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Preface to the Second Edition

The second edition marks a substantial change to the first edition. Per-
haps the most significant change is the introduction of examples based on
the freeware R package. The package, which runs on most operating systems,
can be downloaded from The Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/ or any one of its mirrors. Readers who have
experience with the S-PLUS R© package will have no problem working with
R. For novices, R installs some help manuals, and CRAN supplies links to
contributed tutorials such as R for Beginners. In our examples, we assume
the reader has downloaded and installed R and has downloaded the neces-
sary data files. The data files can be downloaded from the website for the
text, http://www.stat.pitt.edu/stoffer/tsa2/ or any one of its mirrors.
We will also provide additional code and other information of interest on the
text’s website. Most of the material that would be given in an introductory
course on time series analysis has associated R code. Although examples are
given in R, the material is not R-dependent. In courses we have given using
a preliminary version of the new edition of the text, students were allowed to
use any package of preference. Although most students used R (or S-PLUS), a
number of them completed the course successfully using other programs such
as ASTSA, MATLAB R©, SAS R©, and SPSS R©.

Another substantial change from the first edition is that the material has
been divided into smaller chapters. The introductory material is now contained
in the first two chapters. The first chapter discusses the characteristics of
time series, introducing the fundamental concepts of time plot, models for
dependent data, auto- and cross-correlation, and their estimation. The second
chapter provides a background in regression techniques for time series data.
This chapter also includes the related topics of smoothing and exploratory data
analysis for preprocessing nonstationary series.

In the first edition, we covered ARIMA and other special topics in the time
domain in one chapter. In this edition, univariate ARIMA modeling is pre-
sented in its own chapter, Chapter 3. The material on additional time domain
topics has been expanded, and moved to its own chapter, Chapter 5. The
additional topics include long memory models, GARCH processes, threshold
models, regression with autocorrelated errors, lagged regression, transfer func-
tion modeling, and multivariate ARMAX models. In this edition, we have
removed the discussion on reduced rank models and contemporaneous mod-
els from the multivariate ARMAX section. The coverage of GARCH models
has been considerably expanded in this edition. The coverage of long memory
models has been consolidated, presenting time domain and frequency domain
approaches in the same section. For this reason, the chapter is presented after
the chapter on spectral analysis.

The chapter on spectral analysis and filtering, Chapter 4, has been ex-
panded to include various types of spectral estimators. In particular, kernel
based estimators and spectral window estimators have been included in the dis-
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cussion. The chapter now includes a section on wavelets that was in another
chapter in the first edition. The reader will also notice a change in notation
from the previous edition.

In the first edition, topics were supplemented by theoretical sections at
the end of the chapter. In this edition, we have put the theoretical topics in
appendices at the end of the text. In particular, Appendix A can be used
to supplement the material in the first chapter; it covers some fundamental
topics in large sample theory for dependent data. The material in Appendix B
includes theoretical material that expands the presentation of time domain
topics, and this appendix may be used to supplement the coverage of the
chapter on time series regression and the chapter on ARIMA models. Finally,
Appendix C contains a theoretical basis for spectral analysis.

The remaining two chapters on state-space and dynamic linear models,
Chapter 6, and on additional statistical methods in the frequency domain,
Chapter 7, are comparable to the their first edition counterparts. We do men-
tion that the section on multivariate ARMAX, which used to be in the state-
space chapter, has been moved to Chapter 5. We have also removed spectral
domain canonical correlation analysis and the discussion on wavelets (now in
Chapter 4) that were previously in Chapter 7. The material on stochastic
volatility models, now in Chapter 6, has been expanded. R programs for some
Chapter 6 examples are available on the website for the text; these programs
include code for the Kalman filter and smoother, maximum likelihood estima-
tion, the EM algorithm, and fitting stochastic volatility models.

In the previous edition, we set off important definitions by highlighting
phrases corresponding to the definition. We believe this practice made it dif-
ficult for readers to find important information. In this edition, we have set
off definitions as numbered definitions that are presented in italics with the
concept being defined in bold letters.

We thank John Kimmel, Executive Editor, Statistics, for his guidance in
the preparation and production of this edition of the text. We are particularly
grateful to Don Percival and Mike Keim at the University of Washington, for
numerous suggestions that led to substantial improvement to the presentation.
We also thank the many students and other readers who took the time to
mention typographical errors and other corrections to the first edition. In
particular, we appreciate the efforts of Jeongeun Kim, Sangdae Han, and Mark
Gamalo at the University of Pittsburgh, and Joshua Kerr and Bo Zhou at the
University of California, for providing comments on portions of the draft of
this edition. Finally, we acknowledge the support of the National Science
Foundation.

Robert H. Shumway
Davis, CA

David S. Stoffer
Pittsburgh, PA

August 2005



Preface to the First Edition

The goals of this book are to develop an appreciation for the richness and
versatility of modern time series analysis as a tool for analyzing data, and still
maintain a commitment to theoretical integrity, as exemplified by the seminal
works of Brillinger (1981) and Hannan (1970) and the texts by Brockwell and
Davis (1991) and Fuller (1995). The advent of more powerful computing, es-
pecially in the last three years, has provided both real data and new software
that can take one considerably beyond the fitting of simple time domain mod-
els, such as have been elegantly described in the landmark work of Box and
Jenkins (see Box et al., 1994). This book is designed to be useful as a text
for courses in time series on several different levels and as a reference work
for practitioners facing the analysis of time-correlated data in the physical,
biological, and social sciences.

We believe the book will be useful as a text at both the undergraduate and
graduate levels. An undergraduate course can be accessible to students with a
background in regression analysis and might include Sections 1.1-1.8, 2.1-2.9,
and 3.1-3.8. Similar courses have been taught at the University of California
(Berkeley and Davis) in the past using the earlier book on applied time series
analysis by Shumway (1988). Such a course is taken by undergraduate students
in mathematics, economics, and statistics and attracts graduate students from
the agricultural, biological, and environmental sciences. At the master’s degree
level, it can be useful to students in mathematics, environmental science, eco-
nomics, statistics, and engineering by adding Sections 1.9, 2.10-2.14, 3.9, 3.10,
4.1-4.5, to those proposed above. Finally, a two-semester upper-level graduate
course for mathematics, statistics and engineering graduate students can be
crafted by adding selected theoretical sections from the last sections of Chap-
ters 1, 2, and 3 for mathematics and statistics students and some advanced
applications from Chapters 4 and 5. For the upper-level graduate course, we
should mention that we are striving for a less rigorous level of coverage than
that which is attained by Brockwell and Davis (1991), the classic entry at this
level.

A useful feature of the presentation is the inclusion of data illustrating
the richness of potential applications to medicine and in the biological, phys-
ical, and social sciences. We include data analysis in both the text examples
and in the problem sets. All data sets are posted on the World Wide Web
at the following URLs: http://www.stat.ucdavis.edu/˜shumway/tsa.html
and http://www.stat.pitt.edu/˜stoffer/tsa.html, making them easily
accessible to students and general researchers. In addition, an exploratory
data analysis program written by McQuarrie and Shumway (1994) can be
downloaded (as Freeware) from these websites to provide easy access to all of
the techniques required for courses through the master’s level.

Advances in modern computing have made multivariate techniques in the
time and frequency domain, anticipated by the theoretical developments in
Brillinger (1981) and Hannan (1970), routinely accessible using higher level
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languages, such as MATLAB and S-PLUS. Extremely large data sets driven by
periodic phenomena, such as the functional magnetic resonance imaging series
or the earthquake and explosion data, can now be handled using extensions
to time series of classical methods, like multivariate regression, analysis of
variance, principal components, factor analysis, and discriminant or cluster
analysis. Chapters 4 and 5 illustrate some of the immense potential that
methods have for analyzing high-dimensional data sets.

The many practical data sets are the results of collaborations with research
workers in the medical, physical, and biological sciences. Some deserve special
mention as a result of the pervasive use we have made of them in the text.
The predominance of applications in seismology and geophysics is joint work
of the first author with Dr. Robert R. Blandford of the Center for Monitoring
Research and Dr. Zoltan Der of Ensco, Inc. We have also made extensive use
of the El Niño and Recruitment series contributed by Dr. Roy Mendelssohn of
the National Marine Fisheries Service. In addition, Professor Nancy Day of the
University of Pittsburgh provided the data used in Chapter 4 in a longitudinal
analysis of the effects of prenatal smoking on growth, as well as some of the
categorical sleep-state data posted on the World Wide Web. A large magnetic
imaging data set that was developed during joint research on pain perception
with Dr. Elizabeth Disbrow of the University of San Francisco Medical Center
forms the basis for illustrating a number of multivariate techniques in Chap-
ter 5. We are especially indebted to Professor Allan D.R. McQuarrie of the
University of North Dakota, who incorporated subroutines in Shumway (1988)
into ASTSA for Windows.

Finally, we are grateful to John Kimmel, Executive Editor, Statistics, for
his patience, enthusiasm, and encouragement in guiding the preparation and
production of this book. Three anonymous reviewers made numerous helpful
comments, and Dr. Rahman Azari and Dr. Mitchell Watnik of the University
of California, Davis, Division of Statistics, read portions of the draft. Any
remaining errors are solely our responsibility.

Robert H. Shumway
Davis, CA

David S. Stoffer
Pittsburgh, PA

August 1999
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Chapter 1

Characteristics of Time
Series

1.1 Introduction

The analysis of experimental data that have been observed at different points
in time leads to new and unique problems in statistical modeling and infer-
ence. The obvious correlation introduced by the sampling of adjacent points
in time can severely restrict the applicability of the many conventional statis-
tical methods traditionally dependent on the assumption that these adjacent
observations are independent and identically distributed. The systematic ap-
proach by which one goes about answering the mathematical and statistical
questions posed by these time correlations is commonly referred to as time
series analysis.

The impact of time series analysis on scientific applications can be partially
documented by producing an abbreviated listing of the diverse fields in which
important time series problems may arise. For example, many familiar time
series occur in the field of economics, where we are continually exposed to daily
stock market quotations or monthly unemployment figures. Social scientists
follow populations series, such as birthrates or school enrollments. An epi-
demiologist might be interested in the number of influenza cases observed over
some time period. In medicine, blood pressure measurements traced over time
could be useful for evaluating drugs used in treating hypertension. Functional
magnetic resonance imaging of brain-wave time series patterns might be used
to study how the brain reacts to certain stimuli under various experimental
conditions.

Many of the most intensive and sophisticated applications of time series
methods have been to problems in the physical and environmental sciences.
This fact accounts for the basic engineering flavor permeating the language of
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time series analysis. One of the earliest recorded series is the monthly sunspot
numbers studied by Schuster (1906). More modern investigations may cen-
ter on whether a warming is present in global temperature measurements or
whether levels of pollution may influence daily mortality in Los Angeles. The
modeling of speech series is an important problem related to the efficient trans-
mission of voice recordings. Common features in a time series characteristic
known as the power spectrum are used to help computers recognize and trans-
late speech. Geophysical time series such those produced by yearly depositions
of various kinds can provide long-range proxies for temperature and rainfall.
Seismic recordings can aid in mapping fault lines or in distinguishing between
earthquakes and nuclear explosions.

The above series are only examples of experimental databases that can be
used to illustrate the process by which classical statistical methodology can be
applied in the correlated time series framework. In our view, the first step in
any time series investigation always involves careful scrutiny of the recorded
data plotted over time. This scrutiny often suggests the method of analysis
as well as statistics that will be of use in summarizing the information in
the data. Before looking more closely at the particular statistical methods,
it is appropriate to mention that two separate, but not necessarily mutually
exclusive, approaches to time series analysis exist, commonly identified as the
time domain approach and the frequency domain approach.

The time domain approach is generally motivated by the presumption that
correlation between adjacent points in time is best explained in terms of a
dependence of the current value on past values. The time domain approach
focuses on modeling some future value of a time series as a parametric function
of the current and past values. In this scenario, we begin with linear regressions
of the present value of a time series on its own past values and on the past values
of other series. This modeling leads one to use the results of the time domain
approach as a forecasting tool and is particularly popular with economists for
this reason.

One approach, advocated in the landmark work of Box and Jenkins (1970;
see also Box et al., 1994), develops a systematic class of models called autore-
gressive integrated moving average (ARIMA) models to handle time-correlated
modeling and forecasting. The approach includes a provision for treating more
than one input series through multivariate ARIMA or through transfer function
modeling. The defining feature of these models is that they are multiplicative
models, meaning that the observed data are assumed to result from products
of factors involving differential or difference equation operators responding to
a white noise input.

A more recent approach to the same problem uses additive models more
familiar to statisticians. In this approach, the observed data are assumed to
result from sums of series, each with a specified time series structure; for exam-
ple, in economics, assume a series is generated as the sum of trend, a seasonal
effect, and error. The state-space model that results is then treated by making
judicious use of the celebrated Kalman filters and smoothers, developed origi-
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nally for estimation and control in space applications. Two relatively complete
presentations from this point of view are in Harvey (1991) and Kitagawa and
Gersch (1996). Time series regression is introduced in Chapter 2, and ARIMA
and related time domain models are studied in Chapter 3, with the emphasis on
classical, statistical, univariate linear regression. Special topics on time domain
analysis are covered in Chapter 5; these topics include modern treatments of,
for example, time series with long memory and GARCH models for the analy-
sis of volatility. The state-space model, Kalman filtering and smoothing, and
related topics are developed in Chapter 5.

Conversely, the frequency domain approach assumes the primary charac-
teristics of interest in time series analyses relate to periodic or systematic
sinusoidal variations found naturally in most data. These periodic variations
are often caused by biological, physical, or environmental phenomena of inter-
est. A series of periodic shocks may influence certain areas of the brain; wind
may affect vibrations on an airplane wing; sea surface temperatures caused by
El Niño oscillations may affect the number of fish in the ocean. The study
of periodicity extends to economics and social sciences, where one may be
interested in yearly periodicities in such series as monthly unemployment or
monthly birth rates.

In spectral analysis, the partition of the various kinds of periodic variation
in a time series is accomplished by evaluating separately the variance asso-
ciated with each periodicity of interest. This variance profile over frequency
is called the power spectrum. In our view, no schism divides time domain
and frequency domain methodology, although cliques are often formed that
advocate primarily one or the other of the approaches to analyzing data. In
many cases, the two approaches may produce similar answers for long series,
but the comparative performance over short samples is better done in the time
domain. In some cases, the frequency domain formulation simply provides a
convenient means for carrying out what is conceptually a time domain calcu-
lation. Hopefully, this book will demonstrate that the best path to analyzing
many data sets is to use the two approaches in a complementary fashion. Ex-
positions emphasizing primarily the frequency domain approach can be found
in Bloomfield (1976), Priestley (1981), or Jenkins and Watts (1968). On a
more advanced level, Hannan (1970), Brillinger (1981), Brockwell and Davis
(1991), and Fuller (1995) are available as theoretical sources. Our coverage of
the frequency domain is given in Chapters 4 and 7.

The objective of this book is to provide a unified and reasonably complete
exposition of statistical methods used in time series analysis, giving serious
consideration to both the time and frequency domain approaches. Because a
myriad of possible methods for analyzing any particular experimental series
can exist, we have integrated real data from a number of subject fields into the
exposition and have suggested methods for analyzing these data.
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Figure 1.1 Johnson & Johnson quarterly earnings per share, 84 quarters,
1960-I to 1980-IV.

1.2 The Nature of Time Series Data

Some of the problems and questions of interest to the prospective time series
analyst can best be exposed by considering real experimental data taken from
different subject areas. The following cases illustrate some of the common kinds
of experimental time series data as well as some of the statistical questions that
might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings

Figure 1.1 shows quarterly earnings per share for the U.S. company John-
son & Johnson, furnished by Professor Paul Griffin (personal communi-
cation) of the Graduate School of Management, University of California,
Davis. There are 84 quarters (21 years) measured from the first quarter
of 1960 to the last quarter of 1980. Modeling such series begins by ob-
serving the primary patterns in the time history. In this case, note the
gradually increasing underlying trend and the rather regular variation
superimposed on the trend that seems to repeat over quarters. Methods
for analyzing data such as these are explored in Chapter 2 (see Problem
2.1) using regression techniques, and in Chapter 6, §6.5, using structural
equation modeling.

To plot the data using the R statistical package, suppose you saved the
data as jj.dat in the directory mydata. Then use the following steps to
read in the data and plot the time series (the > below are prompts, you
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Figure 1.2 Yearly average global temperature deviations (1900–1997) in
degrees centigrade.

do not type them):

> jj = scan("/mydata/jj.dat") # yes forward slash
> jj=ts(jj,start=1960, frequency=4)
> plot(jj, ylab="Quarterly Earnings per Share")

You can replace scan with read.table in this example.

Example 1.2 Global Warming

Consider a global temperature series record, discussed in Jones (1994)
and Parker et al. (1994, 1995). The data in Figure 1.2 are a combina-
tion of land-air average temperature anomalies (from 1961-1990 average),
measured in degrees centigrade, for the years 1900-1997. We note an ap-
parent upward trend in the series that has been used as an argument for
the global warming hypothesis. Note also the leveling off at about 1935
and then another rather sharp upward trend at about 1970. The ques-
tion of interest for global warming proponents and opponents is whether
the overall trend is natural or whether it is caused by some human-
induced interface. Problem 2.8 examines 634 years of glacial sediment
data that might be taken as a long-term temperature proxy. Such per-
centage changes in temperature do not seem to be unusual over a time
period of 100 years. Again, the question of trend is of more interest than
particular periodicities.
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Figure 1.3 Speech recording of the syllable aaa · · ·hhh sampled at 10,000
points per second with n = 1020 points.

Example 1.3 Speech Data

More involved questions develop in applications to the physical sciences.
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech
for the phrase aaa · · ·hhh, and we note the repetitive nature of the sig-
nal and the rather regular periodicities. One current problem of great
interest is computer recognition of speech, which would require convert-
ing this particular signal into the recorded phrase aaa · · ·hhh. Spectral
analysis can be used in this context to produce a signature of this phrase
that can be compared with signatures of various library syllables to look
for a match. One can immediately notice the rather regular repetition
of small wavelets. The separation between the packets is known as the
pitch period and represents the response of the vocal tract filter to a
periodic sequence of pulses stimulated by the opening and closing of the
glottis.

Example 1.4 New York Stock Exchange

As an example of financial time series data, Figure 1.4 shows the daily
returns (or percent change) of the New York Stock Exchange (NYSE)
from February 2, 1984 to December 31, 1991. It is easy to spot the
crash of October 19, 1987 in the figure. The data shown in Figure 1.4
are typical of return data. The mean of the series appears to be stable



1.2: The Nature of Time Series Data 7

Figure 1.4 Returns of the NYSE. The data are daily value weighted market
returns from February 2, 1984 to December 31, 1991 (2000 trading days). The
crash of October 19, 1987 occurs at t = 938.

with an average return of approximately zero, however, the volatility (or
variability) of data changes over time. In fact, the data show volatility
clustering; that is, highly volatile periods tend to be clustered together.
A problem in the analysis of these type of financial data is to forecast
the volatility of future returns. Models such as ARCH and GARCH
models (Engle, 1982; Bollerslev, 1986) and stochastic volatility models
(Harvey, Ruiz and Shephard, 1994) have been developed to handle these
problems. We will discuss these models and the analysis of financial data
in Chapters 5 and 6.

Example 1.5 El Niño and Fish Population

We may also be interested in analyzing several time series at once. Figure
1.5 shows monthly values of an environmental series called the Southern
Oscillation Index (SOI) and associated Recruitment (number of new fish)
furnished by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries
Group (personal communication). Both series are for a period of 453
months ranging over the years 1950-1987. The SOI measures changes in
air pressure, related to sea surface temperatures in the central Pacific.
The central Pacific Ocean warms every three to seven years due to the El
Niño effect, which has been blamed, in particular, for the 1997 floods in
the midwestern portions of the U.S. Both series in Figure 1.5 tend to ex-
hibit repetitive behavior, with regularly repeating cycles that are easily
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Figure 1.5 Monthly SOI and Recruitment (Estimated new fish), 1950-1987.

visible. This periodic behavior is of interest because underlying processes
of interest may be regular and the rate or frequency of oscillation char-
acterizing the behavior of the underlying series would help to identify
them. One can also remark that the cycles of the SOI are repeating at a
faster rate than those of the Recruitment series. The Recruitment series
also shows several kinds of oscillations, a faster frequency that seems to
repeat about every 12 months and a slower frequency that seems to re-
peat about every 50 months. The study of the kinds of cycles and their
strengths is the subject of Chapter 4. The two series also tend to be some-
what related; it is easy to imagine that somehow the fish population is
dependent on the SOI. Perhaps, even a lagged relation exists, with the
SOI signaling changes in the fish population. This possibility suggests
trying some version of regression analysis as a procedure for relating the
two series. Transfer function modeling, as considered in Chapter 5, can
be applied in this case to obtain a model relating Recruitment to its own
past and the past values of the SOI Index.
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Figure 1.6 fMRI data from various locations in the cortex, thalamus, and
cerebellum; n = 128 points, one observation taken every 2 seconds.

Example 1.6 fMRI Imaging

A fundamental problem in classical statistics occurs when we are given
a collection of independent series or vectors of series, generated under
varying experimental conditions or treatment configurations. Such a set
of series is shown in Figure 1.6, where we observe data collected from
various locations in the brain via functional magnetic resonance imaging
(fMRI). In this example, five subjects were given periodic brushing on
the hand. The stimulus was applied for 32 seconds and then stopped
for 32 seconds; thus, the signal period is 64 seconds. The sampling rate
was one observation every 2 seconds for 256 seconds (n = 128). For this
example, we averaged the results over subjects (these were evoked re-
sponses, and all subjects were in phase). The series shown in Figure 1.6
are consecutive measures of blood oxygenation-level dependent (bold)
signal intensity, which measures areas of activation in the brain. Notice
that the periodicities appear strongly in the motor cortex series and less
strongly in the thalamus and cerebellum. The fact that one has series
from different areas of the brain suggests testing whether the areas are
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Figure 1.7 Arrival phases from an earthquake (top) and explosion (bottom)
at 40 points per second.

responding differently to the brush stimulus. Analysis of variance tech-
niques accomplish this in classical statistics, and we show in Chapter 7
how these classical techniques extend to the time series case, leading to
a spectral analysis of variance.

The data are in a file called fmri.dat, which consists of nine columns; the
first column represents time, whereas the second through ninth columns
represent the bold signals at eight locations. Assuming the data are
located in the directory mydata, use the following commands in R to
plot the data as in this example.

> fmri = read.table("/mydata/fmri.dat")
> par(mfrow=c(2,1)) # sets up the graphics
> ts.plot(fmri[,2:5], lty=c(1,4), ylab="BOLD")
> ts.plot(fmri[,6:9], lty=c(1,4), ylab="BOLD")

Example 1.7 Earthquakes and Explosions

As a final example, the series in Figure 1.7 represent two phases or ar-
rivals along the surface, denoted by P (t = 1, . . . , 1024) and S (t =



1.3: Time Series Statistical Models 11

1025, . . . , 2048), at a seismic recording station. The recording instru-
ments in Scandinavia are observing earthquakes and mining explosions
with one of each shown in Figure 1.7. The general problem of inter-
est is in distinguishing or discriminating between waveforms generated
by earthquakes and those generated by explosions. Features that may
be important are the rough amplitude ratios of the first phase P to the
second phase S, which tend to be smaller for earthquakes than for explo-
sions. In the case of the two events in Figure 1.7, the ratio of maximum
amplitudes appears to be somewhat less than .5 for the earthquake and
about 1 for the explosion. Otherwise, note a subtle difference exists in
the periodic nature of the S phase for the earthquake. We can again think
about spectral analysis of variance for testing the equality of the periodic
components of earthquakes and explosions. We would also like to be able
to classify future P and S components from events of unknown origin,
leading to the time series discriminant analysis developed in Chapter 7.

The data are in the file eq5exp6.dat as one column with 4096 entries,
the first 2048 observations correspond to an earthquake and the next
2048 observations correspond to an explosion. To read and plot the data
as in this example, use the following commands in R:

> x = matrix(scan("/mydata/eq5exp6.dat"), ncol=2)
> par(mfrow=c(2,1))
> plot.ts(x[,1], main="Earthquake", ylab="EQ5")
> plot.ts(x[,2], main="Explosion", ylab="EXP6")

1.3 Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical models
that provide plausible descriptions for sample data, like that encountered in
the previous section. In order to provide a statistical setting for describing
the character of data that seemingly fluctuate in a random fashion over time,
we assume a time series can be defined as a collection of random variables
indexed according to the order they are obtained in time. For example, we
may consider a time series as a sequence of random variables, x1, x2, x3, . . . ,
where the random variable x1 denotes the value taken by the series at the first
time point, the variable x2 denotes the value for the second time period, x3
denotes the value for the third time period, and so on. In general, a collection
of random variables, {xt}, indexed by t is referred to as a stochastic process. In
this text, t will typically be discrete and vary over the integers t = 0,±1,±2, ...,
or some subset of the integers. The observed values of a stochastic process are
referred to as a realization of the stochastic process. Because it will be clear
from the context of our discussions, we use the term time series whether we
are referring generically to the process or to a particular realization and make
no notational distinction between the two concepts.
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It is conventional to display a sample time series graphically by plotting the
values of the random variables on the vertical axis, or ordinate, with the time
scale as the abscissa. It is usually convenient to connect the values at adja-
cent time periods to reconstruct visually some original hypothetical continuous
time series that might have produced these values as a discrete sample. Many
of the series discussed in the previous section, for example, could have been
observed at any continuous point in time and are conceptually more properly
treated as continuous time series. The approximation of these series by discrete
time parameter series sampled at equally spaced points in time is simply an
acknowledgment that sampled data will, for the most part, be discrete because
of restrictions inherent in the method of collection. Furthermore, the analysis
techniques are then feasible using computers, which are limited to digital com-
putations. Theoretical developments also rest on the idea that a continuous
parameter time series should be specified in terms of finite-dimensional distri-
bution functions defined over a finite number of points in time. This is not
to say that the selection of the sampling interval or rate is not an extremely
important consideration. The appearance of data can be changed completely
by adopting an insufficient sampling rate. We have all seen wagon wheels in
movies appear to be turning backwards because of the insufficient number of
frames sampled by the camera. This phenomenon leads to a distortion called
aliasing.

The fundamental visual characteristic distinguishing the different series
shown in Examples 1.1–1.7 is their differing degrees of smoothness. One pos-
sible explanation for this smoothness is that it is being induced by the suppo-
sition that adjacent points in time are correlated, so the value of the series at
time t, say, xt, depends in some way on the past values xt−1, xt−2, . . .. This
model expresses a fundamental way in which we might think about generat-
ing realistic-looking time series. To begin to develop an approach to using
collections of random variables to model time series, consider Example 1.8.

Example 1.8 White Noise

A simple kind of generated series might be a collection of uncorrelated
random variables, wt, with mean 0 and finite variance σ2

w. The time series
generated from uncorrelated variables is used as a model for noise in en-
gineering applications, where it is called white noise; we shall sometimes
denote this process as wt ∼ wn(0, σ2

w). The designation white originates
from the analogy with white light and indicates that all possible periodic
oscillations are present with equal strength.
We will, at times, also require the noise to be iid random variables with
mean 0 and variance σ2

w. We shall distinguish this case by saying white
independent noise, or by writing wt ∼ iid(0, σ2

w). A particularly useful
white noise series is Gaussian white noise, wherein the wt are indepen-
dent normal random variables, with mean 0 and variance σ2

w; or more
succinctly, wt ∼ iid N(0, σ2

w). Figure 1.8 shows in the upper panel a col-
lection of 500 such random variables, with σ2

w = 1, plotted in the order in
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Figure 1.8 Gaussian white noise series (top) and three-point moving average
of the Gaussian white noise series (bottom).

which they were drawn. The resulting series bears a slight resemblance
to the explosion in Figure 1.7 but is not smooth enough to serve as a
plausible model for any of the other experimental series. The plot tends
to show visually a mixture of many different kinds of oscillations in the
white noise series.

If the stochastic behavior of all time series could be explained in terms of
the white noise model, classical statistical methods would suffice. Two ways
of introducing serial correlation and more smoothness into time series models
are given in Examples 1.9 and 1.10.

Example 1.9 Moving Averages

We might replace the white noise series wt by a moving average that
smoothes the series. For example, consider replacing wt in Example 1.8
by an average of its current value and its immediate neighbors in the
past and future. That is, let

vt =
1
3
(
wt−1 + wt + wt+1

)
, (1.1)

which leads to the series shown in the lower panel of Figure 1.8. Inspect-
ing the series shows a smoother version of the first series, reflecting the
fact that the slower oscillations are more apparent and some of the faster
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Figure 1.9 Autoregressive series generated from model (1.2).

oscillations are taken out. We begin to notice a similarity to the SOI in
Figure 1.5, or perhaps, to some of the fMRI series in Figure 1.6.

To reproduce Figure 1.8 in R use the following commands:1

> w = rnorm(500,0,1) # 500 N(0,1) variates
> v = filter(w, sides=2, rep(1,3)/3) # moving average
> par(mfrow=c(2,1))
> plot.ts(w)
> plot.ts(v)

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, differ from the moving average
series because one particular kind of oscillatory behavior seems to predomi-
nate, producing a sinusoidal type of behavior. A number of methods exist for
generating series with this quasi-periodic behavior; we illustrate a popular one
based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions

Suppose we consider the white noise series wt of Example 1.8 as input
and calculate the output using the second-order equation

xt = xt−1 − .90xt−2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression
or prediction of the current value xt of a time series as a function of

1A linear combination of values in a time series such as in (1.1) is referred to, generically,
as a filtered series; hence the command filter.
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Figure 1.10 Random walk, σw = 1, with drift δ = .2 (upper jagged line),
without drift, δ = 0 (lower jagged line), and a straight line with slope .2
(dashed line).

the past two values of the series, and, hence, the term autoregression
is suggested for this model. A problem with startup values exists here
because (1.2) also depends on the initial conditions x0 and x−1, but,
for now, we assume that we are given these values and generate the
succeeding values by substituting into (1.2). The resulting output series
is shown in Figure 1.9, and we note the periodic behavior of the series,
which is similar to that displayed by the speech series in Figure 1.3. The
autoregressive model above and its generalizations can be used as an
underlying model for many observed series and will be studied in detail
in Chapter 3.

One way to simulate and plot data from the model (1.2) in R is to use
the following commands (another way is to use arima.sim).
> w = rnorm(550,0,1) # 50 extra to avoid startup problems
> x = filter(w, filter=c(1,-.9), method="recursive")
> plot.ts(x[51:550])

Example 1.11 Random Walk

A model for analyzing trend is the random walk with drift model given
by

xt = δ + xt−1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise.
The constant δ is called the drift, and when δ = 0, (1.3) is called simply
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a random walk. The term random walk comes from the fact that, when
δ = 0, the value of the time series at time t is the value of the series at
time t − 1 plus a completely random movement determined by wt. Note
that we may rewrite (1.3) as a cumulative sum of white noise variates.
That is,

xt = δ t +
t∑

j=1

wj (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify
this statement. Figure 1.10 shows 200 observations generated from the
model with δ = 0 and .2, and with σw = 1. For comparison, we also
superimposed the straight line .2t on the graph.

To reproduce Figure 1.10 in R:

> set.seed(154)
> w = rnorm(200,0,1); x = cumsum(w)
> wd = w +.2; xd = cumsum(wd)
> plot.ts(xd, ylim=c(-5,55))
> lines(x)
> lines(.2*(1:200), lty="dashed")

Example 1.12 Signal in Noise

Many realistic models for generating time series assume an underlying
signal with some consistent periodic variation, contaminated by adding
a random noise. For example, it is easy to detect the regular cycle fMRI
series displayed on the top of Figure 1.6. Consider the model

xt = 2 cos(2πt/50 + .6π) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown
in the upper panel of Figure 1.11. We note that a sinusoidal waveform
can be written as

A cos(2πωt + φ), (1.6)

where A is the amplitude, ω is the frequency of oscillation, and φ is a
phase shift. In (1.5), A = 2, ω = 1/50 (one cycle every 50 time points),
and φ = .6π.

An additive noise term was taken to be white noise with σw = 1 (middle
panel) and σw = 5 (bottom panel), drawn from a normal distribution.
Adding the two together obscures the signal, as shown in the lower panels
of Figure 1.11. Of course, the degree to which the signal is obscured
depends on the amplitude of the signal and the size of σw. The ratio
of the amplitude of the signal to σw (or some function of the ratio) is
sometimes called the signal-to-noise ratio (SNR); the larger the SNR, the
easier it is to detect the signal. Note that the signal is easily discernible
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Figure 1.11 Cosine wave with period 50 points (top panel) compared with the
cosine wave contaminated with additive white Gaussian noise, σw = 1 (middle
panel) and σw = 5 (bottom panel); see (1.5).

in the middle panel of Figure 1.11, whereas the signal is obscured in the
bottom panel. Typically, we will not observe the signal, but the signal
obscured by noise.

To reproduce Figure 1.11 in R, use the following commands:
> t = 1:500
> c = 2*cos(2*pi*t/50 + .6*pi)
> w = rnorm(500,0,1)
> par(mfrow=c(3,1))
> plot.ts(c)
> plot.ts(c + w)
> plot.ts(c + 5*w)

In Chapter 4, we will study the use of spectral analysis as a possible tech-
nique for detecting regular or periodic signals, such as the one described in
Example 1.12. In general, we would emphasize the importance of simple ad-
ditive models such as given above in the form

xt = st + vt, (1.7)

where st denotes some unknown signal and vt denotes a time series that may
be white or correlated over time. The problems of detecting a signal and then



18 Characteristics of Time Series

in estimating or extracting the waveform of st are of great interest in many
areas of engineering and the physical and biological sciences. In economics,
the underlying signal may be a trend or it may be a seasonal component of a
series. Models such as (1.7), where the signal has an autoregressive structure,
form the motivation for the state-space model of Chapter 6.

In the above examples, we have tried to motivate the use of various com-
binations of random variables emulating real time series data. Smoothness
characteristics of observed time series were introduced by combining the ran-
dom variables in various ways. Averaging independent random variables over
adjacent time points, as in Example 1.9, or looking at the output of differ-
ence equations that respond to white noise inputs, as in Example 1.10, are
common ways of generating correlated data. In the next section, we introduce
various theoretical measures used for describing how time series behave. As
is usual in statistics, the complete description involves the multivariate dis-
tribution function of the jointly sampled values x1, x2, . . . , xn, whereas more
economical descriptions can be had in terms of the mean and autocorrelation
functions. Because correlation is an essential feature of time series analysis,
the most useful descriptive measures are those expressed in terms of covariance
and correlation functions.

1.4 Measures of Dependence: Autocorrelation
and Cross-Correlation

A complete description of a time series, observed as a collection of n random
variables at arbitrary integer time points t1, t2, . . . , tn, for any positive integer
n, is provided by the joint distribution function, evaluated as the probability
that the values of the series are jointly less than the n constants, c1, c2, . . . , cn,
i.e.,

F (c1, c2, . . . , cn) = P
(
xt1 ≤ c1, xt2 ≤ c2, . . . , xtn ≤ cn

)
. (1.8)

Unfortunately, the multidimensional distribution function cannot usually be
written easily unless the random variables are jointly normal, in which case,
expression (1.8) comes from the usual multivariate normal distribution (see
Anderson, 1984, or Johnson and Wichern, 1992). A particular case in which
the multidimensional distribution function is easy would be for independent
and identically distributed standard normal random variables, for which the
joint distribution function can be expressed as the product of the marginals,
say,

F (c1, c2, . . . , cn) =
n∏

t=1

Φ(ct), (1.9)

where

Φ(x) =
1√
2π

∫ x

−∞
exp
{−z2

2
}

dz (1.10)
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is the cumulative distribution function of the standard normal.
Although the multidimensional distribution function describes the data

completely, it is an unwieldy tool for displaying and analyzing time series
data. The distribution function (1.8) must be evaluated as a function of n
arguments, so any plotting of the corresponding multivariate density functions
is virtually impossible. The one-dimensional distribution functions

Ft(x) = P{xt ≤ x}

or the corresponding one-dimensional density functions

ft(x) =
∂Ft(x)

∂x
,

when they exist, are often informative for determining whether a particular
coordinate of the time series has a well-known density function, like the normal
(Gaussian) distribution.

Definition 1.1 The mean function is defined as

µxt = E(xt) =
∫ ∞

−∞
xft(x) dx, (1.11)

provided it exists, where E denotes the usual expected value operator. When
no confusion exists about which time series we are referring to, we will drop a
subscript and write µxt as µt.

The important thing to realize about µt is that it is a theoretical mean
for the series at one particular time point, where the mean is taken over all
possible events that could have produced xt.

Example 1.13 Mean Function of a Moving Average Series

If wt denotes a white noise series, then µwt = E(wt) = 0 for all t. The
top series in Figure 1.8 reflects this, as the series clearly fluctuates around
a mean value of zero. Smoothing the series as in Example 1.9 does not
change the mean because we can write

µvt = E(vt) =
1
3
[E(wt−1) + E(wt) + E(wt+1)] = 0.

Example 1.14 Mean Function of a Random Walk with Drift

Consider the random walk with drift model given in (1.4),

xt = δ t +
t∑

j=1

wj , t = 1, 2, . . . .



20 Characteristics of Time Series

As in the previous example, because E(wt) = 0 for all t, and δ is a
constant, we have

µxt = E(xt) = δ t +
t∑

j=1

E(wj) = δ t

which is a straight line with slope δ. A realization of a random walk with
drift can be compared to its mean function in Figure 1.10.

Example 1.15 Mean Function of Signal Plus Noise

A great many practical applications depend on assuming the observed
data have been generated by a fixed signal waveform superimposed on a
zero-mean noise process, leading to an additive signal model of the form
(1.5). It is clear, because the signal in (1.5) is a fixed function of time,
we will have

µxt = E(xt) = E
[
2 cos(2πt/50 + .6π) + wt

]
= 2 cos(2πt/50 + .6π) + E(wt)
= 2 cos(2πt/50 + .6π),

and the mean function is just the cosine wave.

The lack of independence between two adjacent values xs and xt can be
assessed numerically, as in classical statistics, using the notions of covariance
and correlation. Assuming the variance of xt is finite, we have the following
definition.

Definition 1.2 The autocovariance function is defined as the second mo-
ment product

γx(s, t) = E[(xs − µs)(xt − µt)], (1.12)

for all s and t. When no possible confusion exists about which time series we
are referring to, we will drop the subscript and write γx(s, t) as γ(s, t).

Note that γx(s, t) = γx(t, s) for all time points s and t. The autocovariance
measures the linear dependence between two points on the same series observed
at different times. Very smooth series exhibit autocovariance functions that
stay large even when the t and s are far apart, whereas choppy series tend to
have autocovariance functions that are nearly zero for large separations. The
autocovariance (1.12) is the average cross-product relative to the joint density
F (xs, xt). Recall from classical statistics that if γx(s, t) = 0, xs and xt are
not linearly related, but there still may be some dependence structure between
them. If, however, xs and xt are bivariate normal, γx(s, t) = 0 ensures their
independence. It is clear that, for s = t, the autocovariance reduces to the
(assumed finite) variance, because

γx(t, t) = E[(xt − µt)2]. (1.13)
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Example 1.16 Autocovariance of White Noise

The white noise series wt, shown in the top panel of Figure 1.8, has
E(wt) = 0 and

γw(s, t) = E(wswt) =
{

σ2
w, s = t

0, s �= t

where, in this example, σ2
w = 1. Noting that ws and wt are uncorrelated

for s �= t, we would have E(wswt) = E(ws)E(wt) = 0 because the mean
values of the white noise variates are zero.

Example 1.17 Autocovariance of a Moving Average

Consider applying a three-point moving average to the white noise series
wt of the previous example, as in Example 1.9 (σ2

w = 1). Because vt in
(1.1) has mean zero, we have

γv(s, t) = E[(vs − 0)(vt − 0)]

=
1
9
E[(ws−1 + ws + ws+1)(wt−1 + wt + wt+1)].

It is convenient to calculate it as a function of the separation, s − t = h,
say, for h = 0,±1,±2, . . .. For example, with h = 0,

γv(t, t) =
1
9
E[(wt−1 + wt + wt+1)(wt−1 + wt + wt+1)]

=
1
9
[E(wt−1wt−1) + E(wtwt) + E(wt+1wt+1)]

=
3
9
.

When h = 1,

γv(t + 1, t) =
1
9
E[(wt + wt+1 + wt+2)(wt−1 + wt + wt+1)]

=
1
9
[E(wtwt) + E(wt+1wt+1)]

=
2
9
,

using the fact that we may drop terms with unequal subscripts. Similar
computations give γv(t−1, t) = 2/9, γv(t+2, t) = γv(t−2, t) = 1/9, and
0 for larger separations. We summarize the values for all s and t as

γv(s, t) =

⎧⎪⎨⎪⎩
3/9, s = t
2/9, |s − t| = 1
1/9, |s − t| = 2
0, |s − t| ≥ 3.

(1.14)
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Example 1.17 shows clearly that the smoothing operation introduces a co-
variance function that decreases as the separation between the two time points
increases and disappears completely when the time points are separated by
three or more time points. This particular autocovariance is interesting be-
cause it only depends on the time separation or lag and not on the absolute
location of the points along the series. We shall see later that this dependence
suggests a mathematical model for the concept of weak stationarity.

Example 1.18 Autocovariance of a Random Walk

For the random walk model, xt =
∑t

j=1 wj , we have

γx(s, t) = cov(xs, xt) = cov

⎛⎝ s∑
j=1

wj ,

t∑
k=1

wk

⎞⎠ = min{s, t} σ2
w,

because the wt are uncorrelated random variables. Note that, as opposed
to the previous examples, the autocovariance function of a random walk
depends on the particular time values s and t, and not on the time
separation or lag. Also, notice that the variance of the random walk,
var(xt) = γx(t, t) = t σ2

w, increases without bound as time t increases.
The effect of this variance increase can be seen in Figure 1.10 as the
processes starting to move away from their mean functions δ t (note,
δ = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of
association between −1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
. (1.15)

The ACF measures the linear predictability of the series at time t, say, xt,
using only the value xs. We can show easily that −1 ≤ ρ(s, t) ≤ 1 using the
Cauchy–Schwarz inequality.2 If we can predict xt perfectly from xs through a
linear relationship, xt = β0 +β1xs, then the correlation will be 1 when β1 > 0,
and −1 when β1 < 0. Hence, we have a rough measure of the ability to forecast
the series at time t from the value at time s.

Often, we would like to measure the predictability of another series yt from
the series xs. Assuming both series have finite variances, we have

Definition 1.4 The cross-covariance function between two series xt and
yt is

γxy(s, t) = E[(xs − µxs)(yt − µyt)]. (1.16)

2Note, the Cauchy–Schwarz inequality implies |γ(s, t)|2 ≤ γ(s, s)γ(t, t).
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The scaled version of the cross-covariance function is called

Definition 1.5 The cross-correlation function (CCF)

ρxy(s, t) =
γxy(s, t)√

γx(s, s)γy(t, t)
. (1.17)

We may easily extend the above ideas to the case of more than two series,
say, xt1, xt2, . . . , xtr; that is, multivariate time series with r components. For
example, the extension of (1.12) in this case is

γjk(s, t) = E[(xsj − µsj)(xtk − µtk)] j, k = 1, 2, . . . , r. (1.18)

In the definitions above, the autocovariance and cross-covariance functions
may change as one moves along the series because the values depend on both s
and t, the locations of the points in time. In Example 1.17, the autocovariance
function depends on the separation of xs and xt, say, h = |s − t|, and not on
where the points are located in time. As long as the points are separated by
h units, the location of the two points does not matter. This notion, called
weak stationarity, when the mean is constant, is fundamental in allowing us
to analyze sample time series data when only a single series is available.

1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are com-
pletely general. Although we have not made any special assumptions about
the behavior of the time series, many of the preceding examples have hinted
that a sort of regularity may exist over time in the behavior of a time series.
We introduce the notion of regularity using a concept called stationarity.

Definition 1.6 A strictly stationary time series is one for which the prob-
abilistic behavior of every collection of values

{xt1 , xt2 , . . . , xtk
}

is identical to that of the time shifted set

{xt1+h, xt2+h, . . . , xtk+h}.

That is,

P{xt1 ≤ c1, . . . , xtk
≤ ck} = P{xt1+h ≤ c1, . . . , xtk+h ≤ ck} (1.19)

for all k = 1, 2, ..., all time points t1, t2, . . . , tk, all numbers c1, c2, . . . , ck, and
all time shifts h = 0,±1,±2, ... .
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If a time series is strictly stationary, then all of the multivariate distribution
functions for subsets of variables must agree with their counterparts in the
shifted set for all values of the shift parameter h. For example, when k = 1,
(1.19) implies that

P{xs ≤ c} = P{xt ≤ c} (1.20)

for any time points s and t. This statement implies, e.g., that the probability
the value of a time series sampled hourly is negative at 1am is the same as
at 10am. In addition, if the mean function, µt, of the series xt exists, (1.20)
implies that µs = µt for all s and t, and hence µt must be constant. Note,
e.g., that a random walk process with drift is not strictly stationary because
its mean function changes with time (see Example 1.14).

When k = 2, we can write (1.19) as

P{xs ≤ c1, xt ≤ c2} = P{xs+h ≤ c1, xt+h ≤ c2} (1.21)

for any time points s and t and shift h. Thus, if the variance function of the
process exists, (1.21) implies that the autocovariance function of the series xt

satisfies
γ(s, t) = γ(s + h, t + h)

for all s and t and h. We may interpret this result by saying the autocovariance
function of the process depends only on the time difference between s and t,
and not on the actual times.

The version of stationarity in (1.19) is too strong for most applications.
Moreover, it is difficult to assess strict stationarity from a single data set.
Rather than impose conditions on all possible distributions of a time series, we
will use a milder version that imposes conditions only on the first two moments
of the series. We now have the following definition.

Definition 1.7 A weakly stationary time series, xt, is a finite variance
process such that

(i) the mean value function, µt, defined in (1.11) is constant and does not
depend on time t, and

(ii) the covariance function, γ(s, t), defined in (1.12) depends on s and t only
through their difference |s − t|.

Henceforth, we will use the term stationary to mean weak stationarity; if a
process is stationary in the strict sense, we will use the term strictly stationary.

It should be clear from the discussion of strict stationarity following Defi-
nition 1.6 that a strictly stationary, finite variance, time series is also station-
ary. The converse is not true unless there are further conditions. One impor-
tant case where stationarity implies strict stationarity is if the time series is
Gaussian [meaning all finite distributions, (1.19), of the series are Gaussian].
We will make this concept more precise at the end of this section.
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Because the mean function, E(xt) = µt, of a stationary time series is
independent of time t, we will write

µt = µ. (1.22)

Also, because the covariance function of a stationary time series, γ(s, t), de-
pends on s and t only through their difference |s − t|, we may simplify the
notation. Let s = t + h, where h represents the time shift or lag, then

γ(t + h, t) = E[(xt+h − µ)(xt − µ)]
= E[(xh − µ)(x0 − µ)] (1.23)
= γ(h, 0)

does not depend on the time argument t; we have assumed that var(xt) =
γ(0, 0) < ∞. Henceforth, for convenience, we will drop the second argument
of γ(h, 0).

Definition 1.8 The autocovariance function of a stationary time series
will be written as

γ(h) = E[(xt+h − µ)(xt − µ)]. (1.24)

Definition 1.9 The autocorrelation function (ACF) of a stationary
time series will be written using (1.15) as

ρ(h) =
γ(t + h, t)√

γ(t + h, t + h)γ(t, t)
=

γ(h)
γ(0)

. (1.25)

The Cauchy–Schwarz inequality shows again that −1 ≤ ρ(h) ≤ 1 for all h,
enabling one to assess the relative importance of a given autocorrelation value
by comparing with the extreme values −1 and 1.

Example 1.19 Stationarity of White Noise

The autocovariance function of the white noise series of Examples 1.8
and 1.16 is easily evaluated as

γw(h) = E(wt+hwt) =
{

σ2
w, h = 0

0, h �= 0,

where, in these examples, σ2
w = 1. This means that the series is weakly

stationary or stationary. If the white noise variates are also normally
distributed or Gaussian, the series is also strictly stationary, as can be
seen by evaluating (1.19) using the relationship (1.9).
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Figure 1.12 Autocovariance function of a three-point moving average.

Example 1.20 Stationarity of a Moving Average

The three-point moving average process used in Examples 1.9 and 1.17
is stationary because we may write the autocovariance function obtained
in (1.14) as

γv(h) =

⎧⎪⎨⎪⎩
3/9, h = 0
2/9, h = ±1
1/9, h = ±2
0, |h| ≥ 3.

Figure 1.12 shows a plot of the autocovariance as a function of lag h.
Interestingly, the autocovariance is symmetric and decays as a function
of lag.

The autocovariance function of a stationary process has several useful prop-
erties. First, the value at h = 0, namely

γ(0) = E[(xt − µ)2] (1.26)

is the variance of the time series; note that the Cauchy–Schwarz inequality
implies

|γ(h)| ≤ γ(0).

A final useful property, noted in the previous example, is that autocovariance
function of a stationary series is symmetric around the origin, that is,

γ(h) = γ(−h) (1.27)

for all h. This property follows because shifting the series by h means that

γ(h) = γ(t + h − t)
= E[(xt+h − µ)(xt − µ)]
= E[(xt − µ)(xt+h − µ)]
= γ(t − (t + h))
= γ(−h),
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which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with

additional conditions.

Definition 1.10 Two time series, say, xt and yt, are said to be jointly sta-
tionary if they are each stationary, and the cross-covariance function

γxy(h) = E[(xt+h − µx)(yt − µy)] (1.28)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly station-
ary time series xt and yt is defined as

ρxy(h) =
γxy(h)√

γx(0)γy(0)
. (1.29)

Again, we have the result −1 ≤ ρxy(h) ≤ 1 which enables comparison with
the extreme values −1 and 1 when looking at the relation between xt+h and
yt. The cross-correlation function satisfies

ρxy(h) = ρyx(−h), (1.30)

which can be shown by manipulations similar to those used to show (1.27).

Example 1.21 Joint Stationarity

Consider the two series, xt and yt, formed from the sum and difference
of two successive values of a white noise process, say,

xt = wt + wt−1

and
yt = wt − wt−1,

where wt are independent random variables with zero means and variance
σ2

w. It is easy to show that γx(0) = γy(0) = 2σ2
w and γx(1) = γx(−1) =

σ2
w, γy(1) = γy(−1) = −σ2

w. Also,

γxy(1) = E[(xt+1 − 0)(yt − 0)]
= E[(wt+1 + wt)(wt − wt−1)]
= σ2

w

because only one product is nonzero. Similarly, γxy(0) = 0, γxy(−1) =
−σ2

w. We obtain, using (1.29),

ρxy(h) =

⎧⎪⎨⎪⎩
0, h = 0
1/2, h = 1

−1/2, h = −1
0, |h| ≥ 2.

Clearly, the autocovariance and cross-covariance functions depend only
on the lag separation, h, so the series are jointly stationary.
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Example 1.22 Prediction Using Cross-Correlation

As a simple example of cross-correlation, consider the problem of deter-
mining possible leading or lagging relations between two series xt and yt.
If the model

yt = Axt−� + wt

holds, the series xt is said to lead yt for 
 > 0 and is said to lag yt for 
 < 0.
Hence, the analysis of leading and lagging relations might be important
in predicting the value of yt from xt. Assuming, for convenience, that
xt and yt have zero means, and the noise wt is uncorrelated with the xt

series, the cross-covariance function can be computed as

γyx(h) = E(yt+hxt)
= AE(xt+h−�xt) + E(wt+hxt)
= Aγx(h − 
).

The cross-covariance function will look like the autocovariance of the
input series xt, with a peak on the positive side if xt leads yt and a peak
on the negative side if xt lags yt.

The concept of weak stationarity forms the basis for much of the analy-
sis performed with time series. The fundamental properties of the mean and
autocovariance functions (1.22) and (1.24) are satisfied by many theoretical
models that appear to generate plausible sample realizations. In Examples 1.9
and 1.10, two series were generated that produced stationary looking realiza-
tions, and in Example 1.20, we showed that the series in Example 1.9 was, in
fact, weakly stationary. Both examples are special cases of the so-called linear
process.

