584    0.3491    0.0085    0.0101    0.0098 
    0.2870    0.2738    0.4091    0.0126    0.0019    0.0157 
    0.2693    0.2995    0.4037    0.0135    0.0035    0.0104 
    0.1894    0.4421    0.3416    0.0110    0.0041    0.0117 
    0.2816    0.2176    0.4722    0.0071    0.0098    0.0117 
    0.2154    0.4184    0.3414    0.0092    0.0050    0.0105 
    0.2896    0.2187    0.4638    0.0097    0.0028    0.0154 
    0.3070    0.2707    0.3921    0.0112    0.0030    0.0160 
    0.3749    0.2146    0.3794    0.0145    0.0039    0.0128 
    0.3195    0.2214    0.4297    0.0186    0.0011    0.0097 
    0.2654    0.2255    0.4766    0.0206    0.0011    0.0108 
    0.3843    0.1460    0.4478    0.0088    0.0034    0.0096 
    0.3690    0.1822    0.4162    0.0168    0.0014    0.0143 
    0.4646    0.1813    0.3257    0.0188    0.0007    0.0089 
    0.5987    0.0588    0.3123    0.0154    0.0016    0.0132 
    0.4122    0.2157    0.3385    0.0195    0.0026    0.0116 
    0.3991    0.2600    0.3126    0.0114    0.0026    0.0143 
______________________________________________ 
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Table 1.1.5    Six-part colour compositions of 22 paintings by an abstract artist 
 
________________________________________________________ 
Painting                   Proportions of total area assigned to colours 
     No            black       white         blue          red          yellow       other 
________________________________________________________ 
 
  1                0.125        0.243        0.153        0.031        0.181        0.266 
  2                0.143        0.224        0.111        0.051        0.159        0.313 
  3                0.147        0.231        0.058        0.129        0.133        0.303 
  4                0.164        0.209        0.120        0.047        0.178        0.282 
  5                0.197        0.151        0.132        0.033        0.188        0.299 
 
  6                0.157        0.256        0.072        0.116        0.153        0.246 
  7                0.153        0.232        0.101        0.062        0.170        0.282 
  8                0.115        0.249        0.176        0.025        0.176        0.259 
  9                0.178        0.167        0.048        0.143        0.118        0.347 
10                0.164        0.183        0.158        0.027        0.186        0.281 
 
11                0.175        0.211        0.070        0.104        0.157        0.283 
12                0.168        0.192        0.120        0.044        0.171        0.305 
13                0.155        0.251        0.091        0.085        0.161        0.257 
14                0.126        0.273        0.045        0.156        0.131        0.269 
15                0.199        0.170        0.080        0.076        0.158        0.318 
 
16                0.163        0.196        0.107        0.054        0.144        0.335 
17                0.136        0.185        0.162        0.020        0.193        0.304 
18                0.184        0.152        0.110        0.039        0.165        0.350 
19                0.169        0.207        0.111        0.057        0.156        0.300 
20                0.146        0.240        0.141        0.038        0.184        0.250 
 
21                0.200        0.172        0.059        0.120        0.136        0.313 
22                0.135        0.225        0.217        0.019        0.187        0.217 
_________________________________________________________ 
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Table 1.1.6    Activity patterns of a statistician for 20 days 
 
 
______________________________________________ 
 
Day                    Proportion of day in activity 
 No              te          co          ad         re         ot           sl     
______________________________________________  
 
    1       0.144    0.091    0.179    0.107    0.263    0.217 
    2          0.162    0.079    0.107    0.132    0.265    0.254 
    3       0.153    0.101    0.131    0.138    0.209    0.267 
    4            0.177    0.087    0.140    0.132    0.155    0.310 
    5            0.158    0.110    0.139    0.116    0.258    0.219 
    6            0.165    0.079    0.113    0.113    0.275    0.255 
    7            0.159    0.084    0.117    0.094    0.225    0.321 
    8            0.161    0.105    0.123    0.110    0.267    0.234 
    9            0.163    0.126    0.105    0.106    0.227    0.273 
  10            0.169    0.102    0.104    0.104    0.235    0.286 
  11            0.149    0.113    0.123    0.115    0.256    0.244   
  12            0.118    0.100    0.145    0.096    0.192    0.349 
  13            0.106    0.112    0.135    0.104    0.205    0.338 
  14            0.163    0.142    0.109    0.115    0.260    0.211 
  15            0.151    0.122    0.126    0.121    0.235    0.245 
  16            0.163    0.101    0.126    0.142    0.232    0.237 
  17            0.176    0.084    0.094    0.098    0.213    0.335 
  18            0.104    0.093    0.148    0.090    0.269    0.295 
  19            0.111    0.111    0.118    0.086    0.216    0.358 
  20            0.105    0.090    0.135    0.117    0.168    0.385 
________________________________________________ 
 
