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Motivating example

John Snow and the Broad Street Pump
Cholera outbreak in Soho, London, in 1854

London had 1.5 million people and no sewage system
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The prevailing miasma theory said cholera was spread by bad
air.

> Snow believed it was transmitted by contaminated water

» He talked to local residents, making note of where they lived



Locations of Cholera Victims
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» Cholera cases are more likely to occur close to the Broad
Street Pump
» Snow found microbes in the water

» He asked for the handle on the pump to be removed, which
stopped the cholera epidemic



Cholera cases are more likely to occur close to the Broad
Street Pump

» Snow found microbes in the water

» He asked for the handle on the pump to be removed, which

stopped the cholera epidemic

Actually, the epidemic was declining before the handle was
removed.



Spatial epidemiology

v

Data are spatially referenced

v

Two, or more, dimensions

v

Is there a spatial pattern to disease incidence locations or
rates?

v

Can we quantify the spatial dependence?

v

Is this a simple extension of time series analysis?



Time series analysis?

A surprisingly complicated extension

There is no natural ordering for spatial data

In time series the present depends only on the past
Y: depends on Y;_1 (and Y;_» and Y;_37)
Continuous time Y (t), dY(t)/dt, d*Y(t)

No such simplifications for spatial processes (or they're not as
straightforward)
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Spatial models, compared to time series models, are typically
» Simpler;
» Computationally more demanding; and
> limited in the size of dataset they can handle



Spatial Statistics

» Geostatistical models
» A surface which is defined everywhere on a region.
» Discrete spatial variation

» A surface defined only at discrete points or regions (possibly
irregular)

» Spatial point processes
» Data consist of the locations of events



Discrete Processes

» Artificial lattice: pixel grid or census districts

Cancer rates in Birmingham
electoral wards

Elevation of a drainage basin :
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Lattice processes

» Natural lattices: school district boundaries or cell wall
boundaries

Discrete spatial process

? ?
e

Cell images

<

Colours represent cell density



Point processes

» Lung cancer in Ontario
Cases Controls

casespp controlspp

> Is there spatial variation in cancer incidence?

» More cases near a specific location such as a power plant?
> Cases tending to cluster near other cases?



Geostatistics

» Rainfall in Parana state, Brazil
» Exists everywhere, but is only evaluated at a few points
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Geostatistics

» Intensity of lung cancer cases in Ontario

» Unobserved, estimated by modelling
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This Course

Geostatistics — 6 weeks
Point Processes — 3 weeks
Discrete spatial variation — 1 week

Markov Random fields 777

Spatio-temporal models 7?7
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Labs

» 1 hour in 256 McCaul, following lectures
» Using R and WinBUGS
> analyses of spatial datasets

» you're encouraged to work on your own computers.



Assessment

» One small project 20%
» One larger project with a presentation 40%
» Exam 40 %



Books

Main books:
» Diggle and Ribeiro (2006) Model-based Geostatistics
amazon. com/dp/0387329072

» Diggle (2003) Statistical Analysis of Spatial Point Patterns
amazon.com/dp/0340740701

Other books:

» Moeler and Wagerpetersen “Statistical inference and
simulation for spatial point processes”
www.myilibrary.com/browse/open.asp?ID=19973 for a
more technical treatment of point process and model fitting

» Rue and Held “Gaussian Markov Random Fields”
amazon . com/dp/1584884320, if we do Markov random fields.

> See also http://www.ai-geostats.org
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Basic Examples of Spatial Data
» Campylobacter cases in southern England

Residential locations of 651 cases of campylobacter reported over a
one-year period in central southern England.
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Cancer rates in administrative regions
Grey-scale corresponds to estimated variation in relative risk of
colorectal cancer in the 36 electoral wards of the city of
Birmingham, UK.
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Rainfall in Parana State, Brasil

Rainfall measurements at 143 recording stations.
Average for the May-June period (dry season).
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A Taxonomy of Spatial Statistics

1. Spatial point processes
Basic structure. Countable set of points x; € IR?, generated
stochastically.
e.g. cases of campylobacter.

2. Discrete spatial variation
Basic structure. Yi:i=1,...,n.
e.g. number of cancer cases in an electoral region.
> rarely arises naturally
» but often useful as a pragmatic strategy
3. Continuous spatial variation
Basic structure. Y(x) : x € IR?
Data (y;,x;):i=1,...,n
e.g. rainfall measurements at locations x;.
Locations may be:

» non-stochastic (eg lattice to cover observation region A)
» or stochastic, but independent of the
process Y'(x)



Spatial statistics is the collection of statistical methods in which
spatial locations play an explicit role in the analysis
of data.

Geostatistics is that part of spatial statistics concerned with data
obtained by spatially discrete sampling of a spatially
continuous process.

Don't confuse the data-format with the underlying process



Further Examples of Geostatistical Problems

Swiss rainfall data

» Locations shown as points
with size proportional to the
value of the observed
rainfall.

» 467 locations in Switzerland

» daily rainfall measurements

0 160 200 300

EW (km) on 8th of May 1986

data from: Spatial Interpolation Comparison 97
http://www.ai—geostats.org/resources/famous_geostats_data.htm



Cal

¥ Cor

cium and magnesium contents in a soil

178 measurements of Calcium and Magnesium contents taken on
the 0 — 20cm (and 20 — 40cm) soil layers

5800

5600

5400
L

» fertility maps

5200

> assess effects of soil regime
and elevation

5000

» joint model for Ca and Mg

4800




Rongelap Island

1000

0

» study of residual
contamination,
following nuclear
weapons testing
programme during
1950's

» island evacuated in
1985, is it now safe
for re-settlement?

N-S
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E-W
» survey yields noisy measurements Y; of radioactive caesium
concentrations
» initial grid of locations x; at 200m spacing later supplemented



Gambia malaria

> survey of villages in Gambia

» in village /i, data Yj; = 0/1 denotes absence/presence of
malarial parasites in blood sample from child j

> interest in effects of covariates, and pattern of residual spatial
variation

> village-level covariates: NS
> village locations
» public health centre in
village?
> satellite-derived
vegetation green-ness
index

1600
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» child-level covariates:

> age, sex, bed-net use
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Characteristic Features of Geostatistical Data

> data consist of responses Y; := Y(x;) associated with
locations x;

» in principle, Y could be determined from any location x
within a continuous spatial region A

> it is reasonable to behave as if {Y(x) : x € A} is a stochastic
process

> X; is typically fixed. If the locations x; are generated by a
stochastic point process, it is reasonable to behave as if this
point process is independent of the Y/(x) process

» scientific objectives include prediction of one or more
functionals of a stochastic signal process {S(x) : x € A}
conditional on observations of the Y(x) process.



Core Geostatistical Problems

» Design

how many locations?

how many measurements?

spatial layout of the locations?
what to measure at each location?
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» Modelling

» probability model for the signal, [S]
» conditional probability model for the measurements, [Y|S]

» Estimation

> assign values to unknown model parameters
» make inferences about (functions of) model
parameters

» Prediction

» evaluate [T|Y], the conditional distribution of the target given
the data



A basic example: elevation data

Y Coord

Y Coord

X Coord

Y Coord

X Coord

Raw data; kriging (with raw data
overlaid); and kriging standard

€rrors.



PART Il: BASIC GEOSTATISTICAL MODEL

Notation

The Signal Process

The Measurement Process
The Correlation Function
Model Extensions (1)

o L=



Model-Based Geostatistics

Basic model
response = mean effect + signal 4 noise

Notation
» {x;:i=1,...,n} is the sampling design

» poor wj:= u(x;) is the trend or mean effect

v

{Y(x) : x € A} is the measurement process
Y := Y(x;) a.k.a. the response

{S(x) : x € A} is the signal process

T = F(S) is the target for prediction

[S, Y] =[S][Y]S] is the geostatistical model
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Data consist of pairs (y;,x;) : i = 1,..., n, possibly with covariates
measured at each x;.



The Signal Process

Model the signal process S(x) as a Gaussian random field
(GRF), also known as a Gaussian process. Initially assume it is
stationary and isotropic

» A stationary process is one whose probability distribution is
invariant under translation.

» An isotropic process is one whose probability distribution is
invariant under rotation.