Definition 1.12 A linear process, xt, is defined to be a linear combination
of white noise variates wt, and is given by

xt = µ +
∞∑

j=−∞
ψjwt−j (1.31)

where the coefficients satisfy

∞∑
j=−∞

|ψj | < ∞. (1.32)

For the linear process (see Problem 1.11), we may show that the autoco-
variance function is given by

γ(h) = σ2
w

∞∑
j=−∞

ψj+hψj (1.33)
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for h ≥ 0; recall that γ(−h) = γ(h). This method exhibits the autocovariance
function of the process in terms of the lagged products of the coefficients. Note
that, for Example 1.9, we have ψ0 = ψ−1 = ψ1 = 1/3 and the result in Ex-
ample 1.20 comes out immediately. The autoregressive series in Example 1.10
can also be put in this form, as can the general autoregressive moving average
processes considered in Chapter 3.

Finally, as previously mentioned, an important case in which a weakly
stationary series is also strictly stationary is the normal or Gaussian series.

Definition 1.13 A process, {xt}, is said to be a Gaussian process if the k-
dimensional vectors xxx = (xt1 , xt2 , . . . , xtk

)′, for every collection of time points
t1, t2, . . . , tk, and every positive integer k, have a multivariate normal distrib-
ution.

Defining the k×1 mean vector E(xxx) ≡ µµµ = (µt1 , µt2 , . . . , µtk
)′ and the k×k

covariance matrix as cov(xxx) ≡ Γ = {γ(ti, tj); i, j = 1, . . . , k}, the multivariate
normal density function can be written as

f(xxx) = (2π)−n/2|Γ|−1/2 exp
{

−1
2
(xxx − µµµ)′Γ−1(xxx − µµµ)

}
, (1.34)

where |·| denotes the determinant. This distribution forms the basis for solving
problems involving statistical inference for time series. If a Gaussian time
series, {xt}, is weakly stationary, then µt = µ and γ(ti, tj) = γ(|ti − tj |),
so that the vector µµµ and the matrix Γ are independent of time. These facts
imply that all the finite distributions, (1.34), of the series {xt} depend only
on time lag and not on the actual times, and hence the series must be strictly
stationary. We use the multivariate normal density in the form given above as
well as in a modified version, applicable to complex random variables in the
sequel.

1.6 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are
useful for describing the properties of certain hypothesized models, most of
the analyses must be performed using sampled data. This limitation means
the sampled points x1, x2, . . . , xn only are available for estimating the mean,
autocovariance, and autocorrelation functions. From the point of view of classi-
cal statistics, this poses a problem because we will typically not have iid copies
of xt that are available for estimating the covariance and correlation functions.
In the usual situation with only one realization, however, the assumption of
stationarity becomes critical. Somehow, we must use averages over this single
realization to estimate the population means and covariance functions.
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Accordingly, if a time series is stationary, the mean function, (1.22), µt = µ
is constant so that we can estimate it by the sample mean,

x̄ =
1
n

n∑
t=1

xt. (1.35)

The theoretical autocovariance function, (1.24), is estimated by the sample
autocovariance function defined as follows.
Definition 1.14 The sample autocovariance function is defined as

γ̂(h) = n−1
n−h∑
t=1

(xt+h − x̄)(xt − x̄), (1.36)

with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n − 1.

The sum in (1.36) runs over a restricted range because xt+h is not available
for t + h > n. The estimator in (1.36) is generally preferred to the one that
would be obtained by dividing by n−h because (1.36) is a non-negative definite
function. This means that if we let Γ̂ = {γ̂(i − j); i, j = 1, ..., n} be the n × n

sample covariance matrix of the data xxx = (x1, . . . , xn)′, then Γ̂ is a non-negative
definite matrix. So, if we let aaa = (a1, . . . , an)′ be an n × 1 vector of constants,
then v̂ar(aaa′xxx) = aaa′Γ̂aaa ≥ 0. Thus, the non-negative definite property ensures
sample variances of linear combinations of the variates xt will always be non-
negative. Note that neither dividing by n nor n−h in (1.36) yields an unbiased
estimate of γ(h).

Definition 1.15 The sample autocorrelation function is defined, analo-
gously to (1.25), as

ρ̂(h) =
γ̂(h)
γ̂(0)

. (1.37)

The sample autocorrelation function has a sampling distribution that allows
us to assess whether the data comes from a completely random or white series
or whether correlations are statistically significant at some lags. Precise details
are given in Theorem A.7 in Appendix A. We have

Property P1.1: Large Sample Distribution of the ACF
Under general conditions, if xt is white noise, then for n large, the sample ACF,
ρ̂x(h), for h = 1, 2, . . . , H, where H is fixed but arbitrary, is approximately
normally distsributed with zero mean and standard deviation given by

σρ̂x(h) =
1√
n

. (1.38)

Based on the above result, we obtain a rough method of assessing whether
peaks in ρ̂(h) are significant by determining whether the observed peak is
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outside the interval ±2/
√

n (or plus/minus two standard errors); for a white
noise sequence, approximately 95% of the sample ACFs should be within these
limits. The applications of this property develop because many statistical
modeling procedures depend on reducing a time series to a white noise series
by various kinds of transformations. After such a procedure is applied, the
plotted ACFs of the residuals should then lie roughly within the limits given
above.

Definition 1.16 The estimators for the cross-covariance function, γxy(h), as
given in (1.28) and the cross-correlation, ρxy(h), in (1.29), are given, respec-
tively, by the sample cross-covariance function

γ̂xy(h) = n−1
n−h∑
t=1

(xt+h − x̄)(yt − ȳ), (1.39)

where γ̂xy(−h) = γ̂yx(h) determines the function for negative lags, and the
sample cross-correlation function

ρ̂xy(h) =
γ̂xy(h)√

γ̂x(0)γ̂y(0)
. (1.40)

The sample cross-correlation function can be examined graphically as a
function of lag h to search for leading or lagging relations in the data using
the property mentioned in Example 1.22 for the theoretical cross-covariance
function. Because −1 ≤ ρ̂xy(h) ≤ 1, the practical importance of peaks can
be assessed by comparing their magnitudes with their theoretical maximum
values. Furthermore, for xt and yt independent linear processes of the form
(1.31), we have

Property P1.2: Large Sample Distribution of the Cross-Correlation
Under Independence
The large sample distribution of ρ̂xy(h) is normal with mean zero and

σρ̂xy
=

1√
n

(1.41)

if at least one of the processes is white independent noise (see Theorem A.8 in
Appendix A).

Example 1.23 A Simulated Time Series

To give an example of the procedure for calculating numerically the au-
tocovariance and cross-covariance functions, consider a contrived set of
data generated by tossing a fair coin, letting xt = 1 when a head is
obtained and xt = −1 when a tail is obtained. Construct yt as

yt = 5 + xt − .7xt−1. (1.42)
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Table 1.1 Sample Realization of the Contrived Series yt.
t 1 2 3 4 5 6 7 8 9 10

Coin H H T H T T T H T H
xt 1 1 −1 1 −1 −1 −1 1 −1 1
yt 6.7 5.3 3.3 6.7 3.3 4.7 4.7 6.7 3.3 6.7

yt − ȳ 1.56 .16 −1.84 1.56 −1.84 −.44 −.44 1.56 −1.84 1.56

Table 1.1 shows sample realizations of the appropriate processes with
x0 = −1 and n = 10.

The sample autocorrelation for the series yt can be calculated using (1.36)
and (1.37) for h = 0, 1, 2, . . .. It is not necessary to calculate for negative
values because of the symmetry. For example, for h = 3, the autocorre-
lation becomes the ratio of

γ̂y(3) = 10−1
7∑

t=1

(yt+3 − ȳ)(yt − ȳ)

= 10−1
[
(1.56)(1.56) + (−1.84)(.16) + (−.44)(−1.84)

+ (−.44)(1.56) + (1.56)(−1.84) + (−1.84)(−.44)

+ (1.56)(−.44)
]

= −.04848

to

γ̂y(0) =
1
10

[(1.56)2 + (.16)2 + · · · + (1.56)2] = 2.0304

so that

ρ̂y(3) =
−.04848
2.0304

= −.02388.

The theoretical ACF can be obtained from the model (1.42) using the
fact that the mean of xt is zero and the variance of xt is one. It can be
shown that

ρy(1) =
−.7

1 + .72 = −.47

and ρy(h) = 0 for |h| > 1 (Problem 1.23). Table 1.2 compares the
theoretical ACF with sample ACFs for a realization where n = 10 and
another realization where n = 100; we note the increased variability in
the smaller size sample.
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Table 1.2 Theoretical and Sample ACFs
for n = 10 and n = 100

h ρy(h) ρ̂y(h) ρ̂y(h)
n = 10 n = 100

0 1.00 1.00 1.00
±1 −.47 −.55 −.45
±2 .00 .17 −.12
±3 .00 −.02 .14
±4 .00 .15 .01
±5 .00 −.46 −.01

Example 1.24 ACF of Speech Signal

Computing the sample ACF as in the previous example can be thought
of as matching the time series h units in the future, say, xt+h against
itself, xt. Figure 1.13 shows the ACF of the speech series of Figure 1.3.
The original series appears to contain a sequence of repeating short sig-
nals. The ACF confirms this behavior, showing repeating peaks spaced
at about 106-109 points. Autocorrelation functions of the short signals
appear, spaced at the intervals mentioned above. The distance between
the repeating signals is known as the pitch period and is a fundamental
parameter of interest in systems that encode and decipher speech. Be-
cause the series is sampled at 10,000 points per second, the pitch period
appears to be between .0106 and .0109 seconds.

To compute the sample ACF in R, use

> speech = scan("/mydata/speech.dat")
> acf(speech,250)

Example 1.25 Correlation Analysis of SOI and Recruitment Data

The autocorrelation and cross-correlation functions are also useful for
analyzing the joint behavior of two stationary series whose behavior may
be related in some unspecified way. In Example 1.5 (see Figure 1.5), we
have considered simultaneous monthly readings of the SOI and the num-
ber of new fish (Recruitment) computed from a model. Figure 1.14 shows
the autocorrelation and cross-correlation functions (ACFs and CCF) for
these two series. Both of the ACFs exhibit periodicities corresponding
to the correlation between values separated by 12 units. Observations 12
months or one year apart are strongly positively correlated, as are obser-
vations at multiples such as 24, 36, 48, . . . Observations separated by six
months are negatively correlated, showing that positive excursions tend
to be associated with negative excursions six months removed. This ap-
pearance is rather characteristic of the pattern that would be produced by
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Figure 1.13 ACF of the speech series.

a sinusoidal component with a period of 12 months. The cross-correlation
function peaks at h = −6, showing that the SOI measured at time t − 6
months is associated with the Recruitment series at time t. We could
say the SOI leads the Recruitment series by six months. The sign of the
ACF is negative, leading to the conclusion that the two series move in
different directions, i.e., increases in SOI lead to decreases in Recruit-
ment and vice versa. Again, note the periodicity of 12 months in the
CCF. The flat lines shown on the plots indicate ±2/

√
453, so that upper

values would be exceeded about 2.5% of the time if the noise were white
[see (1.38) and (1.41)].

To reproduce Figure 1.14 in R, use the following commands.

> soi=scan("/mydata/soi.dat")
> rec=scan("/mydata/recruit.dat")
> par(mfrow=c(3,1))
> acf(soi, 50)
> acf(rec, 50)
> ccf(soi, rec, 50)

1.7 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a num-
ber of jointly measured time series are of interest. For example, in the previous
sections, we considered discovering the relationships between the SOI and Re-
cruitment series. Hence, it will be useful to consider the notion of a vector time
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Figure 1.14 Sample ACFs of the SOI series (top) and of the Recruitment
series (middle), and the sample CCF of the two series (bottom); negative lags
indicate SOI leads Recruitment.

series xxxt = (xt1, xt2, . . . , xtp)′, which contains as its components p univariate
time series. We denote the p × 1 column vector of the observed series as xxxt.
The row vector xxx′

t is its transpose. For the stationary case, the p × 1 mean
vector

µµµ = E(xxxt) (1.43)

of the form µµµ = (µt1, µt2, . . . , µtp)′ and the p × p autocovariance matrix

Γ(h) = E[(xxxt+h − µµµ)(xxxt − µµµ)′] (1.44)

can be defined, where the elements of the matrix Γ(h) are the cross-covariance
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functions
γij(h) = E[(xt+h,i − µi)(xtj − µj)] (1.45)

for i, j = 1, . . . , p. Because γij(h) = γji(−h), it follows that

Γ(−h) = Γ′(h). (1.46)

Now, the sample autocovariance matrix of the vector series xxxt is the p × p
matrix of sample cross-covariances, defined as

Γ̂(h) = n−1
n−h∑
t=1

(xxxt+h − x̄xx)(xxxt − x̄xx)′, (1.47)

where

x̄xx = n−1
n∑

t=1

xxxt (1.48)

denotes the p× 1 sample mean vector. The symmetry property of the theoret-
ical autocovariance (1.46) extends to the sample autocovariance (1.47), which
is defined for negative values by taking

Γ̂(−h) = Γ̂(h)′. (1.49)

In many applied problems, an observed series may be indexed by more
than time alone. For example, the position in space of an experimental unit
might be described by two coordinates, say, s1 and s2. We may proceed in
these cases by defining a multidimensional process xsss as a function of the r×1
vector sss = (s1, s2, . . . , sr)′ where si denotes the coordinate of the ith index.

Example 1.26 Soil Surface Temperatures

As an example, the two-dimensional (r = 2) temperature series xs1,s2 in
Figure 1.15 is indexed by a row number s1 and a column number s2 that
represent positions on a 64 × 36 spatial grid set out on an agricultural
field. The value of the temperature measured at row s1 and column s2, is
denoted by xsss = xs1,s2. We can note from the two-dimensional plot that
a distinct change occurs in the character of the two-dimensional surface
starting at about row 40, where the oscillations along the row axis become
fairly stable and periodic. For example, averaging over the 36 columns,
we may compute an average value for each s1 as in Figure 1.16. It is
clear that the noise present in the first part of the two-dimensional series
is nicely averaged out, and we see a clear and consistent temperature
signal.

The autocovariance function of a stationary multidimensional process, xsss,
can be defined as a function of the multidimensional lag vector, say, hhh =
(h1, h2, . . . , hr)′, as

γ(hhh) = E[(xsss+hhh − µ)(xsss − µ)], (1.50)
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Figure 1.15 Two-dimensional time series of temperature measurements taken
on a rectangular field (64 × 36 with 17-foot spacing). Data are from Bazza et
al. (1988).

where
µ = E(xsss) (1.51)

does not depend on the spatial coordinate sss. For the two dimensional temper-
ature process, (1.50) becomes

γ(h1, h2) = E[(xs1+h1,s2+h2 − µ)(xs1,s2 − µ)], (1.52)

which is a function of lag, both in the row (h1) and column (h2) directions.
The multidimensional sample autocovariance function is defined as

γ̂(hhh) = (S1S2 · · ·Sr)−1
∑
s1

∑
s2

· · ·
∑
sr

(xsss+hhh − x̄)(xsss − x̄), (1.53)

where sss = (s1, s2, . . . , sr)′ and the range of summation for each argument is
1 ≤ si ≤ Si−hi, for i = 1, . . . , r. The mean is computed over the r-dimensional
array, that is,

x̄ = (S1S2 · · ·Sr)−1
∑
s1

∑
s2

· · ·
∑
sr

xs1,s2,···,sr , (1.54)

where the arguments si are summed over 1 ≤ si ≤ Si. The multidimensional
sample autocorrelation function follows, as usual, by taking the scaled ratio

ρ̂(hhh) =
γ̂(hhh)
γ̂(0)

. (1.55)
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Figure 1.16 Row averages of the two-dimensional soil temperature profile.
x̄s1 =

∑
s2

xs1,s2/36.

Example 1.27 Sample ACF of the Soil Temperature Series

The autocorrelation function of the two-dimensional temperature process
can be written in the form

ρ̂(h1, h2) =
γ̂(h1, h2)
γ̂(0, 0)

,

where

γ̂(h1, h2) = (S1S2)−1
∑
s1

∑
s2

(xs1+h1,s2+h2 − x̄)(xs1,s2 − x̄)

Figure 1.17 shows the autocorrelation function for the temperature data,
and we note the systematic periodic variation that appears along the
rows. The autocovariance over columns seems to be strongest for h1 = 0,
implying columns may form replicates of some underlying process that
has a periodicity over the rows. This idea can be investigated by exam-
ining the mean series over columns as shown in Figure 1.16.

The sampling requirements for multidimensional processes are rather severe
because values must be available over some uniform grid in order to compute
the ACF. In some areas of application, such as in soil science, we may prefer
to sample a limited number of rows or transects and hope these are essentially
replicates of the basic underlying phenomenon of interest. One-dimensional
methods can then be applied. When observations are irregular in time space,
modifications to the estimators need to be made. Systematic approaches to the
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Figure 1.17 Two-dimensional autocorrelation function for the soil tempera-
ture data.

problems introduced by irregularly spaced observations have been developed
by Journel and Huijbregts (1978) or Cressie (1993). We shall not pursue such
methods in detail here, but it is worth noting that the introduction of the
variogram

2Vx(hhh) = var{xsss+hhh − xsss} (1.56)

and its sample estimator

2V̂x(hhh) =
1

N(hhh)

∑
sss

(xsss+hhh − xsss)2 (1.57)

play key roles, where N(hhh) denotes both the number of points located within
hhh, and the sum runs over the points in the neighborhood. Clearly, substan-
tial indexing difficulties will develop from estimators of the kind, and often
it will be difficult to find non-negative definite estimators for the covariance
function. Problem 1.26 investigates the relation between the variogram and
the autocovariance function in the stationary case.
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Problems

Section 1.2

1.1 To compare the earthquake and explosion signals, plot the data displayed
in Figure 1.7 on the same graph using different colors or different line
types and comment on the results.

1.2 Consider a signal plus noise model of the general form xt = st + wt,
where wt is Gaussian white noise with σ2

w = 1. Simulate and plot n =
200 observations from each of the following two models (Save the data
generated here for use in Problem 1.21 ):

(a) xt = st + wt, for t = 1, ..., 200, where

st =
{

0, t = 1, ..., 100
10 exp{− (t−100)

20 } cos(2πt/4), t = 101, ..., 200.

(b) xt = st + wt, for t = 1, ..., 200, where

st =
{

0, t = 1, ..., 100
10 exp{− (t−100)

200 } cos(2πt/4), t = 101, ..., 200.

(c) Compare the general appearance of the series (a) and (b) with the
earthquake series and the explosion series shown in Figure 1.7. In
addition, plot (or sketch) and compare the signal modulators (a)
exp{−t/20} and (b) exp{−t/200}, for t = 1, 2, ..., 100.

Section 1.3

1.3 (a) Generate n = 100 observations from the autoregression

xt = −.9xt−2 + wt

with σw = 1, using the method described in Example 1.10. Next,
apply the moving average filter

vt = (xt + xt−1 + xt−2 + xt−3)/4

to xt, the data you generated. Now plot xt as a line and superim-
pose vt as a dashed line. Comment on the behavior of xt and how
applying the moving average filter changes that behavior.

(b) Repeat (a) but with
xt = cos(2πt/4).

(c) Repeat (b) but with added N(0, 1) noise,

xt = cos(2πt/4) + wt.

(d) Compare and contrast (a)–(c).
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Section 1.4

1.4 Show that the autocovariance function can be written as

γ(s, t) = E[(xs − µs)(xt − µt)] = E(xsxt) − µsµt,

where E[xt] = µt.

1.5 For the two series, xt, in Problem 1.2 (a) and (b):

(a) compute and sketch the mean functions µx(t); for t = 1, . . . , 200.

(b) calculate the autocovariance functions, γx(s, t), for s, t = 1, . . . , 200.

Section 1.5

1.6 Consider the time series

xt = β1 + β2t + wt,

where β1 and β2 are known constants and wt is a white noise process
with variance σ2

w.

(a) Determine whether xt is stationary.

(b) Show that the process yt = xt − xt−1 is stationary.

(c) Show that the mean of the moving average

vt =
1

2q + 1

q∑
j=−q

xt−j

is β1 + β2t, and give a simplified expression for the autocovariance
function.

1.7 For a moving average process of the form

xt = wt−1 + 2wt + wt+1,

where wt are independent with zero means and variance σ2
w, determine

the autocovariance and autocorrelation functions as a function of lag
h = s − t and plot.

1.8 Consider the randow walk with drift model

xt = δ + xt−1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance σ2
w.

(a) Show that the model can be written as xt = δt +
∑t

k=1 wk.
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(b) Find the mean function and the autocovariance function of xt

(c) Show ρx(t − 1, t) =
√

t−1
t → 1 as t → ∞. What is the implication

of this result?

(d) Show that the series is not stationary.

(e) Suggest a transformation to make the series stationary, and prove
that the transformed series is stationary. (Hint: See Problem 1.6b.)

1.9 A time series with a periodic component can be constructed from

xt = U1 sin(2πω0t) + U2 cos(2πω0t),

where U1 and U2 are independent random variables with zero means and
E(U2

1 ) = E(U2
2 ) = σ2. The constant ω0 determines the period or time

it takes the process to make one complete cycle. Show that this series is
weakly stationary with autocovariance function

γ(h) = σ2 cos(2πω0h).

1.10 Suppose we would like to predict a single stationary series xt with zero
mean and autocorrelation function γ(h) at some time in the future, say,
t + 
, for 
 > 0.

(a) If we predict using only xt and some scale multiplier A, show that
the mean-square prediction error

MSE(A) = E[(xt+� − Axt)2]

is minimized by the value

A = ρ(
).

(b) Show that the minimum mean-square prediction error is

MSE(A) = γ(0)[1 − ρ2(
)].

(c) Show that if xt+� = Axt, then ρ(
) = 1 if A > 0, and ρ(
) = −1 if
A < 0.

1.11 Consider the linear process defined in (1.31).

(a) Verify that the autocovariance function of the process is given by
(1.33). Use the result to verify your answer to Problem 1.7.

(b) Show that xt exists as a limit in mean square (see Appendix A) if
(1.32) holds.

1.12 For two weakly stationary series xt and yt, verify (1.30).
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1.13 Consider the two series
xt = wt

yt = wt − θwt−1 + ut,

where wt and ut are independent white noise series with variances σ2
w

and σ2
u, respectively, and θ is an unspecified constant.

(a) Express the ACF, ρy(h), for h = 0,±1,±2, . . . of the series yt as a
function of σ2

w, σ2
u, and θ.

(b) Determine the CCF, ρxy(h) relating xt and yt.
(c) Show that xt and yt are jointly stationary.

1.14 Let xt be a stationary normal process with mean µx and autocovariance
function γ(h). Define the nonlinear time series

yt = exp{xt}.

(a) Express the mean function E(yt) in terms of µx and γ(0). The
moment generating function of a normal random variable x with
mean µ and variance σ2 is

Mx(λ) = E[exp{λx}] = exp
{

µλ +
1
2
σ2λ2

}
.

(b) Determine the autocovariance function of yt. The sum of the two
normal random variables xt+h+xt is still a normal random variable.

1.15 Let wt, for t = 0,±1,±2, . . . be a normal white noise process, and con-
sider the series

xt = wtwt−1.

Determine the mean and autocovariance function of xt, and state whether
it is stationary.

1.16 Consider the series
xt = sin(2πUt),

t = 1, 2, . . ., where U has a uniform distribution on the interval (0, 1).

(a) Prove xt is weakly stationary.
(b) Prove xt is not strictly stationary. [Hint: consider the joint bivariate

cdf (1.19) at the points t = 1, s = 2 with h = 1, and find values of
ct, cs where strict stationarity does not hold.]

1.17 Suppose we have the linear process xt generated by

xt = wt − θwt−1,

t = 0, 1, 2, . . ., where {wt} is independent and identically distributed with
characteristic function φw(·), and θ is a fixed constant.
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(a) Express the joint characteristic function of x1, x2, . . . , xn, say,

φx1,x2,...,xn
(λ1, λ2, . . . , λn),

in terms of φw(·).
(b) Deduce from (a) that xt is strictly stationary.

1.18 Suppose that xt is a linear process of the form (1.31) satisfying the ab-
solute summability condition (1.32). Prove

∞∑
h=−∞

|γ(h)| < ∞.

Section 1.6

1.19 (a) Simulate a series of n = 500 Gaussian white noise observations as in
Example 1.8 and compute the sample ACF, ρ̂(h), to lag 20. Com-
pare the sample ACF you obtain to the actual ACF, ρ(h). [Recall
Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the
results?

1.20 (a) Simulate a series of n = 500 moving average observations as in
Example 1.9 and compute the sample ACF, ρ̂(h), to lag 20. Com-
pare the sample ACF you obtain to the actual ACF, ρ(h). [Recall
Example 1.20.]

(b) Repeat part (a) using only n = 50. How does changing n affect the
results?

1.21 Although the model in Problem 1.2 is not stationary (Why?), the sample
ACF can be informative. For the data you generated in that problem,
calculate and plot the sample ACF, and then comment.

1.22 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.12 with σ2

w = 1. Compute the sample ACF to
lag 100 of the data you generated and comment.

1.23 For the time series yt described in Example 1.23, verify the stated result
that ρy(1) = −.47 and ρy(h) = 0 for h > 1.

1.24 A real-valued function g(t), defined on the integers, is non-negative def-
inite if and only if

n∑
s=1

n∑
t=1

asg(s − t)at ≥ 0

for all positive integers n and for all vectors aaa = (a1, a2, . . . , an)′. For
the matrix G = {g(s − t), s, t = 1, 2, . . . , n}, this implies that aaa′Gaaa ≥ 0
for all vectors aaa.
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(a) Prove that γ(h), the autocovariance function of a stationary process,
is a non-negative definite function.

(b) Verify that the sample autocovariance γ̂(h) is a non-negative definite
function.

Section 1.7

1.25 Consider a collection of time series x1t, x2t, . . . , xNt that are observing
some common signal µt observed in noise processes e1t, e2t, . . . , eNt, with
a model for the j-th observed series given by

xjt = µt + ejt.

Suppose the noise series have zero means and are uncorrelated for dif-
ferent j. The common autocovariance functions of all series are given by
γe(s, t). Define the sample mean

x̄t =
1
N

N∑
j=1

xjt.

(a) Show that E[x̄t] = µt.

(b) Show that E[(x̄t − µ)2)] = N−1γe(t, t).

(c) How can we use the results in estimating the common signal?

1.26 A concept used in geostatistics, see Journel and Huijbregts (1978) or
Cressie (1993), is that of the variogram, defined for a spatial process xsss,
sss = (s1, s2), for s1, s2 = 0,±1,±2, ..., as

Vx(hhh) =
1
2
E[(xsss+hhh − xsss)2],

where hhh = (h1, h2), for h1, h2 = 0,±1,±2, ... Show that, for a station-
ary process, the variogram and autocovariance functions can be related
through

Vx(hhh) = γ(000) − γ(hhh),

where γ(hhh) is the usual lag hhh covariance function and 000 = (0, 0). Note
the easy extension to any spatial dimension.

The following problems require the supplemental material given in Appendix A

1.27 Suppose xt = β0 +β1t, where β0 and β1 are constants. Prove as n → ∞,
ρ̂x(h) → 1 for fixed h, where ρ̂x(h) is the ACF (1.37).
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1.28 (a) Suppose xt is a weakly stationary time series with mean zero and
with absolutely summable autocovariance function, γ(h), such that

∞∑
h=−∞

γ(h) = 0.

Prove that
√

n x̄
p→ 0, where x̄ is the sample mean (1.35).

(b) Give an example of a process that satisfies the conditions of part
(a). What is special about this process?

1.29 Let xt be a linear process of the form (A.44)–(A.45). If we define

γ̃(h) = n−1
n∑

t=1

(xt+h − µx)(xt − µx),

show that
n1/2(γ̃(h) − γ̂(h)

)
= op(1).

Hint: The Markov Inequality

P{|x| ≥ ε} <
E|x|

ε

can be helpful for the cross-product terms.

1.30 For a linear process of the form

xt =
∞∑

j=0

φjwt−j ,

where {wt} satisfies the conditions of Theorem A.7 and |φ| < 1, show
that √

n
(ρ̂x(1) − ρx(1))√

1 − ρ2
x(1)

d→ N(0, 1),

and construct a 95% confidence interval for φ when ρ̂x(1) = .64 and
n = 100.

1.31 Let {xt; t = 0,±1,±2, . . .} be iid (0, σ2).

(a) For h ≥ 1 and k ≥ 1, show that xtxt+h and xsxs+k are uncorrelated
for all s �= t.

(b) For fixed h ≥ 1, show that the h × 1 vector

σ−2n−1/2
n∑

t=1

(xtxt+1, . . . , xtxt+h)′ d→ (z1, . . . , zh)′
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where z1, . . . , zh are iid N(0, 1) random variables. [Note: the se-
quence {xtxt+h; t = 1, 2, . . .} is h-dependent and white noise (0, σ4).
Also, recall the Cramér-Wold device.]

(c) Show, for each h ≥ 1,

n−1/2

[
n∑

t=1

xtxt+h −
n−h∑
t=1

(xt − x̄)(xt+h − x̄)

]
p→ 0 as n → ∞

where x̄ = n−1∑n
t=1 xt.

(d) Noting that n−1∑n
t=1 x2

t
p→ σ2, conclude that

n1/2 [ρ̂(1), . . . , ρ̂(h)]′ d→ (z1, . . . , zh)′

where ρ̂(h) is the sample ACF of the data x1, . . . , xn.



Chapter 2

Time Series Regression and
Exploratory Data Analysis

2.1 Introduction

The linear model and its applications are at least as dominant in the time
series context as in classical statistics. Regression models are important for
time domain models discussed in Chapters 3, 5, and 6, and in the frequency
domain models considered in Chapters 4 and 7. The primary ideas depend
on being able to express a response series, say xt, as a linear combination
of inputs, say zt1, zt2, . . . , ztq. Estimating the coefficients β1, β2, . . . , βq in the
linear combinations by least squares provides a method for modeling xt in
terms of the inputs.

In the time domain applications of Chapter 3, for example, we will express
xt as a linear combination of previous values xt−1, xt−2, . . . , xp, of the currently
observed series. The outputs xt may also depend on lagged values of another
series, say yt−1, yt−2, . . . , yt−q, that have influence. It is easy to see that fore-
casting becomes an option when prediction models can be formulated in this
form. Time series smoothing and filtering can be expressed in terms of local
regression models. Polynomials and regression splines also provide important
techniques for smoothing.

If one admits sines and cosines as inputs, the frequency domain ideas that
lead to the periodogram and spectrum of Chapter 4 follow from a regression
model. Extensions to filters of infinite extent can be handled using regression
in the frequency domain. In particular, many regression problems in the fre-
quency domain can be carried out as a function of the periodic components of
the input and output series, providing useful scientific intuition into fields like
acoustics, oceanographics, engineering, biomedicine, and geophysics.

The above considerations motivate us to include a separate chapter on re-

48
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gression and some of its applications that is written on an elementary level and
is formulated in terms of time series. The assumption of linearity, stationarity,
and homogeneity of variances over time is critical in the regression context, and
therefore we include some material on transformations and other techniques
useful in exploratory data analysis.

2.2 Classical Regression in the Time Series
Context

We begin our discussion of linear regression in the time series context by as-
suming some output or dependent time series, say, xt, for t = 1, . . . , n, is
being influenced by a collection of possible inputs or independent series, say,
zt1, zt2, . . . , ztq, where we first regard the inputs as fixed and known. This as-
sumption, necessary for applying conventional linear regression, will be relaxed
later on. We express this relation through the linear regression model

xt = β1zt1 + β2zt2 + · · · + βqztq + wt, (2.1)

where β1, β2, . . . , βq are unknown fixed regression coefficients, and {wt} is a
random error or noise process consisting of independent and identically dis-
tributed (iid) normal variables with mean zero and variance σ2

w; we will relax
the iid assumption later. A more general setting within which to embed mean
square estimation and linear regression is given in Appendix B, where we in-
troduce Hilbert spaces and the Projection Theorem.

Example 2.1 Estimating a Trend

Consider the global temperature data, say xt, shown in Figure 1.2. As
discussed in Example 1.2, there is an apparent upward trend in the series
that has been used to argue the global warming hypothesis. We might
use simple linear regression to estimate that trend by fitting the model

xt = β1 + β2t + wt, t = 1900, 1901, . . . , 1997.

This is in the form of the regression model (2.1) when we make the
identification q = 2, zt1 = 1, zt2 = t. Note that we are making the
assumption that the errors, wt, are an iid normal sequence, which may
not be true. We will address this problem further in §2.3; the problem
of autocorrelated errors is discussed in detail in §5.5. Also note that we
could have used, e.g., t = 0, . . . , 97, without affecting the interpretation
of the slope coefficient, β2; only the intercept, β1, would be affected.

Using simple linear regression, we obtained the estimated coefficients
β̂1 = −12.186, and β̂2 = .006 (with a standard error of .0005) yielding a
significant estimated increase of .6 degrees centigrade per 100 years. We
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Figure 2.1 Global temperature deviations shown in Figure 1.2 with fitted
linear trend line.

discuss the precise way in which the solution was accomplished below.
Finally, Figure 2.1 shows the global temperature data, say xt, with the
estimated trend, say x̂t = −12.186 + .006t, superimposed. It is apparent
that the estimated trend line obtained via simple linear regression does
not quite capture the trend of the data and better models will be needed.

To perform this analysis in R, we note that the data file globtemp.dat
has 142 observations starting from the year 1856. We are only using the
final 98 observations corresponding to the years 1900 to 1997.

> gtemp = scan("/mydata/globtemp.dat")
> x = gtemp[45:142]
> t = 1900:1997
> fit=lm(x˜t) # regress x on t
> summary(fit) # regression output
> plot(t,x, type="o", xlab="year", ylab="temp deviation")
> abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors zzzt = (zt1, zt2, . . . , ztq)′

and βββ = (β1, β2, . . . , βq)′, where ′ denotes transpose, so (2.1) can be written in
the alternate form

xt = βββ′zzzt + wt. (2.2)

where wt ∼ iid(0, σ2
w). It is natural to consider estimating the unknown coef-
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ficient vector βββ by minimizing the residual sum of squares

RSS =
n∑

t=1

(xt − βββ′zzzt)2, (2.3)

with respect to β1, β2, . . . , βq. Minimizing RSS yields the ordinary least squares
estimator. This minimization can be accomplished by differentiating (2.3) with
respect to the vector βββ or by using the properties of projections. In the notation
above, this procedure gives the normal equations( n∑

t=1

zzztzzz
′
t

)
β̂ββ =

n∑
t=1

zzztxt. (2.4)

A further simplification of notation results from defining the matrix Z =
(zzz1, zzz2, . . . , zzzn)′ as the n × q matrix composed of the n samples of the input
variables and the observed n×1 vector xxx = (x1, x2, . . . , xn)′. This identification
yields

(Z ′Z) β̂ββ = Z ′xxx (2.5)

and the solution
β̂ββ = (Z ′Z)−1Z ′xxx (2.6)

when the matrix Z ′Z is of rank q. The minimized residual sum of squares (2.3)
has the equivalent matrix forms

RSS = (xxx − Zβ̂ββ)′(xxx − Zβ̂ββ)

= xxx′xxx − β̂ββ
′
Z ′xxx

= xxx′xxx − xxx′Z(Z ′Z)−1Z ′xxx, (2.7)

to give some useful versions for later reference. The ordinary least squares
estimators are unbiased, i.e., E(β̂ββ) = βββ, and have the smallest variance within
the class of linear unbiased estimators.

If the errors wt are normally distributed (Gaussian), β̂ββ is also the maximum
likelihood estimator for βββ and is normally distributed with

cov(β̂ββ) = σ2
w

( n∑
t=1

zzztzzz
′
t

)−1

= σ2
w(Z ′Z)−1

= σ2
wC, (2.8)

where
C = (Z ′Z)−1 (2.9)

is a convenient notation for later equations. An unbiased estimator for the
variance σ2

w is

s2
w =

RSS

n − q
, (2.10)
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Table 2.1 Analysis of Variance for Regression

Source df Sum of Squares Mean Square

zt,q1+1, . . . , zt,q q − q1 SSreg = RSS1 − RSS MSreg = SSreg/(q − q1)
Error n − q RSS s2

w = RSS/(n − q)
Total n − q1 RSS1

contrasted with the maximum likelihood estimator σ̂2
w = RSS/n, which has

the divisor n. Under the normal assumption, s2
w is distributed proportionally

to a chi-squared random variable with n − q degrees of freedom, denoted by
χ2

n−q, and independently of β̂. It follows that

tn−q =
(β̂i − βi)
sw

√
cii

(2.11)

has the t-distribution with n−q degrees of freedom; cii denotes the ith diagonal
element of C, as defined in (2.9).

Various competing models are of interest to isolate or select the best subset
of independent variables. Suppose a proposed model specifies that only a
subset q1 < q independent variables, say, zzz1t = (zt1, zt2, . . . , ztq1)

′ is influencing
the dependent variable xt, so the model

xt = βββ′
1zzz1t + wt (2.12)

becomes the null hypothesis, where βββ1 = (β1, β2, . . . , βq1)
′ is a subset of coeffi-

cients of the original q variables. We can test the reduced model (2.12) against
the full model (2.2) by comparing the residual sums of squares under the two
models using the F-statistic

Fq−q1,n−q =
RSS1 − RSS

RSS

n − q

q − q1
, (2.13)

which has the central F -distribution with q − q1 and n − q degrees of freedom
when (2.12) is the correct model. The statistic, which follows from applying
the likelihood ratio criterion, has the improvement per number of parameters
added in the numerator compared with the error sum of squares under the
full model in the denominator. The information involved in the test procedure
is often summarized in an Analysis of Variance (ANOVA) table as given in
Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares

In terms of Table 2.1, it is conventional to write the F -statistic (2.13) as
the ratio of the two mean squares, obtaining

Fq−q1,n−q =
MSreg

s2
w

. (2.14)
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A special case of interest is q1 = 1 and z1t = 1, so the model in (2.12) becomes

xt = β1 + wt,

and we may measure the proportion of variation accounted for by the other
variables using

R2
xz =

RSS0 − RSS

RSS0
, (2.15)

where the residual sum of squares under the reduced model

RSS0 =
n∑

t=1

(xt − x̄)2, (2.16)

in this case is just the sum of squared deviations from the mean x̄. The mea-
sure R2

xz is also the squared multiple correlation between xt and the variables
zt2, zt3, . . . , ztq.

The techniques discussed in the previous paragraph can be used to test
various models against one another using the F test given in (2.13), (2.14),
and the ANOVA table. These tests have been used in the past in a stepwise
manner, where variables are added or deleted when the values from the F -test
either exceed or fail to exceed some predetermined levels. The procedure, called
stepwise multiple regression, is useful in arriving at a set of useful variables. An
alternative is to focus on a procedure for model selection that does not proceed
sequentially, but simply evaluates each model on its own merits. Suppose
we consider a regression model with k coefficients and denote the maximum
likelihood estimator for the variance as

σ̂2
k =

RSSk

n
, (2.17)

where RSSk denotes the residual sum of squares under the model with k
regression coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring
the goodness of fit for this particular model by balancing the error of the fit
against the number of parameters in the model; we define

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = ln σ̂2
k +

n + 2k

n
, (2.18)

where σ̂2
k is given by (2.17) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model. The idea
is roughly that minimizing σ̂2

k would be a reasonable objective, except that it
decreases monotonically as k increases. Therefore, we ought penalize the error
variance by a term proportional to the number of parameters. The choice
for the penalty term given by (2.18) is not the only one, and a considerable
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literature is available advocating different penalty terms. A corrected form,
suggested by Sugiura (1978), and expanded by Hurvich and Tsai (1989), can
be based on small-sample distributional results for the linear regression model
(details are provided in Problems 2.4 and 2.5). The corrected form is defined
as

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = ln σ̂2
k +

n + k

n − k − 2
, (2.19)

where σ̂2
k is given by (2.17), k is the number of parameters in the model, and

n is the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to

Definition 2.3 Schwarz’s Information Criterion (SIC)

SIC = ln σ̂2
k +

k lnn

n
, (2.20)

using the same notation as in Definition 2.2.

SIC is also called the Bayesian Information Criterion (BIC) (see also Ris-
sanen, 1978, for an approach yielding the same statistic based on a minimum
description length argument). Various simulation studies have tended to ver-
ify that SIC does well at getting the correct order in large samples, whereas
AICc tends to be superior in smaller samples where the relative number of
parameters is large (see McQuarrie and Tsai, 1998, for detailed comparisons).
In fitting regression models, two measures that have been used in the past are
adjusted R-squared, which is essentially s2

w, and Mallows Cp, Mallows (1973),
which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

The data shown in Figure 2.2 are extracted series from a study by
Shumway et al. (1988) of the possible effects of temperature and pollu-
tion on daily mortality in Los Angeles County. Note the strong seasonal
components in all of the series, corresponding to winter-summer varia-
tions and the downward trend in the cardiovascular mortality over the
10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear
relation between mortality and the pollutant particulates and a possible
relation to temperature. Note the curvilinear shape of the temperature
mortality curve, indicating that higher temperatures as well as lower
temperatures are associated with increases in cardiovascular mortality.
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Figure 2.2 Average daily cardiovascular mortality (top), temperature (mid-
dle) and particulate pollution (bottom) in Los Angeles County. There are 508
six-day smoothed averages obtained by filtering daily values over the 10 year
period 1970-1979.

Based on the scatterplot matrix, we entertain, tentatively, four models
where Mt denotes cardiovascular mortality, Tt denotes temperature and
Pt denotes the particulate levels. They are

Mt = β0 + β1t + wt (2.21)
Mt = β0 + β1t + β2(Tt − T·) + wt (2.22)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + wt (2.23)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + β4Pt + wt (2.24)

where we adjust temperature for its mean, T· = 74.6, to avoid scaling
problems. It is clear that (2.21) is a trend only model, (2.22) is linear
temperature, (2.23) is curvilinear temperature and (2.24) is curvilinear
temperature and pollution. We summarize some the statistics given for
this particular case in Table 2.2. The values of R2 were computed by
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Figure 2.3 Scatterplot matrix showing plausible relations between mortality,
temperature, and pollution.

Table 2.2 Summary Statistics for Mortality Models

Model RSS (2.3) s2
w (2.10) R2 (2.15) AICc (2.19)

(2.21) 40,020 79.09 .21 5.38
(2.22) 31,413 62.20 .38 5.14
(2.23) 27,985 55.52 .45 5.03
(2.24) 20,509 40.77 .60 4.72

noting that RSS0 = 50, 687 using (2.16).

We note that each model does substantially better than the one before
it and that the model including both temperature, temperature squared
and particulates does the best, accounting for some 60% of the variability
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and with the best value for AICc. Note that one can compare any two
models using the residual sums of squares and (2.13). Hence, a model
with only trend could be compared to the full model using q = 5, q1 =
2, n = 508, so

F3,503 =
(40, 020 − 20, 509)

20, 509
503
3

= 160,

which exceeds F3,∞(.001) = 5.42. We obtain the best prediction model,

M̂t = 81.59 − .027(.002)t − .473(.032)(Tt − 74.6)

+ .023(.003)(Tt − 74.6)2 + .255(.019)Pt,

for mortality, where the standard errors, computed from (2.8)-(2.10), are
given in parentheses. As expected, a negative trend is present in time
as well as a negative coefficient for adjusted temperature. The quadratic
effect of temperature can clearly be seen in the scatterplots of Figure 2.3.
Pollution weights positively and can be interpreted as the incremental
contribution to daily deaths per unit of particulate pollution. It would
still be essential to check the residuals ŵt = Mt −M̂t for autocorrelation,
but we defer this question to the section on correlated least squares,
in which the incorporation of time correlation changes the estimated
standard errors.

To display the scatterplot matrix, perform the final regression and com-
pute AIC in R, use the following commands:

> mort = scan("/mydata/cmort.dat")
> temp = scan("/mydata/temp.dat")
> part = scan("/mydata/part.dat")
> temp = temp - mean(temp)
> temp2 = tempˆ2
> t = 1:length(mort)
> fit = lm(mort˜t + temp + temp2 + part)
> summary(fit) # Results
> AIC(fit)/508 # R gives n*AIC
> pairs(cbind(mort, temp, part)) # scatterplot matrix

2.3 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary, so averaging
lagged products over time, as in the previous section, will be a sensible thing
to do. With time series data, it is the dependence between the values of the
series that is important to measure; we must, at least, be able to estimate au-
tocorrelations with precision. It would be difficult to measure that dependence
if the dependence structure is not regular or is changing at every time point.
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Hence, to achieve any meaningful statistical analysis of time series data, it will
be crucial that, if nothing else, the mean and the autocovariance functions
satisfy the conditions of stationarity (for at least some reasonable stretch of
time) stated in Definition 1.7. Often, this is not the case, and we will mention
some methods in this section for playing down the effects of nonstationarity so
the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The
Johnson & Johnson series in Figure 1.1 has a mean that increases exponentially
over time, and the increase in the magnitude of the fluctuations around this
trend causes changes in the covariance function; the variance of the process,
for example, clearly increases as one progresses over the length of the series.
Also, the global temperature series shown in Figure 1.2 contains some evi-
dence of a trend over time; human-induced global warming advocates seize on
this as empirical evidence to advance their hypothesis that temperatures are
increasing.

Perhaps the easiest form of nonstationarity to work with is the trend sta-
tionary model wherein the process has stationary behavior around a trend. We
may write this type of model as

xt = µt + yt (2.25)

where xt are the observations, µt denotes the trend, and yt is a stationary
process. Quite often, strong trend, µt, will obscure the behavior of the sta-
tionary process, yt, as we shall see in numerous examples in Chapter 3. Hence,
there is some advantage to removing the trend as a first step in an exploratory
analysis of such time series. The steps involved are to obtain a reasonable
estimate of the trend component, say µ̂t, and then work with the residuals

ŷt = xt − µ̂t. (2.26)

Consider the following example.

Example 2.3 Detrending Global Temperature

Here we suppose the model is of the form of (2.25),

xt = µt + yt,

where, as we suggested in the analysis of the global temperature data
presented in Example 2.1, a straight line might be a reasonable model
for the trend, i.e.,

µt = β1 + β2 t.

In that example, we estimated the trend using ordinary least squares1

1Because the error term, yt, is not assumed to be iid, the reader may feel that weighted
least squares is called for in this case. The problem is, we do not know the behavior of
yt, and that is precisely what we are trying to assess at this stage. A notable result by
Grenander and Rosenblatt (1957, Ch 7), however, is that under mild conditions on yt,
for polynomial regression or periodic regression, asymptotically, ordinary least squares is
equivalent to weighted least squares.
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Figure 2.4 Detrended (top) and differenced (bottom) global temperature se-
ries. The original data are shown in Figures 1.2 and 2.1.

and found
µ̂t = −12.186 + .006 t.

Figure 2.1 shows the data with the estimated trend line superimposed. To
obtain the detrended series we simply subtract µ̂t from the observations,
xt, to obtain the detrended series

ŷt = xt + 12.186 − .006 t.

The top graph of Figure 2.4 shows the detrended series. Figure 2.5
shows the ACF of the original data (top panel) as well as the ACF of the
detrended data (middle panel).

To detrend in R, assuming the data are in gtemp:
> x = gtemp[45:142] # use only 1900 to 1997
> t = 1900:1997
> fit = lm(x˜t) # detrended series in fit$resid
> plot(t, fit$resid, type="o", ylab="detrended gtemp")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling trend
as fixed (as in Example 2.3), we might model trend as a stochastic component
using the random walk with drift model,

µt = δ + µt−1 + wt, (2.27)



60 Regression and Exploratory Data Analysis

Figure 2.5 Sample ACFs of the global temperature (top), and of the detrended
(middle) and the differenced (bottom) series.

where wt is white noise and is independent of yt. If the appropriate model is
(2.25), then differencing the data, xt, yields a stationary process; that is,

xt − xt−1 = (µt + yt) − (µt−1 + yt−1)
= δ + wt + yt − yt−1. (2.28)

We leave it as an exercise (Problem 2.7) to show (2.28) is stationary.2

One advantage of differencing over detrending to remove trend is that no
parameters are estimated in the differencing operation. One disadvantage,
however, is that differencing does not yield an estimate of the stationary process
yt as can be seen in (2.28). If an estimate of yt is essential, then detrending
may be more appropriate. If the goal is to coerce the data to stationarity, then

2The key to establishing the stationarity of these types of processes is to recall that if
U =

∑m

j=1 ajXj and V =
∑r

k=1 bkYk are linear combinations of random variables {Xj}
and {Yk}, respectively, then cov(U, V ) =

∑m

j=1

∑r

k=1 ajbkcov(Xj , Yk).
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differencing may be more appropriate. Differencing is also a viable tool if the
trend is fixed, as in Example 2.3. That is, e.g., if µt = β1 + β2 t in the model
(2.25), differencing the data produces stationarity (see Problem 2.6):

xt − xt−1 = (µt + yt) − (µt−1 + yt−1) = β2 + yt − yt−1.

Because differencing plays a central role in time series analysis, it receives
its own notation. The first difference is denoted as

∇xt = xt − xt−1. (2.29)

As we have seen, the first difference eliminates a linear trend. A second differ-
ence, that is, the difference of (2.29), can eliminate a quadratic trend, and so
on. In order to define higher differences, we need a variation in notation that
we use, for the first time here, and often in our discussion of ARIMA models
in Chapter 3.

Definition 2.4 We define the backshift operator by

Bxt = xt−1

and extend it to powers B2xt = B(Bxt) = Bxt−1 = xt−2, and so on. Thus,

Bkxt = xt−k. (2.30)

It is clear that we may then rewrite (2.29) as

∇xt = (1 − B)xt, (2.31)

and we may extend the notion further. For example, the second difference
becomes

∇2xt = (1 − B)2xt = (1 − 2B + B2)xt

= xt − 2xt−1 + xt−2

by the linearity of the operator. To check, just take the difference of the first
difference ∇(∇xt) = ∇(xt − xt−1) = (xt − xt−1) − (xt−1 − xt−2).

Definition 2.5 Differences of order d are defined as

∇d = (1 − B)d, (2.32)

where we may expand the operator (1−B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.29) is an example of a linear filter applied to eliminate
a trend. Other filters, formed by averaging values near xt, can produce adjusted
series that eliminate other kinds of unwanted fluctuations, as in Chapter 3. The
differencing technique is an important component of the ARIMA model of Box
and Jenkins (1970) (see also Box et al., 1994), to be discussed in Chapter 3.
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Example 2.4 Differencing Global Temperature

The first difference of the global temperature series, also shown in Fig-
ure 2.4, does not contain the long middle cycle we observe in the de-
trended series. The ACF of this series is also shown in Figure 2.5. In this
case it appears that the differenced process may be white noise, which
implies that the global temperature series is a random walk. Finally,
notice that removing trend by detrending (i.e., regression techniques)
produces different results than removing trend by differencing.

Continuing from Example 2.3, to difference and plot the data in R:

> x = gtemp[44:142] # start at 1899
> plot(1900:1997, diff(x), type="o", xlab="year")

An alternative to differencing is a less-severe operation that still assumes
stationarity of the underlying time series. This alternative, called fractional
differencing, extends the notion of the difference operator (2.32) to fractional
powers −.5 < d < .5, which still define stationary processes. Granger and
Joyeux (1980) and Hosking (1981) introduced long memory time series, which
corresponds to the case when 0 < d < .5. This model is often used for environ-
mental time series arising in hydrology. We will discuss long memory processes
in more detail in §5.2.

Often, obvious aberrations are present that can contribute nonstationary
as well as nonlinear behavior in observed time series. In such cases, transfor-
mations may be useful to equalize the variability over the length of a single
series. A particularly useful transformation is

yt = lnxt, (2.33)

which tends to suppress larger fluctuations that occur over portions of the
series where the underlying values are larger. Other possibilities are power
transformations in the Box–Cox family of the form

yt =

⎧⎨⎩ (xλ
t − 1)/λ, λ �= 0

lnxt, λ = 0.

(2.34)

Methods for choosing the power λ are available (see Johnson and Wichern,
1992, §4.7) but we do not pursue them here. Often, transformations are also
used to improve the approximation to normality or to improve linearity in
predicting the value of one series from another.