Notes:  te = teaching;  co = consultation;   ad = administration; 
            re =  research; ot = other wakeful activities; sl = sleep 
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Table 1.1.7   Typical river and fishing location pollutant compositions 

 

     Pollutant 

     a       b      c      d 

River 1 0.6541  0.1553  0.1129  0.0777 

  0.5420  0.3497  0.0349  0.0734 

River 2 0.2450  0.2924  0.2450  0.2176 

  0.2503  0.0420  0.5571  0.1506 

River 3 0.3334  0.1704  0.2026  0.2936 

   0.4332  0.1409  0.1352  0.2907 

 

Location A 0.4014  0.1864  0.2619  0.1503 

  0.3820  0.1169  0.3480  0.1531 

Location B 0.4033  0.2300  0.2168  0.1498 

  0.4706  0.2207  0.1594  0.1493 

Location C   0.3140  0.1060  0.3896  0.1904 

      0.2460  0.2278  0.3488  0.1774 
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Table 4.5.1  Six-part mineral compositions of 22 specimens of goilite 
 
 
  a                   b                  c                   d                e                 f 
  ______________________________________________________________ 
  1 0.125 0.353           0.266        0.163        0.031          0.181 
  2 0.143 0.224 0.313  0.111        0.051          0.159  
  3 0.147 0.231 0.303            0.058        0.129          0.133 
  4 0.164     0.209     0.282    0.120        0.047          0.178 
   5     0.197     0.151     0.299    0.132        0.033          0.188 
  6     0.157     0.256     0.246        0.072        0.116          0.153 
  7     0.153     0.232    0.282        0.101        0.062          0.170 
  8     0.115     0.249     0.259        0.176        0.025          0.176 
  9     0.178     0.167     0.347        0.048        0.143          0.118 
 10     0.164     0.183     0.281        0.158        0.027          0.186 
 11     0.175     0.211     0.283        0.070        0.104          0.157 
 12     0.168     0.192     0.305        0.120        0.044          0.171 
 13     0.155     0.251     0.257        0.091        0.085          0.161 
 14     0.126     0.273     0.269        0.045        0.156          0.131 
 15     0.199     0.170     0.318        0.080        0.076          0.158 
 16     0.163     0.196     0.335        0.107        0.054          0.144 
 17   0.136 0.185     0.304        0.162        0.020          0.193 
 18     0.184     0.152     0.350        0.110        0.039          0.165 
 19     0.169     0.207     0.300        0.111        0.057          0.156 
 20     0.146     0.240     0.250        0.141        0.038          0.184 
 21     0.200     0.172     0.313        0.059        0.120          0.136 
 22     0.135     0.225            0.217            0.217       0.019           0.187 
 ______________________________________________________________ 
 
 a: arkaigite b: broomite     c: carronite 
 d: dhuite e: eckite  f:  fyneite 
 
 
 
Table 4.5.2 Variation array for goilite compositional data set 
 
     Column j 
 
                  a            b           c            d            e            f        
                                     _________________________________________ 
 

  a          0       0.307      0.129     0.502     0.617    0.225 
  b    -0.275         0          0.270     0.465     0.646    0.221 
     Row i c   -0.605    -0.330         0          0.486     0.628    0.213 
  d    0.432      0.706      1.037         0         1.071    0.314 
   e    1.047      1.322      1.652      0.615         0       0.769 
  f   -0.027      0.247      0.578    -0.459    -1.074        0 
 
 
Estimates below the diagonal are of E(log(xj /xi) and above the diagonal of   )}/var{log( ji xx  
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Table 4.7.1  Major-oxide and mineral compositions of 21 tektites 
 
Major oxide compositions 
 
Case  SiO2 K2O    Na2O  CaO   MgO   Fe2O3    TiO     P2O5   
_____________________________________________________ 