Stationary, Isotropic




Non-stationary

20



Stationary, Anisotropic

Y Coord
Y Coord

0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.
X Coord X Coord



Isotropic, Non-stationary




Distribution

If S(x) is a stationary isotropic Gaussian process (SGP) then for
any set of points x1,...,x, € A

S(Xl)

. ~ N(ml,0°R)
S(xn)

where 1 is a vector of ones and

Rij = Corr [S(xi), S(x;)] = p([[xi = xjl[)

for some function p(-). Without loss of generality we will always
take m = 0. Clearly at any one point x

S(x) ~ N(0,0?)



The Measurement Process

1. the conditional distribution of Y'(x;) given S(x;) is
Yils(xi) ~ N(u+s(xi), 7%);

2. Y;:i=1,..,n are mutually independent, conditional on 5(-).

1 1 |

data
40 45 50 55 6.0 65 7.0

1

1

1

locations

Simulated data in 1-D illustrating the elements of the model: data
Y (x;) (), signal S(x) (—) and mean p (—).



An Equivalent Formulation:

Yi=p+Skxi)+e:i=1,..,n.

where S(x) has mean 0, and ¢; : i = 1,..., n are mutually
independent, identically distributed with ¢; ~ N(0, 72).
The joint distribution of Y is multivariate Normal,

Y(x1)
Y = : ~ N(ul,0°R +72)
Y(xn)
where:
1 is a vector of 1's
| is the n x n identity matrix
R is the n x n matrix with (i,j)® element p(u;;) where
ujj = ||x; — xj||, the Euclidean distance between x; and x;.

Do exercise 1a



The Correlation Function

Positive definiteness

» The variance of some linear combination
a1S(x1) + -+ anS(x,) is

i i a,-aJ-Cov [S(X;), S(Xj)] = 02 i i a,-ajR,-j
i=1 j=1 i=1 j=1

» This must be positive for all possible a; € R (or possibly zero).

» Not all candidate correlation functions posses this property.



Positive Definite Matrices

» A is positive definite if x’Ax > 0 for all x.

» A necessary and sufficient condition for positive definiteness is
for all the Eigenvalues of A to be positive.

» Variance matrices must be positive definite, since if
Y ~ N(0,X) then for a vector a then Var[d'Y] = d'Xa.

» For a'Y to have positive variance for all a, then ¥ must be
positive defininte.



Positive Definite Functions
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f(x) is a function of x € R".
for any set of points xy ... Xm
create matrix Aj; = f(x; — x;)

If Ais always positive definite, then f is a positive definite
function

for f to be a spatial variance function it must be positive
definite

Otherwise we could find a set of points vy ... un, and a vector
b such that
Y (u1)
Var | b/ :
Y (um)

is negative.



Characteristics of positive definite functions

» Non-negative, and monotone decreasing.

» Bochner’s Theorem states that all p d functions have
positive Fourier transforms.

» The Exponential function and the Gaussian density are
positive definite.

» The positive definite constraint leads us to use a small
number parametric families for covariance functions.



Differentiability of Gaussian processes

» A formal mathematical description of the smoothness of a
spatial surface S(x) is its degree of differentiability.

» S(x) is mean-square continuous if, for all x,
E [{S(x+h) — S(x)}*] = 0as ||h]| — 0

» S(x) is mean square differentiable if there exists a process
S’(x) such that, for all x,

S h) =56 o VP L g 1l
E[{ h 5()}] 0o =0

> the mean-square differentiability of S(x) is directly linked to
the differentiability of its covariance function p(u).



Theorem Let S(x) be a SGP with correlation function
p(u) : u € R. Then:

» S(x) is mean-square continuous iff p(u) is continuous at
u=0;

» S(x) is k times mean-square differentiable iff p(u) is (at least)
2k times differentiable at u = 0.



The Matérn family

The correlation function is given by:

pu) = {2711 (k)} " (u/9)" Ki(u/9)

» k and ¢ are parameters

> K. (-) denotes modified Bessel function of order
» valid for ¢ > 0 and x > 0.

» x = 0.5: exponential correlation function

» x — 00: Gaussian correlation function

S(x) is mean-square m times differentiable if and only if K > m

1.04

P

Three examples of the Matérn
correlation function with ¢ = 0.2
and £ =1 (solid line), K = 1.5
(dashed line) and k = 2 (dotted
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Simulating the Matérn

library(RandomFields)
x <- y <- seq(0, 20, by=1/4)
f <- GaussRF(x=x, y=y, model="whittlematern", grid=TRUE,
param=c(mean=0, variance=1, nugget=0,
scale=1, alpha=2))

image(x, y, f, col=topo.colors(100))

The “alpha” parameter is the roughness parameter x in our
notation.



The powered exponential family

p(u) = exp{—(u/¢)"}

defined for ¢ >0 and 0 < kK <2

¢ and Kk are parameters

mean-square continuous (but non-differentiable)
if Kk <2

mean-square infinitely differentiable if kK = 2
p(u) very ill-conditioned when x = 2

k = 1. exponential correlation function

K = 2: Gaussian correlation function

vyy

>
>
>
>

Conclusion: not as flexible as it looks

1.04

0a Three examples of the powered
exponential correlation function
with ¢ = 0.2 and k = 1 (solid

ool — line), kK = 1.5 (dashed line) and
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The spherical family
plui )= { 1= 3u/9) + Ju/oP : 0suso

¢ > 0 is parameter
finite range
non-differentiable at the origin

vV v vy

Has strange properties in the frequency domain which makes
estimation unstable.

v

Despite the problems it's very widely used.
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g

The spherical correlation
function with ¢ = 0.6.
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Comparable Simulations (same seed)

Matérn
¢»=0.2and k=05 (—),
k=1(---)andk=2(...).

Powered exponential
¢p=02and k=1 (—),
k=15(---)andk=2(...).

Spherical
os) (¢ =0.6).




Model Extensions (1)

Removal of trends

Re-examine the elevation data;
there is evidence for a linear
(quadratic?) trend with
co-ordinates.

In general replace constant p
with

k

pi = p(xi) = £(x;)'B =" Bifi(x)

j=1

So that

Y,-:u,-+5(x,-)+e,~:i:1,...

Y Coord

data
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where E [S(x)] = 0; S(x) remains stationary and isotropic.



Covariates

» f1(x) =1 allows for an overall mean

» To incorporate a linear trend in the elevation data, f(x) and
f3(x) would be the x and y coords of x.

> In general fj(x;) is any measured covariate at x; (or function
of it).

NB although the linear trend is only obvious for the y-coord for the
elevation data, in general we would fit similar trend effects to both
coordinates so as to be independent of the particular axis
directions.

Q: how many more parameters would be required for a quadratic
trend?



PART IlI: Exploratory Variogram Analysis

1. The Variogram
2. The Empirical Variogram
3. Monte Carlo Variogram Envelope

NB: Assumption that non-spatial exploratory analysis has already
been performed.



The Variogram

The variogram is defined by
V(x,x') = %Var [Y(x) = Y(X)]
Let S be an isotropic SGP with
E[S(X)]=0 , Var[S(x)] =02
and correlation function p(u). Let the response be
Y(xi) = pi + S(xi) + ¢

where ¢; is i.i.d. Gaussian noise ¢; ~ N(0,72).
Then, writing u = ||x — X||, the variogram of Y is

V(u) =72+ o?(1 — p(v))

For proof see handout.



Interpreting the Variogram
T total sill

a2+7'2 -

the nugget variance: 12

the sill: o = Var[S(x)]
the total sill. 72 + 02 = Var [Y(x)]
the range: ¢, such that p(u; ¢) = p(u/p; 1)



Variogram v Correlation

» Why not just use the correlation function?
» The Variogram is defined for non-stationary processes

» The Variogram is easier to estimate for irregular data



The Empirical Variogram

» if Y(x) is stationary and isotropic,

V(xx) = V(u) = 3E [{Y() ~ V()]

> suggests an empirical estimate of V/(u):

V(u) = average{[y(x;) — y(x))]}

where each average is taken over all pairs [y(x;), y(x;)] such
that |[x; — xj|| = u

» for a process with non-constant mean (covariates), trends may
be removed as follows:

vV vy VvYyy

let 3 be the OLS estimate

and f(x;) = f(x)'B

define r; := Y; — f(x;)

define V(u) = average{(r; — ri)*},

where each average is taken over all pairs (r;, ;)



The variogram cloud

semivariance

50000

150000

100000

» define the quantities

yi — fi(x;)

|[xi — x;]

(ri — r)?
2

> the variogram cloud is a scatterplot of the points (uj, vjj)

Example: Swiss rainfall data
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» under the spatial Gaussian
model:

> Vi~ V()i
> the v;; are correlated
» the variogram cloud is
therefore unstable, both
pointwise and in its overall
shape



The empirical variogram

» derived from the variogram cloud by averaging within bins:
u—h/2<uj<u+h/2

» forms k bins, each averaging over ny pairs

» removes the first objection to the variogram cloud, but not
the second

> is sensitive to mis-specification of j(x)

Example: Swiss rainfall data.