Example 2.5 Paleoclimatic Glacial Varves

Melting glaciers deposit yearly layers of sand and silt during the spring
melting seasons, which can be reconstructed yearly over a period ranging
from the time deglaciation began in New England (about 12,600 years
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Figure 2.6 Glacial varve thicknesses (top) from Massachusetts for n = 634
years compared with log transformed thicknesses (bottom).

ago) to the time it ended (about 6,000 years ago). Such sedimentary
deposits, called varves, can be used as proxies for paleoclimatic parame-
ters, such as temperature, because, in a warm year, more sand and silt
are deposited from the receding glacier. Figure 2.6 shows the thicknesses
of the yearly varves collected from one location in Massachusetts for 634
years, beginning 11,834 years ago. For further information, see Shumway
and Verosub (1992). Because the variation in thicknesses increases in
proportion to the amount deposited, a logarithmic transformation could
remove the nonstationarity observable in the variance as a function of
time. Figure 2.6 shows the original and transformed varves, and it is
clear that this improvement has occurred. We may also plot the his-
togram of the original and transformed data, as in Problem 2.8, to argue
that the approximation to normality is improved. The ordinary first
differences (2.31) are also computed in Problem 2.8, and we note that
the first differences have a significant negative correlation at lag h = 1.
Later, in Chapter 5, we will show that perhaps the varve series has long
memory and will propose using fractional differencing.

Next, we consider another preliminary data processing technique that is
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Figure 2.7 Scatterplot matrix relating current SOI values (xt) to past SOI
values (xt−h) at lags h = 1, 2, ..., 12.

used for the purpose of visualizing the relations between series at different
lags, namely, scatterplot matrices. In the definition of the ACF, we are essen-
tially interested in relations between xt and xt−h; the autocorrelation function
tells us whether a substantial linear relation exists between the series and its
own lagged values. The ACF gives a profile of the linear correlation at all
possible lags and shows which values of h lead to the best predictability. The
restriction of this idea to linear predictability, however, may mask a possible
nonlinear relation between current values, xt, and past values, xt−h. To check
for nonlinear relations of this form, it is convenient to display a lagged scat-
terplot matrix, as in Figure 2.7, that displays values of xt on the vertical axis
plotted against xt−h on the horizontal axis for the SOI xt. Similarly, we might
want to look at values of one series yt plotted against another series at various
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Figure 2.8 Scatterplot matrix of the Recruitment series, yt, on the vertical
axis plotted against the SOI series, xt−h, on the horizontal axis at lags h =
0, 1, . . . , 8.

lags, xt−h, to look for possible nonlinear relations between the two series. Be-
cause, for example, we might wish to predict the Recruitment series, say, yt,
from current or past values of the SOI series, xt−h, for h = 0, 1, 2, ... it would
be worthwhile to examine the scatterplot matrix. Figure 2.8 shows the lagged
scatterplot of the Recruitment series yt on the vertical axis plotted against the
SOI index xt−h on the horizontal axis.

Example 2.6 Scatterplot Matrices, SOI, and Recruitment Series

Consider the possibility of looking for nonlinear functional relations at
lags in the SOI series, xt−h, for h = 0, 1, 2, ..., and the Recruitment
series, yt. Noting first the top panel in Figure 2.7, we see strong posi-
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tive and linear relations at lags h = 1, 2, 11, 12, that is, between xt and
xt−1, xt−2, xt−11, xt−12, and a negative linear relation at lags h = 6, 7.
These results match up well with peaks noticed in the ACF in Figure 1.14.
Figure 2.8 shows linearity in relating Recruitment, yt, with the SOI series
at xt−5, xt−6, xt−7, xt−8, indicating the SOI series tends to lead the Re-
cruitment series and the coefficients are negative, implying that increases
in the SOI lead to decreases in the Recruitment, and vice versa. Some
possible nonlinear behavior shows as the relation tends to flatten out at
both extremes, indicating a logistic type transformation may be useful.

To reproduce Figure 2.7 in R assuming the data are in soi and rec as
before:

> lag.plot(soi, lags=12, layout=c(3,4), diag=F)

Reproducing Figure 2.8 in R is not as easy, but here is how the figure
was generated:

> soi=ts(soi) # make the series
> rec=ts(rec) # time series objects
> par(mfrow=c(3,3), mar=c(2.5, 4, 4, 1)) # set up plot area
> for(h in 0:8){ # loop through lags 0-8
> plot(lag(soi,-h),rec, main=paste("soi(t-",h,")",sep=""),
+ ylab="rec(t)",xlab="")
> }

As a final exploratory tool, we discuss assessing periodic behavior in time
series data using regression analysis and the periodogram; this material may
be thought of as an introduction to spectral analysis, which we discuss in
detail in Chapter 4. In Example 1.12, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time
series we have seen so far exhibit periodic behavior. For example, the data
from the pollution study example shown in Figure 2.2 exhibit strong yearly
cycles. Also, the Johnson & Johnson data shown in Figure 1.1 make one cycle
every year (four quarters) on top of an increasing trend and the speech data
in Figure 1.2 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the
El Niño cycle.

Example 2.7 Using Regression to Discover a Signal in Noise

Recall, in Example 1.12 we generated n = 500 observations from the
model

xt = A cos(2πωt + φ) + wt, (2.35)

where ω = 1/50, A = 2, φ = .6π, and σw = 5; the data are shown on the
bottom panel of Figure 1.11. At this point we assume the frequency of
oscillation ω = 1/50 is known, but A and φ are unknown parameters. In
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Figure 2.9 Data generated by (2.35) [dashed line] with the fitted [solid] line,
(2.37), superimposed.

this case the parameters appear in (2.35) in a nonlinear way, so we use
a trigonometric identity and write

A cos(2πωt + φ) = A cos(φ) cos(2πωt) − A sin(φ) sin(2πωt)
= β1 cos(2πωt) + β2 sin(2πωt),

where β1 = A cos(φ) and β2 = −A sin(φ). Now the model (2.35) can be
written in the usual linear regression form given by (no intercept term is
needed here)

xt = β1 cos(2πt/50) + β2 sin(2πt/50) + wt. (2.36)

Using linear regression on the generated data, the fitted model is

x̂t = −.84(.32) cos(2πt/50) − 1.99(.32) sin(2πt/50) (2.37)

with σ̂w = 5.08, where the values in parentheses are the standard errors.
We note the actual values of the coefficients for this example are β1 =
2 cos(.6π) = −.62 and β2 = −2 sin(.6π) = −1.90. Because the parameter
estimates are significant and close to the actual values, it is clear that we
are able to detect the signal in the noise using regression, even though
the signal appears to be obscured by the noise in the bottom panel of
Figure 1.11. Figure 2.9 shows data generated by (2.35) with the fitted
line, (2.37), superimposed.

Example 2.8 Using the Periodogram to Discover a Signal in Noise

The analysis in Example 2.7 may seem like cheating because we assumed
we knew the value of the frequency parameter ω. If we do not know ω,
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we could try to fit the model (2.35) using nonlinear regression with ω as a
parameter. Another method is to try various values of ω in a systematic
way. Using the regression results of §2.2 (also, see Problem 4.10), we can
show the estimated regression coefficients in Example 2.7 take on the
special form3 given by

β̂1 =
∑n

t=1 xt cos(2πt/50)∑n
t=1 cos2(2πt/50)

=
2
n

n∑
t=1

xt cos(2πt/50); (2.38)

β̂2 =
∑n

t=1 xt sin(2πt/50)∑n
t=1 sin2(2πt/50)

=
2
n

n∑
t=1

xt sin(2πt/50). (2.39)

This suggests looking at all possible regression parameter estimates, say

β̂1(j/n) =
2
n

n∑
t=1

xt cos(2πt j/n); (2.40)

β̂2(j/n) =
2
n

n∑
t=1

xt sin(2πt j/n), (2.41)

where, n = 500 and j = 1, . . . , n
2 − 1, and inspecting the results for large

values. For the endpoints, j = 0, n/2, we have β̂1(0) = n−1∑n
t=1 xt,

β̂1(n
2 ) = n−1∑n

t=1(−1)txt and β̂2(0) = β̂2(n
2 ) = 0.

For this particular example, the values calculated in (2.38) and (2.39) are
β̂1(10/500) and β̂2(10/500). By doing this, we have regressed a series, xt,
of length n using n regression parameters, so that we will have a perfect
fit. The point, however, is that if the data contain any cyclic behavior
we are likely to catch it by performing these saturated regressions.

Next, note that the regression coefficients β̂1(j/n) and β̂2(j/n), for each
j, are essentially measuring the correlation of the data with a sinusoid
oscillating at j cycles in n time points.4 Hence, an appropriate measure
of the presence of a frequency of oscillation of j cycles in n time points
in the data would be

P (j/n) = β̂2
1(j/n) + β̂2

2(j/n), (2.42)

which is basically a measure of squared correlation. The quantity (2.42) is
sometimes called the periodogram, but we will call P (j/n) the scaled pe-
riodogram and we will investigate its properties in Chapter 4. Figure 2.10
shows the scaled periodogram for the data generated by (2.35), and it

3In the notation of §2.2, the estimates are
∑n

t=1 xtzt

/∑n

t=1 z2
t . Here, zt = cos(2πt/50)

or zt = sin(2πt/50).
4In the notation of §2.2, the regression coefficients (2.40) and (2.41) are of the form∑
t
xtzt/

∑
t
z2
t whereas sample correlations are of the form

∑
t
xtzt

/(∑
t
x2

t

∑
t
z2
t

)1/2
.
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Figure 2.10 The scaled periodogram, (2.42), of the 500 observations generated
by (2.35). The data are displayed in Figures 1.11 and 2.9.

easily discovers the periodic component with frequency ω = .02 = 10/500
even though it is difficult to visually notice that component in Figure 1.11
due to the noise.

Finally, we mention that it is not necessary to run a large regression

xt =
n/2∑
j=0

β1(j/n) cos(2πtj/n) + β2(j/n) sin(2πtj/n) (2.43)

to obtain the values of β1(j/n) and β2(j/n) [with β2(0) = β2(1/2) = 0]
because they can be computed quickly if n (assumed even here) is a
highly composite integer. There is no error in (2.43) because there are
n observations and n parameters; the regression fit will be perfect. The
discrete Fourier transform (DFT) is a complex-valued weighted average
of the data given by

d(j/n) = n−1/2
n∑

t=1

xt exp(−2πitj/n), (2.44)

and values j/n are called the Fourier or fundamental frequencies. Be-
cause of a large number of redundancies in the calculation, (2.44) may
be computed quickly using the fast Fourier transform (FFT), which is
available in many computing packages such as Matlab, S-PLUS and R.
We note that5

|d(j/n)|2 =
1
n

(
n∑

t=1

xt cos(2πtj/n)

)2

+
1
n

(
n∑

t=1

xt sin(2πtj/n)

)2

(2.45)

5e−iα = cos(α) − i sin(α) and if z = a − ib, then |z|2 = zz = (a − ib)(a + ib) = a2 + b2.
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and it is this quantity that is called the periodogram; we will write

I(j/n) = |d(j/n)|2.

So, we may calculate the scaled periodogram, (2.42), using the peri-
odogram as

P (j/n) =
4
n

I(j/n). (2.46)

We will discuss this approach in more detail and provide examples with
data in Chapter 4.

A figure similar to Figure 2.10 can be created in R using the following
commands6:

> t = 1:500
> x = 2*cos(2*pi*t/50 + .6*pi) + rnorm(500,0,5)
> I = abs(fft(x)/sqrt(500))ˆ2 # the periodogram
> P = (4/500)*I # the scaled periodogram
> f = 0:250/500
> plot(f, P[1:251], type="l", xlab="frequency", ylab=" ")
> abline(v=seq(0,.5,.02), lty="dotted")

Example 2.9 The Periodogram as a Matchmaker

Another way of understanding the results of the previous example is to
consider the problem of matching the data with sinusoids oscillating at
various frequency. For example, Figure 2.11 shows n = 100 observations
(as a solid line) generated by the model

xt = cos (2πt [2/100]) + wt, (2.47)

where wt is Gaussian white noise with σw = 1. Superimposed on xt

are cosines oscillating at frequency 1/100, 2/100, and 3/100 (shown as
dashed lines). Also included in the figure are correlations of xt with
the particular cosine, cos(2πtj/100), for j = 1, 2, 3. Note that the data
match up well with the cosine oscillating at 2 cycles every 100 points
(with a correlation of .57), whereas the data do not match up well with
the other two cosines. For example, in the top panel of Figure 2.11, there
is a decreasing trend in the data until observation 25, and then the data
start an increasing trend to observation 50, whereas the cosine making
one cycle (1/100) continues to decrease until observation 50.

6Different packages scale the FFT differently; consult the documentation. R calculates
(2.44) without scaling by n−1/2.
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Figure 2.11 Data generated by (2.47) represented as a solid line with cosines
oscillating at various frequencies superimposed (dashed lines). The correlation
indicates the degree to which the two series line up.

2.4 Smoothing in the Time Series Context

In §1.4, we introduced the concept of smoothing a time series, and in Ex-
ample 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term
trend and seasonal components. In particular, if xt represents the observations,
then

mt =
k∑

j=−k

ajxt−j , (2.48)

where aj = a−j ≥ 0 and
∑k

j=−k aj = 1 is a symmetric moving average of the
data.

Example 2.10 Moving Average Smoother

For example, Figure 2.12 shows the weekly mortality series discussed in
Example 2.2, a five-point moving average (which is essentially a monthly
average with k = 2) that helps bring out the seasonal component and a
53-point moving average (which is essentially a yearly average with k =
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Figure 2.12 The weekly cardiovascular mortality series discussed in Exam-
ple 2.2 smoothed using a five-week moving average and a 53-week moving
average.

26) that helps bring out the (negative) trend in cardiovascular mortality.
In both cases, the weights, a−k, . . . , a0, . . . , ak, we used were all the same,
and equal to 1/(2k + 1).7

To reproduce Figure 2.12 in R assuming the mortality series is in mort:
> t = 1:length(mort)
> ma5 = filter(mort, sides=2, rep(1,5)/5)
> ma53 = filter(mort, sides=2, rep(1,53)/53)
> plot(t, mort, xlab="week", ylab="mortality")
> lines(ma5)
> lines(ma53)

Many other techniques are available for smoothing times series data based
on methods from scatterplot smoothers. The general setup for a time plot is

xt = ft + yt, (2.49)

where ft is some smooth function of time, and yt is a stationary process. We
may think of the moving average smoother mt, given in (2.48), as an estimator
of ft. An obvious choice for ft in (2.49) is polynomial regression

ft = β0 + β1t + · · · + βpt
p. (2.50)

We have seen the results of a linear fit on the global temperature data in
Example 2.1. For periodic data, one might employ periodic regression

ft = α0 + α1 cos(2πω1t) + β1 sin(2πω1t)
+ · · · + αp cos(2πωpt) + βp sin(2πωpt), (2.51)

7Sometimes, the end weights, a−k and ak are set equal to half the value of the other
weights.
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Figure 2.13 The weekly cardiovascular mortality series with a cubic trend
and cubic trend plus periodic regression.

where ω1, . . . , ωp are distinct, specified frequencies. In addition, one might
consider combining (2.50) and (2.51). These smoothers can be applied using
classical linear regression.

Example 2.11 Polynomial and Periodic Regression Smoothers

Figure 2.13 shows the weekly mortality series with an estimated (via
ordinary least squares) cubic smoother

f̂t = β̂0 + β̂1t + β̂2t
2 + β̂3t

3

superimposed to emphasize the trend, and an estimated (via ordinary
least squares) cubic smoother plus a periodic regression

f̂t = β̂0 + β̂1t + β̂2t
2 + β̂3t

3 + α̂1 cos(2πt/52) + α̂2 sin(2πt/52)

superimposed to emphasize trend and seasonality.

The R commands for this example are:

> t = 1:length(mort)
> t2 = tˆ2
> t3 = tˆ3
> c = cos(2*pi*t/52)
> s = sin(2*pi*t/52)
> fit1 = lm(mort˜t + t2 + t3)
> fit2 = lm(mort˜t + t2 + t3 + c + s)
> plot(t, mort)
> lines(fit1$fit)
> lines(fit2$fit)
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Figure 2.14 Kernel smoothers of the mortality data.

Modern regression techniques can be used to fit general smoothers to the
pairs of points (t, xt) where the estimate of ft is smooth. Many of the tech-
niques can easily be applied to time series data using the R or S-PLUS sta-
tistical packages; see Venables and Ripley (1994, Chapter 10) for details on
applying these methods in S-PLUS (R is similar). A problem with the tech-
niques used in Example 2.11 is that they assume ft is the same function over
the range of time, t; we might say that the technique is global. The moving
average smoothers in Example 2.10 fit the data better because the technique
is local; that is, moving average smoothers allow for the possibility that ft is
a different function over time. We describe some other local methods in the
following examples.

Example 2.12 Kernel Smoothing

Kernel smoothing is a moving average smoother that uses a weight func-
tion, or kernel, to average the observations. Figure 2.14 shows kernel
smoothing of the mortality series, where ft in (2.49) is estimated by

f̂t =
n∑

i=1

wt(i)xt, (2.52)

where

wt(i) = K

(
t − i

b

)/ n∑
j=1

K

(
t − j

b

)
. (2.53)

This estimator is called the Naradaya–Watson estimator (Watson, 1966).
In (2.53), K(·) is a kernel function; typically, the normal kernel, K(z) =

1√
2π

exp(−z2/2), is used. To implement this in R, use the ksmooth func-
tion. The wider the bandwidth, b, the smoother the result. In Fig-
ure 2.14, the values of b for this example were b = 10 (roughly weighted
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monthly averages; that is, b/2 is the inner quartile range of the kernel) for
the seasonal component, and b = 104 (roughly weighted yearly averages)
for the trend component.

Figure 2.14 can be reproduced in R (or S-PLUS) as follows; we assume
t and mort are available from the previous example:

> plot(t, mort)
> lines(ksmooth(t, mort, "normal", bandwidth=5))
> lines(ksmooth(t, mort, "normal", bandwidth=104))

Example 2.13 Nearest Neighbor and Locally Weighted Regression

Another approach to smoothing a time plot is nearest neighbor regres-
sion. The technique is based on k-nearest neighbors linear regression,
wherein one uses the data {xt−k/2, . . . , xt, . . . , xt+k/2} to predict xt us-
ing linear regression; the result is f̂t. For example, Figure 2.15 shows
cardiovascular mortality and the nearest neighbor method using the R
(or S-PLUS) smoother supsmu. We used k = n/2 to estimate the trend
and k = n/100 to estimate the seasonal component. In general, supsmu
uses a variable window for smoothing (see Friedman, 1984), but it can
be used for correlated data by fixing the smoothing window, as was done
here.

Lowess is a method of smoothing that is rather complex, but the basic
idea is close to nearest neighbor regression. Figure 2.15 shows smooth-
ing of mortality using the R or S-PLUS function lowess (see Cleve-
land, 1979). First, a certain proportion of nearest neighbors to xt are
included in a weighting scheme; values closer to xt in time get more
weight. Then, a robust weighted regression is used to predict xt and
obtain the smoothed estimate of ft. The larger the fraction of nearest
neighbors included, the smoother the estimate f̂t will be. In Figure 2.15,
the smoother uses about two-thirds of the data to obtain an estimate of
the trend component, and the seasonal component uses 2% of the data.

Figure 2.15 can be reproduced in R or S-PLUS as follows (assuming t
and mort are available from the previous example):

> par(mfrow=c(2,1))
> plot(t, mort, main="nearest neighbor")
> lines(supsmu(t, mort, span=.5))
> lines(supsmu(t, mort, span=.01))
> plot(t, mort, main="lowess")
> lines(lowess(t, mort, .02))
> lines(lowess(t, mort, 2/3))
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Figure 2.15 Nearest neightbor (supsmu) and locally weighted least squares
(lowess) smoothers of the mortality data.

Example 2.14 Smoothing Splines

An extension of polynomial regression is to first divide time t = 1, . . . , n,
into k intervals, [t0 = 1, t1], [t1 +1, t2] , . . . , [tk−1 +1, tk = n]. The values
t0, t1, . . . , tk are called knots. Then, in each interval, one fits a regression
of the form (2.50); typically, p = 3, and this is called cubic splines.

A related method is smoothing splines, which minimizes a compromise
between the fit and the degree of smoothness given by

n∑
t=1

[xt − ft]
2 + λ

∫ (
f

′′
t

)2
dt, (2.54)

where ft is a cubic spline with a knot at each t. The degree of smoothness
is controlled by λ > 0. Figure 2.16 shows smoothing splines on mortality
using λ = 10−7 for the seasonal component, and λ = 0.1 for the trend.
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Figure 2.16 Smoothing splines fit to the mortality data.

Figure 2.16 can be reproduced in R or S-PLUS as follows (assuming t
and mort are available from the previous example):

> plot(t, mort)
> lines(smooth.spline(t, mort, spar=.0000001))
> lines(smooth.spline(t, mort, spar=.1))

Example 2.15 Smoothing One Series as a Function of Another

In addition to smoothing time plots, smoothing techniques can be applied
to smoothing a time series as a function of another time series. In this
example, we smooth the scatterplot of two contemporaneously measured
time series, mortality as a function of temperature. In Example 2.2, we
discovered a nonlinear relationship between mortality and temperature.
Continuing along these lines, Figure 2.17 shows scatterplots of mortality,
Mt, and temperature, Tt, along with Mt is smoothed as a function of
Tt using lowess and using smoothing splines. In both cases, mortality
increases at extreme temperatures, but in an asymmetric way; mortal-
ity is higher at colder temperatures than at hotter temperatures. The
minimum mortality rate seems to occur at approximately 80◦ F.

Figure 2.17 can be reproduced in R or S-PLUS as follows (assuming mort
and temp contain the mortality and temperature data):

> par(mfrow=c(2,1))
> plot(temp, mort, main="lowess")
> lines(lowess(temp,mort))
> plot(temp, mort, main="smoothing splines")
> lines(smooth.spline(temp,mort))
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Figure 2.17 Smoothers of mortality as a function of temperature using lowess
and smoothing splines.

As a final word of caution, the methods mentioned above do not particularly
take into account the fact that the data are serially correlated, and most of
the techniques mentioned have been designed for independent observations.
That is, for example, the smoothers shown in Figure 2.17 are calculated under
the false assumption that the pairs (Mt, Tt), for t = 1, . . . , 508, are iid pairs
of observations. In addition, the degree of smoothness used in the previous
examples were chosen arbitrarily to bring out what might be considered obvious
features in the data set.
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Problems

Section 2.2

2.1 For the Johnson & Johnson data, say yt, for t = 1, . . . , 84, shown in
Figure 1.1, let xt = ln(yt).

(a) Fit the regression model

xt = βt + α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t) + wt

where Qi(t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and
zero otherwise. The Qi(t)’s are called indicator variables. We will
assume for now that wt is a Gaussian white noise sequence. What is
the interpretation of the parameters β, α1, α2, α3, and α4? [Note:
In R, to regress x on z without an intercept, use lm(x˜0+z); an
easy way to generate Q1(t) is Q1=rep(c(1,0,0,0),21).]

(b) What happens if you include an intercept term in the model in (a)?

(c) Graph the data, xt, and superimpose the fitted values, say x̂t, on the
graph. Examine the residuals, xt − x̂t, and state your conclusions.
Does it appear that the model fits the data well?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.24) that accounts
for the particulate count four weeks prior; that is, add Pt−4 to the
regression in (2.24). State your conclusion. [Note: In R, make
sure the data are time series objects by using the ts() command,
e.g., mort=ts(mort). Center the temperature series and let t =
ts(1:length(mort)). Then use ts.intersect(mort, t, temp,
tempˆ2, part, lag(part,-4)) to combine the series into a time
series matrix object with six columns and regress the first column
on the other columns.]

(b) Draw a scatterplot matrix of Mt, Tt, Pt and Pt−4 and then calculate
the pairwise correlations between the series. Compare the relation-
ship between Mt and Pt versus Mt and Pt−4.

2.3 Generate a random walk with drift, (1.4), of length n = 500 with δ = .1
and σw = 1. Call the data xt for t = 1, . . . , 500. Fit the regression
xt = βt + wt using least squares. Plot the data, the mean function (i.e.,
µt = .1 t) and the fitted line, x̂t = β̂ t, on the same graph. Discuss your
results.

2.4 Kullback-Leibler Information. Given the random vector yyy, we define the
information for discriminating between two densities in the same family,
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indexed by a parameter θθθ, say f(yyy; θθθ1) and f(yyy; θθθ2), as

I(θθθ1; θθθ2) =
1
n

E1 ln
f(yyy; θθθ1)
f(yyy; θθθ2)

, (2.55)

where E1 denotes expectation with respect to the density determined by
θθθ1. For the Gaussian regression model, the parameters are θθθ = (βββ′, σ2)′.
Show that we obtain

I(θθθ1; θθθ2) =
1
2

(
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1
)

+
1
2

(βββ1 − βββ2)′Z ′Z(βββ1 − βββ2)
nσ2

2
(2.56)

in that case.

2.5 Model Selection. Both selection criteria (2.18) and (2.19) are derived
from information theoretic arguments, based on the well-known Kullback–
Leibler discrimination information numbers (see Kullback and Leibler,
1951, Kullback, 1978). We give an argument due to Hurvich and Tsai
(1989). We think of the measure (2.56) as measuring the discrepancy
between the two densities, characterized by the parameter values θθθ′

1 =
(βββ′

1, σ
2
1)′ and θθθ′

2 = (βββ′
2, σ

2
2)′. Now, if the true value of the parameter vec-

tor is θθθ1, we argue that the best model would be one that minimizes the
discrepancy between the theoretical value and the sample, say I(θθθ1; θ̂θθ).
Because θθθ1 will not be known, Hurvich and Tsai (1989) considered finding
an unbiased estimator for E1[I(βββ1, σ

2
1 ; β̂ββ,σ̂

2)], where

I(βββ1, σ
2
1 ; β̂ββ,σ̂

2) =
1
2

(
σ2

1

σ̂2 − ln
σ2

1

σ̂2 − 1
)

+
1
2

(βββ1 − β̂ββ)′Z ′Z(βββ1 − β̂ββ)
nσ̂2

and βββ is a k × 1 regression vector. Show that

E1[I(βββ1, σ
2
1 ; β̂ββ,σ̂

2)] =
1
2

(
− lnσ2

1 + E1 ln σ̂2 +
n + k

n − k − 2
− 1
)

, (2.57)

using the distributional properties of the regression coefficients and error
variance. An unbiased estimator for E1 log σ̂2 is log σ̂2. Hence, we have
shown that the expectation of the above discrimination information is as
claimed. As models with differing dimensions k are considered, only the
second and third terms in (2.57) will vary and we only need unbiased
estimators for those two terms. This gives the form of AICc quoted in
(2.19) in the chapter. You will need the two distributional results

nσ̂2

σ2
1

∼ χ2
n−k

and
(β̂ββ − βββ1)′Z ′Z(β̂ββ − βββ1)

σ2
1

∼ χ2
k
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The two quantities are distributed independently as chi-squared distri-
butions with the indicated degrees of freedom. If x ∼ χ2

n, E(1/x) =
1/(n − 2).

Section 2.3

2.6 Consider a process consisting of a linear trend with an additive noise
term consisting of independent random variables wt with zero means
and variances σ2

w, that is,

xt = β0 + β1t + wt,

where β0, β1 are fixed constants.

(a) Prove xt is nonstationary.

(b) Prove that the first difference series ∇xt = xt − xt−1 is stationary
by finding its mean and autocovariance function.

(c) Repeat part (b) if wt is replaced by a general stationary process,
say yt, with mean function µy and autocovariance function γy(h).

2.7 Show (2.28) is stationary.

2.8 The glacial varve record plotted in Figure 2.6 exhibits some nonstation-
arity that can be improved by transforming to logarithms and some ad-
ditional nonstationarity that can be corrected by differencing the loga-
rithms.

(a) Verify that the untransformed glacial varves has intervals over which
γ̂(0) changes by computing the zero-lag autocovariance over two dif-
ferent intervals. Argue that the transformation yt = lnxt stabilizes
the variance over the series. Plot the histograms of xt and yt to see
whether the approximation to normality is improved by transform-
ing the data.

(b) Examine the sample ACF, ρ̂y(h), of yt and comment. Do any time
intervals, of the order 100 years, exist where one can observe behav-
ior comparable to that observed in the global temperature records
in Figure 1.2?

(c) Compute the first difference ut = yt − yt−1 of the log transformed
varve records, and examine its time plot and autocorrelation func-
tion, ρ̂u(h), and argue that a first difference produces a reasonably
stationary series. Can you think of a practical interpretation for ut?

(d) Based on the sample ACF of the differenced transformed series com-
puted in (c), argue that a generalization of the model given by Ex-
ample 1.23 might be reasonable. Assume

ut = µu + wt − θwt−1
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is stationary when the inputs wt are assumed independent with
mean 0 and variance σ2

w. Show that

γu(h) =

⎧⎨⎩σ2
w(1 + θ2) if h = 0

−θ σ2
w if h = ±1

0 if |h| ≥ 1.

Using the sample ACF and the printed autocovariance γ̂u(0), derive
estimators for θ and σ2. This is an application of the method of mo-
ments from classical statistics, where estimators of the parameters
are derived by equating sample moments to theoretical moments.

2.9 Consider the two time series representing average wholesale U.S. gas
and oil prices over 180 months, beginning in July 1973 and ending in
December 1987. Analyze the data using some of the techniques in this
chapter with the idea that we should be looking at how changes in oil
prices influence changes in gas prices. For further reading, see Liu (1991).
In particular,

(a) Plot the raw data, and look at the autocorrelation functions to argue
that the untransformed data series are nonstationary.

(b) It is often argued in economics that price changes are important,
in particular, the percentage change in prices from one month to
the next. On this basis, argue that a transformation of the form
yt = lnxt − lnxt−1 might be applied to the data, where xt is the oil
or gas price series.

(c) Use lagged multiple scatterplots and the autocorrelation and cross-
correlation functions of the transformed oil and gas price series to
investigate the properties of these series. Is it possible to guess
whether gas prices are raised more quickly in response to increasing
oil prices than they are decreased when oil prices are decreased? Use
the cross-correlation function over the first 100 months compared
with the cross-correlation function over the last 80 months. Do you
think that it might be possible to predict log percentage changes in
gas prices from log percentage changes in oil prices? Plot the two
series on the same scale.

2.10 In this problem, we will explore the periodic nature of St, the SOI series
displayed in Figure 1.5.

(a) Detrend the series by fitting a regression of St on time t. Is there a
significant trend in the sea surface temperature? Comment.

(b) Calculate the periodogram for the detrended series obtained in part
(a). Identify the frequencies of the two main peaks (with an obvious
one at the frequency of one cycle every 12 months). What is the
probable El Niño cycle indicated by the minor peak?
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Section 2.4

2.11 For the data plotted in Figure 1.5, let St denote the SOI index series,
and let Rt denote the Recruitment series.

(a) Draw a lag plot similar to the one in Figure 2.7 for Rt and comment.

(b) Reexamine the scatterplot matrix of Rt versus St−h shown in Fig-
ure 2.8 and the CCF of the two series shown in Figure 1.14, and fit
the regression

Rt = α + β0St + β1St−1 + β2St−2 + β3St−3 + β4St−4

+ β5St−5 + β6St−6 + β7St−7 + β8St−8 + wt.

Compare the magnitudes and signs of the coefficients β0, . . . , β8 with
the scatterplots in Figure 2.8 and with the CCF in Figure 1.14.

(c) Use some of the smoothing techniques described in §2.4 to discover
whether a trend exists in the Recruitment series, Rt, and to explore
the periodic behavior of the data.

(d) In Example 2.6, some nonlinear behavior exists between the current
value of Recruitment and past values of the SOI index. Use the
smoothing techniques described in §2.4 to explore this possibility,
concentrating on the scatterplot of Rt versus St−6.

2.12 Use a smoothing technique described in §2.4 to estimate the trend in the
global temperature series displayed in Figure 1.2. Use the entire data set
(see Example 2.1 for details).



Chapter 3

ARIMA Models

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation func-
tions (ACFs and CCFs) as tools for clarifying relations that may occur within
and between time series at various lags. In addition, we explained how to
build linear models based on classical regression theory for exploiting the as-
sociations indicated by large values of the ACF or CCF. The time domain, or
regression, methods of this chapter are appropriate when we are dealing with
possibly nonstationary, shorter time series; these series are the rule rather than
the exception in many applications. In addition, if the emphasis is on forecast-
ing future values, then the problem is easily treated as a regression problem.
This chapter develops a number of regression techniques for time series that
are all related to classical ordinary and weighted or correlated least squares.

Classical regression is often insufficient for explaining all of the interest-
ing dynamics of a time series. For example, the ACF of the residuals of the
simple linear regression fit to the global temperature data (see Example 2.3 of
Chapter 2) reveals additional structure in the data that the regression did not
capture. Instead, the introduction of correlation as a phenomenon that may
be generated through lagged linear relations leads to proposing the autore-
gressive (AR) and autoregressive moving average (ARMA) models. Adding
nonstationary models to the mix leads to the autoregressive integrated mov-
ing average (ARIMA) model popularized in the landmark work by Box and
Jenkins (1970). The Box–Jenkins method for identifying a plausible ARIMA
model is given in this chapter along with techniques for parameter estimation
and forecasting for these models. A partial theoretical justification of the use
of ARMA models is discussed in Appendix B, §B.4.

84
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3.2 Autoregressive Moving Average Models

The classical regression model of Chapter 2 was developed for the static case,
namely, we only allow the dependent variable to be influenced by current values
of the independent variables. In the time series case, it is desirable to allow
the dependent variable to be influenced by the past values of the independent
variables and possibly by its own past values. If the present can be plausibly
modeled in terms of only the past values of the independent inputs, we have
the enticing prospect that forecasting will be possible.

Introduction to Autoregressive Models

Autoregressive models are based on the idea that the current value of the series,
xt, can be explained as a function of p past values, xt−1, xt−2, . . . , xt−p, where
p determines the number of steps into the past needed to forecast the current
value. As a typical case, recall Example 1.10 in which data were generated
using the model

xt = xt−1 − .90xt−2 + wt,

where wt is white Gaussian noise with σ2
w = 1. We have now assumed the

current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication that forecasting for such a model
might be a distinct possibility, say, through some version such as

xn
n+1 = xn − .90xn−1,

where the quantity on the left-hand side denotes the forecast at the next period
n+1 based on the observed data, x1, x2, . . . , xn. We will make this notion more
precise in our discussion of forecasting (§3.5).

The extent to which it might be possible to forecast a real data series from
its own past values can be assessed by looking at the autocorrelation function
and the lagged scatterplot matrices discussed in Chapter 2. For example,
the lagged scatterplot matrix for the Southern Oscillation Index (SOI), shown
in Figure 2.7, gives a distinct indication that lags 1 and 2, for example, are
linearly associated with the current value. The ACF shown in Figure 1.14
shows relatively large positive values at lags 1, 2, 12, 24, and 36 and large
negative values at 18, 30, and 42. We note also the possible relation between
the SOI and Recruitment series indicated in the scatterplot matrix shown in
Figure 2.8. We will indicate in later sections on transfer function and vector
AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p),
is of the form

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.1)

where xt is stationary, φ1, φ2, . . . , φp are constants (φp �= 0). Unless otherwise
stated, we assume that wt is a Gaussian white noise series with mean zero and
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variance σ2
w. The mean of xt in (3.1) is zero. If the mean, µ, of xt is not zero,

replace xt by xt − µ in (3.1), i.e.,

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · · + φp(xt−p − µ) + wt,

or write
xt = α + φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.2)

where α = µ(1 − φ1 − · · · − φp).

We note that (3.2) is similar to the regression model of §2.2, and hence the
term auto (or self) regression. Some technical difficulties, however, develop
from applying that model because the regressors, xt−1, . . . , xt−p, are random
components, whereas zzzt was assumed to be fixed. A useful form follows by
using the backshift operator (2.30) to write the AR(p) model, (3.1), as

(1 − φ1B − φ2B
2 − · · · − φpB

p)xt = wt, (3.3)

or even more concisely as
φ(B)xt = wt. (3.4)

The properties of φ(B) are important in solving (3.4) for xt. This leads to the
following definition.

Definition 3.2 The autoregressive operator is defined to be

φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p (3.5)

We initiate the investigation of AR models by considering the first-order
model, AR(1), given by xt = φxt−1 + wt. Iterating backwards k times, we get

xt = φxt−1 + wt = φ(φxt−2 + wt−1) + wt

= φ2xt−2 + φwt−1 + wt

...

= φkxt−k +
k−1∑
j=0

φjwt−j .

This method suggests that, by continuing to iterate backwards, and provided
that |φ| < 1 and xt is stationary, we can represent an AR(1) model as a linear
process given by1

xt =
∞∑

j=0

φjwt−j . (3.6)

1Note that limk→∞ E

(
xt −

∑k−1
j=0 φjwt−j

)2
= limk→∞ φ2kE

(
x2

t−k

)
= 0, so (3.6) ex-

ists in the mean square sense (see Appendix A for a definition).
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The AR(1) process defined by (3.6) is stationary with mean

E(xt) =
∞∑

j=0

φjE(wt−j) = 0,

and autocovariance function,

γ(h) = cov(xt+h, xt) = E

⎡⎣⎛⎝ ∞∑
j=0

φjwt+h−j

⎞⎠( ∞∑
k=0

φkwt−k

)⎤⎦
= σ2

w

∞∑
j=0

φjφj+h = σ2
wφh

∞∑
j=0

φ2j =
σ2

wφh

1 − φ2 , h ≥ 0. (3.7)

Recall that γ(h) = γ(−h), so we will only exhibit the autocovariance function
for h ≥ 0. From (3.7), the ACF of an AR(1) is

ρ(h) =
γ(h)
γ(0)

= φh, h ≥ 0, (3.8)

and ρ(h) satisfies the recursion

ρ(h) = φ ρ(h − 1), h = 1, 2, . . . . (3.9)

We will discuss the ACF of a general AR(p) model in §3.4.

Example 3.1 The Sample Path of an AR(1) Process

Figure 3.1 shows a time plot of two AR(1) processes, one with φ = .9 and
one with φ = −.9; in both cases, σ2

w = 1. In the first case, ρ(h) = .9h,
for h ≥ 0, so observations close together in time are positively correlated
with each other. This result means that observations at contiguous time
points will tend to be close in value to each other; this fact shows up in
the top of Figure 3.1 as a very smooth sample path for xt. Now, contrast
this to the case in which φ = −.9, so that ρ(h) = (−.9)h, for h ≥ 0.
This result means that observations at contiguous time points are neg-
atively correlated but observations two time points apart are positively
correlated. This fact shows up in the bottom of Figure 3.1, where, for
example, if an observation, xt, is positive, the next observation, xt+1, is
typically negative, and the next observation, xt+2, is typically positive.
Thus, in this case, the sample path is very choppy.

A figure similar to Figure 3.1 can be created in R using the following
commands:
> par(mfrow=c(2,1))
> plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100),
+ ylab="x",main=(expression("AR(1) "*phi*" = +.9")))
> plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100),
+ ylab="x",main=(expression("AR(1) "*phi*" = -.9")))
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Figure 3.1 Simulated AR(1) models: φ = .9 (top); φ = −.9 (bottom).

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk xt = xt−1 +wt

is not stationary. We might wonder whether there is a stationary AR(1)
process with |φ| > 1. Such processes are called explosive because the
values of the time series quickly become large in magnitude. Clearly,
because |φ|j increases without bound as j → ∞,

∑k−1
j=0 φjwt−j will not

converge (in mean square) as k → ∞, so the intuition used to get (3.6)
will not work directly. We can, however, modify that argument to obtain
a stationary model as follows. Write xt+1 = φxt + wt+1, in which case,

xt = φ−1xt+1 − φ−1wt+1 = φ−1 (φ−1xt+2 − φ−1wt+2
)− φ−1wt+1

...

= φ−kxt+k −
k−1∑
j=1

φ−jwt+j , (3.10)

by iterating forward k steps. Because |φ|−1 < 1, this result suggests the
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stationary future dependent AR(1) model

xt = −
∞∑

j=1

φ−jwt+j .

The reader can verify that this is stationary and of the AR(1) form
xt = φxt−1 + wt. Unfortunately, this model is useless because it requires
us to know the future to be able to predict the future. When a process
does not depend on the future, such as the AR(1) when |φ| < 1, we
will say the process is causal. In the explosive case of this example, the
process is stationary, but it is also future dependent, and not causal.

The technique of iterating backwards to get an idea of the stationary so-
lution of AR models works well when p = 1, but not for larger orders. A
general technique is that of matching coefficients. Consider the AR(1) model
in operator form

φ(B)xt = wt, (3.11)

where φ(B) = 1 − φB, and |φ| < 1. Also, write the model in equation (3.6)
using operator form as

xt =
∞∑

j=0

ψjwt−j = ψ(B)wt, (3.12)

where ψ(B) =
∑∞

j=0 ψjB
j and ψj = φj . Suppose we did not know that

ψj = φj . We could substitute ψ(B)wt from (3.12) for xt in (3.11) to obtain

φ(B)ψ(B)wt = wt. (3.13)

The coefficients of B on the left-hand side of (3.13) must be equal to those on
right-hand side of (3.13), which means

(1 − φB)(1 + ψ1B + ψ2B
2 + · · · + ψjB

j + · · ·) = 1. (3.14)

Reorganizing the coefficients in (3.14),

1 + (ψ1 − φ)B + (ψ2 − ψ1φ)B2 + · · · + (ψj − ψj−1φ)Bj + · · · = 1,

we see that for each j = 1, 2, . . ., the coefficient of Bj on the left must be zero
because it is zero on the right. The coefficient of B on the left is (ψ1 −φ), and
equating this to zero, ψ1 − φ = 0, leads to ψ1 = φ. Continuing, the coefficient
of B2 is (ψ2 − ψ1φ), so ψ2 = φ2. In general,

ψj = ψj−1φ,

with ψ0 = 1, which leads to the general solution ψj = φj .
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Another way to think about the operations we just performed is to consider
the AR(1) model in operator form, φ(B)xt = wt. Now multiply both sides by
φ−1(B) (assuming the inverse operator exists) to get

φ−1(B)φ(B)xt = φ−1(B)wt,

or
xt = φ−1(B)wt.

We know already that

φ−1(B) = 1 + φB + φ2B2 + · · · + φjBj + · · · ,
that is, φ−1(B) is ψ(B) in (3.12). Thus, we notice that working with operators
is like working with polynomials. That is, consider the polynomial φ(z) =
1 − φz, where z is a complex number and |φ| < 1. Then,

φ−1(z) =
1

(1 − φz)
= 1 + φz + φ2z2 + · · · + φjzj + · · · , |z| ≤ 1,

and the coefficients of Bj in φ−1(B) are the same as the coefficients of zj

in φ−1(z). In other words, we may treat the backshift operator, B, as a
complex number, z. These results will be generalized in our discussion of
ARMA models. We will find the polynomials corresponding to the operators
useful in exploring the general properties of ARMA models.

Introduction to Moving Average Models

As an alternative to the autoregressive representation in which the xt on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order q, abbreviated as MA(q), assumes the white noise wt

on the right-hand side of the defining equation are combined linearly to form
the observed data.

Definition 3.3 The moving average model of order q, or MA(q) model,
is defined to be

xt = wt + θ1wt−1 + θ2wt−2 + · · · + θqwt−q (3.15)

where there are q lags in the moving average and θ1, θ2, . . . , θq (θq �= 0) are
parameters.2 The noise wt is assumed to be Gaussian white noise.

The system is the same as the infinite moving average defined as the linear
process (3.12), where ψ0 = 1, ψj = θj , for j = 1, . . . , q, and ψj = 0 for other
values. We may also write the MA(q) process in the equivalent form

xt = θ(B)wt, (3.16)

using the following definition.
2Some texts and software packages write the MA model with negative coefficients; that

is, xt = wt − θ1wt−1 − θ2wt−2 − · · · − θqwt−q .
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Definition 3.4 The moving average operator is

θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q (3.17)

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters θ1, . . . , θq; details of this result are provided
in §3.4.

Example 3.3 Autocorrelation and Sample Path of an MA(1) Process

Consider the MA(1) model xt = wt + θwt−1. Then,

γ(h) =

⎧⎨⎩ (1 + θ2)σ2
w, h = 0

θσ2
w, h = 1

0, h > 1,

and the autocorrelation function is

ρ(h) =

⎧⎨⎩
θ

(1+θ2)
, h = 1

0, h > 1.

Note |ρ(1)| ≤ 1/2 for all values of θ (Problem 3.1). Also, xt is correlated
with xt−1, but not with xt−2, xt−3, . . . . Contrast this with the case of
the AR(1) model in which the correlation between xt and xt−k is never
zero. When θ = .5, for example, xt and xt−1 are positively correlated,
and ρ(1) = .4. When θ = −.5, xt and xt−1 are negatively correlated,
ρ(1) = −.4. Figure 3.2 shows a time plot of these two processes with
σ2

w = 1. The series in Figure 3.2 where θ = .5 is smoother than the series
in Figure 3.2, where θ = −.5.

A figure similar to Figure 3.2 can be created in R as follows:
> par(mfrow=c(2,1))
> plot(arima.sim(list(order=c(0,0,1), ma=.5), n=100),
+ ylab="x",main=(expression("MA(1) "*theta*" = +.5")))
> plot(arima.sim(list(order=c(0,0,1), ma=-.5), n=100),
+ ylab="x",main=(expression("MA(1) "*theta*" = -.5")))

Example 3.4 Non-uniqueness of MA Models and Invertibility

Using Example 3.3, we note that for an MA(1) model, ρ(h) is the same
for θ and 1

θ ; try 5 and 1
5 , for example. In addition, the pair σ2

w = 1 and
θ = 5 yield the same autocovariance function as the pair σ2

w = 25 and
θ = 1/5, namely,

γ(h) =

{ 26, h = 0
5, h = 1
0, h > 1.
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Figure 3.2 Simulated MA(1) models: θ = .5 (top); θ = −.5 (bottom).

Thus, the MA(1) processes

xt = wt +
1
5
wt−1, wt ∼ iid N(0, 25)

and
xt = vt + 5vt−1, vt ∼ iid N(0, 1)

are the same because of normality (i.e., all finite distributions are the
same). We can only observe the time series xt and not the noise, wt or
vt, so we cannot distinguish between the models. Hence, we will have to
choose only one of them. For convenience, by mimicking the criterion of
causality for AR models, we will choose the model with an infinite AR
representation. Such a process is called an invertible process.

To discover which model is the invertible model, we can reverse the roles
of xt and wt (because we are mimicking the AR case) and write the
MA(1) model as wt = −θwt−1 +xt. Following the steps that led to (3.6),
if |θ| < 1, then wt =

∑∞
j=0(−θ)jxt−j , which is the desired infinite AR

representation of the model. Hence, given a choice, we will choose the
model with σ2

w = 25 and θ = 1/5 because it is invertible.

As in the AR case, the polynomial, θ(z), corresponding to the moving
average operators, θ(B), will be useful in exploring general properties of MA
processes. For example, following the steps of equations (3.11)–(3.14), we can
write the MA(1) model as xt = θ(B)wt, where θ(B) = 1 + θB. If |θ| < 1,
then we can write the model as π(B)xt = wt, where π(B) = θ−1(B). Let
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θ(z) = 1 + θz, for |z| ≤ 1, then π(z) = θ−1(z) = 1/(1 + θz) =
∑∞

j=0(−θ)jzj ,
and we determine that π(B) =

∑∞
j=0(−θ)jBj .

Autoregressive Moving Average Models

We now proceed with the general development of autoregressive, moving aver-
age, and mixed autoregressive moving average (ARMA), models for stationary
time series.

Definition 3.5 A time series {xt; t = 0,±1,±2, . . .} is ARMA(p, q) if it
is stationary and

xt = φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q, (3.18)

with φp �= 0, θq �= 0, and σ2
w > 0. The parameters p and q are called the

autoregressive and the moving average orders, respectively. If xt has a nonzero
mean µ, we set α = µ(1 − φ1 − · · · − φp) and write the model as

xt = α + φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q. (3.19)

Unless stated otherwise, {wt; t = 0,±1,±2, . . .} is a Gaussian white noise
sequence.

As previously noted, when q = 0, the model is called an autoregressive
model of order p, AR(p), and when p = 0, the model is called a moving average
model of order q, MA(q). To aid in the investigation of ARMA models, it will
be useful to write them using the AR operator, (3.5), and the MA operator,
(3.17). In particular, the ARMA(p, q) model in (3.18) can then be written in
concise form as

φ(B)xt = θ(B)wt. (3.20)

Before we discuss the conditions under which (3.18) is causal and invertible,
we point out a potential problem with the ARMA model.

Example 3.5 Parameter Redundancy

Consider a white noise process xt = wt. Equivalently, we can write this
as .5xt−1 = .5wt−1 by shifting back one unit of time and multiplying by
.5. Now, subtract the two representations to obtain

xt − .5xt−1 = wt − .5wt−1,

or
xt = .5xt−1 − .5wt−1 + wt, (3.21)

which looks like an ARMA(1, 1) model. Of course, xt is still white noise;
nothing has changed in this regard [i.e., xt = wt is the solution to (3.21)],
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but we have hidden the fact that xt is white noise because of the para-
meter redundancy or over-parameterization. Write the parameter redun-
dant model in operator form as φ(B)xt = θ(B)wt, or

(1 − .5B)xt = (1 − .5B)wt.

Apply the operator φ(B)−1 = (1 − .5B)−1 to both sides to obtain

xt = (1 − .5B)−1(1 − .5B)xt = (1 − .5B)−1(1 − .5B)wt = wt,

which is the original model. We can easily detect the problem of over-
parameterization with the use of the operators or their associated poly-
nomials. That is, write the AR polynomial φ(z) = (1 − .5z), the MA
polynomial θ(z) = (1− .5z), and note that both polynomials have a com-
mon factor, namely (1− .5z). This common factor immediately identifies
the parameter redundancy. Discarding the common factor in each leaves
φ(z) = 1 and θ(z) = 1, from which we conclude φ(B) = 1 and θ(B) = 1,
and we deduce that the model is actually white noise. The considera-
tion of parameter redundancy will be crucial when we discuss estimation
for general ARMA models. As this example points out, we might fit an
ARMA(1, 1) model to white noise data and find that the parameter es-
timates are significant. If we were unaware of parameter redundancy, we
might claim the data are correlated when in fact they are not (Problem
3.19).

Examples 3.2, 3.4, and 3.5 point to a number of problems with the general
definition of ARMA(p, q) models, as given by (3.18), or, equivalently, by (3.20).
To summarize, we have seen the following problems:

(i) parameter redundant models,

(ii) stationary AR models that depend on the future, and

(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions
on the model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as

φ(z) = 1 − φ1z − · · · − φpz
p, φp �= 0, (3.22)

and
θ(z) = 1 + θ1z + · · · + θqz

q, θq �= 0, (3.23)

respectively, where z is a complex number.
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To address the first problem, we will henceforth refer to an ARMA(p, q)
model to mean that it is in its simplest form. That is, in addition to the
original definition given in equation (3.18), we will also require that φ(z) and
θ(z) have no common factors. So, the process, xt = .5xt−1 − .5wt−1 + wt,
discussed in Example 3.5 is not referred to as an ARMA(1, 1) process because,
in its reduced form, xt is white noise.

To address the problem of future-dependent models, we formally introduce
the concept of causality.

Definition 3.7 An ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be causal,
if the time series {xt; t = 0,±1,±2, . . .} can be written as a one-sided linear
process:

xt =
∞∑

j=0

ψjwt−j = ψ(B)wt, (3.24)

where ψ(B) =
∑∞

j=0 ψjB
j, and

∑∞
j=0 |ψj | < ∞; we set ψ0 = 1.

In Example 3.2, the AR(1) process, xt = φxt−1 + wt, is causal only when
|φ| < 1. Equivalently, the process is causal only when the root of φ(z) = 1−φz
is bigger than one in absolute value. That is, the root, say, z0, of φ(z) is
z0 = 1/φ (because φ(z0) = 0) and |z0| > 1 because |φ| < 1. In general, we
have the following property.

Property P3.1: Causality of an ARMA(p, q) Process
An ARMA(p, q) model is causal if and only if φ(z) �= 0 for |z| ≤ 1. The
coefficients of the linear process given in (3.24) can be determined by solving

ψ(z) =
∞∑

j=0

ψjz
j =

θ(z)
φ(z)

, |z| ≤ 1.

Another way to phrase Property P3.1 is that an ARMA process is causal
only when the roots of φ(z) lie outside the unit circle; that is, φ(z) = 0 only
when |z| > 1. Finally, to address the problem of uniqueness discussed in
Example 3.4, we choose the model that allows an infinite autoregressive rep-
resentation.