 1 70.83     1.86     1.20    0.52    0.46    0.030    0.65    0.005 
 2 80.10     1.99     1.37    0.49    0.42    0.110    0.66    0.020 
 3 80.17     2.24     1.53    0.56    0.37    0.180    0.60    0.030 
 4 78.40     1.90     1.36    0.55    0.59    0.050    0.69    0.010 
 5 78.37     2.43     1.84    0.78    0.70    0.050    0.59    0.020 
 6 77.21     2.42     1.80    0.96    0.50    0.060    0.62    0.060 
 7 78.19     2.23     1.71    0.65    0.73    0.230    0.74    0.040 
 8 76.11     2.38     1.59    0.81    0.59    0.220    0.74    0.040 
 9 76.68     1.81     1.27    0.59    0.56    0.005    0.83    0.010 
10 76.09     2.04     1.60    0.67    0.54    0.230    0.80    0.040 
11 76.25     2.22     1.63    0.74    0.74    0.270    0.74    0.050 
12 76.23     2.03     1.50    0.51    0.58    0.330    0.77    0.050 
13 75.59     2.42     1.72    0.79    0.66    0.200    0.73    0.050 
14 75.58     2.40     1.84    0.79    0.95    0.210    0.71    0.050 
15 75.38     2.21     1.77    0.79    0.95    0.320    0.78    0.060 
16 75.51     2.25     1.61    0.74    0.67    0.350    0.75    0.050 
17 75.13     1.84     1.42    0.54    0.61    0.170    0.90    0.050 
18 74.94     1.84     1.50    0.66    0.43    0.130    0.86    0.040 
19 73.36     1.93     1.44    0.61    0.75    0.310    0.87    0.030 
20 72.70     1.63     1.43    0.41    0.70    0.320    0.99    0.070 
21 71.89     1.60     1.28    0.045  0.78    0.270    1.05    0.040 
 
Minerals compositions 
 
Case     qu           or          al        an        en       ma         il        ap 
______________________________________________________ 

 1 62.02    10.99    10.15    2.58    1.15    0.040    1.23    0.010 
 2 61.13    11.76    11.59    2.30    1.05    0.160    1.25    0.050 
 3 59.17    13.25    12.94    2.58    0.92    0.260    1.14    0.070 
 4 58.93    11.23    11.50    2.66    1.47    0.070    1.31    0.020 
 5 53.79    14.36    15.56    3.74    1.74    0.070    1.12    0.050 
 6 52.54    14.30    15.22    4.37    1.24    0.090    1.18    0.140 
 7 55.20    13.17    14.46    2.96    1.82    0.330    1.41    0.090 
 8 52.78    14.06    13.45    3.76    1.47    0.320    1.41    0.090 
 9 57.90    10.69    10.74    2.86    1.39    0.010    1.58    0.020 
10 54.19    12.05    13.53    3.06    1.34    0.330    1.52    0.090 
11 53.22    13.12    13.79    3.34    1.84    0.390    1.41    0.120 
12 55.38    11.99    12.69    2.20    1.44    0.480    1.46    0.120 
13 51.24    14.30    14.55    3.59    1.64    0.290    1.39    0.120 
14 50.15    14.18    15.56    3.59    2.37    0.300    1.35    0.120 
15 50.97    13.06    14.97    3.53    2.37    0.460    1.48    0.140 
16 52.39    13.29    13.62    3.34    1.67    0.510    1.42    0.120 
17 54.92    10.87    12.01    2.35    1.52    0.250    1.71    0.120 
18 54.01    10.87    12.69    3.01    1.07    0.190    1.63    0.090 
19 51.99    11.40    12.18    2.83    1.87    0.450    1.65    0.070 
20 52.95     9.63    12.09    1.58    1.74    0.460    1.88    0.170 
21 52.79     9.45    10.83    1.97    1.94    0.390    1.99    0.090 
______________________________________________________ 

qu: quartz or: orthoclase  al: albite  an: anorthite 
en:  enstatite ma: magnetite   il: ilmenite        ap: apatite 
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  Table 4.7.2    Oxides and associated minerals in tektite study 
 
_________________________________________________________________ 
 
 Oxide  Mineral  Abbreviation  Formula 
_________________________________________________________________ 
 
 SiO2  Quartz   qu   SiO2 
  
 K2O  Orthoclase  or   KAlSi3O8 
 
 Na2O  Albite   al   NaAlSi3O8 
 
 CaO  Anorthite  an   CaAl2Si2O8 
 
 MgO  Enstatite  en   MgSiO3 
 
 Fe2O3  Magnetite  ma   Fe3O4 
 
 TiO    Ilmenite  il   FeTiO3 
 
 P2O5  Apatite  ap   Ca5(F,Cl)(PO4)3 
 
__________________________________________________________________ 
 
 