10000 15000
I I

semivariance

5000
I

o

0
L

T T T T T
0 50 100 150 200
distance

Empirical binned variogram

Do exercise 3a (lecturer), b/c (class)



Variograms of raw data and residuals can be very different

Example: Parana rainfall data.

empirical variograms of raw data (left-hand panel) and of residuals
after linear regression on latitude, longitude and altitude
(right-hand panel).

6000{ 8 .
/ | 1000] /\\ .
5000{ ! o .
A / » variogram of raw data
R 800/ K ) ..
4000) B iy includes variation due to
200! / 600 - large-scale geographical
. trend
4004
2000{ / ! . .
) » variogram of residuals
woof 200 eliminates this source
y of variation
04 04

0 100 200 300 40C 0 100 200 300 40C



How unstable are empirical variograms?

» thick solid line shows true
underlying variogram

» fine lines show empirical
variograms from three
independent simulations of
the same model

emi-vanance

» high autocorrelations
amongst V/(u) for successive
values of u imparts
misleading smoothness




Monte Carlo Variogram Envelope

A simple test for spatial correlation.
» Hg: there is no spatial correlation.
» Under Hyp the relative spatial positions of the data (or
residuals) are irrelevant

» Under Hp the data may be permuted and the resulting
empirical variogram should arise from the same underlying
distribution of variograms as the original.



The Algorithm

Repeat k times
1. randomly permute the data

2. calculate the empirical
variogram for this
permutation

For each u use the lowest and
highest (or 5" and 95t
percentiles) of the simulated
V(u)'s as envelopes (under Hp)
for the true value V(u).

semivariance

0.0 0.2 0.4 0.6 0.8 1.0 12

Variogram and envelope for
simulated data with
p=0,02=172=0.25 and
¢ =0.3.



PART IV: PARAMETER ESTIMATION FOR GAUSSIAN
MODELS

Maximum Likelihood Estimation
Model Extensions (2) - Box-Cox
A Case Study: Swiss rainfall data
Model Extensions (3) - Anisotropy
Not Covered Here

o kR wh =

Bayesian estimation of parameters



Maximum Likelihood Estimation

The model
Y(x;) = pi + S(x;) + €

» mean p; = u(x;) = Zjlle Bifi(x;) i.e. p=Fp

» SGP S(x) with E[S(x)] =0, Var[S(x)] = 02 and
Corr [S(x1), S(x2)] = pk([|x1 — x2|[ ; ¢)

» nugget effect Gaussian noise ¢; ~ N(0,72)

Joint distibution

Y ~ N(FB3,0°R +721)
where Rji(¢, k) = p(||xi — xj||).



Re-parametrise

. . . 2
» Signal to noise ratio: 12 := >

» R.(v,¢,k) = R(¢, k) + 1?1
»Y ~ N(FB,0°R,)

» In this parametrisation o will drop out of the likelihood.

log-likelihood

g(ﬂ? 0-27 y? ¢7 ,{') =
n 1 2 1 'p—1
— 5 log2m — Slog |[0*R.[| = 55 (y — FB)R.(y — FB)

o2



Profile likelihood

» There is no closed-form analytical solution for the parameters
which maximise the likelihood

» A numerical optimisation routine will have to be used

> If we know v, 1, and k (the spatial correlation parameters)
then there is an analytical solution for 3 and o2 as the model
is linear.

» The idea: use the numerical optimiser on v, 9, and & , using
the analytic expressions for 3 and &2

max £(8,0%,v, ¢, k) = max <max€(ﬂ,a2,1/, o, K))
B,02,v,0.k v,p,k \ 8,02

By standard results of linear models (see ‘Supplementary
material'), the log-likelihood ¢(3,02|v?, ¢, k) is maximised at

A

o) = (FROF) PR
From) = 3 (r=FB) R (- F3)



Profile Likelihood (cont)

Inserting the expressions for § and o into the likelihood function
gives the profile likelihood function
(v, 9,k) = —ﬁlog27r—llogH62R | - u
o 2 2 2
—20*(v,¢,6) +¢c = nlogs? + ||R.||
where ¢ is a constant.

» Use a numerical optimiser (such as optim in R) to find ﬁ,g?),/%

» Back substitution gives 3 and o2.



> any reasonable version of the (linear) spatial Gaussian model
has at least three parameters

» A spatial variance parameter, for how close the process stays
to the mean;

» Observation error variance, to take care of uncorrelated noise;
and

» A range parameter so that changing between miles and km
doesn't affect the model

» You need a lot of data (or contextual knowledge) to justify
estimating more than three parameters

» the Matérn family adds a fourth, roughness, parameter.

» Stein (1999)'s book shows, the roughness parameter has a lot
of influence on the other parameter’s estimates

» Smooth surface = low signal to noise ratio

> It is recommended to try a small number of discrete k e.g.
{0.5,1,2}

» The profile likelihood function for « is usually fairly flat, and
more precise estimation is usually not warranted.



Model Extensions (2) - Box-Cox

» The Gaussian model might be inappropriate for variables with
asymmetric distributions.

» Log transforms often Normalise positive-valued data with a
heavy right tail

» Squaring data works with a heavy left tail.

» The Box-Cox transformation has a parameter A offering a
continuous range of transformations.

» Box-Cox is commonly used in linear regression.

» Terminology: Gaussian-transformed model.



Box-Cox (continued)
The model is defined as follows:
> assume a variable Y* ~ MVN(F3, 0°R,)

> the data, denoted y = (yi, ..., yn), are generated by a
transformation of the linear Gaussian model

WL if x££ 0
= hy(y;) = pY if A 7
s =) {Iog(y,-) if A =0

The log-likelihood is:

5(1670-23V7¢7H7)\):C - g|0g02—%|og|R*|
+ (h(y) = FB)'{o’R.} 7 (ha(y) - FB)}
+ (A— 1)Z|ogy,-
i=1

Here h(y) = (ha(3), > ha(y))’.



Notes:

» Requires all y; > 0.
> if some y; = 0 simply through rounding then replace with
‘imputed’ low values.
» if some y; = 0 because there is a probability mass at 0 then
the model is strictly inappropriate.

» Allowing any A € R and simply maximising the log-likelihood
can lead to difficulties in scientific interpretation.

» Allow only a small set of interpretable values e.g.
{-1,0,0.5,1}.

» Examine the profile log-likelihood for A to choose the most
appropriate value.

» Transform the data then analyse as standard case.



» Optimisation is CPU intensive for large datasets

» Most of the information for A is in the marginal likelihood (i.e.
ignoring spatial variation)
» Obtain a point estimate by maximising

(8,02, )) = c — g log o2

L)~ FBY (y) - FA)} + (- 1) Zbgy,



A Case Study: Swiss rainfall data

200+

» 467 locations in Switzerland
» daily rainfall measurements
on 8th of May 1986

» The data values are integers
) 160 200 300 where the unit of
Ewm measurement is 1/10 mm

501 A

» 5 locations where the value
Locations of the data points with is equal to zero.
points size proportional to the
value of the observed data.
Distances are in kilometres.



Swiss rainfall data (cont.)

MLE of Box-Cox parameter A for
different values of the Matérn

roughness parameter x.

k| A(k) log L
0.5 | 0.514 -2464.246
110508 -2462.413
0.508 -2464.160

Profile likelihoods for A (—-),
with 90% and 95% confidence

limits (- - -)
//3 S
N U A
R / \ / ,,,,, \
S / S
k = 0.5, k=1, K =

» In all cases A = 0.5 is within the interval but untransformed
and log-transformed cases are not.