Definition 3.8 An ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be
invertible, if the time series {xt; t = 0,±1,±2, . . .} can be written as

π(B)xt =
∞∑

j=0

πjxt−j = wt, (3.25)

where π(B) =
∑∞

j=0 πjB
j, and

∑∞
j=0 |πj | < ∞; we set π0 = 1.

Analogous to Property P3.1, we have the following property.
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Property P3.2: Invertibility of an ARMA(p, q) Process
An ARMA(p, q) model is invertible if and only if θ(z) �= 0 for |z| ≤ 1. The
coefficients πj of π(B) given in (3.25) can be determined by solving

π(z) =
∞∑

j=0

πjz
j =

φ(z)
θ(z)

, |z| ≤ 1.

Another way to phrase Property P3.2 is that an ARMA process is invertible
only when the roots of θ(z) lie outside the unit circle; that is, θ(z) = 0 only
when |z| > 1. The proof of Property P3.1 is given in Appendix B (the proof of
Property P3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.6 Parameter Redundancy, Causality, and Invertibility

Consider the process

xt = .4xt−1 + .45xt−2 + wt + wt−1 + .25wt−2,

or, in operator form,

(1 − .4B − .45B2)xt = (1 + B + .25B2)wt.

At first, xt appears to be an ARMA(2, 2) process. But, the associated
polynomials

φ(z) = 1 − .4z − .45z2 = (1 + .5z)(1 − .9z)

θ(z) = (1 + z + .25z2) = (1 + .5z)2

have a common factor that can be canceled. After cancellation, the
polynomials become φ(z) = (1 − .9z) and θ(z) = (1 + .5z), so the model
is an ARMA(1, 1) model, (1 − .9B)xt = (1 + .5B)wt, or

xt = .9xt−1 + .5wt−1 + wt. (3.26)

The model is causal because φ(z) = (1 − .9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root
of θ(z) = (1 + .5z) is z = −2, which is outside the unit circle.

To write the model as a linear process, we can obtain the ψ-weights using
Property P3.1:

ψ(z) =
θ(z)
φ(z)

=
(1 + .5z)
(1 − .9z)

= (1 + .5z)(1 + .9z + .92z2 + .93z3 + · · ·) |z| ≤ 1.
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The coefficient of zj in ψ(z) is ψj = (.5 + .9).9j−1, for j ≥ 1, so (3.26)
can be written as

xt = wt + 1.4
∞∑

j=1

.9j−1wt−j .

Similarly, to find the invertible representation using Property P3.2:

π(z) =
φ(z)
θ(z)

= (1 − .9z)(1 − .5z + .52z2 − .53z3 + · · ·) |z| ≤ 1.

In this case, the π-weights are given by πj = (−1)j(.9 + .5).5j−1, for
j ≥ 1, and hence, we can also write (3.26) as

xt = 1.4
∞∑

j=1

(−.5)j−1xt−j + wt.

Example 3.7 Causal Conditions for an AR(2) Process

For an AR(1) model, (1 − φB)xt = wt, to be causal, the root of φ(z) =
1 − φz must lie outside of the unit circle. In this case, the root (or zero)
occurs at z0 = 1/φ, i.e., φ(z0) = 0, so it is easy to go from the causal
requirement on the root, that is, |1/φ| > 1, to a requirement on the
parameter, that is, |φ| < 1. It is not so easy to establish this relationship
for higher order models.

For example, the AR(2) model, (1−φ1B −φ2B
2)xt = wt, is causal when

the two roots of φ(z) = 1−φ1z−φ2z
2 lie outside of the unit circle. Using

the quadratic formula, this requirement can be written as∣∣∣∣∣φ1 ±
√

φ2
1 + 4φ2

−2φ2

∣∣∣∣∣ > 1.

The roots of φ(z) may be real and distinct, real and equal, or a complex
conjugate pair. If we denote those roots by z1 and z2, we can write
φ(z) = (1−z−1

1 z)(1−z−1
2 z); note that φ(z1) = φ(z2) = 0. The model can

be written in operator form as (1 − z−1
1 B)(1 − z−1

2 B)xt = wt. From this
representation, it follows that φ1 = (z−1

1 +z−1
2 ) and φ2 = −(z1z2)−1. This

relationship can be used to establish the following equivalent condition
for causality:

φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. (3.27)

This causality condition specifies a triangular region in the parameter
space. We leave the details of the equivalence to the reader (Problem 3.4).
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3.3 Difference Equations

The study of the behavior of ARMA processes and their ACFs is greatly en-
hanced by a basic knowledge of difference equations, simply because they are
difference equations. This topic is also useful in the study of time domain
models and stochastic processes in general. We will give a brief and heuristic
account of the topic along with some examples of the usefulness of the theory.
For details, the reader is referred to Mickens (1987).

Suppose we have a sequence of numbers u0, u1, u2, . . . such that

un − αun−1 = 0, α �= 0, n = 1, 2, . . . . (3.28)

For example, recall (3.9) in which we showed that the ACF of an AR(1) process
is a sequence, ρ(h), satisfying

ρ(h) − φρ(h − 1) = 0, h = 1, 2, . . . .

Equation (3.28) represents a homogeneous difference equation of order 1. To
solve the equation, we write:

u1 = αu0

u2 = αu1 = α2u0

...
un = αun−1 = αnu0.

Given an initial condition u0 = c, we may solve (3.28), namely, un = αnc.
In operator notation, (3.28) can be written as (1 − αB)un = 0. The poly-

nomial associated with (3.28) is α(z) = 1 − αz, and the root, say, z0, of this
polynomial is z0 = 1/α; that is α(z0) = 0. We know the solution to (3.28),
with initial condition u0 = c, is

un = αnc =
(
z−1
0

)n
c.

That is, the solution to the difference equation (3.28) depends only on the
initial condition and the inverse of the root to the associated polynomial α(z).

Now suppose that the sequence satisfies

un − α1un−1 − α2un−2 = 0, α2 �= 0, n = 2, 3, . . . (3.29)

This equation is a homogeneous difference equation of order 2. The corre-
sponding polynomial is

α(z) = 1 − α1z − α2z
2,

which has two roots, say, z1 and z2; that is, α(z1) = α(z2) = 0. We will
consider two cases. First suppose z1 �= z2. Then the general solution to (3.29)
is

un = c1z
−n
1 + c2z

−n
2 , (3.30)
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where c1 and c2 depend on the initial conditions. This claim can be verified
by direct substitution of (3.30) into (3.29):

c1z
−n
1 + c2z

−n
2 − α1

(
c1z

−(n−1)
1 + c2z

−(n−1)
2

)
− α2

(
c1z

−(n−2)
1 + c2z

−(n−2)
2

)
= c1z

−n
1

(
1 − α1z1 − α2z

2
1
)

+ c2z
−n
2

(
1 − α1z2 − α2z

2
2
)

= c1z
−n
1 α(z1) + c2z

−n
2 α(z2)

= 0.

Given two initial conditions u0 and u1, we may solve for c1 and c2:

u0 = c1 + c2

u1 = c1z
−1
1 + c2z

−1
2 ,

where z1 and z2 can be solved for in terms of α1 and α2 using the quadratic
formula, for example.

When the roots are equal, z1 = z2 (= z0), the general solution to (3.29) is

un = z−n
0 (c1 + c2n). (3.31)

This claim can also be verified by direct substitution of (3.31) into (3.29):

z−n
0 (c1 + c2n) − α1

(
z

−(n−1)
0 [c1 + c2(n − 1)]

)
− α2

(
z

−(n−2)
0 [c1 + c2(n − 2)]

)
= z−n

0 (c1 + c2n)
(
1 − α1z0 − α2z

2
0
)

+ c2z
−n+1
0 (α1 + 2α2z0)

= c2z
−n+1
0 (α1 + 2α2z0) .

To show that (α1 + 2α2z0) = 0, write 1 − α1z − α2z
2 = (1 − z−1

0 z)2, and
take derivatives with respect to z on both sides of the equation to obtain
(α1 + 2α2z) = 2z−1

0 (1 − z−1
0 z). Thus, (α1 + 2α2z0) = 2z−1

0 (1 − z−1
0 z0) = 0, as

was to be shown. Finally, given two initial conditions, u0 and u1, we can solve
for c1 and c2:

u0 = c1

u1 = (c1 + c2)z−1
0 .

To summarize these results, in the case of distinct roots, the solution to
the homogeneous difference equation of degree two was

un = z−n
1 × (a polynomial in n of degree m1 − 1)

+ z−n
2 × (a polynomial in n of degree m2 − 1),

where m1 is the multiplicity of the root z1 and m2 is the multiplicity of the root
z2. In this example, of course, m1 = m2 = 1, and we called the polynomials
of degree zero c1 and c2, respectively. In the case of the repeated root, the
solution was

un = z−n
0 × (a polynomial in n of degree m0 − 1),
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where m0 is the multiplicity of the root z0; that is, m0 = 2. In this case, we
wrote the polynomial of degree one as c1 + c2n. In both cases, we solved for
c1 and c2 given two initial conditions, u0 and u1.

Example 3.8 The ACF of an AR(2) Process

Suppose xt = φ1xt−1 + φ2xt−2 + wt is a causal AR(2) process. Multiply
each side of the model by xt−h for h > 0, and take expectation:

E(xtxt−h) = φ1E(xt−1xt−h) + φ2E(xt−2xt−h) + E(wtxt−h).

The result is

γ(h) = φ1γ(h − 1) + φ2γ(h − 2), h = 1, 2, . . . . (3.32)

In (3.32), we used the fact that E(xt) = 0 and for h > 0,

E(wtxt−h) = E
(
wt

∞∑
j=0

ψjwt−h−j

)
= 0.

Divide (3.32) through by γ(0) to obtain the difference equation for the
ACF of the process:

ρ(h) − φ1ρ(h − 1) − φ2ρ(h − 2) = 0, h = 1, 2, . . . . (3.33)

The initial conditions are ρ(0) = 1 and ρ(−1) = φ1/(1 − φ2), which is
obtained by evaluating (3.33) for h = 1 and noting that ρ(1) = ρ(−1).

Using the results for the homogeneous difference equation of order two,
let z1 and z2 be the roots of the associated polynomial, φ(z) = 1−φ1z −
φ2z

2. Because the model is causal, we know the roots are outside the
unit circle: |z1| > 1 and |z2| > 1. Now, consider the solution for three
cases:

(i) When z1 and z2 are real and distinct, then

ρ(h) = c1z
−h
1 + c2z

−h
2 ,

so ρ(h) → 0 exponentially fast as h → ∞.

(ii) When z1 = z2(= z0) are real and equal, then

ρ(h) = z−h
0 (c1 + c2h),

so ρ(h) → 0 exponentially fast as h → ∞.

(iii) When z1 = z̄2 are a complex conjugate pair, then c2 = c̄1 (because
ρ(h) is real), and

ρ(h) = c1z
−h
1 + c̄1z̄

−h
1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1|eiθ,
where θ is the angle whose tangent is the ratio of the imaginary
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part and the real part of z1 (sometimes called arg(z1); the range of
θ is [−π, π]). Then, using the fact that eiα + e−iα = 2 cos(α), the
solution has the form

ρ(h) = a|z1|−h cos(hθ + b),

where a and b are determined by the initial conditions. Again, ρ(h)
dampens to zero exponentially fast as h → ∞, but it does so in a
sinusoidal fashion. The implication of this result is shown in the
next example.

Example 3.9 The Sample Path of an AR(2) with Complex Roots

Figure 3.3 shows n = 144 observations from the AR(2) model

xt = 1.5xt−1 − .75xt−2 + wt,

with σ2
w = 1, and with complex roots chosen so the process exhibits

pseudo-cyclic behavior at the rate of one cycle every 12 time points. The
autoregressive polynomial for this model is φ(z) = 1 − 1.5z + .75z2. The
roots of φ(z) are 1 ± i/

√
3, and θ = tan−1(1/

√
3) = 2π/12 radians per

unit time. To convert the angle to cycles per unit time, divide by 2π to
get 1/12 cycles per unit time. The ACF for this model is shown in §3.4,
Figure 3.4.

To reproduce Figure 3.3 in R:

> set.seed(5)
> ar2 = arima.sim(list(order = c(2,0,0), ar =c(1.5,-.75)),
+ n = 144)
> plot.ts(ar2, axes=F); box(); axis(2)
> axis(1, seq(0,144,24))
> abline(v=seq(0,144,12), lty="dotted")

To calculate and display the ACF for this model in R:

> acf = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
> plot(acf, type="h", xlab="lag")
> abline(h=0)

We now exhibit the solution for the general homogeneous difference equa-
tion of order p:

un − α1un−1 − · · · − αpun−p = 0, αp �= 0, n = p, p + 1, . . . . (3.34)

The associated polynomial is

α(z) = 1 − α1z − · · · − αpz
p.
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Figure 3.3 Simulated AR(2) model, n = 144 with φ1 = 1.5 and φ2 = −.75.

Suppose α(z) has r distinct roots, z1 with multiplicity m1, z2 with multiplicity
m2, . . . , and zr with multiplicity mr, such that m1 + m2 + · · · + mr = p. The
general solution to the difference equation (3.34) is

un = z−n
1 P1(n) + z−n

2 P2(n) + · · · + z−n
r Pr(n), (3.35)

where Pj(n), for j = 1, 2, . . . , r, is a polynomial in n, of degree mj − 1. Given
p initial conditions u0, . . . , up−1, we can solve for the Pj(n) explicitly.

Example 3.10 Determining the ψψψ-weights for a Causal ARMA(p, qp, qp, q)

For a causal ARMA(p, q) model, φ(B)xt = θ(B)wt, where the zeros of
φ(z) are outside the unit circle, recall that we may write

xt =
∞∑

j=0

ψjwt−j ,

where the ψ-weights are determined using Property P3.1.

For the pure MA(q) model, ψ0 = 1, ψj = θj , for j = 1, . . . , q, and ψj = 0,
otherwise. For the general case of ARMA(p, q) models, the task of solving
for the ψ-weights is much more complicated, as was demonstrated in
Example 3.6. The use of the theory of homogeneous difference equations
can help here. To solve for the ψ-weights in general, we must match the
coefficients in ψ(z)φ(z) = θ(z):

(ψ0 + ψ1z + ψ2z
2 + · · ·)(1 − φ1z − φ2z

2 − · · ·) = (1 + θ1z + θ2z
2 + · · ·).
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The first few values are

ψ0 = 1
ψ1 − φ1ψ0 = θ1

ψ2 − φ1ψ1 − φ2ψ0 = θ2
ψ3 − φ1ψ2 − φ2ψ1 − φ3ψ0 = θ3

...

where we would take φj = 0 for j > p, and θj = 0 for j > q. The
ψ-weights satisfy the homogeneous difference equation given by

ψj −
p∑

k=1

φkψj−k = 0, j ≥ max(p, q + 1), (3.36)

with initial conditions

ψj −
j∑

k=1

φkψj−k = θj , 0 ≤ j ≤ max(p, q + 1). (3.37)

The general solution depends on the roots of the AR polynomial φ(z) =
1 − φ1z − · · · − φpz

p, as seen from (3.36). The specific solution will, of
course, depend on the initial conditions.

Consider the ARMA process given in (3.26), xt = .9xt−1 + .5wt−1 + wt.
Because max(p, q+1) = 2, using (3.37), we have ψ0 = 1 and ψ1 = .9+.5 =
1.4. By (3.36), for j = 2, 3, . . . , the ψ-weights satisfy ψj − .9ψj−1 = 0.
The general solution is ψj = c .9j . To find the specific solution, use
the initial condition ψ1 = 1.4, so 1.4 = .9c or c = 1.4/.9. Finally,
ψj = 1.4(.9)j−1, for j ≥ 1, as we saw in Example 3.6.

To view, for example, the first 50 ψ-weights in R, use:

> ARMAtoMA(ar=.9, ma=.5, 50) # for a list
> plot(ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph

3.4 Autocorrelation and Partial Autocorrelation
Functions

We begin by exhibiting the ACF of an MA(q) process, xt = θ(B)wt, where
θ(B) = 1+θ1B + · · ·+θqB

q. Because xt is a finite linear combination of white
noise terms, the process is stationary with mean

E(xt) =
q∑

j=0

θjE(wt−j) = 0,
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where we have written θ0 = 1, and with autocovariance function

γ(h) = cov (xt+h, xt) = E

⎡⎣⎛⎝ q∑
j=0

θjwt+h−j

⎞⎠( q∑
k=0

θkwt−k

)⎤⎦
=

⎧⎨⎩σ2
w

∑q−h
j=0 θjθj+h, 0 ≤ h ≤ q

0, h > q.
(3.38)

Recall that γ(h) = γ(−h), so we will only display the values for h ≥ 0. The
cutting off of γ(h) after q lags is the signature of the MA(q) model. Dividing
(3.38) by γ(0) yields the ACF of an MA(q):

ρ(h) =

⎧⎪⎨⎪⎩
∑q−h

j=0
θjθj+h

1+θ2
1+···+θ2

q

, 1 ≤ h ≤ q

0, h > q.

(3.39)

For a causal ARMA(p, q) model, φ(B)xt = θ(B)wt, where the zeros of φ(z)
are outside the unit circle, write

xt =
∞∑

j=0

ψjwt−j .

It follows immediately that E(xt) = 0. Also, the autocovariance function of xt

can be written as:

γ(h) = cov(xt+h, xt) = σ2
w

∞∑
j=0

ψjψj+h, h ≥ 0. (3.40)

We could then use (3.36) and (3.37) to solve for the ψ-weights. In turn, we
could solve for γ(h), and the ACF ρ(h) = γ(h)/γ(0). As in Example 3.8, it is
also possible to obtain a homogeneous difference equation directly in terms of
γ(h). First, we write

γ(h) = cov(xt+h, xt) = E

⎡⎣⎛⎝ p∑
j=1

φjxt+h−j +
q∑

j=0

θjwt+h−j

⎞⎠xt

⎤⎦
=

p∑
j=1

φjγ(h − j) + σ2
w

q∑
j=h

θjψj−h, h ≥ 0, (3.41)

where we have used the fact that xt =
∑∞

k=0 ψkwt−k and for h ≥ 0,

E(wt+h−jxt) = E

[
wt+h−j

( ∞∑
k=0

ψkwt−k

)]
= ψj−hσ2

w.
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From (3.41), we can write a general homogeneous equation for the ACF of a
causal ARMA process:

γ(h) − φ1γ(h − 1) − · · · − φpγ(h − p) = 0, h ≥ max(p, q + 1), (3.42)

with initial conditions

γ(h) −
p∑

j=1

φjγ(h − j) = σ2
w

q∑
j=h

θjψj−h, 0 ≤ h < max(p, q + 1). (3.43)

Dividing (3.42) and (3.43) through by γ(0) will allow us to solve for the ACF,
ρ(h) = γ(h)/γ(0).

Example 3.11 The ACF of an ARMA(1, 1)

Consider the causal ARMA(1, 1) process xt = φxt−1 +θwt−1 +wt, where
|φ| < 1. Based on (3.42), the autocovariance function satisfies

γ(h) − φγ(h − 1) = 0, h = 2, 3, . . . ,

so the general solution is γ(h) = cφh, for h = 1, 2, . . . . To obtain the
initial conditions, we use (3.43):

γ(0) = φγ(1) + σ2
w[1 + θφ + θ2]

γ(1) = φγ(0) + σ2
wθ.

Solving for γ(0) and γ(1), we obtain:

γ(0) = σ2
w

1 + 2θφ + θ2

1 − φ2

γ(1) = σ2
w

(1 + θφ)(φ + θ)
1 − φ2 .

To solve for c, note that γ(1) = cφ, in which case c = γ(1)/φ. Hence,
the specific solution is

γ(h) = σ2
w

(1 + θφ)(φ + θ)
1 − φ2 φh−1.

Finally, dividing through by γ(0) yields the ACF

ρ(h) =
(1 + θφ)(φ + θ)
1 + 2θφ + θ2 φh−1, h ≥ 1. (3.44)
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Example 3.12 The ACF of an AR(ppp)

For a causal AR(p), it follows immediately from (3.42) that

ρ(h) − φ1ρ(h − 1) − · · · − φpρ(h − p) = 0, h ≥ p. (3.45)

Let z1, . . . , zr denote the roots of φ(z), each with multiplicity m1, . . . , mr,
respectively, where m1 + · · · + mr = p. Then, from (3.35), the general
solution is

ρ(h) = z−h
1 P1(h) + z−h

2 P2(h) + · · · + z−h
r Pr(h), h ≥ p, (3.46)

where Pj(h) is a polynomial in h of degree mj − 1.

Recall that for a causal model, all of the roots are outside the unit circle,
|zi| > 1, for i = 1, . . . , r. If all the roots are real, then ρ(h) dampens
exponentially fast to zero as h → ∞. If some of the roots are complex,
then they will be in conjugate pairs and ρ(h) will dampen, in a sinusoidal
fashion, exponentially fast to zero as h → ∞. In the case of complex roots,
the time series will appear to be cyclic in nature. This, of course, is also
true for ARMA models in which the AR part has complex roots.

The Partial Autocorrelation Function (PACF)

We have seen in (3.39), for MA(q) models, the ACF will be zero for lags greater
than q. Moreover, because θq �= 0, the ACF will not be zero at lag q. Thus,
the ACF provides a considerable amount of information about the order of
the dependence when the process is a moving average process. If the process,
however, is ARMA or AR, the ACF alone tells us little about the orders of
dependence. Hence, it is worthwhile pursuing a function that will behave like
the ACF of MA models, but for AR models, namely, the partial autocorrelation
function (PACF).

To motivate the idea, consider a causal AR(1) model, xt = φxt−1 + wt.
Then,

γ(2) = cov(xt, xt−2) = cov(φxt−1 + wt, xt−2)
= cov(φ2xt−2 + φwt−1 + wt, xt−2) = φ2γ(0).

This result follows from causality because xt−2 involves {wt−2, wt−3, . . .}, which
are all uncorrelated with wt and wt−1. The correlation between xt and xt−2
is not zero, as it would be for an MA(1), because xt is dependent on xt−2
through xt−1. Suppose we break this chain of dependence by removing (or
partialing out) xt−1. That is, we consider the correlation between xt − φxt−1
and xt−2 − φxt−1, because it is the correlation between xt and xt−2 with the
linear dependence of each on xt−1 removed. In this way, we have broken the
dependence chain between xt and xt−2. In fact,

cov(xt − φxt−1, xt−2 − φxt−1) = cov(wt, xt−2 − φxt−1) = 0.
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To formally define the PACF for mean-zero stationary time series, let xh−1
h

denote the regression of xh on {xh−1, xh−2, . . . , x1}, which we write as3

xh−1
h = β1xh−1 + β2xh−2 + · · · + βh−1x1. (3.47)

No intercept term is needed in (3.47) because the mean of xt is zero. In
addition, let xh−1

0 denote the regression of x0 on {x1, x2, . . . , xh−1}, then

xh−1
0 = β1x1 + β2x2 + · · · + βh−1xh−1. (3.48)

The coefficients, β1, . . . , βh−1 are the same in (3.47) and (3.48); we will explain
this result in the next section.

Definition 3.9 The partial autocorrelation function (PACF) of a sta-
tionary process, xt, denoted φhh, for h = 1, 2, . . . , is

φ11 = corr(x1, x0) = ρ(1) (3.49)

and
φhh = corr(xh − xh−1

h , x0 − xh−1
0 ), h ≥ 2. (3.50)

Both (xh −xh−1
h ) and (x0 −xh−1

0 ) are uncorrelated with {x1, x2, . . . , xh−1}.
By stationarity, the PACF, φhh, is the correlation between xt and xt−h with
the linear dependence of {xt−1, . . . , xt−(h−1)}, on each, removed. If the process
xt is Gaussian, then φhh = corr(xt, xt−h| xt−1, . . . , xt−(h−1)). That is, φhh is
the correlation coefficient between xt and xt−h in the bivariate distribution of
(xt, xt−h) conditional on {xt−1, . . . , xt−(h−1)}.

Example 3.13 The PACF of a Causal AR(1)

Consider the PACF of the AR(1) process given by xt = φxt−1 +wt, with
|φ| < 1 . By definition, φ11 = ρ(1) = φ. To calculate φ22, consider the
regression of x2 on x1, say, x1

2 = βx1. We choose β to minimize

E(x2 − βx1)2 = γ(0) − 2βγ(1) + β2γ(0).

Taking derivatives and setting the result equal to zero, we have β =
γ(1)/γ(0) = ρ(1) = φ. Thus, x1

2 = φx1. Next, consider the regression of
x0 on x1, say x1

0 = βx1. We choose β to minimize

E(x0 − βx1)2 = γ(0) − 2βγ(1) + β2γ(0).

This is the same equation as before, so β = φ and x1
0 = φx1. Hence,

φ22 = corr(x2 − φx1, x0 − φx1). But, note

cov(x2 − φx1, x0 − φx1) = γ(2) − 2φγ(1) + φ2γ(0) = 0

because γ(h) = γ(0)φh. Thus, φ22 = 0. In the next example, we will see
that in this case φhh = 0, for all h > 1.

3The term regression here refers to regression in the population sense. That is, xh−1
h

is

the linear combination of {xh−1, xh−2, . . . , x1} that minimizes E(xh −
∑h−1

j=1 αjxj)2.



108 ARIMA Models

Example 3.14 The PACF of a Causal AR(p)

Let xt =
∑p

j=1 φjxt−j + wt, where the roots of φ(z) are outside the
unit circle. In particular, xh =

∑p
j=1 φjxh−j + wh. When h > p, the

regression of xh on xh−1, . . . , x1, is

xh−1
h =

p∑
j=1

φjxh−j .

We have not proved this obvious result yet, but we will prove it in the
next section. Thus, when h > p,

φhh = corr(xh − xh−1
h , x0 − xh−1

0 )

= corr(wh, x0 − xh−1
0 ) = 0,

because, by causality, x0−xh−1
0 depends only on {wh−1, wh−2, . . .}; recall

equation (3.48). When h ≤ p, φpp is not zero, and φ11, . . . , φp−1,p−1 are
not necessarily zero. Figure 3.4 shows the ACF and the PACF of the
AR(2) model presented in Example 3.9.

To reproduce Figure 3.4 in R, use the following commands:
> acf = ARMAacf(ar=c(1.5,-.75), ma=0, 24)
> pacf = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=T)
> par(mfrow=c(1,2))
> plot(acf, type="h", xlab="lag")
> abline(h=0)
> plot(pacf, type="h", xlab="lag")
> abline(h=0)

Example 3.15 The PACF of an Invertible MA(q)

For an invertible MA(q), we can write xt = −∑∞
j=1 πjxt−j + wt. More-

over, no finite representation exists. From this result, it should be ap-
parent that the PACF will never cut off, as in the case of an AR(p).

For an MA(1), xt = wt + θwt−1, with |θ| < 1, calculations similar to
Example 3.13 will yield φ22 = −θ2/(1 + θ2 + θ4). For the MA(1) in
general, we can show that

φhh = − (−θ)h(1 − θ2)
1 − θ2(h+1) , h ≥ 1.

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because an
invertible ARMA model has an infinite AR representation, the PACF will not
cut off. We may summarize these results in Table 3.1.
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Figure 3.4 The ACF and PACF, to lag 24, of an AR(2) model with φ1 = 1.5
and φ2 = −.75.

Table 3.1 Behavior of the ACF and PACF for Causal and
Invertible ARMA Models

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off Tails off
after lag q

PACF Cuts off Tails off Tails off
after lag p

Example 3.16 Preliminary Analysis of the Recruitment Series

We consider the problem of modeling the Recruitment series (number
of new fish) shown in Figure 1.5. There are 453 months of observed
recruitment ranging over the years 1950-1987. The ACF and the PACF
given in Figure 3.5 are consistent with the behavior of an AR(2). The
ACF has cycles corresponding roughly to a 12-month period, and the
PACF has large values for h = 1, 2 and then is essentially zero for higher
order lags. Based on Table 3.1, these results suggest that a second-order
(p = 2) autoregressive model might provide a good fit. Although we will
discuss estimation in detail in §3.6, we ran a regression (see §2.2) using the
data triplets {(y; z1, z2) : (x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)}
to fit a model of the form

xt = φ0 + φ1xt−1 + φ2xt−2 + wt
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Figure 3.5 ACF and PACF of the Recruitment series.

for t = 3, 4, . . . , 453. The values of the estimates were φ̂0 = 6.74(1.11),
φ̂1 = 1.35(.04), φ̂2 = −.46(.04), and σ̂2

w = 90.31, where the estimated
standard errors are in parentheses.

To reproduce this analysis and the ACF and PACF in Figure 3.5 in R:

> rec = scan("/mydata/recruit.dat")
> par(mfrow=c(2,1))
> acf(rec, 48)
> pacf(rec, 48)
> fit=ar.ols(rec,aic=F,order.max=2,demean=F,intercept=T)
> fit # estimates
> fit$asy.se # standard errors

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m, m =
1, 2, . . ., based on the data collected to the present, xxx = {xn, xn−1, . . . , x1}.
Throughout this section, we will assume xt is stationary and the model para-
meters are known. The problem of forecasting when the model parameters are
unknown will be discussed in the next section; also, see Problem 3.25. The
minimum mean square error predictor of xn+m is

xn
n+m = E(xn+m

∣∣ xn, xn−1, . . . , x1)
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because the conditional expectation minimizes the mean square error

E [xn+m − g(xxx)]2 , (3.51)

where g(xxx) is a function of the observations xxx; see Problem 3.13.
First, we will restrict attention to predictors that are linear functions of

the data, that is, predictors of the form

xn
n+m = α0 +

n∑
k=1

αkxk, (3.52)

where α0, α1, . . . , αn are real numbers. Linear predictors of the form (3.52)
that minimize the mean square prediction error (3.51) are called best linear
predictors (BLPs). As we shall see, linear prediction depends only on the
second-order moments of the process, which are easy to estimate from the data.
Much of the material in this section is enhanced by the theoretical material
presented in Appendix B. For example, Theorem B.3 states that if the process
is Gaussian, minimum mean square error predictors and best linear predictors
are the same. The following property, which is based on the projection theorem,
Theorem B.1 of Appendix B, is a key result.

Property P3.3: Best Linear Prediction for Stationary Processes
Given data x1, . . . , xn, the best linear predictor, xn

n+m = α0 +
∑n

k=1 αkxk, of
xn+m, for m ≥ 1, is found by solving

E
[(

xn+m − xn
n+m

)
xk

]
= 0, k = 0, 1, . . . , n, (3.53)

where x0 = 1.

The equations specified in (3.53) are called the prediction equations, and
they are used to solve for the coefficients {α0, α1, . . . , αn}. If E(xt) = µ, the
first equation (k = 0) of (3.53) implies

E(xn
n+m) = E(xn+m) = µ.

Thus, taking expectation in (3.52), we have

µ = α0 +
n∑

k=1

αkµ or α0 = µ

(
1 −

n∑
k=1

αk

)
.

Hence, the form of the BLP is

xn
n+m = µ +

n∑
k=1

αk(xk − µ).

Thus, until we discuss estimation, there is no loss of generality in considering
the case that µ = 0, in which case, α0 = 0.
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Consider, first, one-step-ahead prediction. That is, given {x1, . . . , xn}, we
wish to forecast the value of the time series at the next time point, xn+1. The
BLP of xn+1 is

xn
n+1 = φn1xn + φn2xn−1 + · · · + φnnx1, (3.54)

where, for purposes that will become clear shortly, we have written αk in (3.52),
as φn,n+1−k in (3.54), for k = 1, . . . , n. Using Property P3.3, the coefficients
{φn1, φn2, . . . , φnn} satisfy

E

⎡⎣⎛⎝xn+1 −
n∑

j=1

φnjxn+1−j

⎞⎠xn+1−k

⎤⎦ = 0, k = 1, . . . , n,

or
n∑

j=1

φnjγ(k − j) = γ(k), k = 1, . . . , n. (3.55)

The prediction equations (3.55) can be written in matrix notation as

Γnφφφn = γγγn, (3.56)

where Γn = {γ(k−j)}n
j,k=1 is an n×n matrix, φφφn = (φn1, . . . , φnn)′ is an n×1

vector, and γγγn = (γ(1), . . . , γ(n))′ is an n × 1 vector.
The matrix Γn is nonnegative definite. If Γn is singular, there are many

solutions to (3.56), but, by the projection theorem (Theorem B.1), xn
n+1 is

unique. If Γn is nonsingular, the elements of φφφn are unique, and are given by

φφφn = Γ−1
n γγγn. (3.57)

For ARMA models, the fact that σ2
w > 0 and γ(h) → 0 as h → ∞ is enough to

ensure that Γn is positive definite (Problem 3.11). It is sometimes convenient
to write the one-step-ahead forecast in vector notation

xn
n+1 = φφφ′

nxxx, (3.58)

where xxx = (xn, xn−1, . . . , x1)′.
The mean square one-step-ahead prediction error is

Pn
n+1 = E(xn+1 − xn

n+1)
2 = γ(0) − γγγ′

nΓ−1
n γγγn. (3.59)

To verify (3.59) using (3.57) and (3.58),

E(xn+1 − xn
n+1)

2 = E(xn+1 − φφφ′
nxxx)2 = E(xn+1 − γγγ′

nΓ−1
n xxx)2

= E(x2
n+1 − 2γγγ′

nΓ−1
n xxxxn+1 + γγγ′

nΓ−1
n xxxxxx′Γ−1

n γγγn)
= γ(0) − 2γγγ′

nΓ−1
n γγγn + γγγ′

nΓ−1
n ΓnΓ−1

n γγγn

= γ(0) − γγγ′
nΓ−1

n γγγn.
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Example 3.17 Prediction for an AR(2)

Suppose we have a causal AR(2) process xt = φ1xt−1 + φ2xt−2 + wt,
and one observation x1. Then, using equation (3.57), the one-step-ahead
prediction of x2 based on x1 is

x1
2 = φ11x1 =

γ(1)
γ(0)

x1 = ρ(1)x1.

Now, suppose we want the one-step-ahead prediction of x3 based on two
observations x1 and x2. We could use (3.57) again and solve

x2
3 = φ21x2 + φ22x1 = (γ(1), γ(2))

(
γ(0) γ(1)
γ(1) γ(0)

)−1(
x2
x1

)
,

but, it should be apparent from the model that x2
3 = φ1x2 + φ2x1. Be-

cause φ1x2 + φ2x1 satisfies the prediction equations (3.53),

E{[x3 − (φ1x2 + φ2x1)]x1} = E(w3x1) = 0,

E{[x3 − (φ1x2 + φ2x1)]x2} = E(w3x2) = 0,

it follows that, indeed, x2
3 = φ1x2 + φ2x1, and by the uniqueness of the

coefficients in this case, that φ21 = φ1 and φ22 = φ2. Continuing in this
way, it is easy to verify that, for n ≥ 2,

xn
n+1 = φ1xn + φ2xn−1.

That is, φn1 = φ1, φn2 = φ2, and φnj = 0, for j = 3, 4, . . . , n.

From Example 3.17, it should be clear (Problem 3.38) that, if the time
series is a causal AR(p) process, then, for n ≥ p,

xn
n+1 = φ1xn + φ2xn−1 + · · · + φpxn−p+1. (3.60)

For ARMA models in general, the prediction equations will not be as simple
as the pure AR case. In addition, for n large, the use of (3.57) is prohibitive
because it requires the inversion of a large matrix. There are, however, iterative
solutions that do not require any matrix inversion. In particular, we mention
the recursive solution due to Levinson (1947) and Durbin (1960).

Property P3.4: The Durbin–Levinson Algorithm
Equations (3.57) and (3.59) can be solved iteratively as follows:

φ00 = 0, P 0
1 = γ(0). (3.61)

For n ≥ 1,

φnn =
ρ(n) −∑n−1

k=1 φn−1,k ρ(n − k)

1 −∑n−1
k=1 φn−1,k ρ(k)

, Pn
n+1 = Pn−1

n (1 − φ2
nn), (3.62)
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where, for n ≥ 2,

φnk = φn−1,k − φnnφn−1,n−k, k = 1, 2, . . . , n − 1. (3.63)

The proof of Property P3.4 is left as an exercise; see Problem 3.12.

Example 3.18 Using the Durbin–Levinson Algorithm

To use the algorithm, start with φ00 = 0, P 0
1 = γ(0). Then, for n = 1,

φ11 = ρ(1) and P 1
2 = γ(0)[1 − φ2

11].

For n = 2,

φ22 =
ρ(2) − φ11 ρ(1)
1 − φ11 ρ(1)

=
ρ(2) − ρ(1)2

1 − ρ(1)2

φ21 = φ11 − φ22φ11 = ρ(1)[1 − φ22]
P 2

3 = γ(0)[1 − φ2
11][1 − φ2

22].

For n = 3,

φ33 =
ρ(3) − φ21 ρ(2) − φ22 ρ(1)
1 − φ21 ρ(1) − φ22 ρ(2)

,

and so on.

An important consequence of the Durbin–Levinson algorithm is (see Prob-
lem 3.12) as follows.

Property P3.5: Iterative Solution for the PACF
The PACF of a stationary process xt, can be obtained iteratively via (3.62) as
φnn, for n = 1, 2, . . . .

Example 3.19 The PACF of an AR(2)

From Example 3.14, we know that for an AR(2), φhh = 0 for h > 2, but
we will use the results of Example 3.17 and Property P3.5 to calculate the
first three values of the PACF. Recall (Example 3.8) that for an AR(2),
ρ(1) = φ1/(1 − φ2), and in general ρ(h) − φ1ρ(h − 1) − φ2ρ(h − 2) = 0,
for h ≥ 2. Then,

φ11 = ρ(1) =
φ1

1 − φ2

φ22 =
ρ(2) − ρ(1)2

1 − ρ(1)2
=

[
φ1

(
φ1

1−φ2

)
+ φ2

]
−
(

φ1
1−φ2

)2

1 −
(

φ1
1−φ2

)2 = φ2

φ21 = φ1

φ33 =
ρ(3) − φ1ρ(2) − φ2ρ(1)
1 − φ1ρ(1) − φ2ρ(2)

= 0.
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So far, we have concentrated on one-step-ahead prediction, but Property
P3.3 allows us to calculate the BLP of xn+m for any m ≥ 1. Given data,
{x1, . . . , xn}, the m-step-ahead predictor is

xn
n+m = φ

(m)
n1 xn + φ

(m)
n2 xn−1 + · · · + φ(m)

nn x1, (3.64)

where {φ
(m)
n1 , φ

(m)
n2 , . . . , φ

(m)
nn } satisfy the prediction equations,

n∑
j=1

φ
(m)
nj E(xn+1−jxn+1−k) = E(xn+mxn+1−k), k = 1, . . . , n,

or
n∑

j=1

φ
(m)
nj γ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.65)

The prediction equations can again be written in matrix notation as

Γnφφφ(m)
n = γγγ(m)

n , (3.66)

where γγγ
(m)
n = (γ(m), . . . , γ(m + n − 1))′, and φφφ(m)

n = (φ(m)
n1 , . . . , φ

(m)
nn )′ are

n × 1 vectors.
The mean square m-step-ahead prediction error is

Pn
n+m = E

(
xn+m − xn

n+m

)2 = γ(0) − γγγ(m)′
n Γ−1

n γγγ(m)
n . (3.67)

Another useful algorithm for calculating forecasts was given by Brockwell
and Davis (1991, Chapter 5). This algorithm follows directly from apply-
ing the projection theorem (Theorem B.1) to the innovations, xt − xt−1

t , for
t = 1, . . . , n, using the fact that the innovations xt − xt−1

t and xs − xs−1
s are

uncorrelated for s �= t (see Problem 3.39). We present the case in which xt is
a mean-zero stationary time series.

Property P3.6: The Innovations Algorithm
The one-step-ahead predictors, xt

t+1, and their mean-squared errors, P t
t+1, can

be calculated iteratively as

x0
1 = 0, P 0

1 = γ(0)

xt
t+1 =

t∑
j=1

θtj(xt+1−j − xt−j
t+1−j), t = 1, 2, . . . (3.68)

P t
t+1 = γ(0) −

t−1∑
j=0

θ2
t,t−jP

j
j+1 t = 1, 2, . . . , (3.69)

where, for j = 0, 1, . . . , t − 1,

θt,t−j =

(
γ(t − j) −

j−1∑
k=0

θj,j−kθt,t−kP k
k+1

)(
P j

j+1

)−1
. (3.70)
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Given data x1, . . . , xn, the innovations algorithm can be calculated succes-
sively for t = 1, then t = 2 and so on, in which case the calculation of xn

n+1
and Pn

n+1 is made at the final step t = n. The m-step-ahead predictor and
its mean-square error based on the innovations algorithm (Problem 3.39) are
given by

xn
n+m =

n+m−1∑
j=m

θn+m−1,j(xn+m−j − xn+m−j−1
n+m−j ), (3.71)

Pn
n+m = γ(0) −

n+m−1∑
j=m

θ2
n+m−1,jP

n
n+m−j , (3.72)

where the θn+m−1,j are obtained by continued iteration of (3.70).

Example 3.20 Prediction for an MA(1)

The innovations algorithm lends itself well to prediction for moving aver-
age processes. Consider an MA(1) model, xt = wt + θwt−1. Recall that
γ(0) = (1 + θ2)σ2

w, γ(1) = θσ2
w, and γ(h) = 0 for h > 1. Then, using

Property P3.6, we have

θn1 = θσ2
w/Pn−1

n

θnj = 0, j = 2, . . . , n
P 0

1 = (1 + θ2)σ2
w

Pn
n+1 = (1 + θ2 − θθn1)σ2

w.

Finally, from (3.68), the one-step-ahead predictor is

xn
n+1 = θ

(
xn − xn−1

n

)
σ2

w/Pn−1
n .

Forecasting ARMA Processes

The general prediction equations (3.53) provide little insight into forecasting
for ARMA models in general. There are a number of different ways to express
these forecasts, and each aids in understanding the special structure of ARMA
prediction. Throughout, we assume xt is a causal and invertible ARMA(p, q)
process, φ(B)xt = θ(B)wt, where wt ∼ iid N(0, σ2

w). In the non-zero mean
case, E(xt) = µ, simply replace xt with xt −µ in the model. First, we consider
two types of forecasts. We write xn

n+m to mean the minimum mean square
error predictor of xn+m based on the data {xn, . . . , x1}, that is,

xn
n+m = E(xn+m

∣∣ xn, . . . , x1).

For ARMA models, it is easier to calculate the predictor of xn+m, assuming
we have the complete history of the process {xn, xn−1, . . .}. We will denote the
predictor of xn+m based on the infinite past as

x̃n+m = E(xn+m

∣∣ xn, xn−1, . . .).
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The idea here is that, for large samples, x̃n+m will provide a good approxima-
tion to xn

n+m.
Now, write xn+m in its causal and invertible forms:

xn+m =
∞∑

j=0

ψjwn+m−j , ψ0 = 1 (3.73)

wn+m =
∞∑

j=0

πjxn+m−j , π0 = 1. (3.74)

Then, taking conditional expectations in (3.73), we have

x̃n+m =
∞∑

j=0

ψjw̃n+m−j =
∞∑

j=m

ψjwn+m−j , (3.75)

because, by (3.74),

w̃t ≡ E(wt|xn, xn−1, . . .) =

{ 0, t > n

wt, t ≤ n.

Similarly, taking conditional expectations in (3.74), we have

0 = x̃n+m +
∞∑

j=1

πj x̃n+m−j ,

or

x̃n+m = −
m−1∑
j=1

πj x̃n+m−j −
∞∑

j=m

πjxn+m−j , (3.76)

using the fact E(xt

∣∣ xn, xn−1, . . .) = xt, for t ≤ n. Prediction is accomplished
recursively using (3.76), starting with the one-step-ahead predictor, m = 1,
and then continuing for m = 2, 3, . . .. Using (3.75), we can write

xn+m − x̃n+m =
m−1∑
j=0

ψjwn+m−j ,

so the mean square prediction error can be written as

Pn
n+m = E(xn+m − x̃n+m)2 = σ2

w

m−1∑
j=0

ψ2
j . (3.77)

Also, we note, for a fixed sample size, n, the prediction errors are correlated.
That is, for k ≥ 1,

E{(xn+m − x̃n+m)(xn+m+k − x̃n+m+k)} = σ2
w

m−1∑
j=0

ψjψj+k. (3.78)
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Example 3.21 Long-Range Forecasts

Consider forecasting an ARMA process with mean µ. From the zero-
mean case in (3.75) we can deduce that the m-step-ahead forecast can
be written as

x̃n+m = µ +
∞∑

j=m

ψjwn+m−j . (3.79)

Noting that the ψ-weights dampen to zero exponentially fast, it is clear
that

x̃n+m → µ

exponentially fast (in the mean square sense) as m → ∞. Moreover, by
(3.77), the mean square prediction error

Pn
n+m → σ2

w

∞∑
j=0

ψ2
j , (3.80)

exponentially fast as m → ∞.

It should be clear from (3.79) and (3.80) that ARMA forecasts quickly
settle to the mean with a constant prediction error as the forecast horizon,
m, grows. This effect can be seen in Figure 3.6 where the recruitment
series is forecast for 24 months; see Example 3.23.

When n is small, the general prediction equations (3.53) can be used easily.
When n is large, we would use (3.76) by truncating, because only the data
x1, x2, . . . , xn are available. In this case, we can truncate (3.76) by setting∑∞

j=n+m πjxn+m−j = 0. The truncated predictor is then written as

x̃n
n+m = −

m−1∑
j=1

πj x̃
n
n+m−j −

n+m−1∑
j=m

πjxn+m−j , (3.81)

which is also calculated recursively, m = 1, 2, . . .. The mean square prediction
error, in this case, is approximated using (3.77).

For AR(p) models, and when n > p, equation (3.60) yields the exact pre-
dictor, xn

n+m, of xn+m, and there is no need for approximations. That is, for
n > p, x̃n

n+m = x̃n+m = xn
n+m. Also, in this case, the one-step-ahead pre-

diction error is E(xn+1 − xn
n+1)

2 = σ2
w. For general ARMA(p, q) models, the

truncated predictors (Problem 3.15) for m = 1, 2, . . . , are

x̃n
n+m = φ1x̃

n
n+m−1 + · · · + φpx̃

n
n+m−p + θ1w̃

n
n+m−1 + · · · + θqw̃

n
n+m−q, (3.82)

where x̃n
t = xt for 1 ≤ t ≤ n and x̃n

t = 0 for t ≤ 0. The truncated prediction
errors are given by: w̃n

t = 0 for t ≤ 0 or t > n, and w̃n
t = φ(B)x̃n

t − θ1w̃
n
t−1 −

· · · − θqw̃
n
t−q for 1 ≤ t ≤ n.
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Example 3.22 Forecasting an ARMA(1, 1) Series

Given data x1, . . . , xn, for forecasting purposes, write the model as

xn+1 = φxn + wn+1 + θwn.

Then, based on (3.82), the one-step-ahead truncated forecast is

x̃n
n+1 = φxn + 0 + θw̃n

n.

For m ≥ 2, we have
x̃n

n+m = φx̃n
n+m−1,

which can be calculated recursively, m = 2, 3, . . . .

To calculate w̃n
n, which is needed to initialize the successive forecasts,

the model can be written as wt = xt − φxt−1 − θwt−1 for t = 1, . . . , n.
For truncated forecasting, using (3.82), put w̃n

0 = 0, w̃n
1 = x1, and then

iterate the errors forward in time

w̃n
t = xt − φxt−1 − θw̃n

t−1, t = 2, . . . , n.

The approximate forecast variance is computed from (3.77) using the
ψ-weights determined as in Example 3.10. In particular, the ψ-weights
satisfy ψj = (φ + θ)φj−1, for j ≥ 1. This result gives

Pn
n+m = σ2

w

[
1 + (φ + θ)2

m−1∑
j=1

φ2(j−1)
]

= σ2
w

[
1 +

(φ + θ)2(1 − φ2(m−1))
(1 − φ2)

]
.

To assess the precision of the forecasts, prediction intervals are typically
calculated along with the forecasts. In general, (1−α) prediction intervals are
of the form

xn
n+m ± cα

2

√
Pn

n+m, (3.83)

where cα/2 is chosen to get the desired degree of confidence. For example, if
the process is Gaussian, then choosing cα/2 = 2 will yield an approximate 95%
prediction interval for xn+m. If we are interested in establishing prediction
intervals over more than one time period, then cα/2 should be adjusted appro-
priately, for example, by using Bonferroni’s inequality [see (4.55) in Chapter 4
or Johnson and Wichern, 1992, Chapter 5].
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Figure 3.6 Twenty-four month forecasts for the Recruitment series. The ac-
tual data shown are from January 1980 to September 1987, and then forecasts
plus and minus one standard error are displayed.

Example 3.23 Forecasting the Recruitment Series

Using the parameter estimates as the actual parameter values, Figure 3.6
shows the result of forecasting the Recruitment series given in Exam-
ple 3.16 over a 24-month horizon, m = 1, 2, . . . , 24. The actual forecasts
are calculated as

xn
n+m = 6.74 + 1.35xn

n+m−1 − .46xn
n+m−2

for n = 453 and m = 1, 2, . . . , 12. Recall that xs
t = xt when t ≤ s. The

forecasts errors Pn
n+m are calculated using (3.77). Recall that σ̂2

w = 90.31,
and using (3.36) from Example 3.10, we have ψj = 1.35ψj−1 − .46ψj−2
for j ≥ 2, where ψ0 = 1 and ψ1 = 1.35. Thus, for n = 453,

Pn
n+1 = 90.31,

Pn
n+2 = 90.31(1 + 1.352),

Pn
n+3 = 90.31(1 + 1.352 + [1.352 − .46]2),

and so on.

Note how the forecast levels off quickly and the prediction intervals are
wide, even though in this case the forecast limits are only based on one
standard error; that is, xn

n+m ±√Pn
n+m. We will revisit this problem,

including appropriate R commands, in Example 3.26.

We complete this section with a brief discussion of backcasting. In back-
casting, we want to predict x1−m, m = 1, 2, . . ., based on the data {x1, . . . , xn}.
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Write the backcast as

xn
1−m =

n∑
j=1

αjxj . (3.84)

Analogous to (3.65), the prediction equations (assuming µ = 0) are
n∑

j=1

αjE(xjxk) = E(x1−mxk), k = 1, . . . , n, (3.85)

or
n∑

j=1

αjγ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.86)

These equations are precisely the prediction equations for forward prediction.
That is, αj ≡ φ

(m)
nj , for j = 1, . . . , n, where the φ

(m)
nj are given by (3.66).

Finally, the backcasts are given by

xn
1−m = φ

(m)
n1 x1 + · · · + φ(m)

nn xn, m = 1, 2, . . . . (3.87)

Example 3.24 Backcasting an ARMA(1, 1)

Consider a causal and invertible ARMA(1,1) process, xt = φxt−1 +
θwt−1 + wt; we will call this the forward model. We have just seen
that best linear prediction backward in time is the same as best linear
prediction forward in time for stationary models. Because we are as-
suming ARMA models are Gaussian, we also have that minimum mean
square error prediction backward in time is the same as forward in time
for ARMA models. Thus, the process can equivalently be generated by
the backward model xt = φxt+1 + θvt+1 + vt, where {vt} is a Gaussian4

white noise process with variance σ2
w. We may write xt =

∑∞
j=0 ψjvt+j ,

where ψ0 = 1; this means that xt is uncorrelated with {vt−1, vt−2, . . .},
in analogy to the forward model.
Given data {x1, . . . ., xn}, truncate vn

n = E(vn

∣∣ x1, . . . ., xn) to zero.
That is, put ṽn

n = 0, as an initial approximation, and then generate the
errors backward

ṽn
t = xt − φxt+1 + θṽn

t+1, t = (n − 1), (n − 2), . . . , 1.

Then,
x̃n

0 = φx1 + θṽn
1 + ṽn

0 = φx1 + θṽn
1 ,

because ṽn
t = 0 for t ≤ 0. Continuing, the general truncated backcasts

are given by
x̃n

1−m = φx̃n
2−m, m = 2, 3, . . . .

4In the stationary Gaussian case, (a) the distribution of {xn+1, xn, . . . , x1} is the
same as (b) the distribution of {x0, x1 . . . , xn}. In forecasting we use (a) to obtain
E(xn+1|xn, . . . , x1); in backcasting we use (b) to obtain E(x0|x1, . . . , xn). Because (a)
and (b) are the same, the two problems are equivalent.
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3.6 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn, from
a causal and invertible Gaussian ARMA(p, q) process in which, initially, the
order parameters, p and q, are known. Our goal is to estimate the parameters,
φ1, . . . , φp, θ1, . . . , θq, and σ2

w. We will discuss the problem of determining p
and q later in this section.