Parameter estimates with A = 0.5

K 6] 52 10} 72 log L
0.5 ] 18.36 118.82 87.97 248 -2464.315
11]20.13 105.06 35.79 6.92 -2462.438
2| 21.36 88.58 17.73 8.72 -2464.185
Profile likelihoods with x =1 and A = 0.5
-2462.5] ’ '\.\ -2462.5] / " . -2462.5] ./. '
./ | . \.\ ./ \\
-2463.0{ N -2463.0{ / \ -2463.04 / P
- 2 S
' / N I
-2463 5 K ; -2463 .5 '\ -2463.5{ !
. SN U . W Lo
. ; \ : :
-2464.01 ~\. -2464.01 . -2464.01 / \
,Lffffffff:\‘\A j/-A ,i.,,fffg,f,,:\,A
o? 10} T2



The log-transformation (A = 0)

» Log Gaussian data tend to have sharp peaks and large shallow
troughs.

» On the log scale, Y*(x) = log[Y'(x)].
Y*(x) = p+ S(x) + € = pu+ 0?Z(x) + €(x)
» On the natural scale,
Y(x)= eV ™ = eu(eZ(X))ozeE(X)

The larger o the sharper the peaks and softer the troughs.
» Remember E(Y(x)) = exp[E(Y*(x))] + Var[Y*(x)] /2.



Simulations of log-Gaussian processes

Y Coord
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Model Extensions (3) - Anisotropy

» Environmental conditions can induce directional effects (wind,
soil formation, etc).

» As a consequence the spatial correlation may vary with the
direction.

» a possible approach: geometric anisotropy.

1.0 1.04 1.04
0.5 0.5 0.5
0.04 0.0 0.0
‘0.5 -0.5 -0.5
1. -1.0 -1.0

T I T T T T T T T T T I T T T
-1.0 -05 00 05 10 -1.0 -05 00 05 10 -1.0 -05 0.0 05 1(

correlation contours for an isotropic model (left) and two
anisotropic models (center and right).



Geometric Anisotropy

Original Space, ;= 120°, Y, =2

Isotropic Space

Isotropic Space

two more parameters: the
anisotropy angle 14 and the
anisotropy ratio g > 1.

transform the true co-ordinates
(x1,x2) to new co-ordinates (xj, x5)
by rotation and squashing.

} :{ 10 } { cos(ipa)  —sin(1) } { x1 }

0 4 sin(va)  cos(ya) x2

Analyse the data with respect to
the new co-ordinate system.



Parameter Estimation

Likelihood based methods

» Add two parameters (angle and squashing)
» Increases the dimension of the numerical minimisation problem

» In practice a lot of data might be needed

=1 1 — omnid. —_ omumd
Variogram based exploration L -
_. 90 « _. 120 .
8 135 165 W

20000
I

» Compute variograms for
different directions

15000
I
15000
I

> Angle bins, in particular for
irregularly distributed data

10000
I
10000
I

5000
5000
I

» Directional variograms for _
the Swiss rainfall data. = o Jor

0 0100 150 200 0 0100 180 200




Not covered here

Restricted maximum likelihood (REML)

» transform the data Y — Y* so that Y* does not depend on (3

> estimate (02, v, ¢, k) by maximum likelihood on the
transformed data Y*

» leads to less biassed estimates in small samples

» MLE's are sensitive to mis-specification of F (the covariate
mode for p)



Also not covered

Non-stationary random variation?

» Intrinsic variation a weaker hypothesis than stationarity
(process has stationary increments, cf random walk model in
time series), widely used as default model for discrete spatial
variation (Besag, York and Molié, 1991).

» Spatial deformation methods (Sampson and Guttorp, 1992)
seek to achieve stationarity by transformation of the
geographical space, x.

> as always, need to balance increased flexibility of general
modelling assumptions against over-modelling of sparse data,
leading to poor identifiability of model parameters.



Bayesian Estimation Of Parameters

As before:
the model: S is an SGP with E[S(x)] = 0, Var[S(x)] = o2, and
correlation function p(u; ¢). Response is

Y(x;) = p+ S(x;) + €

with i.i.d. Gaussian noise €; ~ N(0,72) ("nugget”).

reparameterisation:

correlation matrix : has elements Rjj(¢) := p(||x; — xj||; ¢).
Define
R.(6,v) = R(9) + 1l



Bayesian stuff

A judicious choice of priors yields an convenient posterior

priors for ¢ and v Choose a discrete prior for ¢ and v

W¢7V(¢7 V)

prior for 2 and ;1 Choose continuous priors

o2 \ 1
R ~ 2
(%53) [on% X7o
plo,g,v ~ N (muaaz\/p)
2

This is known as a Gaussian-scaled-Inverse-y
distribution on (u, o?).



posterior for (¢, ) : a discrete posterior with

_1
p(6. vly) o T (6,0) [[Ru|[7H2 VI (52) 20
(1)
posterior for (1, 0?) : A Gaussian-scaled-Inverse-x? posterior
distribution for yu,o?|¢, v
1

o? a 5
(ormsz) |67y~ Xa @
u|0-27¢7 v,y ~ N (m*702 V*) (3)

where
- -1 —14\1
Vo = (Vil41R)
m, = V* (muV;1 + 1R y)
and
1 _ _ _
2 .= P (miVM '+ n,S2+y Ry - m2v, )

see handout for proof (the proof is not examinable.)



Monte Carlo Algorithm

» Sum the right hand side of (??) over the finite number of
possible values of (¢, ) and divide by this to obtain the
posterior p(¢,v|y) for each combination of (¢,v).

» Simulate directly from the full posterior by the following
Monte Carlo algorithm

simulate ¢() and v() from p(¢,y|y)

simulate from the posterior for o2|¢(), v() using (?7?).
simulate from the posterior for for u|02 () , o, ) using (7).
i «— i+ 1; repeat.

v vy VvYy



A Case Study: Swiss rainfall, 100 data

Profile Likelihoods
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Joint posterior

Samples and contours

400, 600 800

200

200

150

100
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pe3
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Extensions

Add covariates : with p = F3, but how does this affect the
posterior?

Vary all parameters : k, A\, g, ¥4 are fixed. In principal these
could be included in the analysis, with discrete priors.
improper priors : certain simple improper conjugate priors for
(flat) and o2 (reciprocal) are often chosen and still
lead to proper posteriors (subject to
reparameterisation to v not 7)
> () o1 (V- 00')
» 7,(0?) x1/0% (‘ny — 0'). This is the
commonly used Jeffrey's prior.
» but see note in section on GLSM'’s.



ML v Bayes

Bayes
» Allows for for parameter uncertainty to carry over to
predictions

» Less damage caused by inclusion of poorly identified
parameters

» More exact parameter confidence intervals (ML is asymptotic)
» Can incorporate prior information

» Bayes is necessary for non-Gaussian responses (more on that
later).

ML
» Not affected by priors

» Computationally simpler



PART V: SPATIAL PREDICTION FOR GAUSSIAN
MODELS

Stochastic Process Prediction

Prediction under the Gaussian Model
What does Kriging Actually do to the Data
Prediction of linear Functionals

Plug-in Prediction

o kR wh =

Model Validation and Comparison



Stochastic Process Prediction

General results for prediction

goal: predict the realised value of a (scalar) r.v. T, using
data y a realisation of a (vector) r.v. Y.
a predictor of T is any function of Y, T = #(Y)
the mean square error (MSE) of T is

MSE(T) =E [(T — T(Y))?

(expectation over both T and Y )
the MMSE predictor minimises the MSE



Theorem

The minimum mean square error predictor of T is
T=E[T|Y]
at which point
E (T = 72| = Ey [Var[T]Y]

(the prediction variance is an estimate of the MSE) [J
See handout for proof.
Also, directly from the second tower property

Var[T] = Ey [Var[T|Y]] 4+ Vary [Ey [T|Y]]

Hence E [(T - ?)2] < Var[T], with equality if T and Y are
independent random variables.



Comments

» We call T the least squares predictor for T, and Var [T|Y] its
prediction variance

» Var[T] — Var[T|Y] measures the contribution of the data
(exploiting dependence between T and Y)

» point prediction and prediction variance are summaries

» complete answer is the distribution [T|Y]

> not transformation invariant: T the best predictor for T does

A

NOT necessarily imply that g(T) is the best predictor for
g(T).



Prediction Under The Gaussian Model

» assume all the parameters 3,02, 72, ¢, . are known

> assume that the target for prediction is T = S(x')

» T =E[T|Y], Var[T|Y] and [T|Y] can be easily derived from
a standard result.

Under the Gaussian model Y(x;) = u; + S(x;) + €;

MR P et)

pu = F(3 and r is a vector with elements
ri = pe(||X = xi||; #) : i = 1,..., n Again define R, = R + 1l



Conditional Distribution

Using background results on partitioning the MVN with Z; = T
and Z, =Y, we find that the minimum mean square error
predictor for T = S(x) is

T = o (c°R.) Yy —p)
= r (R)7(y —n) (4)
with prediction variance

Var[T|Y] = o%—o%r (6°R.)1o°r
= o (1-r (R) ) (5)



Exampe:Swiss rainfall data

» Locations shown as points
with size proportional to the
value of the observed
rainfall.

2004

» 467 locations in Switzerland

e » daily rainfall measurements

on 8th of May 1986

i . E-W(::)O 0 > i=1, ,lll = 20.13,
62 =105.06, ¢ = 35.79,
72 =6.92




Swiss rainfall data (cont.)

Predictions E(S(x)|Y1...Y,) Variances Var [S(x)|Y1 ... Y]

200 2 200+

100+ 1 1004

1004 0 100 200 300 400 500 |.] 1004

0 100 200 300




Notes

1. Applies whether x’ is a new point or a data point.

Because the conditional variance does not depend on Y, the
prediction mean square error is equal to the prediction
variance.

. Equality of prediction mean square error and prediction

variance (for any y) is a special property of the multivariate
Gaussian distribution, not a general result.

In conventional geostatistical terminology, construction of the
surface T = 11(x) + S(x) using (??) is called kriging. This
name is a reference to D.G. Krige, who pioneered the use of
statistical methods in the South African mining industry
(Krige, 1951).

Easy to extend to finding the expectation and joint covariance
matrix X of the signal at a set of points:

Sc :=[5(x1),---,S(xz)]" given the data (this is a complete
specification of the distribution since S¢g ~ MVN).



What Does Kriging Actually Do?

The minimum mean square error predictor for the mean + signal
wu(x") + S(x') is given by

T(¥) = u(x)+ Z wi(X)(Yi = (i)

> the predictor T(x') is a compromise between the
unconditional mean p(x") and the deviations of the observed
data Y(x;) from their means u(x;)

» the nature of the compromise depends on the target location
x':, the data-locations x; and the values of the model
parameters.

» the w;(x") are called the prediction weights.



Effects on predictions

Varying the correlation function

predicted signal

locations

Predictions from 10 equally spaced data-points using exponential (
— ) or Matérn of order 2 ( - - - ) correlation functions.



Unequally spaced data

|
PP

predicted signal

-2.0

-2.54

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

locations
Predictions from 10 randomly spaced data-points using exponential
( — ) or Matérn of order 2 ( - - - ) correlation functions.



Varying the correlation parameter

predicted signal
o o = =
A A N

s
fn

-~ - -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

locations
Predictions from 10 randomly spaced data-points using the Matérn
(k = 2) correlation function and different values of ¢: 0.05 ( —),
01(---)and 0.5 (===).



Varying the noise-to-signal ratio

15
El.m
s < E(S]Y)
go.o_
-0.5] T e
00 02 04 06 08 1o 0 ( — )'
locations 025 ( _ ),
0.4 and
| 05 (===)
%o.z_
H < Var[S]Y]
0.1
0.0

locations



Prediction of Linear Functionals

Let T be any linear functional of $* := u + S,

T:/Ac(x)S*(x)dx

for some prescribed weighting function c¢(x).
e.g. the average of S*(-) over a region,

T=|B"" / S*(x)dx
B

where |B| denotes the area of the region B.



Conditional Distribution

Under the Gaussian model:

» [T,Y] is multivariate Gaussian;
» [T]Y] is univariate Gaussian;

» the conditional mean and variance are:
E(TIY) = / c(x) (u(x) + E[S(x)[Y]) dx

Var [T|Y] —// x')Cov [S(x), S(X')] dxdx’

Note in particular that

7= [ et + )



Explanation in words

> Given a predicted surface g(x) it is legitimate simply to
calculate any linear property of this surface and to use the
result as the predictor for the corresponding linear property of
the true surface S(x)

» Replace the unknown S with the known S in the formula for T

> it is NOT legitimate to do this for prediction of non-linear
properties

> for example, the maximum of 5(x) is a very bad predictor for
the maximum of 5(x)



Prediction of non-linear Functionals

» Let T be any functional of S* :=u+ S, e.g.

> the proportion of the area over which §* > 5

» the maximum value of $* over the region.

» When using the Box-Cox transform, predicting E(Y') rather
than E[hx(Y)]

» Substituting S in the linear case “worked” because
E(aY + b) = aE(Y) + B).

» This doesn't work for non-linear transforms, for instance
Y ~ N(0,1) results in E(Y?) = 1.

» The solution is to simulate from the conditional distribution
and transform the simulated values.



The algorithm

> Define a prediction grid G = {x},...,x,} to cover the area of
interest
» Dimulate a realisation of S¢ := [S(X}), ..., S(xg)] from the

conditional distribution [S¢|Y]

» add on any mean effects u; = Fg B where F¢ is a matrix of
covariates at the points in G.

» calculate t(1) from this simulation

» repeat to obtain t(2), ..., t(M _ a sample from the distribution
of T.



How fine should we make the prediction grid?

» As fine as your computer will allow and you have the patience
for!

» fine enough to pick up all the features

» not so fine as to make the computation time and memory
requirements prohibitive

» pragmatic strategy: stop when the finer of two grids makes no
signficant difference to the quantity of interest (e.g. to
posterior mean or median)



Swiss rainfall data

Prediction of Fago(S), the

percentage of the area where
Y (x) > 200 = 0.4157

600

5001

400+

300+

200+

100+

o

0.410

0.415

0.420

Samples from the predictive
distribution of F0(S). NB
Possible difficulties with negative
values and back-transformation
(simply set to zero in geoR code
- crude but alternative is
computationally intensive).



Plug-In Prediction

» Usually the model parameters are in fact unknown.

» The plug-in prediction consists of replacing the true
parameters by their estimates.

Comments

» we will use ML estimates
» could also use REML estimates

» The conventional approach to kriging is to plug-in estimated
parameter values and proceed as if the estimates were the
truth.

This approach:
» usually gives good point predictions when predicting T = S(x)
» but often under-estimates prediction variance
» and can produce poor results when predicting other targets T



Model Validation and Comparison:

Using validation data

» Data divided in two groups: data for model fitting and data
for validation

» Frequently in practice data are scarce and too expensive to be
left out



“Leaving-one-out”
> Also called Jackknifing
> Write Y_; = {Y};j # i}
» One by one, for each datum:

1. remove the datum from the data-set
2. (re-estimate model parameters)
3. predict at the datum location

E(Y;|Y_;), Var[Yi]Y_]]
4. compute standardised residuals
E(Yi[Y—j)/{Var[Yi[Y_j]}'/2

» Compare original data with predicted values.



What to use cross-validation for

» Comparing two models or estimation procedures
» Compare total sums of squares of prediction errors
» As a diagnostic, particularly when the dataset is small.

» Check for Normality
» Check for a constant variance

» The R function xvalid does this



100 fitting data + 367 validation data
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Standerdised residuals
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Bayesian prediction

We wish to make inferences about functional T based on the
posterior distribution

[T|Y] = /[T,9|Y]d9

/[G\Y][TY,Q]dG

This is a weighted sum of the distribution of T given the data and
a particular set of parameter values, taken over all possible
parameter values and using the parameters’ posterior distribution
as the weight.



Before describing an efficient algorithm to sample from the
posterior, note:

» Conditional on knowledge of S := [S(x1),...,S5(x,)] the
signal at all data points...

» ... the distribution of the signal at a grid of points
S :=[S(x}),...,5(x})] depends on o2 and ¢
> but does not depend on 3, v = 72/5?, or the data y.