We begin with method of moments estimators. The idea behind these esti-
mators is that of equating population moments to sample moments and then
solving for the parameters in terms of the sample moments. We immediately
see that, if E(xt) = µ, then the method of moments estimator of µ is the
sample average, x̄. Thus, while discussing method of moments, we will as-
sume µ = 0. Although the method of moments can produce good estimators,
they can sometimes lead to suboptimal estimators. We first consider the case
in which the method leads to optimal (efficient) estimators, that is, AR(p)
models.

When the process is AR(p),

xt = φ1xt−1 + · · · + φpxt−p + wt,

the first p + 1 equations of (3.42) and (3.43), h = 0, 1, . . . , p, lead to the
following:

Definition 3.10 The Yule–Walker equations are given by

γ(h) = φ1γ(h − 1) + · · · + φpγ(h − p), h = 1, 2, . . . , p, (3.88)
σ2

w = γ(0) − φ1γ(1) − · · · − φpγ(p). (3.89)

In matrix notation, the Yule–Walker equations are

Γpφφφ = γγγp, σ2
w = γ(0) − φφφ′γγγp, (3.90)

where Γp = {γ(k−j)}p
j,k=1 is a p×p matrix, φφφ = (φ1, . . . , φp)′ is a p×1 vector,

and γγγp = (γ(1), . . . , γ(p))′ is a p× 1 vector. Using the method of moments, we
replace γ(h) in (3.90) by γ̂(h) [see equation (1.36)] and solve

φ̂̂φ̂φ = Γ̂−1
p γ̂̂γ̂γp, σ̂2

w = γ̂(0) − γ̂̂γ̂γ′
pΓ̂

−1
p γ̂̂γ̂γp. (3.91)

These estimators are typically called the Yule–Walker estimators. For calcula-
tion purposes, it is sometimes more convenient to work with the sample ACF.
By factoring γ̂(0) in (3.91), we can write the Yule–Walker estimates as

φ̂̂φ̂φ = R̂̂R̂R
−1
p ρ̂̂ρ̂ρp, σ̂2

w = γ̂(0)
[
1 − ρ̂̂ρ̂ρ′

pR̂̂R̂R
−1
p ρ̂̂ρ̂ρp

]
, (3.92)

where R̂p = {ρ̂(k − j)}p
j,k=1 is a p × p matrix and ρ̂̂ρ̂ρp = (ρ̂(1), . . . , ρ̂(p))′ is a

p × 1 vector.
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For AR(p) models, if the sample size is large, the Yule–Walker estimators
are approximately normally distributed, and σ̂2

w is close to the true value of
σ2

w. We state these results in Property P3.7. For details, see Appendix B,
§B.3.

Property P3.7: Large Sample Results for Yule–Walker Estimators
The asymptotic (n → ∞) behavior of the Yule–Walker estimators in the case
of causal AR(p) processes is as follows:

√
n
(
φ̂̂φ̂φ − φφφ

)
d→ N

(
000, σ2

wΓ−1
p

)
, σ̂2

w
p→ σ2

w. (3.93)

The Durbin–Levinson algorithm, (3.61)-(3.63), can be used to calculate φ̂̂φ̂φ

without inverting Γ̂p or R̂p, by replacing γ(h) by γ̂(h) in the algorithm. In
running the algorithm, we will iteratively calculate the h × 1 vector, φ̂̂φ̂φh =
(φ̂h1, . . . , φ̂hh)′, for h = 1, 2, . . .. Thus, in addition to obtaining the desired
forecasts, the Durbin–Levinson algorithm yields φ̂hh, the sample PACF. Using
(3.93), we can show the following property.

Property P3.8: Large Sample Distribution of the PACF
For a causal AR(p) process, asymptotically (n → ∞),

√
n φ̂hh

d→ N (0, 1) , for h > p. (3.94)

Example 3.25 Yule–Walker Estimation for an AR(2) Process

The data shown in Figure 3.3 were n = 144 simulated observations from
the AR(2) model

xt = 1.5xt−1 − .75xt−2 + wt,

where wt ∼ iid N(0, 1). For this data, γ̂(0) = 8.434, ρ̂(1) = .834, and
ρ̂(2) = .476. Thus,

φ̂̂φ̂φ =
(

φ̂1
φ̂2

)
=
[

1 .834
.834 1

]−1(
.834
.476

)
=
(

1.439
−.725

)
and

σ̂2
w = 8.434

[
1 − (.834, .476)

(
1.439
−.725

)]
= 1.215.

By Property P3.7, the asymptotic variance–covariance matrix of φ̂̂φ̂φ,

1
144

1.215
8.434

[
1 .834

.834 1

]−1

=
[

.0572 −.003
−.003 .0572

]
,

can be used to get confidence regions for, or make inferences about φ̂̂φ̂φ and
its components. For example, an approximate 95% confidence interval
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for φ2 is −.725±2(.057), or (−.839,−.611), which contains the true value
of φ2 = −.75.

For this data, the first three sample partial autocorrelations were φ̂11 =
ρ̂(1) = .834, φ̂22 = φ̂2 = −.725, and φ̂33 = −.075. According to Prop-
erty P3.8, the asymptotic standard error of φ̂33 is 1/

√
144 = .083, and the

observed value, −.075, is less than one standard deviation from φ33 = 0.

Example 3.26 Yule–Walker Estimation of the Recruitment Series

In Example 3.16 we fit an AR(2) model to the recruitment series using
regression. Below are the results of fitting the same model using Yule-
Walker estimation in R (assuming the data are in rec), which are nearly
identical to the values in Example 3.16.

> rec.yw = ar.yw(rec, order=2)
> rec.yw$x.mean

[1] 62.26278 # mean estimate
> rec.yw$ar

[1] 1.3315874 -.4445447 # phi1 and phi2 estimates
> sqrt(diag(rec.yw$asy.var.coef))

[1] .04222637 .04222637 # their standard errors
> rec.yw$var.pred

[1] 94.79912 # error variance estimate

To obtain the 24 month ahead predictions and their standard errors, and
then plot the results as in Example 3.23, use the R commands:

> rec.pr = predict(rec.yw, n.ahead=24)
> U = rec.pr$pred + rec.pr$se
> L = rec.pr$pred - rec.pr$se
> month = 360:453
> plot(month, rec[month], type="o", xlim=c(360,480),
+ ylab="recruits")
> lines(rec.pr$pred, col="red", type="o")
> lines(U, col="blue", lty="dashed")
> lines(L, col="blue", lty="dashed")

In the case of AR(p) models, the Yule–Walker estimators given in (3.92)
are optimal in the sense that the asymptotic distribution, (3.93), is the best as-
ymptotic normal distribution. This is because, given initial conditions, AR(p)
models are linear models, and the Yule–Walker estimators are essentially least
squares estimators. If we use method of moments for MA or ARMA models,
we will not get optimal estimators because such processes are nonlinear in the
parameters.
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Example 3.27 Method of Moments Estimation for an MA(1) Process

Consider the time series

xt = wt + θwt−1,

where |θ| < 1. The model can then be written as

xt =
∞∑

j=1

(−θ)jxt−j + wt,

which is nonlinear in θ. The first two population autocovariances are
γ(0) = σ2

w(1 + θ2) and γ(1) = σ2
wθ, so the estimate of θ is found by

solving:

ρ̂(1) =
γ̂(1)
γ̂(0)

=
θ̂

1 + θ̂2
.

Two solutions exist, so we would pick the invertible one. If |ρ̂(1)| ≤ 1
2 , the

solutions are real, otherwise, a real solution does not exist. Even though
|ρ(1)| < 1

2 for an invertible MA(1), it may happen that |ρ̂(1)| ≥ 1
2 because

it is an estimator. When |ρ̂(1)| < 1
2 , the invertible estimate is

θ̂ =
1 −√1 − 4ρ̂(1)2

2ρ̂(1)
.

It can be shown5 that

θ̂ ∼ AN
(

θ,
1 + θ2 + 4θ4 + θ6 + θ8

n(1 − θ2)2

)
.

The maximum likelihood estimator (which we discuss next) of θ, in this
case, has an asymptotic variance of (1−θ2)/n. When θ = .5, for example,
the ratio of the asymptotic variance of the method of moments estimator
to the maximum likelihood estimator of θ is about 3.5. That is, for large
samples, the variance of the method of moments estimator is about 3.5
times larger than the variance of the MLE of θ when θ = .5.

Maximum Likelihood and Least Squares Estimation

To fix ideas, we first focus on the causal AR(1) case. Let

xt = µ + φ(xt−1 − µ) + wt

where |φ| < 1 and wt ∼ iid N(0, σ2
w). Given data x1, x2, . . . , xn, we seek the

likelihood
L(µ, φ, σ2

w) = fµ,φ,σ2
w

(x1, x2, . . . , xn) .

5The result follows by using the delta method and Theorem A.7 given in Appendix A.
See the proof of Theorem A.7 for details on the delta method.
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In the case of an AR(1), we may write the likelihood as

L(µ, φ, σ2
w) = f(x1)f(x2

∣∣ x1) · · · f(xn

∣∣ xn−1),

where we have dropped the parameters in the densities, f(·), to ease the no-
tation. Because xt

∣∣ xt−1 ∼ N
(
µ + φ(xt−1 − µ), σ2

w

)
, we have

f(xt

∣∣ xt−1) = fw[(xt − µ) − φ(xt−1 − µ)],

where fw(·) is the density of wt, that is, the normal density with mean zero
and variance σ2

w. We may then write the likelihood as

L(µ, φ, σw) = f(x1)
n∏

t=2

fw [(xt − µ) − φ(xt−1 − µ)] .

To find f(x1), we can use the causal representation

x1 = µ +
∞∑

j=0

φjw1−j

to see that x1 is normal, with mean µ and variance σ2
w/(1 − φ2). Finally, for

an AR(1), the likelihood is

L(µ, φ, σ2
w) = (2πσ2

w)−n/2(1 − φ2)1/2 exp
[
−S(µ, φ)

2σ2
w

]
, (3.95)

where

S(µ, φ) = (1 − φ2)(x1 − µ)2 +
n∑

t=2

[(xt − µ) − φ(xt−1 − µ)]2 . (3.96)

Typically, S(µ, φ) is called the unconditional sum of squares. We could have
also considered the estimation of µ and φ using unconditional least squares,
that is, estimation by minimizing S(µ, φ).

Taking the partial derivative of the log of (3.95) with respect to σ2
w and

setting the result equal to zero, we see that for any given values of µ and φ
in the parameter space, σ2

w = n−1S(µ, φ) maximizes the likelihood. Thus, the
maximum likelihood estimate of σ2

w is

σ̂2
w = n−1S(µ̂, φ̂), (3.97)

where µ̂ and φ̂ are the MLEs of µ and φ, respectively. If we replace n in (3.97)
by n − 2, we would obtain the unconditional least squares estimate of σ2

w.
If, in (3.95), we take logs, replace σ2

w by σ̂2
w, and ignore constants, µ̂ and φ̂

are the values that minimize the criterion function

l(µ, φ) = ln
[
n−1S(µ, φ)

]− n−1 ln(1 − φ2). (3.98)
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That is, l(µ, φ) ∝ −2 ln L(µ, φ, σ̂2
w).6 Because (3.96) and (3.98) are complicated

functions of the parameters, the minimization of l(µ, φ) or S(µ, φ) is accom-
plished numerically. In the case of AR models, we have the advantage that,
conditional on initial values, they are linear models. That is, we can drop the
term in the likelihood that causes the nonlinearity. Conditioning on x1, the
conditional likelihood becomes

L(µ, φ, σ2
w|x1) =

n∏
t=2

fw [(xt − µ) − φ(xt−1 − µ)]

= (2πσ2
w)−(n−1)/2 exp

[
−Sc(µ, φ)

2σ2
w

]
, (3.99)

where the conditional sum of squares is

Sc(µ, φ) =
n∑

t=2

[(xt − µ) − φ(xt−1 − µ)]2 . (3.100)

The conditional MLE of σ2
w is

σ̂2
w = Sc(µ̂, φ̂)/(n − 1), (3.101)

and µ̂ and φ̂ are the values that minimize the conditional sum of squares,
Sc(µ, φ). Letting α = µ(1 − φ), the conditional sum of squares can be written
as

Sc(µ, φ) =
n∑

t=2

[xt − (α + φxt−1)]
2
. (3.102)

The problem is now the linear regression problem stated in §2.2. Following
the results from least squares estimation, we have α̂ = x̄(2) − φ̂x̄(1), where
x̄(1) = (n − 1)−1∑n−1

t=1 xt, and x̄(2) = (n − 1)−1∑n
t=2 xt, and the conditional

estimates are then

µ̂ =
x̄(2) − φ̂x̄(1)

1 − φ̂
(3.103)

φ̂ =
∑n

t=2(xt − x̄(2))(xt−1 − x̄(1))∑n
t=2(xt−1 − x̄(1))2

. (3.104)

From (3.103) and (3.104), we see that µ̂ ≈ x̄ and φ̂ ≈ ρ̂(1). That is, the
Yule–Walker estimators and the conditional least squares estimators are ap-
proximately the same. The only difference is the inclusion or exclusion of terms
involving the end points, x1 and xn. We can also adjust the estimate of σ2

w in
(3.101) to be equivalent to the least squares estimator, that is, divide Sc(µ̂, φ̂)
by (n − 3) instead of (n − 1) in (3.101).

For general AR(p) models, maximum likelihood estimation, unconditional
least squares, and conditional least squares follow analogously to the AR(1)

6The criterion function is sometimes called the profile likelihood.
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example. For general ARMA models, it is difficult to write the likelihood as
an explicit function of the parameters. Instead, it is advantageous to write
the likelihood in terms of the innovations, or one-step-ahead prediction errors,
xt − xt−1

t . This will also be useful in Chapter 6 when we study state-space
models.

Suppose xt is a causal ARMA(p, q) process with wt ∼ iid N(0, σ2
w). Let

βββ = (µ, φ1, . . . , φp, θ1, . . . , θq)′ be the (p + q + 1) × 1 vector of the model
parameters. The likelihood can be written as

L(βββ, σ2
w) =

n∏
t=1

f(xt

∣∣ xt−1, . . . , x1).

The conditional distribution of xt given xt−1, . . . , x1 is Gaussian with mean
xt−1

t and variance P t−1
t . In addition, for ARMA models, we may write P t−1

t =
σ2

wrt−1
t where rt−1

t does not depend on σ2
w (this can readily be seen from

Proposition P3.4 by noting P 0
1 = γ(0) = σ2

w

∑∞
j=0 ψ2

j ).
The likelihood of the data can now be written as

L(βββ, σ2
w) = (2πσ2

w)−n/2 [r0
1(βββ)r1

2(βββ) · · · rn−1
n (βββ)

]−1/2
exp

[
−S(βββ)

2σ2
w

]
, (3.105)

where

S(βββ) =
n∑

t=1

[
(xt − xt−1

t (βββ))2

rt−1
t (βββ)

]
. (3.106)

Both xt−1
t and rt−1

t are functions of βββ, and we make that fact explicit in (3.105)-
(3.106). Given values for βββ and σ2

w, the likelihood may be evaluated using the
techniques of §3.5. Maximum likelihood estimation would now proceed by
maximizing (3.105) with respect to βββ and σ2

w. As in the AR(1) example, we
have

σ̂2
w = n−1S(β̂ββ), (3.107)

where β̂ββ is the value of βββ that minimizes the criterion function

l(βββ) = ln
[
n−1S(βββ)

]
+ n−1

n∑
t=1

ln rt−1
t (βββ). (3.108)

For example, for the AR(1) model previously discussed, the generic l(βββ) in
(3.108) is l(µ, φ) in (3.98), and the generic S(βββ) in (3.106) is S(µ, φ) given in
(3.96). From (3.96) and (3.98) we see x0

1 = µ, and xt−1
t = µ + φ(xt−1 − µ) for

t = 2, . . . , n. Also r0
1 = (1 − φ2), and rt−1

t = 1 for t = 2, . . . , n.
Unconditional least squares would be performed by minimizing (3.106) with

respect to βββ. Conditional least squares estimation would involve minimizing
(3.106) with respect to βββ but where, to ease the computational burden, the
predictions and their errors are obtained by conditioning on initial values of
the data. In general, numerical optimization routines are used to obtain the
actual estimates and their standard errors.
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Example 3.28 The Newton–Raphson and Scoring Algorithms

Two common numerical optimization routines for accomplishing maxi-
mum likelihood estimation are Newton–Raphson and scoring. We will
give a brief account of the mathematical ideas here. The actual im-
plementation of these algorithms is much more complicated than our
discussion might imply. For details, the reader is referred to any of the
Numerical Recipes books, for example, Press et al. (1993).

Let l(βββ) be a criterion function of k parameters βββ = (β1, . . . , βk) that we
wish to minimize with respect to βββ. For example, consider the likelihood
function given by (3.98) or by (3.108). Suppose l(β̂̂β̂β) is the extremum that
we are interested in finding, and β̂̂β̂β is found by solving ∂l(βββ)/∂βj = 0, for
j = 1, . . . , k. Let l(1)(βββ) denote the k × 1 vector of partials

l(1)(βββ) =
(

∂l(βββ)
∂β1

, . . . ,
∂l(βββ)
∂βk

)′
.

Note, l(1)(β̂̂β̂β) = 000, the k × 1 zero vector. Let l(2)(βββ) denote the k × k
matrix of second-order partials

l(2)(βββ) =
{

− ∂l2(βββ)
∂βi∂βj

}k

i,j=1
,

and assume l(2)(βββ) is nonsingular. Let βββ(0) be an initial estimator of βββ.
Then, using a Taylor expansion, we have the following approximation:

000 = l(1)(β̂̂β̂β) ≈ l(1)(βββ(0)) − l(2)(βββ(0))
[
β̂̂β̂β − βββ0

]
.

Setting the right-hand side equal to zero and solving for β̂̂β̂β (call the
solution βββ(1)), we get

βββ(1) = βββ(0) +
[
l(2)(βββ(0))

]−1
l(1)(βββ(0)).

The Newton–Raphson algorithm proceeds by iterating this result, replac-
ing βββ(0) by βββ(1) to get βββ(2), and so on, until convergence. Under a set
of appropriate conditions, the sequence of estimators, βββ(1), βββ(2), . . ., will
converge to β̂̂β̂β, the MLE of βββ.

For maximum likelihood estimation, the criterion function used is l(βββ)
given by (3.108); l(1)(βββ) is called the score vector, and l(2)(βββ) is called
the Hessian. In the method of scoring, we replace l(2)(βββ) by E[l(2)(βββ)],
the information matrix. Under appropriate conditions, the inverse of
the information matrix is the asymptotic variance–covariance matrix of
the estimator β̂̂β̂β. This is sometimes approximated by the inverse of the
Hessian at β̂̂β̂β. If the derivatives are difficult to obtain, it is possible to
use quasi-maximum likelihood estimation where numerical techniques are
used to approximate the derivatives.
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Example 3.29 MLE for the Recruitment Series

So far, we have fit an AR(2) model to the recruitment series using
ordinary least squares (Example 3.16) and using Yule–Walker (Exam-
ple 3.26). The following is an R session used to fit an AR(2) model via
maximum likelihood estimation to the recruitment series; these results
can be compared to the results in Examples 3.16 and 3.26. As before,
we assume the data have been read into R as rec.

> rec.mle = ar.mle(rec, order=2)
> rec.mle$x.mean

[1] 62.26153
> rec.mle$ar

[1] 1.3512809 -.4612736
> sqrt(diag(rec.mle$asy.var.coef))

[1] .04099159 .04099159
> rec.mle$var.pred

[1] 89.33597

We now discuss least squares for ARMA(p, q) models via Gauss–Newton.
For general and complete details of the Gauss–Newton procedure, the reader is
referred to Fuller (1995). Let xt be a causal and invertible Gaussian ARMA(p, q)
process. Write βββ = (φ1, . . . , φp, θ1, . . . , θq)′, and for the ease of discussion, we
will put µ = 0. We write the model in terms of the errors

wt(βββ) = xt −
p∑

j=1

φjxt−j −
q∑

k=1

θkwt−k(βββ), (3.109)

emphasizing the dependence of the errors on the parameters.
For conditional least squares, we approximate the residual sum of squares

by conditioning on x1, . . . , xp (p > 0) and wp = wp−1 = wp−2 = · · · = w1−q = 0
(q > 0), in which case we may evaluate (3.109) for t = p+1, p+2, . . . , n. Using
this conditioning argument, the conditional error sum of squares is

Sc(βββ) =
n∑

t=p+1

w2
t (βββ).

Minimizing Sc(βββ) with respect to βββ yields the conditional least squares esti-
mates. If q = 0, the problem is linear regression, and no iterative technique is
needed to minimize Sc(φ1, . . . , φp). If q > 0, the problem becomes nonlinear
regression, and we will have to rely on numerical optimization.

When n is large, conditioning on a few initial values will have little influence
on the final parameter estimates. In the case of small to moderate sample sizes,
one may wish to rely on unconditional least squares. The unconditional least
squares problem is to choose βββ to minimize the unconditional sum of squares,
which we have generically denoted by S(βββ) in this section. The unconditional
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sum of squares can be written in various ways, and one useful form in the case
of ARMA(p, q) models is derived in Box et al. (1994, Appendix A7.3). They
showed (see Problem 3.18) the unconditional sum of squares can be written as

S(βββ) =
n∑

t=−∞
ŵ2

t (βββ),

where ŵt(βββ) = E(wt

∣∣ x1, . . . , xn). When t ≤ 0, the ŵt(βββ) are obtained
by backcasting. As a practical matter, we approximate S(βββ) by starting
the sum at t = −M + 1, where M is chosen large enough to guarantee∑−M

t=−∞ ŵ2
t (βββ) ≈ 0. In the case of unconditional least squares estimation,

a numerical optimization technique is needed even when q = 0.
To employ Gauss–Newton, let βββ(0) = (φ(0)

1 , . . . , φ
(0)
p , θ

(0)
1 , . . . , θ

(0)
q )′ be an

initial estimate of βββ. For example, we could obtain βββ(0) by method of moments.
The first-order Taylor expansion of wt(βββ) is

wt(βββ) ≈ wt(βββ(0)) −
(
βββ − βββ(0)

)′
zzzt(βββ(0)), (3.110)

where

zzzt(βββ(0)) =
(

−∂wt(βββ(0))
∂β1

, . . . ,−∂wt(βββ(0))
∂βp+q

)′
, t = 1, . . . , n.

The linear approximation of Sc(βββ) is

Q(βββ) =
n∑

t=p+1

[
wt(βββ(0)) −

(
βββ − βββ(0)

)′
zzzt(βββ(0))

]2
(3.111)

and this is the quantity that we will minimize. For approximate unconditional
least squares, we would start the sum in (3.111) at t = −M + 1, for a large
value of M , and work with the backcasted values.

Using the results of ordinary least squares (§2.2), we know

̂(βββ − βββ(0)) =

(
n−1

n∑
t=p+1

zzzt(βββ(0))zzz
′
t(βββ(0))

)−1(
n−1

n∑
t=p+1

zzzt(βββ(0))wt(βββ(0))

)
(3.112)

minimizes Q(βββ). From (3.112), we write the one-step Gauss–Newton estimate
as

βββ(1) = βββ(0) + ∆(βββ(0)), (3.113)

where ∆(βββ(0)) denotes the right-hand side of (3.112). Gauss–Newton esti-
mation is accomplished by replacing βββ(0) by βββ(1) in (3.113). This process is
repeated by calculating, at iteration j = 2, 3, . . .,

βββ(j) = βββ(j−1) + ∆(βββ(j−1))

until convergence.
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Example 3.30 Gauss–Newton for an MA(1)

Consider an invertible MA(1) process, xt = wt + θwt−1. Write the trun-
cated errors as

wt(θ) = xt − θwt−1(θ), t = 1, . . . , n, (3.114)

where we condition on w0(θ) = 0. Taking derivatives,

−∂wt(θ)
∂θ

= wt−1(θ) + θ
∂wt−1(θ)

∂θ
, t = 1, . . . , n, (3.115)

where ∂w0(θ)/∂θ = 0. Using the notation of (3.110), we can also write
(3.115) as

zt(θ) = wt−1(θ) − θzt−1(θ), t = 1, . . . , n, (3.116)

where z0(θ) = 0.

Let θ(0) be an initial estimate of θ, for example, the estimate given in
Example 3.27. Then, the Gauss–Newton procedure for conditional least
squares is given by

θ(j+1) = θ(j) +
∑n

t=1 zt(θ(j))wt(θ(j))∑n
t=1 z2

t (θ(j))
, j = 0, 1, 2, . . . , (3.117)

where the values in (3.117) are calculated recursively using (3.114) and
(3.116). The calculations are stopped when |θ(j+1)−θ(j)|, or |Q(θ(j+1))−
Q(θ(j))|, are smaller than some preset amount.

Example 3.31 Fitting the Glacial Varve Series

Consider the series of glacial varve thicknesses from Massachusetts for
n = 634 years, as analyzed in Example 2.5 and in Problem 1.8, where it
was argued that a first-order moving average model might fit the loga-
rithmically transformed and differenced varve series, say,

∇[ln(xt)] = ln(xt) − ln(xt−1) = ln
(

xt

xt−1

)
,

which can be interpreted as being proportional to the percentage change
in the thickness.

The sample ACF and PACF, shown in Figure 3.7, confirm the tendency
of ∇[ln(xt)] to behave as a first-order moving average process as the
ACF has only a significant peak at lag one and the PACF decreases
exponentially. Using Table 3.1, this sample behavior fits that of the
MA(1) very well.
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Figure 3.7 ACF and PACF of transformed glacial varves.

Nine iterations of the Gauss–Newton procedure, (3.117), starting with
θ̂0 = −.1 yielded the values

−.442,−.624,−.717,−.750,−.763,−.768,−.771,−.772,−.772

for θ(1), . . . , θ(9), and a final estimated error variance σ̂2
w = .236. Using

the final value of θ̂ = θ(9) = −.772 and the vectors zt of partial derivatives
in (3.116) leads to a standard error of .025 and a t-value of −.772/.025 =
−30.88 with 632 degrees of freedom (one is lost in differencing).

In the general case of causal and invertible ARMA(p, q) models, maximum
likelihood estimation and conditional and unconditional least squares estima-
tion (and Yule–Walker estimation in the case of AR models) all lead to optimal
estimators. The proof of this general result can be found in a number of texts
on theoretical time series analysis (for example, Brockwell and Davis, 1991,
or Hannan, 1970, to mention a few). We will denote the ARMA coefficient
parameters by βββ = (φ1, . . . , φp, θ1, . . . , θq)′.

Property P3.9: Large Sample Distribution of the Estimators
Under appropriate conditions, for causal and invertible ARMA processes, the
maximum likelihood, the unconditional least squares, and the conditional least
squares estimators, each initialized by the method of moments estimator, all
provide optimal estimators of σ2

w and βββ, in the sense that σ̂2
w is consistent, and

the asymptotic distribution of β̂̂β̂β is the best asymptotic normal distribution. In
particular, as n → ∞,

√
n
(
β̂̂β̂β − βββ

)
d→ N

(
000, σ2

w ΓΓΓ−1
p,q

)
. (3.118)
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In (3.118), the variance–covariance matrix of the estimator β̂̂β̂β is the inverse of
the information matrix. In this case, the (p + q) × (p + q) matrix Γp,q, has the
form

Γp,q =
(

Γφφ Γφθ

Γθφ Γθθ

)
. (3.119)

The p × p matrix Γφφ is given by (3.90), that is, the ij-th element of Γφφ, for
i, j = 1, . . . , p, is γx(i− j) from an AR(p) process, φ(B)xt = wt. Similarly, Γθθ

is a q × q matrix with the ij-th element, for i, j = 1, . . . , q, equal to γy(i − j)
from an AR(q) process, θ(B)yt = wt. The p × q matrix Γφθ = {γxy(i − j)},
for i = 1, . . . , p; j = 1, . . . , q; that is, the ij-th element is the cross-covariance
between the two AR processes given by φ(B)xt = wt and θ(B)yt = wt. Finally,
Γθφ = Γ′

φθ is q × p. Further discussion of Property P3.9, including a proof
for the case of least squares estimators for AR(p) processes, can be found in
Appendix B, §B.3.

Example 3.32 Some Specific Asymptotic Distributions

The following are some specific cases of Property P3.9.

AR(1): γx(0) = σ2
w/(1 − φ2), so σ2

wΓ−1
1,0 = (1 − φ2). Thus,

φ̂ ∼ AN
[
φ, n−1(1 − φ2)

]
. (3.120)

AR(2): The reader can verify that

γx(0) =
(

1 − φ2

1 + φ2

)
σ2

w

(1 − φ2)2 − φ2
1

and γx(1) = φ1γx(0) + φ2γx(1). From these facts, we can compute Γ−1
2,0.

In particular, we have(
φ̂1
φ̂2

)
∼ AN

[(
φ1
φ2

)
, n−1

(
1 − φ2

2 −φ1(1 + φ2)
sym 1 − φ2

2

)]
. (3.121)

MA(1): In this case, write θ(B)yt = wt, or yt + θyt−1 = wt. Then,
analogous to the AR(1) case, γy(0) = σ2

w/(1 − θ2), so σ2
wΓ−1

0,1 = (1 − θ2).
Thus,

θ̂ ∼ AN
[
θ, n−1(1 − θ2)

]
. (3.122)

MA(2): Write yt + θ1yt−1 + θ2yt−2 = wt, so , analogous to the AR(2)
case, we have(

θ̂1
θ̂2

)
∼ AN

[(
θ1
θ2

)
, n−1

(
1 − θ2

2 θ1(1 + θ2)
sym 1 − θ2

2

)]
. (3.123)
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ARMA(1,1): To calculate Γφθ, we must find γxy(0), where xt−φxt−1 =
wt and yt + θyt−1 = wt. We have

γxy(0) = cov(xt, yt) = cov(φxt−1 + wt,−θyt−1 + wt)
= −φθγxy(0) + σ2

w.

Solving, we find, γxy(0) = σ2
w/(1 + φθ). Thus,(

φ̂
θ̂

)
∼ AN

[(
φ
θ

)
, n−1

[
(1 − φ2)−1 (1 + φθ)−1

sym (1 − θ2)−1

]−1
]

. (3.124)

The reader might wonder, for example, why the asymptotic distributions of
φ̂ from an AR(1) [equation (3.120)] and θ̂ from an MA(1) [equation (3.122)] are
of the same form. It is possible to explain this unexpected result heuristically
using the intuition of linear regression. That is, for the normal regression
model presented in §2.2 with no intercept term, xt = βzt + wt, we know β̂ is
normally distributed with mean β, and from (2.8),

var
{√

n
(
β̂ − β

)}
= nσ2

w

(
n∑

t=1

z2
t

)−1

= σ2
w

(
n−1

n∑
t=1

z2
t

)−1

.

For the causal AR(1) model given by xt = φxt−1 + wt, the intuition of
regression tells us to expect that, for n large,

√
n
(
φ̂ − φ

)
is approximately normal with mean zero and with variance given by

σ2
w

(
n−1

n∑
t=2

x2
t−1

)−1

.

Now, n−1∑n
t=2 x2

t−1 is the sample variance (recall that the mean of xt is zero)
of the xt, so as n becomes large we would expect it to approach var(xt) =
γ(0) = σ2

w/(1 − φ2). Thus, the large sample variance of
√

n
(
φ̂ − φ

)
is

σ2
wγx(0)−1 = σ2

w

(
σ2

w

1 − φ2

)−1

= (1 − φ2);

that is, (3.120) holds.
In the case of an MA(1), we may use the discussion of Example 3.30 to

write an approximate regression model for the MA(1). That is, consider the
approximation (3.116) as the regression model

zt(θ̂) = −θzt−1(θ̂) + wt−1,
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where now, zt−1(θ̂) as defined in Example 3.30, plays the role of the regressor.
Continuing with the analogy, we would expect the asymptotic distribution of√

n
(
θ̂ − θ

)
to be normal, with mean zero, and approximate variance

σ2
w

(
n−1

n∑
t=2

z2
t−1(θ̂)

)−1

.

As in the AR(1) case, n−1∑n
t=2 z2

t−1(θ̂) is the sample variance of the zt(θ̂) so,
for large n, this should be var{zt(θ)} = γz(0), say. But note, as seen from
(3.116), zt(θ) is approximately an AR(1) process with parameter −θ. Thus,

σ2
wγz(0)−1 = σ2

w

(
σ2

w

1 − (−θ)2

)−1

= (1 − θ2),

which agrees with (3.122). Finally, the asymptotic distributions of the AR
parameters estimates and the MA parameter estimates are of the same form
because in the MA case, the “regressors” are the differential processes zt(θ)
that have AR structure, and it is this structure that determines the asymptotic
variance of the estimators. For a rigorous account of this approach for the
general case, see Fuller (1995, Theorem 5.5.4).

In Example 3.31, the estimated standard error of θ̂ was .025. In the exam-
ple, this value was calculated as the square root of

s2
w

(
n−1

n∑
t=2

z2
t−1(θ̂)

)−1

,

where n = 633, s2
w = .236, and θ̂ = −.772. Using (3.122), we could have also

calculated this value using the asymptotic approximation, the square root of
(1 − .7722)/633, which is also .025.

The asymptotic behavior of the parameter estimators gives us an additional
insight into the problem of fitting ARMA models to data. For example, suppose
a time series follows an AR(1) process and we decide to fit an AR(2) to the
data. Does any problem occur in doing this? More generally, why not simply
fit large-order AR models to make sure that we capture the dynamics of the
process? After all, if the process is truly an AR(1), the other autoregressive
parameters will not be significant. The answer is that if we overfit, we will lose
efficiency. For example, if we fit an AR(1) to an AR(1) process, for large n,
var(φ̂1) ≈ n−1(1 − φ2

1). But if we fit an AR(2) to the AR(1) process, for large
n, var(φ̂1) ≈ n−1(1 − φ2

2) = n−1 because φ2 = 0. Thus, the variance of φ1 has
been inflated, making the estimator less precise. We do want to mention that
overfitting can be used as a diagnostic tool. For example, if we fit an AR(2)
model to the data and are satisfied with that model, then adding one more
parameter and fitting an AR(3) should lead to approximately the same model
as in the AR(2) fit. We will discuss model diagnostics in more detail in §3.8.
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Figure 3.8 One hundred observations generated from the AR(1) model in
Example 3.33.

If n is small, or if the parameters are close to the boundaries, the asymptotic
approximations can be quite poor. The bootstrap can be helpful in this case;
for a broad treatment of the bootstrap, see Efron and Tibshirani (1994). We
discuss the case of an AR(1) here and leave the general discussion for Chapter 6.
For now, we give a simple example of the bootstrap for an AR(1) process.

Example 3.33 Bootstrapping an AR(1)

We consider an AR(1) model with a regression coefficient near the bound-
ary of causality and an error process that is symmetric but not normal.
Specifically, consider the stationary and causal model

xt = µ + φ(xt−1 − µ) + wt, (3.125)

where µ = 50, φ = .95, and wt are iid double exponential with location
zero, and scale parameter β = 2. The density of wt is given by

fwt(w) =
1
2β

exp {−|w|/β} − ∞ < w < ∞.

In this example, E(wt) = 0 and var(wt) = 2β2 = 8. Figure 3.8 shows n =
100 simulated observations from this process. This particular realization
is interesting; the data look like they were generated from a nonstationary
process with three different mean levels. In fact, the data were generated
from a well-behaved, albeit non-normal, stationary and causal model. To
show the advantages of the bootstrap, we will act as if we do not know
the actual error distribution and we will proceed as if it were normal; of
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Figure 3.9 Finite sample density of the Yule–Walker estimate of φ in Example
3.33.

course, this means, for example, that the normal based MLE of φ will
not be the actual MLE because the data are not normal.

Using the data shown in Figure 3.8, we obtained the Yule–Walker esti-
mates µ̂ = 40.048, φ̂ = .957, and s2

w = 15.302, where s2
w is the estimate of

var(wt). Based on Property P3.9, we would say that φ̂ is approximately
normal with mean φ (which we supposedly do not know) and variance
(1 − φ2)/100, which we would approximate by (1 − .9572)/100 = .0292.

To assess the finite sample distribution of φ̂ when n = 100, we simulated
1000 realizations of this AR(1) process and estimated the parameters via
Yule–Walker. The finite sampling density of the Yule–Walker estimate
of φ, based on the 1000 repeated simulations, is shown in Figure 3.9.
Clearly the sampling distribution is not close to normality for this sample
size. The mean of the distribution shown in Figure 3.9 is .907, and
the variance of the distribution is .0522; these values are considerably
different than the asymptotic values. Some of the quantiles of the finite
sample distribution are .81 (5%), .84 (10%), .88 (25%), .92 (50%), .95
(75%), .96 (90%), and .97 (95%).

Before discussing the bootstrap, we first investigate the sample inno-
vation process, xt − xt−1

t , with corresponding variances P t−1
t . For the

AR(1) model in this example,

xt−1
t = µ + φ(xt−1 − µ), t = 2, . . . , 100.
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From this, it follows that

P t−1
t = E(xt − xt−1

t )2 = σ2
w, t = 2, . . . , 100.

When t = 1, we have

x0
1 = µ and P 0

1 = σ2
w/(1 − φ2).

Thus, the innovations have zero mean but different variances; in order
that all of the innovations have the same variance, σ2

w, we will write them
as

ε1 = (x1 − µ)
√

(1 − φ2)
εt = (xt − µ) − φ(xt−1 − µ), for t = 2, . . . , 100. (3.126)

From these equations, we can write the model in terms of the innovations
εt as

x1 = µ + ε1/
√

(1 − φ2)
xt = µ + φ(xt−1 − µ) + εt for t = 2, . . . , 100. (3.127)

Next, replace the parameters with their estimates in (3.126), that is,
n = 100, µ̂ = 40.048, and φ̂ = .957, and denote the resulting sam-
ple innovations as {ε̂1, . . . , ε̂100}. To obtain one bootstrap sample, first
randomly sample, with replacement, n = 100 values from the set of sam-
ple innovations; call the sampled values {ε∗

1, . . . , ε
∗
100}. Now, generate a

bootstrapped data set sequentially by setting

x∗
1 = 40.048 + ε∗

1/
√

(1 − .9572)
x∗

t = 40.048 + .957(x∗
t−1 − 40.048) + ε∗

t , t = 2, . . . , n. (3.128)

Next, estimate the parameters as if the data were x∗
t . Call these esti-

mates µ̂(1), φ̂(1), and s2
w(1). Repeat this process a large number, B,

of times, generating a collection of bootstrapped parameter estimates,
{µ̂(b), φ̂(b), s2

w(b), b = 1, . . . , B}. We can then approximate the finite
sample distribution of an estimator from the bootstrapped parameter
values. For example, we can approximate the distribution of φ̂ − φ by
the empirical distribution of φ̂(b) − φ̂, for b = 1, . . . , B.

Figure 3.10 shows the bootstrap histogram of 200 bootstrapped estimates
of φ using the data shown in Figure 3.8. In particular, the mean of the
distribution of φ̂(b) is .918 with a variance of .0462. Some quantiles of this
distribution are .83 (5%), .85 (10%), .90 (25%), .93 (50%), .95 (75%), .97
(90%), and .98 (95%). Clearly, the bootstrap distribution of φ̂ is closer to
the distribution of φ̂ shown in Figure 3.9 than to the asymptotic (normal)
approximation.
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To perform a similar bootstrap exercise in R, use the following com-
mands. We note that the R estimation procedure is conditional on the
first observation, so the first residual is not returned. To get around this
problem, we simply fix the first observation and bootstrap the remaining
data. The simulated data are available in the file ar1boot.dat.7

> x = scan("/mydata/ar1boot.dat")
> m = mean(x) # estimate of mu
> fit = ar.yw(x, order=1)
> phi = fit$ar # estimate of phi
> nboot = 200 # number of bootstrap replicates
> resids = fit$resid
> resids = resids[2:100] # the first resid is NA
> x.star = x # initialize x.star
> phi.star = matrix(0, nboot, 1)
> for (i in 1:nboot) {
+ resid.star = sample(resids)
+ for (t in 1:99){
+ x.star[t+1] = m + phi*(x.star[t]-m) + resid.star[t]
+ }
+ phi.star[i] = ar.yw(x.star, order=1)$ar
+ }

Now, 200 bootstrapped estimates are available in phi.star, and various
methods can be used to evaluate the estimates. For example, to obtain a
histogram of the estimates, hist(phi.star) can be used . Also consider
the statistics mean(phi.star), sd(phi.star), for the mean and stan-
dard deviation, and quantile(phi.star, probs = seq(0, 1, .25))
for some quantiles. Other interesting graphics are boxplot(phi.star)
for a boxplot and stem(phi.star) for a stem-and-leaf diagram.

3.7 Integrated Models for Nonstationary Data

In Chapters 1 and 2, we saw that if xt is a random walk, xt = xt−1+wt, then by
differencing xt, we find that ∇xt = wt is stationary. In many situations, time
series can be thought of as being composed of two components, a nonstationary
trend component and a zero-mean stationary component. For example, in §2.2
we considered the model

xt = µt + yt, (3.129)

7If you want to simulate your own data, use the following commands:
> e = rexp(150, rate = .5); u = runif(150,-1,1); de = e*sign(u)
> x = 50 + arima.sim(n = 100, list(ar =.95), innov = de, n.start = 50)
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Figure 3.10 Bootstrap histogram of φ̂ based on 200 bootstraps.

where µt = β0 + β1t and yt is stationary. Differencing such a process will lead
to a stationary process:

∇xt = xt − xt−1 = β1 + yt − yt−1 = β1 + ∇yt.

Another model that leads to first differencing is the case in which µt in (3.129)
is stochastic and slowly varying according to a random walk. That is, in (3.129)

µt = µt−1 + vt

where vt is stationary. In this case,

∇xt = vt + ∇yt,

is stationary. If µt in (3.129) is a k-th order polynomial, µt =
∑k

j=0 βjt
j ,

then (Problem 3.26) the differenced series ∇kyt is stationary. Stochastic trend
models can also lead to higher order differencing. For example, suppose in
(3.129)

µt = µt−1 + vt and vt = vt−1 + et,

where et is stationary. Then, ∇xt = vt + ∇yt is not stationary, but

∇2xt = et + ∇2yt

is stationary.
The integrated ARMA, or ARIMA model, is a broadening of the class of

ARMA models to include differencing.
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Definition 3.11 A process, xt is said to be ARIMA(p, d, qp, d, qp, d, q) if

∇dxt = (1 − B)dxt

is ARMA(p, q). In general, we will write the model as

φ(B)(1 − B)dxt = θ(B)wt. (3.130)

If E(∇dxt) = µ, we write the model as

φ(B)(1 − B)dxt = α + θ(B)wt,

where α = µ(1 − φ1 − · · · − φp).

Example 3.34 IMA(1, 1) and EWMA

The ARIMA(0,1,1), or IMA(1,1) model is of interest because many eco-
nomic time series can be successfully modeled this way. In addition,
the model leads to a frequently used, and abused, forecasting method
called exponentially weighted moving averages (EWMA). We will write
the model as

xt = xt−1 + wt − λwt−1 (3.131)

because this model formulation is easier to work with here, and it leads
to the standard representation for EWMA. When |λ| < 1, the model has
an invertible representation,

xt =
∞∑

j=1

(1 − λ)λj−1xt−j + wt. (3.132)

Verification of (3.132) is left to the reader (Problem 3.27). From (3.132),
we have that the one-step-ahead prediction, using the notation of §3.5,
is

x̃n+1 =
∞∑

j=1

(1 − λ)λj−1xn+1−j

= (1 − λ)xn + λ

∞∑
j=1

(1 − λ)λj−1xn−j

= (1 − λ)xn + λx̃n. (3.133)

Based on (3.133), the truncated forecasts are obtained by setting x̃0
1 = 0,

and then updating as follows:

x̃n
n+1 = (1 − λ)xn + λx̃n−1

n , n ≥ 1. (3.134)
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From (3.134), we see that the new forecast is a linear combination of
the old forecast and the new observation. In EWMA, the parameter λ
is called the smoothing constant and is restricted to be between zero
and one. Larger values of λ lead to smoother forecasts. This method
of forecasting is popular because it is easy to use; we need only retain
the previous forecast value and the current observation to forecast the
next time period. Unfortunately, as previously suggested, the method is
often abused because some forecasters do not verify that the observations
follow an IMA(1, 1) process, and often arbitrarily pick values of λ.

Finally, the model for the glacial varve series in Example 3.31 is an
IMA(1, 1) on the logarithms of the data. Recall that the fitted model
there was ln xt = lnxt−1 + wt − .772wt−1 and var(wt) = .236.

3.8 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data. These
steps involve plotting the data, possibly transforming the data, identifying the
dependence orders of the model, parameter estimation, diagnostics, and model
choice. First, as with any data analysis, we should construct a time plot of
the data, and inspect the graph for any anomalies. If, for example, the vari-
ability in the data grows with time, it will be necessary to transform the data
to stabilize the variance. In such cases, the Box–Cox class of power transfor-
mations, equation (2.34), could be employed. Also, the particular application
might suggest an appropriate transformation. For example, suppose a process
evolves as a fairly small and stable percent change, such as an investment. For
example, we might have

xt = (1 + pt)xt−1,

where xt is the value of the investment at time t and pt is the percentage
change from period t − 1 to t, which may be negative. Taking logs we have

ln(xt) = ln(1 + pt) + ln(xt−1),

or
∇[ln(xt)] = ln(1 + pt).

If the percent change pt stays relatively small in magnitude, then ln(1+pt) ≈ pt

and, thus,
∇[ln(xt)] ≈ pt,

will be a relatively stable process. Frequently, ∇[ln(xt)] is called the return or
growth rate. This general idea was used in Example 3.31, and we will use it
again in Example 3.35.

After suitably transforming the data, the next step is to identify preliminary
values of the autoregressive order, p, the order of differencing, d, and the



144 ARIMA Models

1950 1960 1970 1980 1990 2000

20
00

40
00

60
00

80
00

quarter

gn
p

Figure 3.11 Quarterly U.S. GNP from 1947(1) to 2002(3).

moving average order, q. We have already addressed, in part, the problem
of selecting d. A time plot of the data will typically suggest whether any
differencing is needed. If differencing is called for, then difference the data
once, d = 1, and inspect the time plot of ∇xt. If additional differencing is
necessary, then try differencing again and inspect a time plot of ∇2xt. Be
careful not to overdifference because this may introduce dependence where
none exists. For example, xt = wt is serially uncorrelated, but ∇xt = wt−wt−1
is MA(1). In addition to time plots, the sample ACF can help in indicating
whether differencing is needed. Because the polynomial φ(z)(1−z)d has a unit
root, the sample ACF, ρ̂(h), will not decay to zero fast as h increases. Thus,
a slow decay in ρ̂(h) is an indication that differencing may be needed.

When preliminary values of d have been settled, the next step is to look
at the sample ACF and PACF of ∇dxt for whatever values of d have been
chosen. Using Table 3.1 as a guide, preliminary values of p and q are chosen.
Recall that, if p = 0 and q > 0, the ACF cuts off after lag q, and the PACF
tails off. If q = 0 and p > 0, the PACF cuts off after lag p, and the ACF
tails off. If p > 0 and q > 0, both the ACF and PACF will tail off. Because
we are dealing with estimates, it will not always be clear whether the sample
ACF or PACF is tailing off or cutting off. Also, two models that are seemingly
different can actually be very similar. With this in mind, we should not worry
about being so precise at this stage of the model fitting. At this stage, a few
preliminary values of p, d, and q should be at hand, and we can start estimating
the parameters.

Example 3.35 Analysis of GNP Data

In this example, we consider the analysis of quarterly U.S. GNP from
1947(1) to 2002(3), n = 223 observations. The data are Real U.S. Gross
National Product in billions of chained 1996 dollars and they have been
seasonally adjusted. The data were obtained from the Federal Reserve
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Figure 3.12 Sample ACF of the GNP data.
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Figure 3.13 First difference of the U.S. GNP data.

Bank of St. Louis (http://research.stlouisfed.org/). Figure 3.11 shows a
plot of the data, say, yt. Because strong trend hides any other effect, it is
not clear from Figure 3.11 that the variance is increasing with time. For
the purpose of demonstration, the sample ACF of the data is displayed
in Figure 3.12. Figure 3.13 shows the first difference of the data, ∇yt,
and now that the trend has been removed we are able to notice that
the variability in the second half of the data is larger than in the first
half of the data. Also, it appears as though a trend is still present
after differencing. The growth rate, say, xt = ∇ ln(yt), is plotted in
Figure 3.14, and, appears to be a stable process. Moreover, we may
interpret the values of xt as the percentage quarterly growth of U.S. GNP.

The sample ACF and PACF of the quarterly growth rate are plotted
in Figure 3.15. Inspecting the sample ACF and PACF, we might feel
that the ACF is cutting off at lag 2 and the PACF is tailing off. This
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Figure 3.14 U.S. GNP quarterly growth rate.
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Figure 3.15 Sample ACF and PACF of the GNP quarterly growth rate.

would suggest the GNP growth rate follows an MA(2) process, or log
GNP follows an ARIMA(0, 1, 2) model. Rather than focus on one model,
we will also suggest that it appears that the ACF is tailing off and the
PACF is cutting off at lag 1. This suggests an AR(1) model for the
growth rate, or ARIMA(1, 1, 0) for log GNP. As a preliminary analysis,
we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt, the estimated
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model is

xt = .008(.001) + .303(.065)ŵt−1 + .204(.064)ŵt−2 + ŵt, (3.135)

where σ̂w = .0094 is based on 219 degrees of freedom. The values in
parentheses are the corresponding estimated standard errors. All of the
regression coefficients are significant, including the constant. We make a
special note of this because, as a default, some computer packages do not
fit a constant in a differenced model. That is, these packages assume, by
default, that there is no drift. In this example, not including a constant
leads to the wrong conclusions about the nature of the U.S. economy.
Not including a constant assumes the average quarterly growth rate is
zero, whereas the U.S. GNP average quarterly growth rate is about 1%
(which can be seen easily in Figure 3.14). We leave it to the reader to
investigate what happens when the constant is not included.

The estimated AR(1) model is

xt = .005(.0006) + .347(.063)xt−1 + ŵt, (3.136)

where σ̂w = .0095 on 220 degrees of freedom.

We will discuss diagnostics next, but assuming both of these models fit
well, how are we to reconcile the apparent differences of the estimated
models (3.135) and (3.136)? In fact, the fitted models are nearly the
same. To show this, consider an AR(1) model of the form in (3.136)
without a constant term; that is,

xt = .35xt−1 + wt,

and write it in its causal form, xt =
∑∞

j=0 ψjwt−j , where we recall ψj =
.35j . Thus, ψ0 = 1, ψ1 = .350, ψ2 = .123, ψ3 = .043, ψ4 = .015, ψ5 =
.005, ψ6 = .002, ψ7 = .001, ψ8 = 0, ψ9 = 0, ψ10 = 0, and so forth. Thus,

xt ≈ .35wt−1 + .12wt−2 + wt,

which is similar to the fitted MA(2) model in (3.136).

The analyses and graphics of the example can be performed in R using
the following commands. We note that we did not fit integrated models
to log GNP, but rather we fit nonintegrated models to the growth rate,
xt. We believe at the time of writing that there is a problem with fitting
ARIMA models with a nonzero constant in R. The data are in a file
called gnp96.dat; the file contains two columns, the first column is the
quarter and the second column is the GNP.

> gnp96 = read.table("/mydata/gnp96.dat")
> gnp = ts(gnp96[,2], start=1947, frequency=4)
> plot(gnp)
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> acf(gnp, 50)
> gnpgr = diff(log(gnp)) # growth rate
> plot.ts(gnpgr)
> par(mfrow=c(2,1))
> acf(gnpgr, 24)
> pacf(gnpgr, 24)
> # ARIMA fits:
> gnpgr.ar = arima(gnpgr, order = c(1, 0, 0))
> gnpgr.ma = arima(gnpgr, order = c(0, 0, 2))
> # to view the results:
> gnpgr.ar # potential problem here (see below *)
> gnpgr.ma
> ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

∗At this time, the R output for the AR fit lists the estimated mean and
its standard error, but calls it the intercept. That is, the output says it
is giving you α̂ when in fact it’s listing µ̂. In this case, α̂ = µ̂(1 − φ̂).