This is because S
G
[ S ] ~ N (0,0°Ryg)

where the element of Ry, corresponding to any two locations xJ
and x3 is simply p(|[x] —x3|[ /o)



Predictive sampling algorithm
Define a predictive grid G := {x],...,x,}.
At the ith iteration

>

g

simulate 80D, 52 (), &), () from their posterior distribution
(as described under Bayesian parameter estimation in Chapter
V).

simulate the signal at all data points S() = [S(x1),...,S(x,)]
using ,B(i),02 (i),cb(i), () and y (as described under
Prediction, earlier in this chapter).

simulate the signal at all grid points S(Gi) = [S(x1), .-+, S(xg)]
using S), o2 (D (1),

calulate the mean at all grid points pg = [u(x1), - - -, p1(Xg)]
using B(i) and Fg, the covariates matrix at predictive grid
points.

calculate ¢(") from the extended grid of values

() 4 S0, M(Gl) + S(G')) - this is a sample from the posterior
distribution for T.

repeat ...



Notes:

>

>

The sampled values from one iteration to the next are
independent - this is not MCMC!

Computation of moments of Sg (mean, variance,...) can be
performed more simply as a mixture of multivariate t
distributions since some of the integrals can be computed
analytically given ¢(), ().

Integrate out 3, o then use knowledge of analytical
distribution -

FG/8+SG|y7B(J)7020)7¢(J)aVU) ~ m.v. GaUSSian
FeB+ Sely, oV, w0 ~omv.t

Simulation of the signal at data points could also have been
used in the algorithm for estimating non-linear functionals.



Comparing plug-in and Bayesian

» the plug-in prediction corresponds to inferences about [T|Y, QA]
» Bayesian prediction is a weighted average of plug-in
predictions, with different plug-in values of 8 weighted

according to their conditional probabilities given the observed
data.

Bayesian prediction is usually more cautious than plug-in
prediction, or in other words:

» allowance for parameter uncertainty usually results in wider
prediction intervals



Swiss rainfall: prediction results
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Predicted signal surfaces and associated measures of precision for
the rainfall data: (a) posterior mean; (b) posterior variance



Posterior probability
contours for levels
0.10, 0.50 and 0.90
for the random set
T={x:5x)<
150}
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Swiss rainfall: prediction results (cont.)
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selected prediction
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Bayesian predictive distributions for
average rainfall at selected locations.



PART VI: GENERALIZED LINEAR SPATIAL MODELS

o L=

Non Gaussian data

Generalized linear geostatistical models

Application of MCMC to Generalized Linear Prediction
Case-study: Rongelap Island

Case-study: Gambia Malaria



Non-Gaussian data
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Towards a model specification

» Consider the linear model
Y =FB+e, ¢~ N(0,o°I)
» Re-write it as

Yi~ N(:uiv 02)
p
Wi = Z FiiBj = fi3
=1

» Generalise the model as

Yi~ Qui, )

p
h(ui) = FyB =8
=1

» @ is a distribution in the exponential family
> h(-) is a (pre-specified) link function

» Generalized Linear Models (GLM)



Generalized Linear Geostatistical Models

Classical generalized linear model has
» Y;:i=1, .. nmutually independent, with
i = E[Y]]
> h(u;) = f3 for known link function h(-)
Generalized linear mixed model has

» Y;:i=1,...,n mutually independent, with
wi = E[Yj], conditional on realised values of a
set of latent random variables U;

> h(ui) = f/8+ U; for known link function h(-)

Generalized linear geostatistical model has

» Y;:i=1, .. nmutually independent, with
w; = E[Yj], conditional on realised values of a
latent spatial stochastic process
S :=[S(x1),...,5(xn)]

> h(pi) = f(x;)' B + S(x;) for known link function
h(-)



Examples

X1, ...,Xp locations with observations

Poisson-log

> [Y(xi) | S(xi)] is Poisson with density
f(z;u) =exp(—p)p*/z! z=0,1,2,...
> link: E[Y(X,’) | S(X,)] = Ui, f(X,'),ﬂ + S(X,') = log p;.

Binomial-logit

> [Y(x;) | S(xi)] is binomial with density
fain) = () /=y 20

> link: E[Y(X,) ’ S(X,)] = Ui, f(X,’)IB—i-S(X,') = Iog(,u,-/(r— M,))



Likelihood function

L(B,0°% ¢) =
/ Hf vii Y EB +5))f(s | 0%, p)ds; ... ds,

High-dimensional integral !!!



Inference For The Generalized Linear Geostatistical Model

» likelihood evaluation involves high-dimensional numerical
integration

> approximate methods: Breslow and Clayton (1993), Geyer and
Thompson (1992), Geyer (1994) are of uncertain accuracy but
useful for exploratory analysis

» MCMC is feasible, although not routine.

» geoRglm and WinBUGS have greatly improved the
accessibility of MCMC for spatial models.



Application of MCMC
Start with

» data y; = y(x;) (i=1,...,n)
» matrix of covariates at data points F

> (optional) a grid G := {x},...,x,} of points at which we

wish to sample the signal, and covariate mx Fg

» covariance model (e.g. Matern)

» initially assume no random effects (i.e. v?> = 0)

» initially assume fixed k

must

specify priors for regression parameters 3 and covariance
parameters 6 := [0, ¢]

» choose initial parameter values ,8(0),0(0), (0

» choose inital values for the signal at data points

S = [S(x1), e ;(xn)]’



The goal

» posterior distribution of 3,0, ¢

» functionals of the mean + signal at data and/or prediction
points (e.g. mean/max over an area or proportion of region
over a certain threshold)

Implementation

priors - exactly as for analysis of Gaussian model

» discrete prior for ¢
» Gaussian-scaled-Inverse-x?2 for (3, 0?)

initial values
» choose ¢(©) and o(©) from their priors - either
sensibly from their support or by direct sampling
(if priors are proper)
> set B0 by fitting a standard GLM to the data
» set s(O(x;) = h(y;) — f(x;)8®



Conditional independence structure

Generic MCMC scheme

» update U1 7(-1) o ,6'( ) conditional on y,s(—1)
» update o1 ¢(i=1) to Ui qﬁ() conditional on s(—1)

» update s(—1) to s() conditional on y,B( Lol ),gb
(i

» (optional) sample SG) directly from its conditional distribution

given s() g 4

For a simple MCMC scheme based on independence sampling for
02, ¢, and s, see Diggle, Tawn and Moyeed (1998).



Prediction

» Use output from chain to construct posterior probability
statements about [T|Y], where T = F(S¢, S, 3).

» Two approaches are possible for estimating expectations
(rather than obtaining full posterior distributions).

» For simplicity just consider expectations of some function of
the prediction grid.

Full Monte Carlo
After m iterations approximate E[T(F3 + S¢)l|y] by

1« : ;
— > T(FeBY +s)y
j=1



Using analytic distributions

> Integrate out 3, o then use knowledge of analytical
distribution:
FcB+ S(;|SU),B(j),02(j), #Y) ~ multivariate Gaussian
FeB + Sg|sV), pU) ~ multivariate t
> If it is possible to do so, calculate E [T(S¢)[sY), ¢U)],
Jj=1,..., mdirectly, and estimate E [T (S¢)|y] by

m

LS B[ T(56)lsY, 0V

Jj=1

This is preferable to Monte Carlo as it eliminates the portion of the
Monte Carlo error due to sampling S¢, 3, 0.



A more efficient MCMC scheme

The scheme implemented in geoRglm is documented in Diggle,
Ribeiro and Christensen (2003).
Note that conditional on ¢(7) the posterior for

B,0%|S+FB

is Gaussian-scaled-inverse-x? (as with the Gaussian case).
» update ¢~ to qﬁ(i) conditional on s(i~1) using a random
walk Metropolis step
» update a(i_l),,@(i_l) to a(i),ﬁ(i) conditional on
Fﬁ("*l) + s(=1) by sampling exactly from the posterior
» update sU~1 to s() conditional on y, 31), c(), ¢() using a
truncated Metropolis adjusted Langevin algorithm (MALA)

Also contains a cunning reparameterisation S — Z where
S = 0RY/2Z makes the updates to S more efficient.



Notes

» The optimal acceptance rate for many high dimensional
MALA algorithms is =~ 60% - tune the S scaling parameter to
achieve this.

» The optimal acceptance rate for many high dimensional RWM
algorithms is =~ 23% but this algorithm is one-dimensional so
tune the ¢ scaling parameter to ~ 30% — 40%.



Extensions

» discrete prior for k e.g. k = {0.5,1,1.5,2.5} with probabilities
{0.25,0.25,0.25,0.25}

» random effects (return of the nugget) e.g. n villages and m;
people measured in the it village. The mean for the jt
person in the i village is given by

h(MU):fUﬁ—i-S(X,)—l-Z, where Z; ~ N(O,Tz)

» extra village-level non-spatial effect (e.g. missing covariates).
> require a discrete prior on v = 7/0.
» more general priors for 3 and o can be accomodated but
require random walk Metropolis steps for these parameters
(NB RWM on log(o)).



Improper prior and improper posterior

» In a generalised linear mixed model, the improper prior
7(0?) o< 1/0? leads to an improper posterior for ¢
(Natarajan & Kass, 2000 - JASA).

» Generalised linear geostatistical models are generalised linear
mixed models with a specific covariance structure. Therefore
avoid the Jeffrey's prior for 0.

» The Gaussian model with a nugget effect is an example of a
generalised linear mixed model. However in this case (and only
in this case) the reparameterisation 12 = 72 /52 gets round

the mathematical detail and leads to a proper prior for o2.

» The whole idea of an improper prior is (arguably) dubious. It
is safer to use diffuse but proper priors.



Case-study: Rongelap Island

This case-study illustrates a model-based geostatistical analysis
combining:

» a Poisson log-linear model for the sampling distribution of the
observations, conditional on a latent Gaussian process which
represents spatial variation in the level of contamination

» Bayesian prediction of non-linear functionals of the latent
process

» MCMC implementation
Details are in Diggle, Moyeed and Tawn (1998).



Radiological survey of Rongelap Island

vV v v v .Y

vV v v .Y

approximately 2500 miles south-west of Hawaii
contaminated by nuclear weapons testing in 1954
residents evacuated after the test, many died
1957 Rongelap declared safe, residents returned.

Leukemia and thyroid-tumors followed. Greenpeace evacuates
residents in 1985

now safe for re-settlement?
Radiation measurements taken, spatial maps made
After some removal of soil, radiation levels have fallen

Reconstruction is underway with resettlement expected soon.



Statistics in Rongelap
The Problem

> field-survey of 137Cs measurements

> estimate spatial variation in 137Cs radioactivity

» compare with agreed safe limits

The model
» Basic measurements are net counts Y; over time-intervals t;
at locations x; (i =1, ..., n)

» Suggests following model:
» S(x) : x € R? stationary Gaussian process (local radioactivity)

> Yil{S(-)} ~ Poisson(y1)
Aims > ui = tA(x;) = tiexp{f1 + S(x;)}.
» predict A\(x) over whole island
» predict max A(x)
» predict argmax A(x))



Predicted radioactivity surface

Poisson log-linear model with

log-Gaussian krigin .
g ging latent Gaussian process
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» The two maps above show the difference between:
» log-Gaussian kriging of observed counts per unit time
> log-linear analysis of observed counts
» the principal visual difference is in the extent of spatial
smoothing of the data, which in turn stems from the different
treatments of the nugget variance



Bayesian prediction of non-linear functionals of the
radioactivity surface

Posterior distributions from the
Poisson model of the maximum
radioactivity based on:

» The fully Bayesian analysis
incorporating the effects of
parameter uncertainty in
addition to uncertainty in

ity
00 002 004 006 008 010 012 014
Survivor function
a

[ v s e e the latent process (solid line)

» Fixing the model parameters

Posterior estimates with 95% point-wise at their estimated values, ie

credible intervals for the proportion of allowing for uncertainty only
the island over which radioactivity in the latent process

exceeds a given threshold (dotted line).



Case-study: Gambia malaria

» In this example, the spatial variation is of secondary scientific
importance.
» The primary scientific interest is to describe how the

prevalence of malarial parasites depends on explanatory
variables measured:

> on villages
» on individual children
» There is a particular scientific interest in whether a vegetation
index derived from satellite data is a useful predictor of
malaria prevalence, as this would help health workers to
decide how to make best use of scarce resources.



Data-structure

» 2039 children in 65 villages

> test each child for presence/absence of malaria parasites

Covariate information at child level:

> age (days)

> sex (F/M)

> use of mosquito net (none, untreated, treated)
Covariate information at village level:

» |ocation

» vegetation index, from satellite data

> presence/absence of public health centre



Logistic regression model

Logistic model for presence/absence in each child:
> Yjj = 0/1 for absence/presence of malaria parasites in jth
child in jth village
» f;; = child-specific covariates
» w; = w(x;) village-specific covariate
> logitP(Y; = 1|S(+)) = ;81 + wi'Bs + S(x;)
Is it reasonable to assume conditionally independent infections

within same village?
If not, we might wish to extend the model to allow for non-spatial

extra-binomial variation:
> U,' ~ N(O, 1/2)
> logitP(Y;j =1/5(-),U) = fI{J-,Bl +w;/B,+ Ui + S(x;)



Exploratory analysis

» fit standard logistic linear model, ignoring S(x) and perhaps U

» compute for each village:

N; = Zj’ll Yij

Hi = Ejn':1 'E)u

o7 =27, Py(1 - Py)
» compute village-residuals, r; = (N; — )/ o;
» apply conventional geostatistics to derived data r;

» variogram indicates residual spatial structure



Variogram of residuals

distance (km)



Model-based geostatistical analysis

Fixed effects

« = intercept 2.5% 97.5% Mean Median
(1 = age « -4.23 1.11 -1.66 -1.70
(B> = bed-net use (1 | 0.00044 | 0.00092 | 0.00068 | 0.00068
(33 = treated bed-net B> -0.68 -0.084 -0.380 -0.39
B4 = green-ness index 03 -0.78 0.055 -0.36 -0.36

s = presence of public | Ja | -0.040 | 0.072 | 0.019 | 0.020

health centre in village s -0.79 0.18 -0.32 -0.32
v2|2-107° 0.52 0.12 | 0.019

Random effects o2 0.24 1.66 0.79 0.74
V2 = Var_[U,-], o 1.24 53.35 11.65 7.03
non-spatial K 0.15 1.96 0.94 0.83

02 = Var[S(x)], spatial
¢ = spatial range

) > note concentration of posterior for 12
k = Matérn shape

close to zero



Posterior mean of S(x)
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Posterior density estimates for S(x) at two selected
locations.

Density

0.8

0.6

0.4

0.2

0.0

—— x= (52, 1493)
- x=(520, 1497)

— Remote location
(452, 1493)

- dashed curve —
location (520,
1497), close to
observed sites in
central region.



Empirical posterior distributions for regression parameters

500 1000 1500 2000 2500 30(

o

> 1 = effect of age

> 3 = effect of untreated
bed-nets

> (33 = additional effect of
treated bed-nets

00004 0.0008 10 06 02 02

hhhhhhhhhh



Goodness-of-fit for Gambia malaria model

Residual

0.40

Fitted value

0.50

Village-level residuals against
fitted values.
(Diggle et al., 2002)

(Vs — P/ VABs (1L — i)}
> = Z r,-j/\/n,-

» intended to check adequacy
of model for pj;

» more sensitive to individual
'unlikely data’ than
(N; — p;)/o; which was used
in exploratory spatial
analysis (so perhaps less
preferable).



Standardised residual empirical

25

15 20

Variogram

1.0

05

variogram plot (village-level data
and pointwise 95% posterior
intervals constructed from
simulated realisations of fitted
model).

Simulate realisations from the
fitted model and calculate

/N > r,-j =
o N\ (Y — pjj)/vAB;(1 - Bj)}
> rp = rij/\/ni
> Iogitp;‘j =

&+ [f, wilB + 5(x)

» intended to check adequacy
of model for S(x)

Distance (km)



Is a geostatistical model necessary?

E[U|data]

Plot of estimated posterior

means of random effects U; from
non-spatial GLMM against

o8 ° estimated posterior means 5(x;)
° at observed locations in
geostatistical model.

o » high correlation represents
strong empirical evidence of
spatial dependence

» but explicit modelling of

0 : ; spatial dependence has small
Eistldar) effect on inferences about
regression parameters



PART VII: FURTHER TOPICS, HISTORY AND
PHILOSOPHY

Sampling design
Multivariate methods
Space-time models
Marked point processes
Philosophy and History

o kR wh =

Closing remarks



Sampling design

How do we choose the sample points x1,...,X,?