The next step in model fitting is diagnostics. This investigation includes
the analysis of the residuals as well as model comparisons. Again, the first
step involves a time plot of the innovations (or residuals), xt − x̂t−1

t , or of the
standardized innovations

et =
(
xt − x̂t−1

t

) / √
P̂ t−1

t , (3.137)

where x̂t−1
t is the one-step-ahead prediction of xt based on the fitted model and

P̂ t−1
t is the estimated one-step-ahead error variance. If the model fits well, the

standardized residuals should behave as an iid sequence with mean zero and
variance one. The time plot should be inspected for any obvious departures
from this assumption. Unless the time series is Gaussian, it is not enough that
the residuals are uncorrelated. For example, it is possible in the non-Gaussian
case to have an uncorrelated process for which values contiguous in time are
highly dependent. As an example, we mention the family of GARCH models
that are discussed in Chapter 5.

Investigation of marginal normality can be accomplished visually by looking
at a histogram of the residuals. In addition to this, a normal probability plot
or a Q-Q plot can help in identifying departures from normality. See Johnson
and Wichern (1992, Chapter 4) for details of this test as well as additional
tests for multivariate normality.

There are several tests of randomness, for example the runs test, that could
be applied to the residuals. We could also inspect the sample autocorrelations
of the residuals, say, ρ̂e(h), for any patterns or large values. Recall that, for a
white noise sequence, the sample autocorrelations are approximately indepen-
dently and normally distributed with zero means and variances 1/n. Hence, a
good check on the correlation structure of the residuals is to plot ρ̂e(h) versus
h along with the error bounds of ±2/

√
n. The residuals from a model fit,
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Figure 3.16 Diagnostics of the residuals from MA(2) fit on GNP growth rate.

however, will not quite have the properties of a white noise sequence and the
variance of ρ̂e(h) can be much less than 1/n. Details can be found in Box and
Pierce (1970) and McLeod (1978). This part of the diagnostics can be viewed
as a visual inspection of ρ̂e(h) with the main concern being the detection of
obvious departures from the independence assumption.

In addition to plotting ρ̂e(h), we can perform a general test that takes into
consideration the magnitudes of ρ̂e(h) as a group. For example, it may be the
case that, individually, each ρ̂e(h) is small in magnitude, say, each one is just
slightly less that 2/

√
n in magnitude, but, collectively, the values are large.

The Ljung–Box–Pierce Q-statistic given by

Q = n(n + 2)
H∑

h=1

ρ̂2
e(h)

n − h
(3.138)

can be used to perform such a test. The value H in (3.138) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy,
asymptotically (n → ∞), Q ∼ χ2

H−p−q. Thus, we would reject the null hy-
pothesis at level α if the value of Q exceeds the (1−α)-quantile of the χ2

H−p−q
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Figure 3.17 Histogram of the residuals (top), and a normal Q-Q plot of the
residuals (bottom).

distribution. Details can be found in Box and Pierce (1970), Ljung and Box
(1978), and Davies et al. (1977).

Example 3.36 Diagnostics for GNP Growth Rate Example

We will focus on the MA(2) fit from Example 3.35; the analysis of the
AR(1) residuals is similar. Figure 3.16 displays a plot of the standardized
residuals, the ACF of the residuals (note that R includes the correlation
at lag zero which is always one), and the value of the Q-statistic, (3.138),
at lags H = 1 through H = 20. These diagnostics are provided by issuing
the command

> tsdiag(gnpgr.ma, gof.lag=20)

where gnpgr.ma was described in the previous example.

Inspection of the time plot of the standardized residuals in Figure 3.16
shows no obvious patterns. Notice that there are outliers, however, with
a few values exceeding 3 standard deviations in magnitude. The ACF of
the standardized residuals shows no apparent departure from the model
assumptions, and the Q-statistic is never significant at the lags shown.

Finally, Figure 3.17 shows a histogram of the residuals (top), and a nor-
mal Q-Q plot of the residuals (bottom). Here we see the residuals are
somewhat close to normality except for a few extreme values in the tails.
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Figure 3.18 Diagnostics for the ARIMA(0, 1, 1) fit to the logged varve data.

Running a Shapiro–Wilk test (Royston, 1982) yields a p-value of .003,
which indicates the residuals are not normal. Hence, the model appears
to fit well except for the fact that a distribution with heavier tails than
the normal distribution should be employed. We discuss some possibil-
ities in Chapters 5 and 6. These diagnostics can be performed in R by
issuing the commands:

> hist(gnpgr.ma$resid, br=12)
> qqnorm(gnpgr.ma$resid)
> shapiro.test(gnpgr.ma$resid)

Example 3.37 Diagnostics for the Glacial Varve Series

In Example 3.31, we fit an ARIMA(0, 1, 1) model to the logarithms of
the glacial varve data. Figure 3.18 shows the diagnostics from that fit,
and we notice a significant lag 1 correlation. In addition, the Q-statistic
is significant for every value of H displayed. Because the ACF of the
residuals appear to be tailing off, an AR term is suggested.
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Figure 3.19 Diagnostics for the ARIMA(1, 1, 1) fit to the logged varve data.

Next, we fit an ARIMA(1, 1, 1) to the logged varve data and obtained the
estimates φ̂ = .23(.05), θ̂ = −.89(.03), and σ̂2

w = .23. Hence the AR term
is significant. Diagnostics for this model are displayed in Figure 3.19,
and it appears this model fits the data well.

To implement these analyses in R, use the following commands (we as-
sume the data are in varve):

> varve.ma = arima(log(varve), order = c(0, 1, 1))
> varve.ma # to display results
> tsdiag(varve.ma)
> varve.arma = arima(log(varve), order = c(1, 1, 1))
> varve.arma # to display results
> tsdiag(varve.arma, gof.lag=20)

In Example 3.35, we have two competing models, an AR(1) and an MA(2)
on the GNP growth rate, that each appear to fit the data well. In addition, we
might also consider that an AR(2) or an MA(3) might do better for forecasting.
Perhaps combining both models, that is, fitting an ARMA(1, 2) to the GNP
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Figure 3.20 A perfect fit and a terrible forecast.

growth rate, would be the best. As previously mentioned, we have to be con-
cerned with overfitting the model; it is not always the case that more is better.
Overfitting leads to less-precise estimators, and adding more parameters may
fit the data better but may also lead to bad forecasts. This result is illustrated
in the following example.

Example 3.38 A Problem with Overfitting

Figure 3.20 shows the U.S. population by official census, every 10 years
from 1910 to 1990, as points. If we use these nine observations to predict
the future population of the U.S., we can use an eight-degree polynomial
so the fit to the nine observations is perfect. The model in this case is

xt = β0 + β1t + β2t
2 + · · · + β8t

8 + wt.

The fitted model, which is plotted through the year 2010 as a line, passes
through the nine observations. The model predicts that the population
of the U.S. will be close to zero in the year 2000, and will cross zero
sometime in the year 2002!

The final step of model fitting is model choice or model selection. That is,
we must decide which model we will retain for forecasting. The most popular
techniques, AIC, AICc, and SIC, were described in §2.2 in the context of
regression models. A discussion of AIC based on Kullback–Leibler distance
was given in Problems 2.4 and 2.5.
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Example 3.39 Model Choice for the U.S. GNP Series

Returning to the analysis of the U.S. GNP data presented in Exam-
ples 3.35 and 3.36, recall that two models, an AR(1) and an MA(2), fit
the GNP growth rate well. To choose the final model, we compare the
AIC, the AICc, and the SIC for both models.

Below are the R commands for the comparison. The effective sample
size in this example is 222. We note that R returns AIC8 as part of the
ARIMA fit.

> # AIC
> gnpgr.ma$aic

[1] -1431.929 # MA(2)
> gnpgr.ar$aic

[1] -1431.221 # AR(1)
> # AICc - see Section 2.2
> log(gnpgr.ma$sigma2)+(222+2)/(222-2-2)

[1] -8.297199 # MA(2)
> log(gnpgr.ar$sigma2)+(222+1)/(222-1-2)

[1] -8.294156 # AR(1)
> # SIC or BIC - see Section 2.2
> log(gnpgr.ma$sigma2)+(2*log(222)/222)

[1] -9.276049 # MA(2)
> log(gnpgr.ar$sigma2)+(1*log(222)/222)

[1] -9.288084 # AR(1)

The AIC and AICc both prefer the MA(2) fit, whereas the SIC (or BIC)
prefers the simpler AR(1) model. It is often the case that the SIC will
select a model of smaller order than the AIC or AICc. It would not be
unreasonable in this case to retain the AR(1) because pure autoregressive
models are easier to work with.

3.9 Multiplicative Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA model
to account for seasonal and nonstationary behavior. Often, the dependence
on the past tends to occur most strongly at multiples of some underlying
seasonal lag s. For example, with monthly economic data, there is a strong
yearly component occurring at lags that are multiples of s = 12, because

8R calculates this value as AIC = −2 ln Lx(β̂̂β̂β, σ̂2
w) + 2(p + q), where Lx(β̂̂β̂β, σ̂2

w) is the
likelihood of the data evaluated at the MLE; see (3.105). Note that AIC consists of two
parts, one measuring model fit and one penalizing for the addition of parameters. Dividing
this quantity by n, writing k = p + q, and ignoring constants and terms involving initial
conditions, we obtain AIC as given in §2.2. Details are provided in Problems 2.4 and 2.5.



3.9: Seasonal ARIMA 155

of the strong connections of all activity to the calendar year. Data taken
quarterly will exhibit the yearly repetitive period at s = 4 quarters. Natural
phenomena such as temperature also have strong components corresponding
to seasons. Hence, the natural variability of many physical, biological, and
economic processes tends to match with seasonal fluctuations. Because of this,
it is appropriate to introduce autoregressive and moving average polynomials
that identify with the seasonal lags. The resulting pure seasonal autoregressive
moving average model, say, ARMA(P, Q)s, then takes the form

ΦP (Bs)xt = ΘQ(Bs)wt, (3.139)

with the following definition.

Definition 3.12 The operators

ΦP (Bs) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦP BPs (3.140)

and
ΘQ(Bs) = 1 + Θ1B

s + Θ2B
2s + · · · + ΘQBQs (3.141)

are the seasonal autoregressive operator and the seasonal moving av-
erage operator of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure sea-
sonal ARMA(P, Q)s is causal only when the roots of ΦP (zs) lie outside the
unit circle, and it is invertible only when the roots of ΘQ(zs) lie outside the
unit circle.

Example 3.40 A Seasonal ARMA Series

A first-order seasonal autoregressive moving average series that might
run over months could be written as

(1 − ΦB12)xt = (1 + ΘB12)wt

or
xt = Φxt−12 + wt + Θwt−12.

This model exhibits the series xt in terms of past lags at the multi-
ple of the yearly seasonal period s = 12 months. It is clear from the
above form that estimation and forecasting for such a process involves
only straightforward modifications of the unit lag case already treated.
In particular, the causal condition requires |Φ| < 1, and the invertible
condition requires |Θ| < 1.

For the first-order seasonal (s = 12) MA model, xt = wt + Θwt−12, it is
easy to verify that

γ(0) = (1 + Θ2)σ2
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Table 3.2 Behavior of the ACF and PACF for Causal and
Invertible Pure Seasonal ARMA Models

AR(P )s MA(Q)s ARMA(P, Q)s

ACF* Tails off at lags ks, Cuts off after Tails off at
k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts off after Tails off at lags ks Tails off at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h �= ks, for k = 1, 2, . . ., are zero.

γ(±12) = Θσ2

γ(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is

ρ(±12) = Θ/(1 + Θ2).

For the first-order seasonal (s = 12) AR model, using the techniques of the
nonseasonal AR(1), we have

γ(0) = σ2/(1 − Φ2)
γ(±12k) = σ2Φk/(1 − Φ2) k = 1, 2, . . .

γ(h) = 0, otherwise.

In this case, the only non-zero correlations are

ρ(±12k) = Φk, k = 0, 1, 2, . . . .

These results can be verified using the general result that γ(h) = Φγ(h − 12),
for h ≥ 1. For example, when h = 1, γ(1) = Φγ(11), but when h = 11, we
have γ(11) = Φγ(1), which implies that γ(1) = γ(11) = 0. In addition to these
results, the PACF have the analogous extensions from nonseasonal to seasonal
models.

As an initial diagnostic criterion, we can use the properties for the pure
seasonal autoregressive and moving average series listed in Table 3.2. These
properties may be considered as generalizations of the properties for nonsea-
sonal models that were presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into
a multiplicative seasonal autoregressive moving average model, denoted by
ARMA(p, q) × (P, Q)s, and write

ΦP (Bs)φ(B)xt = ΘQ(Bs)θ(B)wt (3.142)
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as the overall model. Although the diagnostic properties in Table 3.2 are
not strictly true for the overall mixed model, the behavior of the ACF and
PACF tends to show rough patterns of the indicated form. In fact, for mixed
models, we tend to see a mixture of the facts listed in Tables 3.1 and 3.2.
In fitting such models, focusing on the seasonal autoregressive and moving
average components first generally leads to more satisfactory results.

Example 3.41 A Mixed Seasonal Model

Consider an ARMA(0, 1) × (1, 0)12 model

xt = Φxt−12 + wt + θwt−1,

where |Φ| < 1 and |θ| < 1. Then, because xt−12, wt, and wt−1 are
uncorrelated, and xt is stationary, γ(0) = Φ2γ(0) + σ2

w + θ2σ2
w, or

γ(0) =
1 + θ2

1 − Φ2 σ2
w.

In addition, multiplying the model by xt−h, h > 0, and taking expecta-
tions, we have γ(1) = Φγ(11) + θσ2

w, and γ(h) = Φγ(h − 12), for h ≥ 2.
Thus, the ACF for this model is

ρ(12h) = Φh h = 1, 2, . . .

ρ(12h − 1) = ρ(12h + 1) =
θ

1 + θ2 Φh h = 0, 1, 2, . . . ,

ρ(h) = 0, otherwise.

The ACF and PACF for this model, with Φ = .8 and θ = −.5, are shown
in Figure 3.21. These type of correlation relationships, although idealized
here, are typically seen with seasonal data.

To reproduce Figure 3.21 in R, use the following commands:
> phi = c(rep(0,11),.8)
> acf = ARMAacf(ar=phi, ma=-.5, 50)
> pacf = ARMAacf(ar=phi, ma=-.5, 50, pacf=T)
> par(mfrow=c(1,2))
> plot(acf, type="h", xlab="lag")
> abline(h=0)
> plot(pacf, type="h", xlab="lag")
> abline(h=0)

Seasonal nonstationarity can occur, for example, when the process is nearly
periodic in the season. For example, with average monthly temperatures over
the years, each January would be approximately the same, each February would
be approximately the same, and so on. In this case, we might think of average
monthly temperature xt as being modeled as

xt = St + wt,
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Figure 3.21 ACF and PACF of the mixed seasonal ARMA model xt =
.8xt−12 + wt − .5wt−1.

where St is a seasonal component that varies slowly from one year to the next,
according to a random walk,

St = St−12 + vt.

In this model, wt and vt are uncorrelated white noise processes. The tendency
of data to follow this type of model will be exhibited in a sample ACF that is
large and decays very slowly at lags h = 12k, for k = 1, 2, . . . . If we subtract
the effect of successive years from each other, we find that

(1 − B12)xt = xt − xt−12 = vt + wt − wt−12.

This model is a stationary MA(1)12, and its ACF will have a peak only at lag
12. In general, seasonal differencing can be indicated when the ACF decays
slowly at multiples of some season s, but is negligible between the periods.
Then, a seasonal difference of order D is defined as

∇D
s xt = (1 − Bs)Dxt, (3.143)

where D = 1, 2, . . . takes integer values. Typically, D = 1 is sufficient to obtain
seasonal stationarity.

Incorporating these ideas into a general model leads to the following defi-
nition.
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Definition 3.13 The multiplicative seasonal autoregressive integrated
moving average model, or SARIMA model, of Box and Jenkins (1970)
is given by

ΦP (Bs)φ(B)∇D
s ∇dxt = α + ΘQ(Bs)θ(B)wt, (3.144)

where wt is the usual Gaussian white noise process. The general model is
denoted as ARIMA(p, d, q) × (P, D, Q)s(p, d, q) × (P, D, Q)s(p, d, q) × (P, D, Q)s. The ordinary autoregressive and
moving average components are represented by polynomials φ(B) and θ(B) of
orders p and q, respectively [see (3.5) and (3.17)], and the seasonal autoregres-
sive and moving average components by ΦP (Bs) and ΘQ(Bs) [see (3.140) and
(3.141)] of orders P and Q and ordinary and seasonal difference components
by ∇d = (1 − B)d and ∇D

s = (1 − Bs)D.

Example 3.42 A SARIMA Model

Consider the following model, which often provides a reasonable repre-
sentation for seasonal, nonstationary, economic time series. We exhibit
the equations for the model, denoted by ARIMA(0, 1, 1) × (0, 1, 1)12 in
the notation given above, where the seasonal fluctuations occur every 12
months. Then, the model (3.144) becomes

(1 − B12)(1 − B)xt = (1 + ΘB12)(1 + θB)wt. (3.145)

Expanding both sides of (3.145) leads to the representation

(1 − B − B12 + B13)xt = (1 + θB + ΘB12 + ΘθB13)wt,

or in difference equation form

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 + Θwt−12 + Θθwt−13.

Selecting the appropriate model for a given set of data from all of those
represented by the general form (3.144) is a daunting task, and we usually
think first in terms of finding difference operators that produce a roughly
stationary series and then in terms of finding a set of simple autoregressive
moving average or multiplicative seasonal ARMA to fit the resulting residual
series. Differencing operations are applied first, and then the residuals are
constructed from a series of reduced length. Next, the ACF and the PACF of
these residuals are evaluated. Peaks that appear in these functions can often
be eliminated by fitting an autoregressive or moving average component in
accordance with the general properties of Tables 3.1 and 3.2. In considering
whether the model is satisfactory, the diagnostic techniques discussed in §3.8
still apply.
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Figure 3.22 Values of the Monthly Federal Reserve Board Production Index
and Unemployment (1948-1978, n = 372 months).

Example 3.43 Analysis of the Federal Reserve Board Production
Index.

A problem of great interest in economics involves first identifying a model
within the Box–Jenkins class for a given time series and then producing
forecasts based on the model. For example, we might consider applying
this methodology to the Federal Reserve Board Production Index shown
in Figure 3.22. The ACFs and PACFs for this series are shown in Fig-
ure 3.23, and we note the slow decay in the ACF and the peak at lag
h = 1 in the PACF, indicating nonstationary behavior.
Following the recommended procedure, a first difference was taken, and
the ACF and PACF of the first difference

∇xt = xt − xt−1

are shown in Figure 3.24. Noting the peaks at 12, 24, 36, and 48 with rel-
atively slow decay suggested a seasonal difference and Figure 3.25 shows
the seasonal difference of the differenced production, say,

∇12∇xt = (1 − B12)(1 − B)xt.

Characteristics of the ACF and PACF of this series tend to show a strong
peak at h = 12 in the autocorrelation function, with smaller peaks ap-
pearing at h = 24, 36, combined with peaks at h = 12, 24, 36, 48, in the
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Figure 3.23 ACF and PACF of the production series.

partial autocorrelation function. Using Table 3.2, this suggests either a
seasonal moving average of order Q = 1, a seasonal autoregression of
possible order P = 2, or due to the fact that both the ACF and PACF
may be tailing off at the seasonal lags, perhaps both components, P = 2
and Q = 1, are needed.

Inspecting the ACF and the PACF at the within season lags, h =
1, . . . , 11, it appears that both the ACF and PACF are tailing off. Based
on Table 3.1, this result indicates that we should consider fitting a model
with both p > 0 and q > 0 for the nonseasonal components. Hence, at
first we will consider p = 1 and q = 1.

Fitting the three models suggested by these observations and computing
the AIC for each, we obtain:

(i) ARIMA(1, 1, 1) × (0, 1, 1)12, AIC = 1162.30

(ii) ARIMA(1, 1, 1) × (2, 1, 0)12, AIC = 1169.04

(iii) ARIMA(1, 1, 1) × (2, 1, 1)12, AIC = 1148.43

On the basis of the AICs, we prefer the ARIMA(1, 1, 1)×(2, 1, 1)12 model.
Figure 3.26 shows the diagnostics for this model, leading to the conclusion
that the model is adequate. We note, however, the presence of a few
outliers.
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Figure 3.24 ACF and PACF of differenced production, (1 − B)xt.

Figure 3.25 ACF and PACF of first differenced and then seasonally differ-
enced production, (1 − B)(1 − B12)xt.
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Figure 3.26 Diagnostics for the ARIMA(1, 1, 1) × (2, 1, 1)12 fit on the Pro-
duction data.

The fitted ARIMA(1, 1, 1) × (2, 1, 1)12 is

(1 + .22(.08)B
12 + .28(.06)B

24)(1 − .58(.11)B)∇12∇x̂t

= (1 − .50(.07)B
12)(1 − .27(.13)B)ŵt

with σ̂2
w = 1.35. Forecasts based on the fitted model for the next 12

months are shown in Figure 3.27.

Finally, we present the R code necessary to reproduce most of the analy-
ses performed in Example 3.43.

> prod=scan("/mydata/prod.dat")
> par(mfrow=c(2,1)) # (P)ACF of data
> acf(prod, 48)
> pacf(prod, 48)
> par(mfrow=c(2,1)) # (P)ACF of d1 data
> acf(diff(prod), 48)
> pacf(diff(prod), 48)



164 ARIMA Models

340 350 360 370 380

10
0

12
0

14
0

16
0

18
0

month

Pr
od

uc
tio

n

Figure 3.27 Forecasts and limits for production index. The vertical dotted
line separates the data from the predictions.

> par(mfrow=c(2,1)) # (P)ACF of d1-d12 data
> acf(diff(diff(prod),12), 48)
> pacf(diff(diff(prod),12), 48)

> ### fit model (iii)
> prod.fit3 = arima(prod, order=c(1,1,1),
+ seasonal=list(order=c(2,1,1), period=12))
> prod.fit3 # to view the results
> tsdiag(prod.fit3, gof.lag=48) # diagnostics

> ### forecasts for the final model
> prod.pr = predict(prod.fit3, n.ahead=12)
> U = prod.pr$pred + 2*prod.pr$se
> L = prod.pr$pred - 2*prod.pr$se
> month=337:372
> plot(month, prod[month], type="o", xlim=c(337,384),
+ ylim=c(100,180), ylab="Production")
> lines(prod.pr$pred, col="red", type="o")
> lines(U, col="blue", lty="dashed")
> lines(L, col="blue", lty="dashed")
> abline(v=372.5,lty="dotted")
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Problems

Section 3.2

3.1 For an MA(1), xt = wt + θwt−1, show that |ρx(1)| ≤ 1/2 for any number
θ. For which values of θ does ρx(1) attain its maximum and minimum?

3.2 Let wt be white noise with variance σ2
w and let |φ| < 1 be a constant.

Consider the process

x1 = w1
xt = φxt−1 + wt t = 2, 3, . . . .

(a) Find the mean and the variance of {xt, t = 1, 2, . . .}. Is xt station-
ary?

(b) Show

corr(xt, xt−h) = φh

[
var(xt−h)
var(xt)

]1/2

for h ≥ 0.

(c) Argue that for large t,

var(xt) ≈ σ2
w

1 − φ2

and
corr(xt, xt−h) ≈ φh, h ≥ 0,

so in a sense, xt is “asymptotically stationary.”

(d) Comment on how you could use these results to simulate n obser-
vations of a stationary Gaussian AR(1) model from simulated iid
N(0,1) values.

(e) Now suppose x1 = w1/
√

1 − φ2. Is this process stationary?

3.3 Identify the following models as ARMA(p, q) models (watch out for pa-
rameter redundancy), and determine whether they are causal and/or
invertible:

(a) xt = .80xt−1 − .15xt−2 + wt − .30wt−1.

(b) xt = xt−1 − .50xt−2 + wt − wt−1.

3.4 Verify the causal conditions for an AR(2) model given in (3.27). That
is, show that an AR(2) is causal if and only if (3.27) holds.
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Section 3.3

3.5 For the AR(2) model given by xt = −.9xt−2 + wt, find the roots of the
autoregressive polynomial, and then sketch the ACF, ρ(h).

3.6 For the AR(2) autoregressive series shown below, determine a set of dif-
ference equations that can be used to find ψj , j = 0, 1, . . . in the represen-
tation (3.24) and the autocorrelation function ρ(h), h = 0, 1, . . .. Solve
for the constants in the ACF using the known initial conditions, and plot
the first eight values.

(a) xt + 1.6xt−1 + .64xt−2 = wt.

(b) xt − .40xt−1 − .45xt−2 = wt.

(c) xt − 1.2xt−1 + .85xt−2 = wt.

Section 3.4

3.7 Verify the calculations for the autocorrelation function of an ARMA(1, 1)
process given in Example 3.11. Compare the form with that of the ACF
for the ARMA(1, 0) and the ARMA(0, 1) series. Plot the ACFs of the
three series on the same graph for φ = .6, θ = .9, and comment on the
diagnostic capabilities of the ACF in this case.

3.8 Generate n = 100 observations from each of the three models discussed
in Problem 3.7. Compute the sample ACF for each model and compare
it to the theoretical values. Compute the sample PACF for each of the
generated series and compare the sample ACFs and PACFs with the
general results given in Table 3.1.

Section 3.5

3.9 Let Mt represent the cardiovascular mortality series discussed in Chap-
ter 2, Example 2.2.

(a) Fit an AR(2) to Mt using linear regression as in Example 3.16.

(b) Assuming the fitted model in (a) is the true model, find the fore-
casts over a four-week horizon, xn

n+m, for m = 1, 2, 3, 4, and the
corresponding 95% prediction intervals.

3.10 Consider the MA(1) series

xt = wt + θwt−1,

where wt is white noise with variance σ2
w.
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(a) Derive the minimum mean square error one-step forecast based on
the infinite past, and determine the mean square error of this fore-
cast.

(b) Let x̃n
n+1 be the truncated one-step-ahead forecast as given in (3.82).

Show that
E
[
(xn+1 − x̃n

n+1)
2] = σ2(1 + θ2+2n).

Compare the result with (a), and indicate how well the finite ap-
proximation works in this case.

3.11 In the context of equation (3.56), show that, if γ(0) > 0 and γ(h) → 0
as h → ∞, then Γn is positive definite.

3.12 Suppose xt is stationary with zero mean and recall the definition of the
PACF given by (3.49) and (3.50). That is, let

εt = xt −
h−1∑
i=1

aixt−i

and

δt−h = xt−h −
h−1∑
j=1

bjxt−j

be the two residuals where {a1, . . . , ah−1} and {b1, . . . , bh−1} are chosen
so that they minimize the mean-squared errors

E[ε2t ] and E[δ2
t−h].

The PACF at lag h was defined as the cross-correlation between εt and
δt−h; that is,

φhh =
E(εtδt−h)√

E(ε2t )E(δ2
t−h)

.

Let Rh be the h × h matrix with elements ρ(i − j), i, j = 1, . . . , h, and
let ρρρh = (ρ(1), ρ(2), . . . , ρ(h))′ be the vector of lagged autocorrelations,
ρ(h) = corr(xt+h, xt). Let ρ̃ρρh = (ρ(h), ρ(h−1), . . . , ρ(1))′ be the reversed
vector. In addition, let xh

t denote the BLP of xt given {xt−1, . . . , xt−h}:

xh
t = αh1xt−1 + · · · + αhhxt−h,

as described in Property P3.3. Prove

φhh =
ρ(h) − ρ̃ρρ′

h−1R
−1
h−1ρρρh

1 − ρ̃ρρ′
h−1R

−1
h−1ρ̃ρρh−1

= αhh.

In particular, this result proves Property P3.4.
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Hint: Divide the prediction equations [see (3.56)] by γ(0) and write the
matrix equation in the partitioned form as(

Rh−1 ρ̃ρρh−1
ρ̃ρρ′

h−1 ρ(0)

)(
ααα1
αhh

)
=
(

ρρρh−1
ρ(h)

)
,

where the h × 1 vector of coefficients ααα = (αh1, . . . , αhh)′ is partitioned
as ααα = (ααα′

1, αhh)′.

3.13 Suppose we wish to find a prediction function g(x) that minimizes

MSE = E[(y − g(x))2],

where x and y are jointly distributed random variables with density func-
tion f(x, y).

(a) Show that MSE is minimized by the choice

g(x) = E(y
∣∣ x).

Hint:

MSE =
∫ [∫

(y − g(x))2f(y|x)dy

]
f(x)dx.

(b) Apply the above result to the model

y = x2 + z,

where x and z are independent zero-mean normal variables with
variance one. Show that MSE = 1.

(c) Suppose we restrict our choices for the function g(x) to linear func-
tions of the form

g(x) = a + bx

and determine a and b to minimize MSE. Show that a = 1 and

b =
E(xy)
E(x2)

= 0

and MSE = 3. What do you interpret this to mean?

3.14 For an AR(1) model, determine the general form of the m-step-ahead
forecast xt

t+m and show

E[(xt+m − xt
t+m)2] = σ2

w

1 − φ2m

1 − φ2 .

3.15 Consider the ARMA(1,1) model discussed in Example 3.6, equation (3.26);
that is, xt = .9xt−1 + .5wt−1 + wt. Show that truncated prediction as
defined in (3.81) is equivalent to truncated prediction using the recursive
formula (3.82).

3.16 Verify statement (3.78), that for a fixed sample size, the ARMA predic-
tion errors are correlated.
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Section 3.6

3.17 Let Mt represent the cardiovascular mortality series discussed in Chap-
ter 2, Example 2.2. Fit an AR(2) model to the data using linear regres-
sion and using Yule–Walker.

(a) Compare the parameter estimates obtained by the two methods.
(b) Compare the estimated standard errors of the coefficients obtained

by linear regression with their corresponding asymptotic approxi-
mations, as given in Property P3.9.

3.18 Suppose x1, . . . , xn are observations from an AR(1) process with µ = 0.

(a) Show the backcasts can be written as xn
t = φ1−tx1, for t ≤ 1.

(b) In turn, show, for t ≤ 1, the backcasted errors are ŵt(φ) = xn
t −

φxn
t−1 = φ1−t(1 − φ2)x1.

(c) Use the result of (b) to show
∑1

t=−∞ ŵ2
t (φ) = (1 − φ2)x2

1.
(d) Use the result of (c) to verify the unconditional sum of squares,

S(φ), can be written in the innovations form as
∑n

t=−∞ ŵ2
t (φ).

(e) Find xt−1
t and rt−1

t , and show that S(φ) can also be written as∑n
t=1(xt − xt−1

t )2
/

rt−1
t .

3.19 Generate n = 500 observations from the ARMA model given by

xt = .9xt−1 + wt − .9wt−1,

with wt ∼ iid N(0, 1). Plot the simulated data, compute the sample ACF
and PACF of the simulated data, and fit an ARMA(1, 1) model to the
data. What happened and how do you explain the results?

3.20 Generate 10 realizations of length n = 200 of a series from an ARMA(1,1)
model with φ1 = .90, θ1 = .2 and σ2 = .25. Fit the model by nonlin-
ear least squares or maximum likelihood in each case and compare the
estimators to the true values.

3.21 Generate n = 50 observations from a Gaussian AR(1) model with φ = .99
and σw = 1. Using an estimation technique of your choice, compare
the approximate asymptotic distribution of your estimate (the one you
would use for inference) with the results of a bootstrap experiment (use
B = 200).

3.22 Using Example 3.30 as your guide, find the Gauss–Newton procedure
for estimating the autoregressive parameter, φ, from the AR(1) model,
xt = φxt−1 +wt, given data x1, . . . , xn. Does this procedure produce the
unconditional or the conditional estimator? Hint: Write the model as
wt(φ) = xt − φxt−1; your solution should work out to be a non-recursive
procedure.
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3.23 Consider the stationary series generated by

xt = α + φxt−1 + wt + θwt−1,

where E(xt) = µ, |θ| < 1, |φ| < 1 and the wt are iid random variables
with zero mean and variance σ2

w.

(a) Determine the mean as a function of α for the above model. Find
the autocovariance and ACF of the process xt, and show that the
process is weakly stationary. Is the process strictly stationary?

(b) Prove the limiting distribution as n → ∞ of the sample mean,

x̄ = n−1
n∑

t=1

xt,

is normal, and find its limiting mean and variance in terms of α, φ,
θ, and σ2

w. (Note: This part uses results from Appendix A.)

3.24 A problem of interest in the analysis of geophysical time series involves
a simple model for observed data containing a signal and a reflected
version of the signal with unknown amplification factor a and unknown
time delay δ. For example, the depth of an earthquake is proportional
to the time delay δ for the P wave and its reflected form pP on a seismic
record. Assume the signal is white and Gaussian with variance σ2

s , and
consider the generating model

xt = st + ast−δ.

(a) Prove the process xt is stationary. If |a| < 1, show that

st =
∞∑

j=0

(−a)jxt−δj

is a mean square convergent representation for the signal st, for
t = 1,±1,±2, . . ..

(b) If the time delay δ is assumed to be known, suggest an approximate
computational method for estimating the parameters a and σ2

s using
maximum likelihood and the Gauss–Newton method.

(c) If the time delay δ is an unknown integer, specify how we could
estimate the parameters including δ. Generate a n = 500 point
series with a = .9, σ2

w = 1 and δ = 5. Estimate the integer time
delay δ by searching over δ = 3, 4, . . . , 7.
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3.25 Forecasting with estimated parameters: Let x1, x2, . . . , xn be a sample
of size n from a causal AR(1) process, xt = φxt−1 + wt. Let φ̂ be the
Yule–Walker estimator of φ.

(a) Show φ̂ − φ = Op(n−1/2). See Appendix A for the definition of
Op(·).

(b) Let xn
n+1 be the one-step-ahead forecast of xn+1 given the data

x1, . . . , xn, based on the known parameter, φ, and let x̂n
n+1 be the

one-step-ahead forecast when the parameter is replaced by φ̂. Show
xn

n+1 − x̂n
n+1 = Op(n−1/2).

Section 3.7

3.26 Suppose
yt = β0 + β1t + · · · + βqt

q + xt, βq �= 0,

where xt is stationary. First, show that ∇kxt is stationary for any k =
1, 2, . . . , and then show that ∇kyt is not stationary for k < q, but is
stationary for k ≥ q.

3.27 Verify that the IMA(1,1) model given in (3.131) can be inverted and
written as (3.132).

3.28 For the logarithm of the glacial varve data, say, xt, presented in Example
3.31, use the first 100 observations and calculate the EWMA, x̃t

t+1, given
in (3.134) for t = 1, . . . , 100, using λ = .25, .50, and .75, and plot the
EWMAs and the data superimposed on each other. Comment on the
results.

Section 3.8

3.29 In Example 3.36, we presented the diagnostics for the MA(2) fit to the
GNP growth rate series. Using that example as a guide, complete the
diagnostics for the AR(1) fit.

3.30 Using the gas price series described in Problem 2.9, fit an ARIMA(p, d, q)
model to the data, performing all necessary diagnostics. Comment.

3.31 The second column in the data file globtemp2.dat are annual global
temperature deviations from 1880 to 2004. The data are an update to
the Hansen-Lebedeff global temperature data and the url of the data
source is in the file. Fit an ARIMA(p, d, q) model to the data, performing
all of the necessary diagnostics. After deciding on an appropriate model,
forecast (with limits) the next 10 years. Comment. In R, use read.table
to load the data file.
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3.32 One of the series collected along with particulates, temperature, and
mortality described in Example 2.2 is the sulfur dioxide series. Fit an
ARIMA(p, d, q) model to the data, performing all of the necessary diag-
nostics. After deciding on an appropriate model, forecast the data into
the future four time periods ahead (about one month) and calculate 95%
prediction intervals for each of the four forecasts. Comment.

Section 3.9

3.33 Consider the ARIMA model

xt = wt + Θwt−2.

(a) Identify the model using the notation ARIMA(p, d, q) × (P, D, Q)s.

(b) Show that the series is invertible for |Θ| < 1, and find the coefficients
in the representation

wt =
∞∑

k=0

πkxt−k.

(c) Develop equations for the m-step ahead forecast, x̃n+m, and its
variance based on the infinite past, xn, xn−1, . . . .

3.34 Sketch the ACF of the seasonal ARIMA(0, 1)×(1, 0)12 model with Φ = .8
and θ = .5.

3.35 Fit a seasonal ARIMA model of your choice to the unemployment data
displayed in Figure 3.22. Use the estimated model to forecast the next
12 months.

3.36 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth Series
(birth.dat). Use the estimated model to forecast the next 12 months.

3.37 Fit an appropriate seasonal ARIMA model to the log-transformed John-
son and Johnson earnings series of Example 1.1. Use the estimated model
to forecast the next 4 quarters.

The following problems require the supplemental material given in Appendix B

3.38 Suppose xt =
∑p

j=1 φjxt−j +wt, where φp �= 0 and wt is white noise such
that wt is uncorrelated with {xk; k < t}. Use the Projection Theorem to
show that, for n > p, the BLP of xn+1 on sp{xk, k ≤ n} is

x̂n+1 =
p∑

j=1

φjxn+1−j .
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3.39 Use the Projection Theorem to derive the Innovations Algorithm, Prop-
erty P3.6, equations (3.68)-(3.70). Then, use Theorem B.2 to derive the
m-step-ahead forecast results given in (3.71) and (3.72).

3.40 Consider the series xt = wt − wt−1, where wt is a white noise process
with mean zero and variance σ2

w. Suppose we consider the problem of
predicting xn+1, based on only x1, . . . , xn. Use the Projection Theorem
to answer the questions below.

(a) Show the best linear predictor is

xn
n+1 = − 1

n + 1

n∑
k=1

k xk.

(b) Prove the mean square error is

E(xn+1 − xn
n+1)

2 =
n + 2
n + 1

σ2
w.

3.41 Use Theorem B.2 and B.3 to verify (3.105).

3.42 Prove Theorem B.2.

3.43 Prove Property P3.2.



Chapter 4

Spectral Analysis and
Filtering

4.1 Introduction

The notion that a time series exhibits repetitive or regular behavior over time
is of fundamental importance because it distinguishes time series analysis from
classical statistics, which assumes complete independence over time. We have
seen how dependence over time can be introduced through models that de-
scribe in detail the way certain empirical data behaves, even to the extent of
producing forecasts based on the models. It is natural that models based on
predicting the present as a regression on the past, such as are provided by the
celebrated ARIMA or state-space forms, will be attractive to statisticians, who
are trained to view nature in terms of linear models. In fact, the difference
equations used to represent these kinds of models are simply the discrete ver-
sions of linear differential equations that may, in some instances, provide the
ideal physical model for a certain phenomenon. An alternate version of the
way nature behaves exists, however, and is based on a decomposition of an
empirical series into its regular components.

In this chapter, we argue, the concept of regularity of a series can best be
expressed in terms of periodic variations of the underlying phenomenon that
produced the series, expressed as Fourier frequencies being driven by sines
and cosines. Such a possibility was discussed in Chapters 1 and 2. From
a regression point of view, we may imagine a system responding to various
driving frequencies by producing linear combinations of sine and cosine func-
tions. Expressed in these terms, the time domain approach may be thought
of as regression of the present on the past, whereas the frequency domain ap-
proach may be considered as regression of the present on periodic sines and
cosines. The frequency domain approaches are the focus of this chapter and

174
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Chapter 7. To illustrate the two methods for generating series with a single
primary periodic component, consider Figure 1.9, which was generated from a
simple second-order autoregressive model, and the middle and bottom panels
of Figure 1.11, which were generated by adding a cosine wave with a period
of 50 points to white noise. Both series exhibit strong periodic fluctuations,
illustrating that both models can generate time series with regular behavior.
As discussed in Examples 2.7–2.9, a fundamental objective of spectral analysis
is to identify the dominant frequencies in a series and to find an explanation
of the system from which the measurements were derived.

Of course, the primary justification for any alternate model must lie in its
potential for explaining the behavior of some empirical phenomenon. In this
sense, an explanation involving only a few kinds of primary oscillations be-
comes simpler and more physically meaningful than a collection of parameters
estimated for some selected difference equation. It is the tendency of observed
data to show periodic kinds of fluctuations that justifies the use of frequency
domain methods. Many of the examples in §1.2 are time series representing real
phenomena that are driven by periodic components. The speech recording of
the syllable aa...hh in Figure 1.3 contains a complicated mixture of frequencies
related to the opening and closing of the glottis. Figure 1.5 shows the monthly
SOI, which we later explain as a combination of two kinds of periodicities, a
seasonal periodic component of 12 months and an El Niño component of about
three to five years. Of fundamental interest is the return period of the El Niño
phenomenon, which can have profound effects on local climate. Also of in-
terest is whether the different periodic components of the new fish population
depend on corresponding seasonal and El Niño-type oscillations. We introduce
the coherence as a tool for relating the common periodic behavior of two series.
Seasonal periodic components are often pervasive in economic time series; this
phenomenon can be seen in the quarterly earnings series shown in Figure 1.1.
In Figure 1.6, we see the extent to which various parts of the brain will respond
to a periodic stimulus generated by having the subject do alternate left and
right finger tapping. Figure 1.7 shows series from an earthquake and a nuclear
explosion. The relative amounts of energy at various frequencies for the two
phases can produce statistics, useful for discriminating between earthquakes
and explosions.

In this chapter, we summarize an approach to handling correlation gen-
erated in stationary time series that begins by transforming the series to the
frequency domain. This simple linear transformation essentially matches sines
and cosines of various frequencies against the underlying data and serves two
purposes as discussed in Examples 2.7 and 2.8. The periodogram that was
introduced in Example 2.8 has its population counterpart called the power
spectrum, and its estimation is a main goal of spectral analysis. Another
purpose of exploring this topic is statistical convenience resulting from the pe-
riodic components being nearly uncorrelated. This property facilitates writing
likelihoods based on classical statistical methods

An important part of analyzing data in the frequency domain, as well as
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the time domain, is the investigation and exploitation of the properties of the
time-invariant linear filter. This special linear transformation is used similarly
to linear regression in conventional statistics, and we use many of the same
terms in the time series context. We have previously mentioned the coherence
as a measure of the relation between two series at a given frequency, and
we show later that this coherence also measures the performance of the best
linear filter relating the two series. Linear filtering can also be an important
step in isolating a signal embedded in noise. For example, the lower panels
of Figure 1.11 contain a signal contaminated with an additive noise, whereas
the upper panel contains the pure signal. It might also be appropriate to ask
whether a linear filter transformation exists that could be applied to the lower
panel to produce a series closer to the signal in the upper panel. The use
of filtering for reducing noise will also be a part of the presentation in this
chapter. We emphasize, throughout, the analogy between filtering techniques
and conventional linear regression.

Many frequency scales will often coexist, depending on the nature of the
problem. For example, in the Johnson & Johnson data set in Figure 1.1,
the predominant frequency of oscillation is one cycle per year (4 quarters), or
.25 cycles per observation. The predominant frequency in the SOI and fish
populations series in Figure 1.5 is also one cycle per year, but this corresponds
to 1 cycle every 12 months, or .083 cycles per observation. For simplicity, we
measure frequency, ω, at cycles per time point and discuss the implications of
certain frequencies in terms of the problem context. Of descriptive interest is
the period of a time series, defined as the number of points in a cycle, i.e.,

T =
1
ω

. (4.1)

Hence, the predominant period of the Johnson & Johnson series is 1/.25 or
4 quarters per cycle, whereas the predominant period of the SOI series is 12
months per cycle.

4.2 Cyclical Behavior and Periodicity

As previously mentioned, we have already encountered the notion of periodicity
in numerous examples in Chapters 1 and 2. The general notion of periodicity
can be made more precise by introducing some terminology. In order to define
the rate at which a series oscillates, we first define a cycle as one complete
period of a sine or cosine function defined over a time interval of length 2π.
As in (1.5), we consider the periodic process

xt = A cos(2πωt + φ) (4.2)

for t = 0,±1,±2, . . ., where ω is a frequency index, defined in cycles per unit
time with A determining the height or amplitude of the function and φ, called
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the phase, determining the start point of the cosine function. We can introduce
random variation in this time series by allowing the amplitude and phase to
vary randomly.

As discussed in Example 2.7, for purposes of data analysis, it is easier to
use a trigonometric identity1 and write (4.2) as

xt = U1 cos(2πωt) + U2 sin(2πωt), (4.3)

where U1 = A cos φ and U2 = −A sin φ are often taken to be normally distrib-
uted random variables. In this case, the amplitude is A =

√
U2

1 + U2
2 and the

phase is φ = tan−1(−U2/U1). From these facts we can show that if, and only
if, in (4.2), A and φ are independent random variables, where A2 is chi-squared
with 2 degrees of freedom, and φ is uniformly distributed on (−π, π), then U1
and U2 are independent, standard normal random variables (see Problem 4.2).

The above random process is also a function of its frequency, defined by
the parameter ω. The frequency is measured in cycles per unit time, or in
cycles per point in the above illustration. For ω = 1, the series makes one
cycle per time unit; for ω = .50, the series makes a cycle every two time units;
for ω = .25, every four units, and so on. In general, data that occurs at
discrete time points will need at least two points to determine a cycle, so the
highest frequency of interest is .5 cycles per point. This frequency is called
the folding frequency and defines the highest frequency that can be seen in
discrete sampling. Higher frequencies sampled this way will appear at lower
frequencies, called aliases; an example is the way a camera samples a rotating
wheel on a moving automobile in a movie, in which the wheel appears to be
rotating at a different rate. For example, movies are recorded at 24 frames per
second. If the camera is filming a wheel that is rotating at the rate of 24 cycles
per second (or 24 Hertz), the wheel will appear to stand still (that’s about 110
miles per hour in case you were wondering).

Consider a generalization of (4.3) that allows mixtures of periodic series,
with multiple frequencies and amplitudes.

xt =
q∑

k=1

[Uk1 cos(2πωkt) + Uk2 sin(2πωkt)] , (4.4)

where Uk1, Uk2, for k = 1, 2, . . . , q, are independent zero-mean random vari-
ables with variances σ2

k, and the ωk are distinct frequencies. Notice that (4.4)
exhibits the process as a sum of independent components, with variance σ2

k for
frequency ωk. Using the independence of the Us and a trig identity,1 it is easy
to show (Problem 4.3) that the autocovariance function of the process is

γ(h) =
q∑

k=1

σ2
k cos(2πωkh), (4.5)

1cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β).
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Figure 4.1 Periodic components and their sum as described in Example 4.1.

and we note the autocovariance function is the sum of periodic components
with weights proportional to the variances σ2

k. Hence, xt is a mean-zero sta-
tionary processes with variance

γ(0) = E(x2
t ) =

q∑
k=1

σ2
k, (4.6)

which exhibits the overall variance as a sum of variances of each of the com-
ponent parts.

Example 4.1 A Periodic Series

Figure 4.1 shows an example of the mixture (4.4) with q = 3 constructed
in the following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2πt 6/100) + 3 sin(2πt 6/100)

xt2 = 4 cos(2πt 10/100) + 5 sin(2πt 10/100)

xt3 = 6 cos(2πt 40/100) + 7 sin(2πt 40/100)

These three series are displayed in Figure 4.1 along with the correspond-
ing frequencies and squared amplitudes. For example, the squared am-
plitude of xt1 is 22 +32 = 13. Hence, the maximum and minimum values
that xt1 will attain are ±√

13 = ±3.61.
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Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears
to behave as some of the periodic series we saw in Chapters 1 and 2. The
systematic sorting out of the essential frequency components in a time
series, including their relative contributions, constitutes one of the main
objectives of spectral analysis.

The R code to reproduce Figure 4.1 is

> t = 1:100
> x1 = 2*cos(2*pi*t*6/100) + 3*sin(2*pi*t*6/100)
> x2 = 4*cos(2*pi*t*10/100) + 5*sin(2*pi*t*10/100)
> x3 = 6*cos(2*pi*t*40/100) + 7*sin(2*pi*t*40/100)
> x = x1 + x2 + x3
> par(mfrow=c(2,2))
> plot.ts(x1, ylim=c(-16,16), main="freq=6/100, ampˆ2=13")
> plot.ts(x2, ylim=c(-16,16), main="freq=10/100, ampˆ2=41")
> plot.ts(x3, ylim=c(-16,16), main="freq=40/100, ampˆ2=85")
> plot.ts(x, ylim=c(-16,16), main="sum")

Example 4.2 The Scaled Periodogram for Example 4.1

In §2.3, Example 2.8, we introduced the periodogram as a way to dis-
cover the periodic components of a time series. Recall that the scaled
periodogram is given by

P (j/n) =

(
2
n

n∑
t=1

xt cos(2πtj/n)

)2

+

(
2
n

n∑
t=1

xt sin(2πtj/n)

)2

(4.7)

and it may regarded as a measure of the squared correlation of the data
with sinusoids oscillating at a frequency of ωj = j/n, or j cycles in n
time points. Recall that we are basically computing the regression of
the data on the sinusoids varying at the fundamental frequencies, j/n.
As discussed in Example 2.8, the periodogram may be computed quickly
using the fast Fourier transform (FFT), and there is no need to run
repeated regressions.

The scaled periodogram of the data, xt, simulated in Example 4.1 is
shown in Figure 4.2, and it clearly identifies the three components xt1, xt2,
and xt3 of xt. Moreover, the heights of the scaled periodogram shown in
the figure are

P (6/100) = 13, P (10/100) = 41, P (40/100) = 85

and P (j/n) = 0 otherwise. These are exactly the values of the squared
amplitudes of the components generated in Example 4.1. This outcome
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Figure 4.2 Periodogram of the data generated in Example 4.1.

suggests that the periodogram may provide some insight into the variance
components, (4.6), of a real set of data.

Assuming the simulated data, x, were retained from the previous exam-
ple, the R code to reproduce Figure 4.2 is

> P = abs(2*fft(x)/100)ˆ2
> f = 0:50/100
> plot(f, P[1:51], type="o", xlab="frequency",
+ ylab="periodogram")

A curious reader may also wish to plot the entire periodogram over all
fundamental frequencies between zero and one. A quick and easy way to
do this is to use the command plot.ts(P).

If we consider the data xt in Example 4.1 as a color (waveform) made up
of primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we might
consider the periodogram as a prism that decomposes the color xt into its
primary colors (spectrum). Hence the term spectral analysis.

Another fact that may be of use in understanding the periodogram is that
for any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +
(n−1)/2∑

j=1

[aj cos(2πt j/n) + bj sin(2πt j/n)] , (4.8)

for t = 1, . . . , n and suitably chosen coefficients. If n is even, the representation
(4.8) can be modified by summing to (n/2 − 1) and adding an additional
component given by an/2 cos(2πt 1/2) = an/2(−1)t. The crucial point here
is that (4.8) is exact for any sample. Hence (4.4) may be thought of as an
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approximation to (4.8), the idea being that many of the coefficients in (4.8)
may be close to zero. Recall from Example 2.8, that

P (j/n) = a2
j + b2

j , (4.9)

so the scaled periodogram indicates which periodic components in (4.8) are
large and which components are small. We also saw (4.9) in Example 4.2.

The periodogram, which was introduced in Schuster (1898) and used in
Schuster (1906) for studying the periodicities in the sunspot series (shown in
Figure 4.31 in the Problems section) is a sample based statistic. In Exam-
ple 4.2, we discussed the fact that the periodogram may be giving us an idea
of the variance components associated with each frequency, as presented in
(4.6), of a time series. These variance components, however, are population
parameters. The concepts of population parameters and sample statistics, as
they relate to spectral analysis of time series can be generalized to cover sta-
tionary time series and that is the topic of the next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components, appearing in
proportion to their underlying variances, is fundamental in the spectral repre-
sentation given in Theorem C.2 of Appendix C. The result is quite technical
because it involves stochastic integration; that is, integration with respect to a
stochastic process. In nontechnical terms, Theorem C.2 says that (4.4) is ap-
proximately true for any stationary time series. In other words, any stationary
time series may be thought of, approximately, as the random superposition of
sines and cosines oscillating at various frequencies.

Given that (4.4) is approximately true for all stationary time series, the
next question is whether a meaningful representation for its autocovariance
function, like the one displayed in (4.5), also exists. The answer is yes, and
this representation is given in Theorem C.1 of Appendix C. The following
example will help explain the result.