Grid types

Should be stochastically
independent of the signal S(x).
Possibilities include

» uniform e.g. a square grid -
with the centre positioned at
random

» random - e.g. a Poisson
process

X2

4
00 02 04 06 08 1.0

Design grids with 100 points -
regular square lattice (left) and
generated by a homogenous
Poisson process (right).

00 02 04 06 08 10



Prediction considerations

» For two points x; and x» close together S(x1) and S(x2) will
be very similar and so the second point adds little information
about S(x) in that neighbourhood

» therefore if prediction of a homogenous spatial average is
required choose a homogenous regular grid

» if certain subregions are more important then sample more
heavily in those subregions



Parameter considerations

Consider the extreme grid below.

Q
—

@
o

0.6

02 04

0.0

» the difference in S(x)

between points close
together is informative
about about 72, ¢ and any
anisotropy parameters.

for close pairs, S(x2)
provides little extra
information (over S(x1))
about any overall mean y or

variance o2



Compromise lattices

Lattice plus infill

» Nested
sub-lattices

» As with
Rongelap

Lattice plus close

pairs

» Extra points

randomly
located within
a disk of radius
¢ around each
lattice point

» Infill risks committing
too many points to
the infill squares, the
rest of the grid
becomes too sparse

» Parameters badly
estimated if range is
bigger than the infills
but smaller than the
grid.

» Diggle and Lophaven
(2006)'s design
criteria has close pairs
being much better
than a simple grid or
a grid plus infills.



Multivariate methods

Motivation
» two or more related repsonses are measured at each location
(e.g. Cancer and Heart Disease cases)
» covariate is missing at some data points

» Y5 is of no direct interest but is correlated with the response
of interest Y7, and is much cheaper to measure

Approach

» within linear Gaussian setting, extension to multivariate data
is straightforward in principle

» but specification of a useful class of default models for
cross-covariance structure is not straightforward - must ensure
positive definiteness of linear combinations of both/all
responses



Bivariate model

AR ARSI
Here S;(x) and Sy(x) are independent SGP’s with =0, 02 =1

and positive definite correlation functions p(u; ¢1, k1) and
p(u, 2, Kk2). Also

for some covariance matrix X.

NB Number of parameters increases rapidly with dimension of
response - detailed implementation should use structure of the
specific problem.



Shared component model

» Suppose Yi;, Yoi, Yy are death rates from different causes at
location x;.

» Death rates are affected by a common surface S§ (perhaps

relating to environmental pollution), and separate surfaces
57 (x) to 5;(x).

Si(s) = Sg(s)+S(s); j=1...n

» Dimension of the problem doesn't grow so quickly with n

» Even for n = 2, perhaps this is a more intuitive interpretation
than the bivariate model?



Space-time models

» Emerging space-time data-sets are big, and present severe
computational challenges.

» Specific models are best defined in context.
» Calibration of radar reflectance against ground-truth rainfall
intensity (Brown, Diggle, Lord and Young, 2001).
1. Yi:i=1,...,n— ground-truth log-rainfall intensity at small
number of sites x;
2. U(x,t): x € A — log-radar reflectance measured effectively
continuously over a study region A
3. Empirical model,

Yi = a+ B(x;, t)U(x;, t)

where B(x, t) is continuous space-time Gaussian process
4. Spatial prediction,

A

Y(x,t) = a+ B(x, t)U(x, t)



On-line disease surveillance (Brix and Diggle, 2001)

1. Data give population density Ao(x) (approximately), plus
locations of daily incident cases

2. Model space-time point process of incident cases as Cox
process:

» Poisson process with intensity
A(x, t) = Ao(x) exp{a + Z(x, t)}

» Space-time Gaussian process Z(x, t) models variation in
disease risk
> Interested in early detection of changes in the risk surface,

A(x, t)/A(x, t — 1) = exp{Z(x,t) — Z(x,t — 1)}



Marked point processes

Definition: a joint probability model for a stochastic point
process P, and an associated set of random variables, or marks,
M

Different possible structural assumptions:

[P, M] = [PIM][M]

Preferential sampling —

[P, M] = [P][M|P]
[P, M] = [P][M] sampling locations are 8::; tathrr’r?:)rrlla;iocess
The random field ~ Gctermined by partial Gl fined at the

knowledge of the g .
model — often . sampling locations.
underlying mark

assumed implicitly Example.

. . process

in geostatistical E . Presence/absence of
xample. deliberate .

work. disease amongst

siting of air pollution
monitors in badly

polluted areas.
Implications of ignoring violations of the random field model are

not well understood.

individual members of
a population.



Philosophy

What is the signal S(x)?
What justification is there for imagining a real world phenomenon
as a single realisation of a spatially correlated stochastic process?

» S(x) is not some underlying truth - it is a convenient model

» surrogate for covariates that are spatially correlated but that
we have not thought to measure (e.g. elevation in Swiss
rainfall data)

> representing some real process that spreads spatially (e.g. a
snapshot of the occurences of some disease e.g. root fungus
in a potato field)



What is the nugget effect ¢ ~ N(0,72) ?
Two possible interpretations

» measurement error

» spatial variation on a scale smaller than can be captured by
our observation grid

For the Gaussian model only repeated measurements at the same
point can hope to resolve the difference between the two.

e.g. for each soil sample, divide it into three and measure calcium
content on each subsample.

For GLGM's there is already variability in the response - if there is
a nugget it is even harder to determine whether it represents
measurement error or small scale variability.

For the Poisson or binomial GLGM we can in principal discern the
need for a nugget without repeated measurements but would need
a lot of data.



Some History

>

Origins in problems connected with estimation of ore reserves
in mineral exploration/mining (Krige, 1951).

Subsequent development largely independent of “mainstream”
spatial statistics, initially by Matheron and colleagues at Ecole
des Mines, Fontainebleau.

Parallel developments by Matérn (1946, 1960), Whittle (1954,
1962, 1963)

Ripley (1981) re-casts kriging in terminology of stochastic
process prediction

Significant cross-fertilization during 1980’s and 1990's (eg
variogram is now a standard statistical tool for analysing
correlated data in space and/or time).

But still vigorous debate on practical issues:

» prediction vs inference
> role of explicit probability models



Traditional geostatistics:

» avoids explicit references to the parametric specification of the
model

inference via variograms
complex variogram structures are often used

concentrates on linear estimators

vV v v VY

the kriging menu



Model-Based Geostatistics:

Term coined by Diggle, Tawn and Moyeed (1997)

Model based geostatistics means that we adopt a model-based
approach to this class of problems; an explicit stochastic model is
declared and from this associated methods of parameter
estimation, interpolation and smoothing are derived by the
application of general statistical principles.



Use of variograms
For parameters 6 (e.g. 1,02, ¢, 72) estimate 6 to minimise a
particular criterion
eg, the weighted least squares (Cressie, 1993)

S(0) = > m{[Vic = V(u: 0)]/ V (uy: 0)}
k
where V| is average of ny variogram ordinates Vij.
Other criteria: OLS, WLS with weights given nj only.
Potentially misleading (and even biased) because of inherent
correlations amongst successive V.
Example: Swiss rainfall data



Traditional Linear Geostatistics
Suppose the target for prediction is T = u(x’) + S(x’)
The predictor which minimises MSE is

T(x) = u(x') + E [S(X)|Y]

» Traditional (linear) geostatistics:
» Assume that T is linear in Y, so that

T(X) = bo(x) + Z bi(x')Y;

» Choose b; to minimise MSE(T) within the class of linear
predictors

» Model-based geostatistics:

> specify a probability model for [Y, T]
» choose T to minimise MSE(T) amongst all functions T(Y)

But under the Gaussian geostatistical model:

T(x) = p)+v (R)Hy—mp)

n



Closing remarks

» “Essentially, all models are wrong, but some are useful.”
George E.P. Box & Norman R. Draper, Empirical
Model-Building and Response Surfaces (Wiley 1987) p. 424:

» whatever model is adopted, inferential procedures which
respect general statistical principles are likely to out-perform
ad hoc procedures

> ignoring parameter uncertainty can seriously prejudice nominal
prediction intervals

» the Bayesian paradigm gives a workable integration of
parameter estimation and stochastic process prediction, but
results can be sensitive to joint prior specifications.

» the best models are developed by statisticians and
subject-matter scientists working in collaboration.