Example 4.3 A Periodic Stationary Process

Consider a periodic stationary random process given by (4.3), with a
fixed frequency ω0, say,

xt = U1 cos(2πω0t) + U2 sin(2πω0t),

where U1 and U2 are independent zero-mean random variables with equal
variance σ2. The number of time periods needed for the above series to
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complete one cycle is exactly 1/ω0, and the process makes exactly ω0
cycles per point for t = 0,±1,±2, . . .. It is easily shown that2

γ(h) = σ2 cos(2πω0h) =
σ2

2
e−2πiω0h +

σ2

2
e2πiω0h

=
∫ 1/2

−1/2
e2πiωhdF (ω)

using a Riemann–Stieltjes integration, where F (ω) is the function defined
by

F (ω) =

⎧⎨⎩ 0 ω < −ω0
σ2/2, −ω0 ≤ ω < ω0
σ2 ω ≥ ω0 .

The function F (ω) behaves like a cumulative distribution function for a
discrete random variable, except that F (∞) = σ2 = γx(0) instead of one.
In fact, F (ω) is a cumulative distribution function, not of probabilities,
but rather of variances associated with the frequency ω0 in an analysis of
variance, with F (∞) being the total variance of the process xt. Hence,
we term F (ω) the spectral distribution function.

Theorem C.1 in Appendix C states that a representation such as the one
given in Example 4.3 always exists for a stationary process. In particular, if
xt is stationary with autocovariance γ(h) = E[(xt+h − µ)(xt − µ)], then there
exists a unique monotonically increasing function F (ω), called the spectral
distribution function, that is bounded, with F (−∞) = F (−1/2) = 0, and
F (∞) = F (1/2) = γ(0) such that

γ(h) =
∫ 1/2

−1/2
e2πiωh dF (ω). (4.10)

A more important situation we use repeatedly is the one covered by The-
orem C.3, where it is shown that, subject to absolute summability of the au-
tocovariance, the spectral distribution function is absolutely continuous with
dF (ω) = f(ω) dω, and the representation (4.10) becomes the motivation for
the property given below.

Property P4.1: The Spectral Density
If the autocovariance function, γ(h), of a stationary process satisfies

∞∑
h=−∞

|γ(h)| < ∞, (4.11)

2Some identities may be helpful here: eiα = cos(α)+ i sin(α), so cos(α) = (eiα +e−iα)/2
and sin(α) = (eiα − e−iα)/2i.
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then it has the representation

γ(h) =
∫ 1/2

−1/2
e2πiωh f(ω) dω h = 0,±1,±2, . . . (4.12)

as the inverse transform of the spectral density, which has the representation

f(ω) =
∞∑

h=−∞
γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.13)

This spectral density is the analogue of the probability density function;
the fact that γ(h) is non-negative definite ensures

f(ω) ≥ 0

for all ω (see Appendix C, Theorem C.3 for details). It follows immediately
from (4.12) and (4.13) that

f(ω) = f(−ω)

and
f(ω + 1) = f(ω),

verifying the spectral density is an even function of period one. Because of
the evenness, we will typically only plot f(ω) for ω ≥ 0. In addition, putting
h = 0 in (4.12) yields

γ(0) = var(xt) =
∫ 1/2

−1/2
f(ω) dω,

which expresses the total variance as the integrated spectral density over all of
the frequencies. We show later on, that a linear filter can isolate the variance
in certain frequency intervals or bands.

Analogous to probability theory, γ(h) in (4.12) is the characteristic function
of the spectral density f(ω) in (4.13). These facts should make it clear that,
when the condition of Property P4.1 is satisfied, the autocovariance function
γ(h) and the spectral density function f(ω) contain the same information.
That information, however, is expressed in different ways. The autocovariance
function expresses information in terms of lags, whereas the spectral density
expresses the same information in terms of cycles. Some problems are easier to
work with when considering lagged information and we would tend to handle
those problems in the time domain. Nevertheless, other problems are easier to
work with when considering periodic information and we would tend to handle
those problems in the spectral domain.

We also mention, at this point, that we have been focusing on the frequency
ω, expressed in cycles per point rather than the more common (in statistics)



184 Spectral Analysis and Filtering

alternative λ = 2πω that would give radians per point. Finally, the absolute
summability condition, (4.11), is not satisfied by (4.5), the example that we
have used to introduce the idea of a spectral representation. The condition,
however, is satisfied for ARMA models.

We note that the autocovariance function, γ(h), in (4.12) and the spectral
density, f(ω), in (4.13) are Fourier transform pairs. In general, we have the
following definition.

Definition 4.1 For a general function {at; t = 0,±1,±2, . . .} satisfying the
absolute summability condition

∞∑
t=−∞

|at| < ∞, (4.14)

we define a Fourier transform pair to be of the form

A(ω) =
∞∑

t=−∞
ate−2πiωt (4.15)

and

at =
∫ 1/2

−1/2
A(ω)e2πiωt dω. (4.16)

The use of (4.12) and (4.13) as Fourier transform pairs is fundamental in the
study of stationary discrete time processes. Under the summability condition
(4.11), the Fourier transform pair (4.12) and (4.13) will exist and this relation
is unique. If f(ω) and g(ω) are two spectral densities for which∫ 1/2

−1/2
f(ω)e2πiωh dω =

∫ 1/2

−1/2
g(ω)e2πiωh dω (4.17)

for all h = 0,±1,±2, . . . , then

f(ω) = g(ω) (4.18)

almost everywhere.
It is illuminating to examine the spectral density for the series that we have

looked at in earlier discussions.

Example 4.4 White Noise Series

As a simple example, consider the theoretical power spectrum of a se-
quence of uncorrelated random variables, wt, with variance σ2

w. A sim-
ulated set of data is displayed in the top of Figure 1.8. Because the
autocovariance function was computed in Example 1.16 as γw(h) = σ2

w

for h = 0, and zero, otherwise, it follows from (4.13) that

fw(ω) = σ2
w
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Figure 4.3 Theoretical spectra of white noise (top), smoothed white noise
(middle), and a second-order autoregressive process (bottom).

for −1/2 ≤ ω ≤ 1/2 with the resulting equal power at all frequencies.
This property is seen in the realization, which seems to contain all dif-
ferent frequencies in a roughly equal mix. In fact, the name white noise
comes from the analogy to white light, which contains all frequencies in
the color spectrum. Figure 4.3 shows a plot of the white noise spectrum
for σ2

w = 1.

Example 4.5 A Simple Moving Average

A series that does not have an equal mix of frequencies is the smoothed
white noise series shown in the bottom panel of Figure 1.8. Specifically,
we construct the three-point moving average series, defined by

vt =
1
3
(
wt−1 + wt + wt+1

)
.

It is clear from the sample realization that the series has less of the higher
or faster frequencies, and we calculate its power spectrum to verify this
observation. We have previously computed the autocovariance of this
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process in Example 1.17, obtaining

γv(h) =
σ2

w

9

(
3 − |h|

)
for |h| ≤ 2 and γy(h) = 0 for |h| > 2. Then, using (4.13) gives

fv(ω) =
2∑

h=−2

γy(h) e−2πiωh

=
σ2

w

9
(
e−4πiω + e4πiω

)
+

2σ2
w

9
(
e−2πiω + e2πω

)
+

3σ2
w

9

=
σ2

w

9
[
3 + 4 cos(2πω) + 2 cos(4πω)

]
.

Plotting the spectrum for σ2
w = 1, as in Figure 4.3, shows the lower

frequencies near zero have greater power and the higher or faster fre-
quencies, say, ω > .2, tend to have less power.

Example 4.6 A Second-Order Autoregressive Series

As a final example, we consider the spectrum of an AR(2) series of the
form

xt − φ1xt−1 − φ2xt−2 = wt,

for the special case φ1 = 1 and φ2 = −.9. Recall Example 1.10 and
Figure 1.9, which shows a sample realization of such a process for σw = 1.
We note the data exhibit a strong periodic component that makes a cycle
about every six points. First, computing the autocovariance function of
the right side and equating it to the autocovariance on the left yields

γw(h) = E[(xt+h − φ1xt+h−1 − φ2xt+h−2)(xt − φ1xt−1 − φ2xt−2)]
= [1 + φ2

1 + φ2
2]γx(h) + (φ1φ2 − φ1)[γx(h + 1) + γx(h − 1)]

− φ2[γx(h + 2) + γx(h − 2)]
= 2.81γx(h) − 1.90[γx(h + 1) + γx(h − 1)]

+ .90[γx(h + 2) + γx(h − 2)],

where we have substituted the values of φ1 = 1 and φ2 = −.9 in the
equation. Now, substituting the spectral representation (4.12) for γx(h)
in the above equation yields

γw(h) =
∫ 1/2

−1/2
[2.81 − 1.90(e2πiω + e−2πiω)

+ .90(e4πiω + e−4πiω)] e2πiωhfx(ω)dω

=
∫ 1/2

−1/2
[2.81 − 3.80 cos(2πω) + 1.80 cos(4πω)] e2πiωhfx(ω) dω.
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If the spectrum of the white noise process is gw(ω), the uniqueness of the
Fourier transform allows us to identify

gw(ω) = [2.81 − 3.80 cos(2πω) + 1.80 cos(4πω)] fx(ω).

But, as we have already seen, gw(ω) = σ2
w, from which we deduce that

fx(ω) =
σ2

w

2.81 − 3.80 cos(2πω) + 1.80 cos(4πω)

is the spectrum of the autoregressive series. Setting σw = 1, Figure 4.3
displays fx(ω) and shows a strong power component at about ω = .16
cycles per point or a period between six and seven cycles per point and
very little power at other frequencies. In this case, modifying the white
noise series by applying the second-order AR operator has concentrated
the power or variance of the resulting series in a very narrow frequency
band.

The above examples have been given primarily to motivate the use of the
power spectrum for describing the theoretical variance fluctuations of a sta-
tionary time series. Indeed, the interpretation of the spectral density function
as the variance of the time series over a given frequency band gives us the intu-
itive explanation for its physical meaning. The plot of the function f(ω) over
the frequency argument ω can even be thought of as an analysis of variance,
in which the columns or block effects are the frequencies, indexed by ω.

4.4 Periodogram and Discrete Fourier
Transform

We are now ready to tie together the periodogram, which is the sample-based
concept presented in §4.2, with the spectral density, which is the population-
based concept of §4.3.

Definition 4.2 Given data x1, . . . , xn, we define the discrete Fourier trans-
form (DFT) to be

d(ωj) = n−1/2
n∑

t=1

xte
−2πiωjt (4.19)

for j = 0, 1, . . . , n − 1, where the frequencies ωj = j/n are called the Fourier
or fundamental frequencies.

If n is a highly composite integer (i.e., it has many factors), the DFT can
be computed by the fast Fourier transform (FFT) introduced in Cooley and
Tukey (1965). Also, different packages scale the FFT differently, so it is a
good idea to consult the documentation. R computes the DFT defined in
(4.19) without the factor n−1/2, but with an additional factor of e2πiωj that
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can be ignored because we will be interested in the squared modulus of the
DFT. Sometimes it is helpful to exploit the inversion result for DFTs which
shows the linear transformation is one-to-one. For the inverse DFT we have,

xt = n−1/2
n−1∑
j=0

d(ωj)e2πiωjt (4.20)

for t = 1, . . . , n. The following example shows how to calculate the DFT and its
inverse in R for the data set {1, 2, 3, 4}; note that R writes a complex number
z = a + ib as a+bi.

> x = 1:4
> dft = fft(x)/sqrt(4)
> dft

[1] 5+0i -1+1i -1+0i -1-1i
> idft = fft(dft, inverse=T)/sqrt(4)
> idft

[1] 1+0i 2+0i 3+0i 4+0i

We now define the periodogram as the squared modulus3 of the DFT.

Definition 4.3 Given data x1, . . . , xn, we define the periodogram to be

I(ωj) = |d(ωj)|2 (4.21)

for j = 0, 1, 2, . . . , n − 1.

Note that I(0) = nx̄2, where x̄ is the sample mean. In addition, because∑n
t=1 exp(−2πiωjt) = 0 for j �= 0,4 we can write the DFT as

d(ωj) = n−1/2
n∑

t=1

(xt − x̄)e−2πiωjt (4.22)

for j �= 0. Thus, for j �= 0,

I(ωj) = |d(ωj)|2 = n−1
n∑

t=1

n∑
s=1

(xt − x̄)(xs − x̄)e−2πiωj(t−s)

= n−1
n−1∑

h=−(n−1)

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄)e−2πiωjh

=
n−1∑

h=−(n−1)

γ̂(h)e−2πiωjh (4.23)

3If z = a + ib is a complex number, then z̄ = a − ib, and |z|2 = zz̄ = a2 + b2.
4Note

∑n

t=1 zt = z 1−zn

1−z
for z �= 1.
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where we have put h = t − s, with γ̂(h) as given in (1.36).
Recall, P (ωj) = (4/n)I(ωj) where P (ωj) is the scaled periodogram defined

in (4.7). Henceforth we will work with I(ωj) instead of P (ωj). Note that, in
view of (4.23), I(ωj) in (4.21) is the sample version of f(ωj) given in (4.13).
That is, we may think of the periodogram, I(ωj), as the “sample spectral
density” of xt.

It is sometimes useful to work with the real and imaginary parts of the
DFT individually. To this end, we define the following transforms.

Definition 4.4 Given data x1, . . . , xn, we define the cosine transform

dc(ωj) = n−1/2
n∑

t=1

xt cos(2πωjt) (4.24)

and the sine transform

ds(ωj) = n−1/2
n∑

t=1

xt sin(2πωjt) (4.25)

where ωj = j/n for j = 0, 1, . . . , n − 1.

We note that d(ωj) = dc(ωj) − i ds(ωj) and hence

I(ωj) = d2
c(ωj) + d2

s(ωj). (4.26)

We have also discussed the fact that spectral analysis can be thought of as
an analysis of variance. The next example examines this notion.

Example 4.7 Spectral ANOVA

Let x1, . . . , xn be a sample of size n, where for ease, n is odd. Then,
recalling Example 2.8 and the discussion around (4.8) and (4.9),

xt = a0 +
m∑

j=1

[aj cos(2πωjt) + bj sin(2πωjt)] , (4.27)

where m = (n − 1)/2, is exact for t = 1, . . . , n. In particular, using
multiple regression formulas, we have a0 = x̄,

aj =
2
n

n∑
t=1

xt cos(2πωjt) =
2√
n

dc(ωj)

bj =
2
n

n∑
t=1

xt sin(2πωjt) =
2√
n

ds(ωj).

Hence, we may write

(xt − x̄) =
2√
n

m∑
j=1

[dc(ωj) cos(2πωjt) + ds(ωj) sin(2πωjt)]



190 Spectral Analysis and Filtering

for t = 1, . . . , n. Squaring both sides and summing we have5

n∑
t=1

(xt − x̄)2 = 2
m∑

j=1

[
d2

c(ωj) + d2
s(ωj)

]
= 2

m∑
j=1

I(ωj).

Thus, we have partitioned the sum of squares into harmonic components
represented by frequency ωj with the periodogram, I(ωj), being the mean
square regression. This leads to the ANOVA table:

Source df SS MS
ω1 2 2I(ω1) I(ω1)
ω2 2 2I(ω2) I(ω2)
...

...
...

...
ωm 2 2I(ωm) I(ωm)

Total n − 1
∑n

t=1(xt − x̄)2

This decomposition means that if the data contain some strong peri-
odic components, then the periodogram values corresponding to those
frequencies (or near those frequencies) will be large. On the other hand,
the corresponding values of the periodogram will be small for periodic
components not present in the data. The following is an R example
to help explain this concept. We consider n = 5 observations given by
x1 = 1, x2 = 2, x3 = 3, x4 = 2, x5 = 1. Note that the data complete one
cycle, but not in a sinusoidal way. Thus, we should expect the ω1 = 1/5
component to be relatively large but not exhaustive, and the ω2 = 2/5
component to be small.

> x = c(1,2,3,2,1)
> t = 1:5
> c1 = cos(2*pi*t*1/5)
> s1 = sin(2*pi*t*1/5)
> c2 = cos(2*pi*t*2/5)
> s2 = sin(2*pi*t*2/5)
> creg = lm(x˜c1+s1+c2+s2)
> anova(creg) # partial output and combined ANOVA shown

# ANOVA
Df Sum Sq # Source df SS MS

c1 1 1.79443 #
s1 1 0.94721 # freq=1/5 2 2.74164 1.37082
c2 1 0.00557 #
s2 1 0.05279 # freq=2/5 2 0.05836 0.02918
Residuals 0 0.00000 #

5Recall
∑n

t=1 cos2(2πωjt) =
∑n

t=1 sin2(2πωjt) = n/2 for j �= 0 or a multiple of n. Also∑n

t=1 cos(2πωjt) sin(2πωkt) = 0 for any j and k.
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> abs(fft(x))ˆ2/5 # the periodogram (as a check)
[1] 16.2000 1.3708 0.02918 0.02918 1.3708

> # I(0) I(1/5) I(2/5) I(3/5) I(4/5)

Note that x̄ = 1.8 so I(0) = 5 × 1.82 = 16.2. Also, as a check

I(1/5) = [SS(c1) + SS(s1)]/2 = (1.79443 + .94721)/2 = 1.3708,

I(2/5) = [SS(c2) + SS(s2)]/2 = (.00557 + .05279)/2 = .02918,

and I(j/5) = I(1 − j/5), for j = 3, 4. Finally, we note that the sum of
squares associated with the residuals is zero, indicating an exact fit.

We are now ready to present some large sample properties of the peri-
odogram. First, let µ be the mean of a stationary process xt with absolutely
summable autocovariance function γ(h) and spectral density f(ω). We can use
the same argument as in (4.23), replacing x̄ by µ in (4.22), to write

I(ωj) = n−1
n−1∑

h=−(n−1)

n−|h|∑
t=1

(xt+|h| − µ)(xt − µ)e−2πiωjh (4.28)

where ωj is a non-zero fundamental frequency. Taking expectation in (4.28)
we obtain

E [I(ωj)] =
n−1∑

h=−(n−1)

(
n − |h|

n

)
γ(h)e−2πiωjh. (4.29)

For any given ω �= 0, choose a fundamental frequency ωj:n → ω as n → ∞,6

from which it follows by (4.29) that

E [I(ωj:n)] → f(ω) =
∞∑

h=−∞
γ(h)e−2πihω (4.30)

as n → ∞.7 In other words, under absolute summability of γ(h), the spectral
density is the long-term average of the periodogram.

To examine the asymptotic distribution of the periodogram, we note that
if xt is a normal time series, the sine and cosine transforms will also be jointly
normal, because they are linear combinations of the jointly normal random
variables x1, x2, . . . , xn. In that case, the assumption that the covariance func-
tion satisfies the condition

θ =
∞∑

h=−∞
|h||γ(h)| < ∞ (4.31)

6By this we mean ωj:n is a frequency of the form jn/n, where {jn} is a sequence of
integers chosen so that jn/n → ω as n → ∞.

7From Definition 4.3 we have I(0) = nx̄2, so the analogous result for the case ω = 0 is
E[I(0)] − nµ2 = n var(x̄) → f(0) as n → ∞.



192 Spectral Analysis and Filtering

is enough to obtain simple large sample approximations for the variances and
covariances. Using the same argument used to develop (4.29) we have

cov[dc(ωj), dc(ωk)] =
n∑

s=1

n∑
t=1

γ(s − t) cos(2πωjs) cos(2πωkt), (4.32)

cov[dc(ωj), ds(ωk)] =
n∑

s=1

n∑
t=1

γ(s − t) cos(2πωjs) sin(2πωkt), (4.33)

and

cov[ds(ωj), ds(ωk)] =
n∑

s=1

n∑
t=1

γ(s − t) sin(2πωjs) sin(2πωkt), (4.34)

where the variance terms are obtained by setting ωj = ωk in (4.32) and (4.34).
In Appendix C, §C.2, we show the terms in (4.32)-(4.34) have interesting prop-
erties under assumption (4.31), namely, for ωj , ωk �= 0 or 1/2,

cov[dc(ωj), dc(ωk)] =
{

f(ωj)/2 + εn, ωj = ωk

εn, ωj �= ωk
(4.35)

cov[ds(ωj), ds(ωk)] =
{

f(ωj)/2 + εn, ωj = ωk

εn, ωj �= ωk
(4.36)

and
cov[dc(ωj), ds(ωk)] = εn, (4.37)

where the error term εn in the approximations can be bounded,

|εn| ≤ θ/n, (4.38)

and θ is given by (4.31). If ωj = ωk = 0 or 1/2 in (4.35), the multiplier 1/2
disappears; note that ds(0) = ds(1/2) = 0, so (4.36) does not apply.

Example 4.8 Covariance of Sines and Cosines for an MA Process

For the three-point moving average series of Example 4.5, the theoretical
spectrum is shown in Figure 4.3. For n = 256 points, the theoretical
covariance matrix of the vector

ddd = (dc(ω26), ds(ω26), dc(ω27), ds(ω27))′

is

cov(ddd) =

⎛⎜⎜⎝
.3752 −.0009 −.0022 −.0010

−.0009 .3777 −.0009 .0003
−.0022 −.0009 .3667 −.0010
−.0010 .0003 −.0010 .3692

⎞⎟⎟⎠ .
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The diagonal elements can be compared with the theoretical spectral val-
ues of .7548 for the spectrum at frequency ω26 = .102, and of .7378 for the
spectrum at ω27 = .105. Hence, the cosine and sine transforms produce
nearly uncorrelated variables with variances approximately equal to one
half of the theoretical spectrum. For this particular case, the uniform
bound is determined from θ = 8/9, yielding |ε256| ≤ .0035 for the bound
on the approximation error.

If xt ∼ iid(0, σ2), then it follows from (4.31)-(4.37) and the central limit
theorem8 that

dc(ωj:n) ∼ AN(0, σ2/2) and ds(ωj:n) ∼ AN(0, σ2/2) (4.39)

jointly and independently, and independent of dc(ωk:n) and ds(ωk:n) provided
ωj:n → ω1 and ωk:n → ω2 where 0 < ω1 �= ω2 < 1/2. We note that in this
case, f(ω) = σ2. In view of (4.39), it follows immediately that as n → ∞,

2I(ωj:n)
σ2

d→ χ2
2 and

2I(ωk:n)
σ2

d→ χ2
2 (4.40)

with I(ωj:n) and I(ωk:n) being asymptotically independent, where χ2
ν denotes

a chi-squared random variable with ν degrees of freedom.
Using the central limit theory of §C.2, it is fairly easy to extend the results

of the iid case to the case of a linear process.

Property P4.2: Distribution of the Periodogram Ordinates
If

xt =
∞∑

j=−∞
ψjwt−j ,

∞∑
j=−∞

|ψj | < ∞ (4.41)

where wt ∼ iid(0, σ2
w), and (4.31) holds, then for any collection of m distinct

frequencies ωj with ωj:n → ωj

2I(ωj:n)
f(ωj)

d→ iid χ2
2 (4.42)

provided f(ωj) > 0, for j = 1, . . . , m.

This result is stated more precisely in Theorem C.7 of §C.3. Other ap-
proaches to large sample normality of the periodogram ordinates are in terms
of cumulants, as in Brillinger (1981), or in terms of mixing conditions, such
as in Rosenblatt (1956). We adopt the approach here used by Hannan (1970),
Fuller (1995), and Brockwell and Davis (1991).

8If Yj ∼ iid(0, σ2) and {aj} are constants for which
∑n

j=1 a2
j/ max1≤j≤n a2

j → ∞ as n →
∞, then

∑n

j=1 ajYj ∼ AN
(

0, σ2
∑n

j=1 a2
j

)
; the notation AN is explained in Definition A.5.
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The distributional result (4.42) can be used to derive an approximate con-
fidence interval for the spectrum in the usual way. Let χ2

ν(α) denote the lower
α probability tail for the chi-squared distribution with ν degrees of freedom;
that is,

Pr{χ2
ν ≤ χ2

ν(α)} = α. (4.43)

Then, an approximate 100(1−α)% confidence interval for the spectral density
function would be of the form

2 I(ωj:n)
χ2

2(1 − α/2)
≤ f(ω) ≤ 2 I(ωj:n)

χ2
2(α/2)

(4.44)

Often, nonstationary trends are present that should be eliminated before
computing the periodogram. Trends introduce extremely low frequency com-
ponents in the periodogram that tend to obscure the appearance at higher
frequencies. For this reason, it is usually conventional to center the data prior
to a spectral analysis using either mean-adjusted data of the form xt − x̄ to
eliminate the zero or d-c component or to use detrended data of the form
xt − β̂1 − β̂2t to eliminate the term that will be considered a half cycle by
the spectral analysis. Note that higher order polynomial regressions in t or
nonparametric smoothing (linear filtering) could be used in cases where the
trend is nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and
hence the periodogram, using the fast Fourier transform algorithm. The FFT
utilizes a number of redundancies in the calculation of the DFT when n is
highly composite; that is, an integer with many factors of 2, 3, or 5, the best
case being when n = 2p is a factor of 2. Details may be found in Cooley and
Tukey (1965). To accommodate this property, we can pad the centered (or
detrended) data of length n to the next highly composite integer n′ by adding
zeros, i.e., setting xc

n+1 = xc
n+2 = · · · = xc

n′ = 0, where xc
t denotes the centered

data. This means that the fundamental frequency ordinates will be ωj = j/n′

instead of j/n. We illustrate by considering the periodogram of the SOI and
Recruitment series, as has been given in Figure 1.5 of Chapter 1. Recall that
the series are monthly series and n = 453. To find n′ in R, use the command
nextn(453) to see that n′ = 480 will be used in the spectral analyses by default
(use help(spec.pgram) to see how to override this default).

Example 4.9 Periodogram of SOI and Recruitment Series

Figure 4.4 shows the periodograms of each series. As previously indi-
cated, the centered data have been padded to a series of length 480. We
notice a narrow band peak at the obvious yearly cycle, ω = 1/12. In
addition, there is considerable amount of power in a wide band at the
lower frequencies that is centered around the four-year cycle ω = 1/48
representing a possible El Niño effect. This wide band activity suggests
that the possible El Niño cycle is irregular, but tends to be around four
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Figure 4.4 Periodogram of SOI and Recruitment, n = 453 (n′ = 480), showing
common peaks at ω = 1/12 = .083 and ω = 1/48 = .021 cycles/month.

years on average. We will continue to address this problem as we move
to more sophisticated analyses.

Noting χ2
2(.025) = .05 and χ2

2(.975) = 7.38, we can obtain approximate
95% confidence intervals for the frequencies of interest. For example, the
periodogram of the SOI series is IS(1/12) = 11.64 at the yearly cycle.
An approximate 95% confidence interval for the spectrum fS(1/12) is
then

[2(11.67)/7.38, 2(11.67)/.05] = [3.16, 460.81],

which is too wide to be of much use. We do notice, however, that the
lower value of 3.16 is higher than any other periodogram ordinate, so
it is safe to say that this value is significant. On the other hand, an
approximate 95% confidence interval for the spectrum at the four-year
cycle, fS(1/48), is

[2(.64)/7.38, 2(.64)/.05] = [.17, 25.47],

which again is extremely wide, and with which we are unable to establish
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significance of the peak.

We now give the R commands that can be used to reproduce Figure 4.4.
To calculate and graph the periodogram, we used the spec.pgram com-
mand in R. We have set log="no" because R will plot the periodogram
on a log10 scale by default. Figure 4.4 displays a bandwidth and by de-
fault, R tapers the data (which we override in the commands below). We
will discuss bandwidth and tapering in the next section, so ignore these
concepts for the time being.
> soi = scan("/mydata/soi.dat")
> rec = scan("/mydata/rec.dat")
> par(mfrow=c(2,1))
> soi.per = spec.pgram(soi, taper=0, log="no")
> abline(v=1/12, lty="dotted")
> abline(v=1/48, lty="dotted")
> rec.per = spec.pgram(rec, taper=0, log="no")
> abline(v=1/12, lty="dotted")
> abline(v=1/48, lty="dotted")

The confidence intervals for the SOI series at the yearly cycle, ω = 1/12 =
40/480, and the possible El Niño cycle of four years ω = 1/48 = 10/480
can be computed in R as follows:
> soi.per$spec[40] # soi pgram at freq 1/12 = 40/480

[1] 11.66677
> soi.per$spec[10] # soi pgram at freq 1/48 = 10/480

[1] 0.6447554
> # -- conf intervals -- # returned value:
> U = qchisq(.025,2) # 0.05063562
> L = qchisq(.975,2) # 7.377759
> 2*soi.per$spec[10]/L # 0.1747835
> 2*soi.per$spec[10]/U # 25.46648
> 2*soi.per$spec[40]/L # 3.162688
> 2*soi.per$spec[40]/U # 460.813
> #-- replace soi with rec above to get recruit values

The example above makes it fairly clear the periodogram as an estimator is
susceptible to large uncertainties, and we need to find a way to reduce the vari-
ance. Not surprisingly, this result follows if we think about the periodogram,
I(ωj) as an estimator of the spectral density f(ω) and realize that it is the
sum of squares of only two random variables for any sample size. The solution
to this dilemma is suggested by the analogy with classical statistics where we
look for independent random variables with the same variance and average the
squares of these common variance observations. Independence and equality of
variance do not hold in the time series case, but the covariance structure of
the two adjacent estimators given in Example 4.8 suggests that for neighboring
frequencies, these assumptions are approximately true.
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4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we define a fre-
quency band, B, of L << n contiguous fundamental frequencies centered
around ωj = j/n that are close to the frequency of interest, ω, as

B =
{

ω : ωj − m

n
≤ ω ≤ ωj +

m

n

}
, (4.45)

where
L = 2m + 1 (4.46)

is an odd number, chosen such that the spectral values in the interval B,

f(ωj + k/n), k = −m, . . . , 0, . . . , m

are approximately equal to f(ω). This structure can be realized for large
sample sizes, as shown formally in §C.2. Values of the spectrum in this band
should be relatively constant, as well, for the smoothed spectra defined below
to be good estimators.

Using the above band, we may now define an averaged or smoothed peri-
odogram as the average of the periodogram values, say,

f̄(ω) =
1
L

m∑
k=−m

I(ωj + k/n), (4.47)

as the average over the band B.
Under the assumption that the spectral density is fairly constant in the

band B, and in view of (4.42) we can show that under appropriate conditions,9

for large n, the periodograms in (4.47) are approximately distributed as inde-
pendent f(ω)χ2

2/2 random variables, for 0 < ω < 1/2, as long as we keep L
fairly small relative to n. This result is discussed formally in §C.2. Thus, under
these conditions, Lf̄(ω) is the sum of L approximately independent f(ω)χ2

2/2
random variables. It follows that, for large n,

2Lf̄(ω)
f(ω)

·∼ χ2
2L (4.48)

where ·∼ means approximately distributed as.
In this scenario, it seems reasonable to call the length of the interval defined

by (4.45),

Bw =
L

n
(4.49)

the bandwidth. Bandwidth, of course, refers to the width of the frequencey
band used in smoothing the periodogram. The concept of the bandwidth, how-
ever, becomes more complicated with the introduction of spectral estimators

9The conditions, which are sufficient, are that xt is a linear process, as described in
Property P4.2, with

∑
j>0

√
j |ψj | < ∞, and wt has a finite fourth moment.
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that smooth with unequal weights. Note (4.49) implies the degrees of freedom
can be expressed as

2L = 2Bwn, (4.50)

or twice the time-bandwidth product. The result (4.48) can be rearranged to
obtain an approximate 100(1 − α)% confidence interval of the form

2Lf̄(ω)
χ2

2L(1 − α/2)
≤ f(ω) ≤ 2Lf̄(ω)

χ2
2L(α/2)

(4.51)

for the true spectrum, f(ω).
Many times, the visual impact of a spectral density plot will be improved

by plotting the logarithm of the spectrum instead of the spectrum.10 This phe-
nomenon can occur when regions of the spectrum exist with peaks of interest
much smaller than some of the main power components. For the log spectrum,
we obtain an interval of the form[

ln f̄(ω) + ln 2L − lnχ2
2L(1 − α/2), ln f̄(ω) + ln 2L − lnχ2

2L(α/2)
]
. (4.52)

We can also test hypotheses relating to the equality of spectra using the
fact that the distributional result (4.48) implies that the ratio of spectra based
on roughly independent samples will have an approximate F2L,2L distribution.
The independent estimators can either be from different frequency bands or
from different series.

If zeros are appended before computing the spectral estimators, we need
to adjust the degrees of freedom and an approximation is to replace 2L by
2Ln/n′. Hence, we define the adjusted degrees of freedom as

df =
2Ln

n′ (4.53)

and use it instead of 2L in the confidence intervals (4.51) and (4.52). For
example, (4.51) becomes

dff̄(ω)
χ2

df (1 − α/2)
≤ f(ω) ≤ dff̄(ω)

χ2
df (α/2)

. (4.54)

A number of assumptions are made in computing the approximate confi-
dence intervals given above, which may not hold in practice. In such cases, it
may be reasonable to employ resampling techniques such as one of the para-
metric bootstraps proposed by Hurvich and Zeger (1987) or a nonparametric
local bootstrap proposed by Paparoditis and Politis (1999). To develop the
bootstrap distributions, we assume that the contiguous DFTs in a frequency
band of the form (4.45) all came from a time series with identical spectrum
f(ω). This, in fact, is exactly the same assumption made in deriving the large-
sample theory. We may then simply resample the L DFTs in the band, with

10The log transformation is the variance stabilizing transformation in this situation.
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Figure 4.5 The averaged periodogram of the SOI and Recruitment series
n = 453, n′ = 480, L = 9, df = 17, showing common peaks at the four year
period, ω = 1/48 = .021 cycles/month, the yearly period, ω = 1/12 = .083
cycles/month and some of its harmonics ω = k/12 for k = 2, 3.

replacement, calculating a spectral estimate from each bootstrap sample. The
sampling distribution of the bootstrap estimators approximates the distribu-
tion of the nonparametric spectral estimator. For further details, including the
theoretical properties of such estimators, see Paparoditis and Politis (1999).

Before proceeding further, we pause to consider computing the average
periodograms for the SOI and Recruitment series, as shown in Figure 4.5.

Example 4.10 Averaged Periodogram of SOI and Recruitment
Series

Generally, it is a good idea to try several bandwidths that seem to be
compatible with the general overall shape of the spectrum, as suggested
by the periodogram. The SOI and Recruitment series periodograms,
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previously computed in Figure 4.4, suggest the power in the lower El Niño
frequency needs smoothing to identify the predominant overall period.
Trying values of L leads to the choice L = 9 as a reasonable value, and
the result is displayed in Figure 4.5. In our notation, the bandwidth
in this case is Bw = 9/480 = .01875 cycles per month for the spectral
estimator. This bandwidth means we are assuming a relatively constant
spectrum over about .01875/.5 = 3.75% of the entire frequency interval
(0, 1/2). The bandwidth reported in R is taken from Bloomfield (2000),
and in the current case amounts to dividing (4.49) by

√
12. An excellent

discussion of the concept of bandwidth may be found in Percival and
Walden (1993, §6.7). To obtain the bandwidth, Bw = .01875, from the
one reported by R in Figure 4.5, we can multiply .00541 by

√
12.

The smoothed spectra shown in Figure 4.5 provide a sensible compro-
mise between the noisy version, shown in Figure 4.4, and a more heavily
smoothed spectrum, which might lose some of the peaks. An undesirable
effect of averaging can be noticed at the yearly cycle, ω = 1/12, where
the narrow band peaks that appeared in the periodograms in Figure 4.4
have been flattened and spread out to nearby frequencies. We also notice,
and have marked, the appearance of harmonics of the yearly cycle, that
is, frequencies of the form ω = k/12 for k = 1, 2, . . . . Harmonics typi-
cally occur when a periodic component is present, but not in a sinusoidal
fashion.

Figure 4.5 can be reproduced in R using the following commands. The
basic call is to the function spec.pgram. To compute averaged peri-
odograms, use the Daniell kernel, and specify m, where L = 2m + 1
(L = 9 and m = 4 in this example). We will explain the kernel concept
later in this section, specifically just prior to Example 4.11.

> par(mfrow=c(2,1))
> k = kernel("daniell",4)
> soi.ave = spec.pgram(soi, k, taper=0, log="no")
> abline(v=1/12, lty="dotted")
> abline(v=2/12, lty="dotted")
> abline(v=3/12, lty="dotted")
> abline(v=1/48, lty="dotted")
> #-- Repeat 5 lines above using rec in place of soi
> soi.ave$bandwidth # reported bandwidth

[1] 0.005412659
> soi.ave$bandwidth*sqrt(12) # Bw

[1] 0.01875

The adjusted degrees of freedom are df = 2(9)(453)/480 ≈ 17. We can
use this value for the 95% confidence intervals, with χ2

df (.025) = 7.56
and χ2

df (.975) = 30.17. Substituting into (4.54) gives the intervals in
Table 4.1 for the two frequency bands identified as having the maximum
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Table 4.1 Confidence Intervals for the Spectra
of the SOI and Recruitment Series

Series ω Period Power Lower Upper
SOI 1/48 4 years .59 .33 1.34

1/12 1 year 1.43 .80 3.21
Recruits 1/48 4 years 7.91 4.45 17.78

×103 1/12 1 year 2.63 1.48 5.92

power. To examine the two peak power possibilities, we may look at the
95% confidence intervals and see whether the lower limits are substan-
tially larger than adjacent baseline spectral levels. For example, the El
Niño frequency of 48 months has lower limits that exceed the values the
spectrum would have if there were simply a smooth underlying spectral
function without the peaks. The relative distribution of power over fre-
quencies is different, with the SOI index having less power at the lower
frequency, relative to the seasonal periods, and the recruit series having
relatively more power at the lower or El Niño frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:

> df = soi.ave$df # df = 16.9875 (returned values)
> U = qchisq(.025,df) # U = 7.555916
> L = qchisq(.975,df) # L = 30.17425
> soi.ave$spec[10] # 0.5942431
> soi.ave$spec[40] # 1.428959
> # -- intervals --
> df*soi.ave$spec[10]/L # 0.334547
> df*soi.ave$spec[10]/U # 1.336000
> df*soi.ave$spec[40]/L # 0.8044755
> df*soi.ave$spec[40]/U # 3.212641
> #-- repeat above commands with soi replaced by rec

Finally, Figure 4.6 shows the averaged periodograms in Figure 4.5 plotted
on a log10 scale. This is the default plot in R, and these graphs can be
obtained by removing the statement log="no" in the spec.pgram call.
Notice that the default plot also shows a generic confidence interval of the
form (4.52) (with ln replaced by log10) in the upper right-hand corner.
To use it, imagine placing the tick mark on the averaged periodogram
ordinate of interest; the resulting bar then constitutes an approximate
95% confidence interval for the spectrum at that frequency. Of course,
actual intervals may be computed as was done in this example. We
note that displaying the estimates on a log scale tends to emphasize the
harmonic components.

This example points out the necessity for having some relatively systematic
procedure for deciding whether peaks are significant. The question of deciding
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Figure 4.6 Figure 4.5 with the average periodogram ordinates plotted on a
log10 scale. The display in the upper right-hand corner represents a generic
95% confidence interval.

whether a single peak is significant usually rests on establishing what we might
think of as a baseline level for the spectrum, defined rather loosely as the shape
that one would expect to see if no spectral peaks were present. This profile can
usually be guessed by looking at the overall shape of the spectrum that includes
the peaks; usually, a kind of baseline level will be apparent, with the peaks
seeming to emerge from this baseline level. If the lower confidence limit for the
spectral value is still greater than the baseline level at some predetermined level
of significance, we may claim that frequency value as a statistically significant
peak. To maintain an α that is consistent with our stated indifference to the
upper limits, we might use a one-sided confidence interval.

An important aspect of interpreting the significance of confidence intervals
and tests involving spectra is that typically, more than one frequency will be of
interest, so that we will potentially be interested in simultaneous statements
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about a whole collection of frequencies. For example, it would be unfair to
claim in Table 4.1 the two frequencies of interest as being statistically signifi-
cant and all other potential candidates as nonsignificant at the overall level of
α = .05. In this case, we follow the usual statistical approach, noting that if K
statements S1, S1, . . . , Sk are made at significance level α, i.e., P{Sk} = 1−α,
then the overall probability all statements are true satisfies the Bonferroni
inequality

P{all Sk true} ≥ 1 − Kα. (4.55)

For this reason, it is desirable to set the significance level for testing each
frequency at α/K if there are K potential frequencies of interest. If, a priori,
potentially K = 10 frequencies are of interest, setting α = .01 would give an
overall significance level of bound of .10.

The use of the confidence intervals and the necessity for smoothing requires
that we make a decision about the bandwidth Bw over which the spectrum will
be essentially constant. Taking too broad a band will tend to smooth out valid
peaks in the data when the constant variance assumption is not met over the
band. Taking too narrow a band will lead to confidence intervals so wide
that peaks are no longer statistically significant. Thus, we note that there
is a conflict here between variance properties or bandwidth stability, which
can be improved by increasing Bw and resolution, which can be improved by
decreasing Bw. A common approach is to try a number of different bandwidths
and to look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the flatten-
ing of the peaks in Figures 4.5 and 4.6 was due to the fact that simple averaging
was used in computing f̄(ω) defined in (4.47). There is no particular reason
to use simple averaging, and we might improve the estimator by employing a
weighted average, say

f̂(ω) =
m∑

k=−m

hk I(ωj + k/n), (4.56)

using the same definitions as in (4.47) but where now, the weights satisfy

h−k = hk > 0 all k and
m∑

k=−m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will
improve if we use weights that decrease as distance from the center weight
h0 increases; we will return to this idea shortly. To obtain the averaged pe-
riodogram, f̄(ω), in (4.56), set hk = L−1, for all k, where L = 2m + 1.
The asymptotic theory established for f̄(ω) still holds for f̂(ω) provided that
the weights satisfy the additional condition that if m → ∞ as n → ∞ but
m/n → 0, then

m∑
k=−m

h2
k → 0.
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Under these conditions, as n → ∞,

(i) E
(
f̂(ω)

)
→ f(ω)

(ii)
(∑m

k=−m h2
k

)−1
cov

(
f̂(ω), f̂(λ)

)
→ f2(ω) for ω = λ �= 0, 1/2.

In (ii), replace f2(ω) by 0 if ω �= λ and by 2f2(ω) if ω = λ = 0 or 1/2.
We have already seen these results in the case of f̄(ω), where the weights

are constant, hk = L−1, in which case
∑m

k=−m h2
k = L−1. The distributional

properties of (4.56) are more difficult now because f̂(ω) is a weighted linear
combination of asymptotically independent χ2 random variables. An approx-
imation that seems to work well is to replace L by

(∑m
k=−m h2

k

)−1. That is,
define

Lh =

(
m∑

k=−m

h2
k

)−1

(4.57)

and use the approximation11

2Lhf̂(ω)
f(ω)

·∼ χ2
2Lh

. (4.58)

In analogy to (4.49), we will define the bandwidth in this case to be

Bw =
Lh

n
. (4.59)

Using the approximation (4.58) we obtain an approximate 100(1 − α)% confi-
dence interval of the form

2Lhf̂(ω)
χ2

2Lh
(1 − α/2)

≤ f(ω) ≤ 2Lhf̂(ω)
χ2

2Lh
(α/2)

(4.60)

for the true spectrum, f(ω). If the data are padded to n′, then replace 2Lh in
(4.60) with df = 2Lhn/n′ as in (4.53).

An easy way to generate the weights in R is by repeated use of the Daniell
kernel. For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel has
weights {hk} = { 1

3 , 1
3 , 1

3}; applying this kernel to a sequence of numbers, {ut},
produces

ût =
1
3
ut−1 +

1
3
ut +

1
3
ut+1.

We can apply the same kernel again to the ût,

̂̂ut =
1
3
ût−1 +

1
3
ût +

1
3
ût+1,

11The approximation proceeds as follows: If f̂
·∼ cχ2

ν , where c is a constant, then Ef̂ ≈ cν

and varf̂ ≈ f2
∑

k
h2

k ≈ c22ν. Solving, c ≈ f
∑

k
h2

k/2 = f/2Lh and ν ≈ 2
(∑

k
h2

k

)−1
=

2Lh.
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which simplifies to

̂̂ut =
1
9
ut−2 +

2
9
ut−1 +

3
9
ut +

2
9
ut+1 +

1
9
ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1
the weights are {hk} = { 1

4 , 2
4 , 1

4} and

ût =
1
4
ut−1 +

1
2
ut +

1
4
ut+1.

Applying the same kernel again yields

̂̂ut =
1
16

ut−2 +
4
16

ut−1 +
6
16

ut +
4
16

ut+1 +
1
16

ut+2.

These coefficients can be obtained in R by issuing the kernel command.
For example, kernel("modified.daniell",c(1,1)) would produce the coef-
ficients of the last example. It is also possible to use different values of m, e.g.,
try kernel("modified.daniell",c(1,2)) or kernel("daniell",c(1,2)).
The other kernels that are currently available in R are the Dirichlet kernel
and the Fejér kernel, which we will discuss shortly.

Example 4.11 Smoothed Periodogram of the SOI and Recruitment
Series

In this example, we estimate the spectra of the SOI and Recruitment
series using the smoothed periodogram estimate in (4.56). We used a
modified Daniell kernel twice, with m = 3 both times. This yields Lh =
1/
∑m

k=−m h2
k = 9.232, which is close to the value of L = 9 used in

Example 4.10. In this case, the bandwidth is Bw = 9.232/480 = .019
and the modified degrees of freedom is df = 2Lh453/480 = 17.43. The
weights, hk, can be obtained in R as follows:

> kernel("modified.daniell", c(3,3))
coef[-6] = 0.006944 # = coef[ 6]
coef[-5] = 0.027778 # = coef[ 5]
coef[-4] = 0.055556 # = coef[ 4]
coef[-3] = 0.083333 # = coef[ 3]
coef[-2] = 0.111111 # = coef[ 2]
coef[-1] = 0.138889 # = coef[ 1]
coef[ 0] = 0.152778

The resulting spectral estimates can be viewed in Figure 4.7 and we notice
that the estimates more appealing than those in Figure 4.5. Figure 4.7
was generated in R as follows; we also show how to obtain df and Bw.

> par(mfrow=c(2,1))
> k = kernel("modified.daniell", c(3,3))
> soi.smo = spec.pgram(soi, k, taper=0, log="no")
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Figure 4.7 Smoothed spectral estimates of the SOI and Recruitment series;
see Example 4.11 for details.

> abline(v=1/12, lty="dotted")
> abline(v=1/48, lty="dotted")
> #-- Repeat above 3 lines with rec replacing soi
> df = soi.smo2$df # df=17.42618
> Lh = 1/sum(k[-k$m:k$m]ˆ2) # Lh=9.232413
> Bw = Lh/480 # Bw=0.01923419

The bandwidth reported by R is .00528, which is approximately Bw/
√

12;
type bandwidth.kernel to see how R computes bandwidth. Reissuing
the spec.pgram commands with log="no" removed will result in a figure
similar to Figure 4.6. Finally, we mention that R uses the modified
Daniell kernel by default. For example, an easier way to obtain soi.smo
is to issue the command:

> soi.smo = spectrum(soi, spans=c(7,7), taper=0)

Notice that spans is a vector of odd integers, given in terms of L = 2m+1
instead of m. These values give the widths of modified Daniell smoother
to be used to smooth the periodogram.
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We are now ready to introduce the concept of tapering; this will lead us
to the notion of a spectral window. For example, suppose xt is a mean-zero,
stationary process with spectral density fx(ω). If we replace the original series
by the tapered series

yt = htxt, (4.61)

for t = 1, 2, . . . , n, and use the modified DFT

dy(ωj) = n−1/2
n∑

t=1

htxte−2πiωjt, (4.62)

and let Iy(ωj) = |dy(ωj)|2, we obtain (see Problem 4.15)

E[Iy(ωj)] =
∫ 1/2

−1/2
Wn(ωj − ω) fx(ω) dω (4.63)

where
Wn(ω) = |Hn(ω)|2 (4.64)

and

Hn(ω) = n−1/2
n∑

t=1

hte−2πiωt. (4.65)

The value Wn(ω) is called a spectral window because, in view of (4.63), it is
determining which part of the spectral density fx(ω) is being “seen” by the
estimator Iy(ωj) on average. In the case that ht = 1 for all t, Iy(ωj) = Ix(ωj)
is simply the periodogram of the data and the window is

Wn(ω) =
sin2(nπω)
n sin2(πω)

(4.66)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If
we consider the averaged periodogram in (4.47), namely

f̄x(ω) =
1
L

m∑
k=−m

Ix(ωj + k/n),

the window, Wn(ω), in (4.63) will take the form

Wn(ω) =
1

nL

m∑
k=−m

sin2[nπ(ω + k/n)]
sin2[π(ω + k/n)]

. (4.67)

Tapers generally have a shape that enhances the center of the data relative
to the extremities, such as a cosine bell of the form

ht = .5
[
1 + cos

(
2π(t − t)

n

)]
, (4.68)
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Figure 4.8 Averaged Fejér window (top row) and the corresponding cosine
taper window (bottom row) for L = 9, n = 480.

where t = (n + 1)/2, favored by Blackman and Tukey (1959). In Figure 4.8,
we have plotted the shapes of two windows, Wn(ω), for n = 480 and L = 9,
when (i) ht ≡ 1, in which case, (4.67) applies, and (ii) ht is the cosine taper in
(4.68). In both cases the predicted bandwidth should be Bw = 9/480 = .01875
cycles per point, which corresponds to the “width” of the windows shown
in Figure 4.8. Both windows produce an integrated average spectrum over
this band but the untapered window in the top panels shows considerable
ripples over the band and outside the band. The ripples outside the band are
called sidelobes and tend to introduce frequencies from outside the interval that
may contaminate the desired spectral estimate within the band. For example,
a large dynamic range for the values in the spectrum introduces spectra in
contiguous frequency intervals several orders of magnitude greater than the
value in the interval of interest. This effect is sometimes called leakage. Finally,
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Figure 4.9 Smoothed spectral estimates of the SOI (on a log10 scale) without
tapering (top), with 10% tapering (middle) and with 50% or complete tapering
(bottom); see Example 4.12 for details.

the logged values in Figure 4.8 emphasize the suppression of the sidelobes in
the Fejér kernel when a cosine taper is used.

Example 4.12 The Effect of Tapering the SOI Series

In this example we examine the effect of various tapers on the estimate
of the spectrum of the SOI series. The results for the Recruitment series
are similar. Figure 4.9 shows three spectral estimates plotted on a log10
scale along with the corresponding approximate 95% confidence intervals
in the upper right. The degree of smoothing here is the same as in
Example 4.11. The top of Figure 4.9 shows the estimate without any
tapering and hence it is the same as the estimated spectrum displayed in
the top of Figure 4.7. The middle panel in Figure 4.9 shows the effect of
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10% tapering (the R default), which means that the cosine taper is being
applied only to the ends of the series, 10% on each side. The bottom panel
shows the results with 50% tapering; that is, (4.68) is being applied to
the entire set of data.

The three spectral estimates are qualitatively similar, but note that in
the fully tapered case, the peak El Niño cycle is at the 42 month (3.5
year) cycle instead of the 48 month (4 year) cycle. Also, notice that
the confidence interval bands are increasing as the tapering increases.
This occurrence is due to the fact that by tapering we are decreasing
the amount of information, and hence the degrees of freedom; details,
which are similar to the ideas discussed in (4.57)–(4.58), may be found
in Bloomfield (2000, §9.5).

The following R session was used to generate Figure 4.9:

> par(mfrow=c(3,1))
> spectrum(soi, spans=c(7,7), taper=0, main="No Taper")
> abline(v=1/12,lty="dashed")
> abline(v=1/48,lty="dashed")
> spectrum(soi, spans=c(7,7), main="10% Taper")
> abline(v=1/12,lty="dashed")
> abline(v=1/48,lty="dashed")
> spectrum(soi, spans=c(7,7), taper=.5, main="50% Taper")
> abline(v=1/12,lty="dashed")
> abline(v=1/48,lty="dashed")

Example 4.13 Spectra of P and S Components for Earthquake and
Explosion

Figure 4.10 shows the spectra computed separately from the two phases
of the earthquake and explosion in Figure 1.7 of Chapter 1. In all cases
we used a modified Daniell smoother with L = 21 being passed twice, and
with 10% tapering. This leads to approximately 54 degrees of freedom.
Because the sampling rate is 40 points per second, the folding frequency
is 20 cycles per second or 20 Hertz (Hz). The highest frequency shown in
the plots is .25 cycles per point or 10 Hz because there is no signal activity
at frequencies beyond 10 Hz. A fundamental problem in the analysis
of seismic data is discriminating between earthquakes and explosions
using the kind of instruments that might be used in monitoring a nuclear
test ban treaty. If we plot an ensemble of earthquakes and explosions
comparable to Figure 1.7, some gross features appear that may lead to
discrimination. The most common differences that we look for are subtle
differences between the spectra of the two classes of events. In this case,
note the strong frequency components of the P and S components of
the explosion are close to the frequency .10 cycles per point or 1 Hz.
On the other hand, the spectral content of the earthquakes tends to
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occur along a broader frequency band and at lower frequencies for both
components. Often, we assume that the ratio of P to S power is in
different proportions at different frequencies, and this distinction can
form a basis for discriminating between the two classes. In §7.7, we test
formally for discrimination using a random effects analysis of variance
approach.

Figure 4.10 was generated in R as follows:

> x = matrix(scan("/mydata/eq5exp6.dat"), ncol=2)
> eqP = x[1:1024, 1]; eqS = x[1025:2048, 1]
> exP = x[1:1024, 2]; exS = x[1025:2048, 2]
> par(mfrow=c(2,2))
> eqPs=spectrum(eqP, spans=c(21,21),
+ log="no", xlim=c(0,.25), ylim=c(0,.04))
> eqSs=spectrum(eqS, spans=c(21,21),
+ log="no", xlim=c(0,.25), ylim=c(0,.4))
> exPs=spectrum(exP, spans=c(21,21),
+ log="no", xlim=c(0,.25), ylim=c(0,.04))
> exSs=spectrum(exS, spans=c(21,21),
+ log="no", xlim=c(0,.25), ylim=c(0,.4))
> exSs$df

[1] 53.87862

We close this section with a brief discussion of lag window estimators. First,
consider the periodogram, I(ωj), which was shown in (4.23) to be of the form

I(ωj) =
∑
|h|<n

γ̂(h)e−2πiωjh.

Thus, (4.56) can be written as

f̂(ω) =
∑
|k|≤m

hk I(ωj + k/n)

=
∑
|k|≤m

hk

∑
|h|<n

γ̂(h)e−2πi(ωj+k/n)h

=
∑
|h|<n

g(h/n) γ̂(h)e−2πiωjh. (4.69)

where g(h/n) =
∑

|k|≤m hk exp(−2πikh/n). Equation (4.69) suggests estima-
tors of the form

f̃(ω) =
∑

|h|≤r

w(h/r) γ̂(h)e−2πiωh (4.70)

where w(·) is a weight function, called the lag window, that satisfies
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Figure 4.10 Spectral analysis of P and S components of an earthquake and an
explosion, n = 1024. Each estimate is based on a modified Daniell smoother
with L = 21 being passed twice, and with 10% tapering. This leads to approx-
imately 54 degrees of freedom. Multiply frequency by 40 to convert to Hertz
(cycles/second).

(i) w(0) = 1

(ii) |w(x)| ≤ 1 and w(x) = 0 for |x| > 1,

(iii) w(x) = w(−x).

Note that if w(x) = 1 for |x| < 1 and r = n, then f̃(ωj) = I(ωj), the
periodogram. This result indicates the problem with the periodogram as an
estimator of the spectral density is that it gives too much weight to the values
of γ̂(h) when h is large, and hence is unreliable [e.g, there is only one pair of
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observations used in the estimate γ̂(n−1), and so on]. The smoothing window
is defined to be

W (ω) =
r∑

h=−r

w(h/r)e−2πiωh, (4.71)

and it determines which part of the periodogram will be used to form the
estimate of f(ω). The asymptotic theory for f̂(ω) holds for f̃(ω) under the
same conditions and provided r → ∞ as n → ∞ but with r/n → 0. We have

E{f̃(ω)} → f(ω); (4.72)

n

r
cov

(
f̃(ω), f̃(λ)

)
→ f2(ω)

∫ 1

−1
w2(x)dx ω = λ �= 0, 1/2. (4.73)

In (4.73), replace f2(ω) by 0 if ω �= λ and by 2f2(ω) if ω = λ = 0 or 1/2.
Many authors have developed various windows and Brillinger (2001, Ch 3)

and Brockwell and Davis (1991, Ch 10) are good sources of detailed information
on this topic. We mention a few.

The rectangular lag window, which gives uniform weight in (4.70),

w(x) = 1, |x| ≤ 1,

corresponds to the Dirichlet smoothing window given by

W (ω) =
sin(2πr + π)ω

sin(πω)
. (4.74)

This smoothing window takes on negative values, which may lead to estimates
of the spectral density that are negative a various frequencies. Using (4.73) in
this case, for large n we have

var{f̃(ω)} ≈ 2r

n
f2(ω).

The Parzen lag window is defined to be

w(x) =

{
1 − 6x + 6|x|3 |x| < 1/2,
2(1 − |x|)3 1/2 ≤ x ≤ 1,
0 otherwise.

This leads to an approximate smoothing window of

W (ω) =
6

πr3

sin4(rω/4)
sin4(ω/2)

.

For large n, the variance of the estimator is approximately

var{f̃(ω)} ≈ .539f2(ω)/n.
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The Tukey-Hanning lag window has the form

w(x) =
1
2
(1 + cos(x)), |x| ≤ 1

which leads to the smoothing window

W (ω) =
1
4
Dr(2πω − π/r) +

1
2
Dr(2πω) +

1
4
Dr(2πω + π/r)

where Dr(ω) is the Dirichlet kernel in (4.74). The approximate large sample
variance of the estimator is

var{f̃(ω)} ≈ 3r

4n
f2(ω).

The triangular lag window, also known as the Bartlett or Fejér window,
given by

w(x) = 1 − |x|, |x| ≤ 1

leads to the Fejér smoothing window:

W (ω) =
sin2(πrω)
r sin2(πω)

.

In this case, (4.73) yields

var{f̃(ω)} ≈ 2r

3n
f2(ω).

The idealized rectangular smoothing window, also called the Daniell win-
dow, is given by

W (ω) =
{

r |ω| ≤ 1/2r
0 otherwise

,

and leads to the sinc lag window, namely

w(x) =
sin(πx)

πx
, |x| ≤ 1.

From (4.73) we have
var{f̃(ω)} ≈ r

n
f2(ω).

For lag window estimators, the width of the rectangular window that leads
to the same asymptotic variance as a given lag window estimator is sometimes
called the bandwidth. For example, the bandwidth of the rectangular window
is br = 1/r and the asymptotic variance is 1

nbr
f2. The asymptotic variance

of the triangular window is 2r
3nf2, so setting 1

nbr
f2 = 2r

3nf2 and solving we get
br = 3/2r as the corresponding bandwidth.
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4.6 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas
extends to the case in which there are several jointly stationary series, for
example, xt and yt. In this case, we can introduce the idea of a correlation
indexed by frequency, called the coherence. The results in Appendix C, §C.2,
imply the covariance function

γxy(h) = E[(xt+h − µx)(yt − µy)]

has the representation

γxy(h) =
∫ 1/2

−1/2
fxy(ω)e2πiωh dω h = 0,±1,±2, ..., (4.75)

where the cross-spectrum is defined as the Fourier transform

fxy(ω) =
∞∑

h=−∞
γxy(h) e−2πiωh − 1/2 ≤ ω ≤ 1/2, (4.76)

assuming that the cross-covariance function is absolutely summable, as was the
case for the autocovariance. The cross-spectrum is generally a complex-valued
function, and it is often written as12

fxy(ω) = cxy(ω) − iqxy(ω), (4.77)

where

cxy(ω) =
∞∑

h=−∞
γxy(h) cos(2πωh) (4.78)

and

qxy(ω) =
∞∑

h=−∞
γxy(h) sin(2πωh) (4.79)

are defined as the cospectrum and quadspectrum, respectively. Because of
the relationship γyx(h) = γxy(−h), it follows, by substituting into (4.76) and
rearranging, that

fyx(ω) = fxy(ω). (4.80)

This result, in turn, implies that the cospectrum and quadspectrum satisfy

cyx(ω) = cxy(ω) (4.81)

and
qyx(ω) = −qxy(ω). (4.82)

12For this section, it will be useful to recall the facts e−iα = cos(α) − i sin(α) and if
z = a + ib, then z = a − ib.
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An important example of the application of the cross-spectrum is to the
problem of predicting an output series yt from some input series xt through a
linear filter relation such as the three-point moving average considered below.
A measure of the strength of such a relation is the squared coherence function,
defined as

ρ2
y·x(ω) =

|fyx(ω)|2
fxx(ω)fyy(ω)

, (4.83)

where fxx(ω) and fyy(ω) are the individual spectra of the xt and yt series,
respectively. Although we consider a more general form of this that applies to
multiple inputs later, it is instructive to display the single input case as (4.83)
to emphasize the analogy with conventional squared correlation, which takes
the form

ρ2
yx =

σ2
yx

σ2
xσ2

y

,

for random variables with variances σ2
x and σ2

y and covariance σyx = σxy. This
motivates the interpretation of squared coherence and the squared correlation
between two time series at frequency ω.

Example 4.14 Cross-Spectrum and Coherence of a Process and a
Three-Point Moving Average

As a simple example, we compute the cross-spectrum between xt and
the three-point moving average yt = (xt−1 + xt + xt+1)/3, where xt is a
stationary input process with spectral density fxx(ω). First,

γxy(h) = E[xt+hyt]

=
1
3

E [xt+h (xt−1 + xt + xt+1)]

=
1
3

(
γxx(h + 1) + γxx(h) + γxx(h − 1)

)
=

1
3

∫ 1/2

−1/2
(e2πiω + 1 + e−2πiω)e2πiωhfxx(ω) dω

=
1
3

∫ 1/2

−1/2
[1 + 2 cos(2πω)]fxx(ω)e2πiωh dω.

Using the uniqueness of the Fourier transform, we argue from the spectral
representation (4.75) that the above must be the transform of fxy(ω),
implying that

fxy(ω) =
1
3

[1 + cos(2πω)] fxx(ω)

so that the cross-spectrum is real in this case. From Example 4.5, the
spectral density of yt is

fyy(ω) =
1
9
[3 + 4 cos(2πω) + 2 cos(4πω)]fxx(ω)
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=
1
9

[1 + 2 cos(2πω)]2 fxx(ω),

using the identity cos(2α) = 2 cos2(α) − 1 in the last step. Substituting
into (4.83) yields the squared coherence between xt and yt as unity over
all frequencies. This is a characteristic inherited by more general linear
filters, as will be shown in Problem 4.23. However, if some noise is added
to the three-point moving average, the coherence is not unity; these kinds
of models will be considered in detail later.

Property P4.3: Spectral Representation of a Vector Stationary
Process
If the elements of the p × p autocovariance function matrix

Γ(h) = E[(xxxt+h − µµµ)(xxxt − µµµ)′]

of a p-dimensional stationary time series, xxxt = (xt1, xt2, . . . , xtp)′, has ele-
ments satisfying

∞∑
h=−∞

|γjk(h)| < ∞ (4.84)

for all j, k = 1, . . . , p, then Γ(h) has the representation

Γ(h) =
∫ 1/2

−1/2
e2πiωh f(ω) dω h = 0,±1,±2, ..., (4.85)

as the inverse transform of the spectral density matrix, f(ω) = {fjk(ω)}, for
j, k = 1, . . . , p, with elements equal to the cross-spectral components. The
matrix f(ω) has the representation

f(ω) =
∞∑

h=−∞
Γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.86)

Example 4.15 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (xt, yt). We arrange the
autocovariances in the matrix

Γ(h) =
(

γxx(h) γxy(h)
γyx(h) γyy(h)

)
.

The spectral matrix would be given by

f(ω) =
(

fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)
,

where the Fourier transform (4.85) and (4.86) relate the autocovariance
and spectral matrices.
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The extension of spectral estimation to vector series is fairly obvious. For
the vector series xxxt = (xt1, xt2, . . . , xtp)′, we may use the vector of DFTs, say
ddd(ωj) = (d1(ωj), d2(ωj), . . . , dp(ωj))′, and estimate the spectral matrix by

f̄(ω) = L−1
m∑

k=−m

I(ωj + k/n) (4.87)

where now
I(ωj) = ddd(ωj)ddd∗(ωj) (4.88)

is a p × p complex matrix.13

Again, the series may be tapered before the DFT is taken in (4.87) and we
can use weighted estimation,

f̂(ω) =
m∑

k=−m

hk I(ωj + k/n) (4.89)

where {hk} are weights as defined in (4.56). The estimate of squared coherence
between two series, yt and xt is

ρ̂2
y·x(ω) =

|f̂yx(ω)|2
f̂xx(ω)f̂yy(ω)

. (4.90)

If the spectral estimates in (4.90) are obtained using equal weights, we will
write ρ̄2

y·x(ω) for the estimate.
Under general conditions, if ρ2

y·x(ω) > 0 then

|ρ̂y·x(ω)| ∼ AN
(
|ρy·x(ω)|, (1 − ρ2

y·x(ω)
)2/2Lh

)
(4.91)

where Lh is defined in (4.57); the details of this result may be found in Brock-
well and Davis (1991, Ch 11). We may use (4.91) to obtain approximate
confidence intervals for the square coherency ρ2

y·x(ω).
We can test the hypothesis that ρ2

y·x(ω) = 0 if we use ρ̄2
y·x(ω) for the

estimate with L > 1,14 that is,

ρ̄2
y·x(ω) =

|f̄yx(ω)|2
f̄xx(ω)f̄yy(ω)

. (4.92)

In this case, under the null hypothesis, the statistic

F2,2L−2 =
ρ̄2

y·x(ω)
(1 − ρ̄2

y·x(ω))
(L − 1) (4.93)

13If Z is a complex matrix, then Z∗ = Z
′
denotes the conjugate transpose operation. That

is, Z∗ is the result of replacing each element of Z by its complex conjugate and transposing
the resulting matrix.

14If L = 1 then ρ̄2
y·x(ω) ≡ 1.
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Figure 4.11 Coherence function between the SOI and Recruitment series;
L = 19, n = 453, n′ = 480, and α = .001.

has an approximate F-distribution with 2 and 2L−2 degrees of freedom. When
the series have been extended to length n′, we replace 2L − 2 by df − 2, where
df is defined in (4.53). Solving (4.93) for a particular significance level α leads
to

Cα =
F2,2L−2(α)

L − 1 + F2,2L−2(α)
(4.94)

as the approximate value that must be exceeded for the original squared co-
herence to be able to reject ρ2

y·x(ω) = 0 at an a priori specified frequency.

Example 4.16 Coherence Between SOI and Recruitment Series

Figure 4.11 shows the squared coherence between the SOI and Recruit-
ment series over a wider band than was used for the spectrum. In this
case, we used L = 19, df = 2(19)(453/480) ≈ 36 and F2,df−2(.001) ≈
8.53 at the significance level α = .001. Hence, we may reject the hypoth-
esis of no coherence for values of C.001 > .32. We emphasize that this
method is crude because, in addition to the fact that the F -statistic is ap-
proximate, we are examining the squared coherence across all frequencies
with the Bonferroni inequality, (4.55), in mind. Figure 4.11 also exhibits
confidence bands as part of the R plotting routine. We emphasize that
these bands are only valid for ω where ρ2

y·x(ω) > 0.
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In this case, the seasonal frequency and the El Niño frequencies ranging
between about 3 and 7 year periods are strongly coherent. Other fre-
quencies are also strongly coherent, although the strong coherence is less
impressive because the underlying power spectrum at these higher fre-
quencies is fairly small. Finally, we note that the coherence is persistent
at the seasonal harmonic frequencies.

This example may be reproduced using the following R commands.

> x = ts(cbind(soi,rec))
> s = spec.pgram(x, kernel("daniell",9), taper=0)
> s$df # df = 35.8625
> f = qf(.999, 2, s$df-2) # f = 8.529792
> c = f/(18+f) # c = 0.3188779
> plot(s, plot.type = "coh", ci.lty = 2)
> abline(h = c)

4.7 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making
a linear transformation. In this section, we explore that notion further by
defining a linear filter and showing how it can be used to extract signals from
a time series. The linear filter modifies the spectral characteristics of a time
series in a predictable way, and the systematic development of methods for
taking advantage of the special properties of linear filters is an important topic
in time series analysis.

A linear filter uses a set of specified coefficients at, for t = 0,±1,±2 . . ., to
transform a stationary input series, xt, producing an output series, yt, of the
form

yt =
∞∑

r=−∞
arxt−r. (4.95)

The form (4.95) is also called a convolution in some statistical contexts. The
coefficients, collectively called the impulse response function, are required to
satisfy absolute summability

∞∑
t=−∞

|at| < ∞, (4.96)

so (4.95) exists as a limit in mean square and the infinite Fourier transform

Ayx(ω) =
∞∑

t=−∞
ate−2πiωt , (4.97)
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called the frequency response function, is well defined. We have already en-
countered several linear filters, for example, the simple three-point moving
average in Example 4.5, which can be put into the form of (4.95) by letting
a−1 = a0 = a1 = 1/3 and taking at = 0 for |t| ≥ 2.

The importance of the linear filter stems from its ability to enhance certain
parts of the spectrum of the input series. To see this, the autocovariance
function of the filtered output (4.95) can be derived as

γyy(h) = E[(yt+h − Eyt+h)(yt − Eyt)]

= E

[∑
r

∑
s

ar(xt+h−r − µ)(xt−s − µ)as

]
=

∑
r

∑
s

arγxx(h − r + s)as

=
∑

r

∑
s

ar

[∫ 1/2

−1/2
e2πiω(h−r+s)fxx(ω)dω

]
as

=
∫ 1/2

−1/2

(∑
r

are−2πiωr

)(∑
s

ase2πiωs

)
e2πiωhfxx(ω) dω

=
∫ 1/2

−1/2
e2πiωh|Ayx(ω)|2fxx(ω) dω,

where we have first replaced γxx(·) by its representation (4.12) and then substi-
tuted Ayx(ω) from (4.97). The computation is one we do repeatedly, exploiting
the uniqueness of the Fourier transform. Now, because the left-hand side is
the Fourier transform of the spectral density of the output, say, fyy(ω), we get
the important filtering property as follows.

Property P4.4: Output Spectrum of a Filtered Stationary Series
The spectrum of the filtered output yt in (4.95) is related to the spectrum of
the input xt by

fyy(ω) = |Ayx(ω)|2 fxx(ω), (4.98)

where the frequency response function Ayx(ω) is defined in (4.97).

The result (4.98) enables us to calculate the exact effect on the spectrum
of any given filtering operation. This important property shows the spectrum
of the input series is changed by filtering and the effect of the change can
be characterized as a frequency-by-frequency multiplication by the squared
magnitude of the frequency response function. Again, an obvious analogy
to a property of the variance in classical statistics holds, namely, if x is a
random variable with variance σ2

x, then y = ax will have variance σ2
y = a2σ2

x,
so the variance of the linearly transformed random variable is changed by
multiplication by a2 in much the same way as the linearly filtered spectrum is
changed in (4.98).
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Figure 4.12 SOI series (top) compared with the differenced SOI (middle) and
a centered 12-month moving average (bottom).

Example 4.17 First Difference and Moving Average Filters

We illustrate the effect of filtering with two common examples, the first
difference filter

yt = ∇xt = xt − xt−1

and the symmetric moving average filter

yt =
1
24
(
xt−6 + xt+6

)
+

1
12

5∑
r=−5

xt−r,

which is a modified Daniell kernel with m = 6. The results of filtering
the SOI series using the two filters are shown in the middle and bottom
panels of Figure 4.12. Notice that the effect of differencing is to roughen
the series because it tends to retain the higher or faster frequencies. The
centered moving average smoothes the series because it retains the lower
frequencies and tends to attenuate the higher frequencies. In general,
differencing is an example of a high-pass filter because it retains or passes
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Figure 4.13 Spectral analysis of the SOI series after applying a 12-month
moving average filter. The vertical line corresponds to the 52-month cycle.

the higher frequencies, whereas the moving average is a low-pass filter
because it passes the lower or slower frequencies.

Notice that the slower periods are enhanced in the symmetric moving
average and the seasonal or yearly frequencies are attenuated. The fil-
tered series makes about 9 cycles in the length of the data (about one
cycle every 52 months) and the moving average filter tends to enhance
or extract the signal that is associated with El Niño. Moreover, by the
low-pass filtering of the data, we get a better sense of the El Niño effect
and its irregularity. Figure 4.13 shows the results of a spectral analysis
on the low-pass filtered SOI series. It is clear that all high frequency
behavior has been removed and the El Niño cycle is accentuated; the
dotted vertical line in the figure corresponds to the 52 months cycle.

Now, having done the filtering, it is essential to determine the exact way
in which the filters change the input spectrum. We shall use (4.97) and
(4.98) for this purpose. The first difference filter can be written in the
form (4.95) by letting a0 = 1, a1 = −1, and ar = 0 otherwise. This
implies that

Ayx(ω) = 1 − e−2πiω,

and the squared frequency response becomes

|Ayx(ω)|2 = (1 − e−2πiω)(1 − e2πiω)
= 2[1 − cos(2πω)]. (4.99)

The top panel of Figure 4.14 shows that the first difference filter will
attenuate the lower frequencies and enhance the higher frequencies be-
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Figure 4.14 Squared frequency response functions of the first difference and
12-month moving average filters.

cause the multiplier of the spectrum, |Ayx(ω)|2, is large for the higher
frequencies and small for the lower frequencies. Generally, the slow rise
of this kind of filter does not particularly recommend it as a procedure
for retaining only the high frequencies.

For the centered 12-month moving average, we can take a−6 = a6 = 1/24,
ak = 1/12 for −5 ≤ k ≤ 5 and ak = 0 elsewhere. Substituting and
recognizing the cosine terms gives

Ayx(ω) =
1
12

[
1 + cos(12πω) + 2

5∑
k=1

cos(2πωk)

]
. (4.100)

Plotting the squared frequency response of this function as in Figure 4.14
shows that we can expect this filter to cut most of the frequency con-
tent above .05 cycles per point. This corresponds to eliminating periods
shorter than T = 1/.05 = 20 points. In particular, this drives down the
yearly components with periods of T = 12 months and enhances the El
Niño frequency, which is somewhat lower. The filter is not completely
efficient at attenuating high frequencies; some power contributions are
left at higher frequencies, as shown in the function |Ayx(ω)|2 and in the
filtered series in Figure 4.3.

The following R session shows how to filter the data, perform the spectral
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analysis of this example, and plot the squared frequency response curve
of the difference filter.

> par(mfrow=c(3,1))
> plot.ts(soi) # the data
> plot.ts(diff(soi)) # first difference
> k = kernel("modified.daniell", 6) #-- 12 month filter
> soif = kernapply(soi,k)
> plot.ts(soif)
> windows() # open new graphics device - use x11() in unix
> spectrum(soif, spans=9, log="no") #-- spectral analysis
> abline(v=1/52, lty="dotted")
> windows()
> w = seq(0,.5, length=1000) #-- frequency response
> FR = abs(1-exp(2i*pi*w))ˆ2
> plot(w, FR, type="l")

The two filters discussed in the previous example were different in that
the frequency response function of the first difference was complex-valued,
whereas the frequency response of the moving average was purely real. A
short derivation similar to that used to verify (4.98) shows, when xt and yt are
related by the linear filter relation (4.95), the cross-spectrum satisfies

fyx(ω) = Ayx(ω)fxx(ω),

so the frequency response is of the form

Ayx(ω) =
fyx(ω)
fxx(ω)

(4.101)

=
cyx(ω)
fxx(ω)

− i
qyx(ω)
fxx(ω)

, (4.102)

where we have used (4.77) to get the last form. Then, we may write (4.102) in
polar coordinates as

Ayx(ω) = |Ayx(ω)| exp{−i φyx(ω)}, (4.103)

where the amplitude and phase of the filter are defined by

|Ayx(ω)| =

√
c2
yx(ω) + q2

yx(ω)

fxx(ω)
(4.104)

and

φyx(ω) = tan−1
(

−qyx(ω)
cyx(ω)

)
. (4.105)

A simple interpretation of the phase of a linear filter is that it exhibits time
delays as a function of frequency in the same way as the spectrum represents
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the variance as a function of frequency. Additional insight can be gained by
considering the simple delaying filter

yt = Axt−D,

where the series gets replaced by a version, amplified by multiplying by A and
delayed by D points. For this case,

fyx(ω) = Ae−2πiωDfxx(ω),

and the amplitude is |A|, and the phase is

φyx(ω) = −2πωD,

or just a linear function of frequency ω. For this case, applying a simple
time delay causes phase delays that depend on the frequency of the periodic
component being delayed. Interpretation is further enhanced by setting xt =
cos(2πωt), in which case yt = A cos(2πωt − 2πωD). Thus, the output series,
yt, has the same period as the input series, xt, but the amplitude of the output
has increased by a factor of |A| and the phase has been changed by a factor of
−2πωD.

Example 4.18 Amplitude and Phase of Difference and Moving
Average

We consider calculating the amplitude and phase of the two filters dis-
cussed in Example 4.17. The case for the moving average is easy because
Ayx(ω) given in (4.100) is purely real. So, the amplitude is just |Ayx(ω)|
and the phase is φyx(ω) = 0. In general, symmetric (at = a−t) filters
have zero phase. The first difference, however, changes this, as we might
expect from the example above involving the time delay filter. In this
case, the squared amplitude is given in (4.99). To compute the phase,
we write

Ayx(ω) = 1 − e−2πiω

= e−iπω(eiπω − e−iπω)
= 2ie−iπω sin(πω)
= 2 sin2(πω) + 2i cos(πω) sin(πω)

=
cyx(ω)
fxx(ω)

− i
qyx(ω)
fxx(ω)

,

so

φyx(ω) = tan−1
(

−qyx(ω)
cyx(ω)

)

= tan−1
(

cos(πω)
sin(πω)

)
.



4.7: Linear Filters 227

Noting that
cos(πω) = sin(−πω + π/2)

and that
sin(πω) = cos(−πω + π/2),

we get
φyx(ω) = −πω + π/2,

and the phase is again a linear function of frequency.

The above tendency of the frequencies to arrive at different times in the
filtered version of the series remains as one of two annoying features of the dif-
ference type filters. The other weakness is the gentle increase in the frequency
response function. If low frequencies are really unimportant and high frequen-
cies are to be preserved, we would like to have a somewhat sharper response
than is obvious in Figure 4.14. Similarly, if low frequencies are important and
high frequencies are not, the moving average filters are also not very efficient at
passing the low frequencies and attenuating the high frequencies. Improvement
is possible by using longer filters, obtained by approximations to the infinite
inverse Fourier transform. The design of filters will be discussed in §4.10 and
§4.11.

We will occasionally use results for multivariate series xxxt = (xt1, . . . , xtp)′

that are comparable to the simple property shown in (4.98). Consider the
matrix filter

yyyt =
∞∑

r=−∞
Arxxxt−r, (4.106)

where {Ar} denotes a sequence of q×p matrices such that
∑∞

r=−∞ ||Ar|| < ∞,
xxxt = (xt1, . . . , xtp)′ is a p×1 stationary vector process with mean vector µµµx and
p× p, matrix covariance function Γxx(h) and spectral matrix fxx(ω), and yyyt is
the q × 1 vector output process. Then, we can obtain the following property.

Property P4.5: Output Spectral Matrix of a Linearly Filtered
Stationary Vector Series
The spectral matrix of the filtered output yyyt in (4.106) is related to the spectrum
of the input xxxt by

fyy(ω) = A(ω)fxx(ω)A∗(ω), (4.107)

where the matrix frequency response function A(ω) is defined by

A(ω) =
∞∑

t=−∞
At exp(−2πiωt). (4.108)
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4.8 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-
ric spectra because no assumption is made about the parametric form of the
spectral density. In Example 4.6, we derived the spectrum of a second-order
autoregressive series and we might consider basing a spectral estimator on this
function, using the estimated parameters φ1, φ2, and σ2

w. Then, substituting
the parameter estimates into the spectral density fx(ω) determined in that
example would lead to a parametric estimator for the spectrum. Similarly, we
might fit a p-th order autoregression, with the order p determined by one of the
model selection criteria, such as AIC, AICc, and SIC, defined in (2.18)-(2.20)
for the regression model. Parametric autoregressive spectral estimators will
often have superior resolution in problems when several closely spaced narrow
spectral peaks are present and are preferred by engineers for a broad vari-
ety of problems (see Kay, 1988). The development of autoregressive spectral
estimators has been summarized by Parzen (1983).

To be specific, consider the equation determining the order p autoregressive
model (2.1), written in the form

xt −
p∑

k=1

φkxt−k = wt, (4.109)

where wt is a white noise process with mean zero and variance σ2
w. Then, note

the linear filter Property P4.4, combined with equating the spectra of the left-
and right-hand sides of the defining equation above yields

|φ(e−2πiω)|2fx(ω) = σ2
w, (4.110)

where

φ(e−2πiω) = 1 −
p∑

k=1

φke−2πiωk. (4.111)

Then, denoting the maximum likelihood or least squares estimators of the
model parameters by φ̂1, φ̂2, . . . , φ̂p and σ̂2

w, we may substitute them into the
form of the spectrum implied by (4.110), obtaining

f̂x(ω) =
σ̂2

w

|φ̂(e−2πiω)|2
. (4.112)

The asymptotic distribution of the autoregressive spectral estimator has been
obtained by Berk (1974) under the conditions p → ∞, p3/n → 0 as p, n → ∞,
which may be too severe for most applications. The limiting results imply a
confidence interval of the form

f̂x(ω)
(1 + Czα/2)

≤ fx(ω) ≤ f̂x(ω)
(1 − Czα/2)

, (4.113)
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where
C =

√
2p/n (4.114)

and zα/2 is ordinate corresponding to the upper α/2 probability of the standard
normal distribution. If the sampling distribution is to be checked, we suggest
applying the bootstrap estimator to get the sampling distribution of f̂x(ω)
using a procedure similar to the one used for p = 1 in Example 3.33. An
alternative for higher order autoregressive series is to put the AR(p) in state-
space form and use the bootstrap procedure discussed in §6.7.

An interesting fact about rational spectra of the form (4.110) is that any
spectral density can be approximated, arbitrarily close by the spectrum of an
AR process.

Property P4.6: Approximating a Spectral Density with an AR
Spectrum
Let g(ω) be the spectral density of a stationary process. Then, given ε > 0,
there is a time series with the representation

xt =
p∑

k=1

φkxt−k + wt

where wt is white noise with variance σ2
w, such that

|fx(ω) − g(ω)| < ε all ω ∈ [−1/2, 1/2].

Moreover, p is finite and the roots of φ(z) = 1 −∑p
k=1 φkzk are outside the

unit circle.

One drawback of the property is that it does not tell us how large p must be
before the approximation is reasonable; in some situations p may be extremely
large. Property P4.6 also holds for MA and for ARMA processes in general, and
a proof of the result may be found in Fuller (1996, Ch 4). For an ARMA(p, q)
process we would have

fx(ω) = σ2
w

|θ(e−2πiω)|2
|φ(e−2πiω)|2 (4.115)

where θ(z) = 1 +
∑q

k=1 θkzk. We demonstrate the technique in the following
example.

Example 4.19 Autoregressive Spectral Estimator of the SOI Series

Consider obtaining results comparable to the nonparametric estimators
shown in Figure 4.5 for the SOI series. Fitting successively higher or-
der models for p = 1, 2, . . . , 30 yields a minimum SIC at p = 15 and a
minimum AICc at p = 16, as shown in Figure 4.15. We can see from
Figure 4.15 that SIC is very definite about which model it chooses; that
is, the minimum SIC is very distinct. On the other hand, it is not clear
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Figure 4.15 Model selection criteria AICc and SIC as a function of order p
for autoregressive models fitted to the SOI series.

what is going to happen with AICc; that is, the minimum is not so clear,
and there is some concern that AICc will start decreasing after p = 30.
Minimum AIC selects the p = 15 model (but suffers from the same un-
certainty as AICc) as will be seen in the R example. The spectra of the
two cases are almost identical, as shown in Figure 4.16, and we note the
strong peaks at 52 months and 12 months corresponding to the nonpara-
metric estimators obtained in §4.5. In addition, the harmonics of the
yearly period is evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used
to fit the best model via AIC and plot the resulting spectrum. A quick
way to obtain the AIC values is to run the ar command as follows.

> spec.ar(soi, log="no") # plot min AIC spectrum
> abline(v=1/52, lty="dotted") # locate El Nino period
> abline(v=1/12, lty="dotted") # locate yearly period
> soi.ar = ar(soi, order.max=30) # obtain AICs
> plot(0:30, soi.ar$aic, type="l") # plot AICs
> soi.ar # results
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Figure 4.16 Autoregressive spectral estimators for the SOI series using models
selected by AIC and SIC (p = 15, solid line) and by AICc (p = 16, dashed
line). The first peak corresponds to the El Niño period of 52 months.

Coefficients:
1 2 3 4 5

0.4237 0.0803 0.1411 0.0750 -0.0446
6 7 8 9 10

-0.0816 -0.0686 -0.0640 0.0159 0.1099
11 12 13 14 15

0.1656 0.1482 0.0231 -0.1814 -0.1406

Order selected 15 sigmaˆ2 estimated as 0.07575

Use the command spec.ar(soi, order=16, log="no") to obtain the
AR(16) spectrum.

Finally, it should be mentioned that any parametric spectrum, say f(ω; θθθ),
depending on the vector parameter θθθ can be estimated via the approximate
Whittle likelihood, see Whittle (1961), using the approximate properties of the
discrete Fourier transform derived in Appendix C. We have that the DFTs,
d(ωj), are approximately complex normally distributed with mean zero and
variance f(ωj ; θθθ) and are approximately independent for ωj �= ωk. This implies
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that an approximate log likelihood can be written in the form

lnL(xxx; θθθ) ≈ −
∑

0<ωj<1/2

(
ln fx(ωj ; θθθ) +

|d(ωj)|2
fx(ωj ; θθθ)

)
, (4.116)

where the sum is sometimes expanded to include the frequencies ωj = 0, 1/2.
If the form with the two additional frequencies is used, the multiplier of the
sum will be unity, except for the purely real points at ωj = 0, 1/2 for which the
multiplier is 1/2. For a discussion of applying the Whittle approximation to the
problem of estimating parameters in an ARMA spectrum, see Anderson (1978).
Although this yields valid answers, it seems more involved than simply using
the time domain methods discussed in Chapter 3. The Whittle likelihood will
be useful in fitting long memory models that will be discussed in Chapter 5.

4.9 Dynamic Fourier Analysis and Wavelets

If a time series, xt, is stationary, its second-order behavior remains the same,
regardless of the time t. It makes sense to match a stationary time series with
sines and cosines because they, too, behave the same forever. Indeed, based
on the Spectral Representation Theorem (Appendix C, §C.1), we may regard
a stationary series as the superposition of sines and cosines that oscillate at
various frequencies. As seen in this text, however, many time series are not
stationary. Typically, the data are coerced into stationarity via transforma-
tions, or we restrict attention to parts of the data where stationarity appears
to adhere. In some cases, the nonstationarity of a time series is of interest.
That is to say, it is the local behavior of the process, and not the global be-
havior of the process, that is of concern to the investigator. As a case in point,
we mention the explosion and earthquake series first presented in Example 1.7
(see Figure 1.7) and subsequently analyzed using Fourier methods in Exam-
ple 4.13. The following example emphasizes the importance of dynamic (or
time-frequency) Fourier analysis.

Example 4.20 Dynamic Fourier Analysis of the Explosion and
Earthquake Series

Consider the earthquake and explosion series displayed in Figure 1.7. As
a summary of the local behavior of these series, the estimated spectra
of the P and S waves in Example 4.13 leave a lot to be desired. Fig-
ures 4.17 and 4.18 show the time-frequency analysis of the earthquake
and explosion series, respectively. The idea here is to summarize the
spectral behavior of the signal as it evolves over time. First, a Fourier
analysis is performed on a short section of the data. Then, the section
is shifted, and a Fourier analysis is performed on the new section. This
process is repeated until the end of the data, and the results are plot-
ted as in Figures 4.17 and 4.18. Specifically, in this example, let xt, for



4.9: Dynamic Fourier Analysis and Wavelets 233

Figure 4.17 Time-frequency plot for the dynamic Fourier analysis of the earth-
quake series shown in Figure 1.7.

t = 1, . . . , 2048, represent the series of interest. Then, the sections of the
data that were analyzed were {xtk+1, . . . , xtk+256}, for tk = 128k, and
k = 0, 1, . . . , 14. Each section was tapered using a cosine bell, and spec-
tral estimation was performed using a triangular set of L = 5 weights.
The sections overlap each other, however, this practice is not necessary
and sometimes not desirable; see Percival and Walden (1993, §6.17) for
a further discussion of this problem.

The results of the dynamic analysis are shown as the estimated spectra
(for frequencies up to ω = .25) for each starting location (time), tk =
128k, with k = 0, 1, . . . , 14. The S component for the earthquake shows
power at the low frequencies only, and the power remains strong for a
long time. In contrast, the explosion shows power at higher frequencies
than the earthquake, and the power of the signals (P and S waves) does
not last as long as in the case of the earthquake.

The following is an R session that corresponds to a similar analysis of
the explosion series in this example.

> eqexp = matrix(scan("/mydata/eq5exp6.dat"), ncol=2)
> ex = eqexp[,2] # the explosion series
> ## -- dynamic spectral analysis -- ##
> nobs = length(ex) # number of observations
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Figure 4.18 Time-frequency plot for the dynamic Fourier analysis of the ex-
plosion series shown in Figure 1.7.

> wsize = 256 # window size
> overlap = 128 # overlap
> ovr = wsize-overlap
> nseg = floor(nobs/ovr)-1; # number of segments
> krnl = kernel("daniell", c(1,1)) # kernel
> ex.spec = matrix(0,wsize/2,nseg)
> for (k in 1:nseg) {
+ a = ovr*(k-1)+1
+ b = wsize+ovr*(k-1)
+ ex.spec[,k]=spectrum(ex[a:b],krnl,taper=.5,plot=F)$spec
+ }
> ## -- plot results -- ##
> x = seq(0, .5, len = nrow(ex.spec))
> y = seq(0, ovr*nseg, len = ncol(ex.spec))
> persp(x, y, ex.spec, zlab="Power", xlab="frequency",
+ ylab="time", ticktype = "detailed", theta=25, d=2)

One way to view the time-frequency analysis of Example 4.20 is to consider
it as being based on local transforms of the data xt of the form

dj,k = n−1/2
n∑

t=1

xtψj,k(t), (4.117)
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Figure 4.19 Local, tapered cosines at various frequencies.

where

ψj,k(t) =
{

(n/m)1/2ht e−2πitj/m t ∈ [tk + 1, tk + m]
0 otherwise

(4.118)

where ht is a taper and m is some fraction of n. In Example 4.20, n = 2048,
m = 256, tk = 128k, for k = 0, 1, . . . , 14, and ht was a cosine bell taper
over 256 points. In (4.117) and (4.118), j indexes frequency, ωj = j/m, for
j = 1, 2, . . . , [m/2], and k indexes the location, or time shift, of the transform.
In this case, the transforms are based on tapered cosines and sines that have
been zeroed out over various regions in time. The key point here is that the
transforms are based on local sinusoids. Figure 4.19 shows an example of four
local, tapered cosine functions at various frequencies. In that figure, the length
of the data is considered to be one, and the cosines are localized to a fourth of
the data length.

In addition to dynamic Fourier analysis as a method to overcome the
restriction of stationarity, researchers have sought various alternative meth-
ods. A recent, and successful, alternative is wavelet analysis. A website
http://www.wavelet.org is devoted to wavelets, which includes information
about books, technical papers, software, and links to other sites. In addi-
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tion, we mention the monograph on wavelets by Daubechies (1992), the text
by Percival and Walden (2000), and we note that many statistical software
manufacturers have wavelet modules that sit on top of their base package. In
this section, we rely primarily on the S-PLUS wavelets module (with a manual
written by Bruce and Gao, 1996), however, we will present some R code where
possible. The basic idea of wavelet analysis is to imitate dynamic Fourier
analysis, but with functions (wavelets) that may be better suited to capture
the local behavior of nonstationary time series.

Wavelets come in families generated by a father wavelet, φ, and a mother
wavelet, ψ. The father wavelets are used to capture the smooth, low-frequency
nature of the data, whereas the mother wavelets are used to capture the de-
tailed, and high-frequency nature of the data. The father wavelet integrates
to one, and the mother wavelet integrates to zero∫

φ(t)dt = 1 and
∫

ψ(t)dt = 0. (4.119)

For a simple example, consider the Haar function,

ψ(t) =

⎧⎨⎩ 1, 0 ≤ t < 1/2,
−1, 1/2 ≤ t < 1,

0, otherwise.
(4.120)

The father in this case is φ(t) = 1 for t ∈ [0, 1) and zero otherwise. The
Haar functions are useful for demonstrating properties of wavelets, but they
do not have good time-frequency localization properties. Figure 4.20 displays
two of the more commonly used wavelets that are available with the S-PLUS
wavelets module, the daublet4 and symmlet8 wavelets, which are described in
detail in Daubechies (1992). The number after the name refers to the width
and smoothness of the wavelet; for example, the symmlet10 wavelet is wider
and smoother than the symmlet8 wavelet. Daublets are one of the first type
of continuous orthogonal wavelets with compact support, and symmlets were
constructed to be closer to symmetry than daublets. In general, wavelets do
not have an analytical form, but instead they are generated using numerical
methods.

Figure 4.20 was generated in S-PLUS using the wavelet module as follows:

> d4f <- wavelet("d4", mother=F)
> d4m <- wavelet("d4")
> s8f <- wavelet("s8", mother=F)
> s8m <- wavelet("s8")
> par(mfrow=c(2,2))
> plot(d4f)
> plot(d4m)
> plot(s8f)
> plot(s8m)
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Figure 4.20 Father and mother daublet4 wavelets (top row); father and
mother symmlet8 wavelets (bottom row).

It is possible to draw some wavelets in R using the wavethresh pack-
age. In that package, daublets are called DaubExPhase and symmlets are
called DaubLeAsymm. The following R session displays some of the available
wavelets (this will not reproduce Figure 4.20) and it assumes the wavethresh
package has been downloaded into R and then loaded at the start of the session.
The filter.number determines the width and smoothness of the wavelet.

> par(mfrow=c(2,2))
> draw.default(filter.number=2, family="DaubExPhase")
> draw.default(filter.number=4, family="DaubExPhase")
> draw.default(filter.number=4, family="DaubLeAsymm")
> draw.default(filter.number=9, family="DaubLeAsymm")

When we depart from periodic functions, such as sines and cosines, the
precise meaning of frequency, or cycles per unit time, is lost. When using
wavelets, we typically refer to scale rather than frequency. The orthogonal
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Figure 4.21 Scaled and translated daublet4 wavelets, ψ1,0(t) and ψ2,1(t) (top
row); scaled and translated symmlet8 wavelets, ψ1,0(t) and ψ2,1(t) (bottom
row).

wavelet decomposition of a time series, xt, for t = 1, . . . , n is

xt =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kψJ,k(t)

+
∑

k

dJ−1,kψJ−1,k(t) + · · · +
∑

k

d1,kψ1,k(t), (4.121)

where J is the number of scales, and k ranges from one to the number of coeffi-
cients associated with the specified component (see Example 4.21). In (4.121),
the wavelet functions φJ,k(t), ψJ,k(t), ψJ−1,k(t), . . . , ψ1,k(t) are generated from
the father wavelet, φ(t), and the mother wavelet, ψ(t), by translation (shift)
and scaling:

φJ,k(t) = 2−J/2φ

(
t − 2Jk

2J

)
, (4.122)

ψj,k(t) = 2−j/2ψ

(
t − 2jk

2j

)
, j = 1, . . . , J. (4.123)
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The choice of dyadic shifts and scales is arbitrary but convenient. The shift or
translation parameter is 2jk, and scale parameter is 2j . The wavelet functions
are spread out and shorter for larger values of j (or scale parameter 2j) and
tall and narrow for small values of the scale. Figure 4.21 shows ψ1,0(t) and
ψ2,1(t) generated from the daublet4 (top row), and the symmlet8 (bottom row)
mother wavelets. We may think of 1/2j (or 1/scale) in wavelet analysis as being
the analogue of frequency (ωj = j/n) in Fourier analysis. For example, when
j = 1, the scale parameter of 2 is akin to the Nyquist frequency of 1/2, and
when j = 6, the scale parameter of 26 is akin to a low frequency (1/26 ≈ 0.016).
In other words, larger values of the scale refer to slower, smoother (or coarser)
movements of the signal, and smaller values of the scale refer to faster, choppier
(or finer) movements of the signal. Figure 4.21 was generated in S-PLUS using
the wavelet module as follows:

> d4.1 <- wavelet("d4", level=1, shift=0)
> d4.2 <- wavelet("d4", level=2, shift=1)
> s8.1 <- wavelet("s8", level=1, shift=0)
> s8.2 <- wavelet("s8", level=2, shift=1)
> par(mfrow=c(2,2))
> plot(d4.1, ylim=c(-.8,.8), xlim=c(-6,20))
> plot(d4.2, ylim=c(-.8,.8), xlim=c(-6,20))
> plot(s8.1, ylim=c(-.8,.8), xlim=c(-6,20))
> plot(s8.2, ylim=c(-.8,.8), xlim=c(-6,20))

The discrete wavelet transform (DWT) of the data xt are the coefficients
sJ,k and dj,k for j = J, J − 1, . . . , 1, in (4.121). To some degree of approxima-
tion, they are given by15

sJ,k = n−1/2
n∑

t=1

xtφJ,k(t), (4.124)

dj,k = n−1/2
n∑

t=1

xtψj,k(t) j = J, J − 1, . . . , 1. (4.125)

It is the magnitudes of the coefficients that measure the importance of the
corresponding wavelet term in describing the behavior of xt. As in Fourier
analysis, the DWT is not computed as shown but is calculated using a fast
algorithm. The sJ,k are called the smooth coefficients because they represent
the smooth behavior of the data. The dj,k are called the detail coefficients
because they tend to represent the finer, more high-frequency nature, of the
data.

15The actual DWT coefficients are defined via a set of filters whose coefficients are close
to what you would get by sampling the father and mother wavelets, but not exactly so; see
the discussion surrounding Figures 471 and 478 in Percival and Walden (2000).
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Figure 4.22 Discrete wavelet transform of the earthquake series using the
symmlet8 wavelets, and J = 6 levels of scale.
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Figure 4.23 Discrete wavelet transform of the explosion series using the
symmlet8 wavelets and J = 6 levels of scale.



4.9: Dynamic Fourier Analysis and Wavelets 241

Example 4.21 Wavelet Analysis of the Explosion and Earthquake
Series

Figures 4.22 and 4.23 show the DWTs, based on the symmlet8 wavelet
basis, for the earthquake and explosion series, respectively. Each series is
of length n = 211 = 2048, and in this example, the DWTs are calculated
using J = 6 levels. In this case, n/2 = 210 = 1024 values are in d1 =
{d1,k; k = 1, . . . , 210}, n/22 = 29 = 512 values are in d2 = {d2,k; k =
1, . . . , 29}, and so on, until finally, n/26 = 25 = 32 values are in d6
and in s6. The detail values d1,k, . . . , d6,k are plotted at the same scale,
and hence, the relative importance of each value can be seen from the
graph. The smooth values s6,k are typically larger than the detail values
and plotted on a different scale. The top of Figures 4.22 and 4.23 show
the inverse DWT (IDWT) computed from all of the coefficients. The
displayed IDWT is a reconstruction of the data, and it reproduces the
data except for round-off error.

Comparing the DWTs, the earthquake is best represented by wavelets
with larger scale than the explosion. One way to measure the importance
of each level, d1, d2, . . . , d6, s6, is to evaluate the proportion of the total
power (or energy) explained by each. The total power of a time series
xt, for t = 1, . . . , n, is TP =

∑n
t=1 x2

t . The total power associated with
each level of scale is (recall n = 211),

TP s
6 =

n/26∑
k=1

s2
6,k and TP d

j =
n/2j∑
k=1

d2
j,k, j = 1, . . . , 6.

Because we are working with an orthogonal basis, we have

TP = TP s
6 +

6∑
j=1

TP d
j ,

and the proportion of the total power explained by each level of detail
would be the ratios TP d

j /TP for j = 1, . . . , 6, and for the smooth level,
it would be TP s

6 /TP . These values are listed in Table 4.2. From that
table nearly 80% of the total power of the earthquake series is explained
by the higher scale details d4 and d5, whereas 90% of the total power is
explained by the smaller scale details d2 and d3 for the explosion.

Figures 4.24 and 4.25 show the time-scale plots based on the DWT of the
earthquake series and the explosion series, respectively. These figures are
the wavelet analog of the time-frequency plots shown in Figures 4.17 and
4.18. The power axis represents the magnitude of each value djk or s6,k.
The time axis matches the time axis in the DWTs shown in Figures 4.22
and 4.23, and the scale axis is plotted as 1/scale, listed from the coarsest
scale to the finest scale. On the 1/scale axis, the coarsest scale values,
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Table 4.2 Fraction of the Total Power for the DWTs
of the Earthquake and the Explosion

Component Earthquake Explosion
s6 0.009 0.002
d6 0.043 0.002
d5 0.377 0.007
d4 0.367 0.015
d3 0.160 0.559
d2 0.040 0.349
d1 0.003 0.066

Figure 4.24 Time-scale plot of the earthquake series.

represented by the smooth coefficients s6, are plotted over the range
[0, 2−6), the coarsest detail values, d6, are plotted over [2−6, 2−5), and
so on. In these figures, we did not plot the finest scale values, d1, so the
finest scale values exhibited in Figures 4.24 and 4.25 are in d2, which are
plotted over the range [2−2, 2−1).

The conclusions drawn from these plots are the same as those drawn from
Figures 4.17 and 4.18. That is, the S wave for the earthquake shows power
at the high scales (or low 1/scale) only, and the power remains strong
for a long time. In contrast, the explosion shows power at smaller scales
(or higher 1/scale) than the earthquake, and the power of the signals (P
and S waves) do not last as long as in the case of the earthquake.

The analyses of this example were performed using the S-PLUS wavelets
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Figure 4.25 Time-scale plot of the explosion series.

module (which must be loaded prior to the analyses) as follows:

> eqexp <- matrix(scan("/mydata/eq5exp6.dat"), ncol=2)
> eq <- eqexp[,1] # the earthquake series
> ex <- eqexp[,2] # the explosion series
> eq.dwt <- dwt(eq)
> ex.dwt <- dwt(ex)
> plot(eq.dwt)
> plot(ex.dwt)
> # -- energy distributions (Table 4.2) --#
> dotchart(eq.dwt) # a graphic
> summary(eq.dwt) # numerical details
> dotchart(ex.dwt)
> summary(ex.dwt)
> #-- time scale plots (Figs 4.24-4.25 but not in 3d) --#
> time.scale.plot(eq.dwt)
> time.scale.plot(ex.dwt)

Similar analyses may be performed in R using the wavethresh or the
waveslim packages. We exhibit the analysis for the earthquake series
using waveslim, assuming it has been downloaded into R and then loaded
at the start of the R session.

> eq.dwt = dwt(eq, n.levels=6)
> # -- plot the dwt and calculate TP -- #
> TP = matrix(0,7,1)
> par(mfcol=c(7,1), pty="m", mar=c(3,4,2,2))
> for(i in 1:6){
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+ plot.ts(up.sample(eq.dwt[[i]], 2ˆi), type="h", axes=F,
+ ylab=names(eq.dwt)[i])
+ abline(h=0)
+ axis(side=2)
+ TP[i]=sum(eq.dwt[[i]]ˆ2)
+ }
> plot.ts(up.sample(eq.dwt[[7]], 2ˆ6), type="h", axes=F,
+ ylab=names(eq.dwt)[7])
> abline(h=0)
> axis(side=2)
> axis(side=1)
> TP[7]=sum(eq.dwt[[7]]ˆ2)
> TP/sum(eqˆ2) # the energy distribution

In the R code, we plotted the wavelet transform on different scales. To
plot the ordinates of the wavelet transforms on the same scale, include a
command like ylim=c(-1.5,1.5) in each plot.ts() command.

Wavelets can be used to perform nonparametric smoothing along the lines
first discussed in §2.4, but with an emphasis on localized behavior. Although a
considerable amount of literature exists on this topic, we will present the basic
ideas. For further information, we refer the reader to Donoho and Johnstone
(1994, 1995). As in §2.4, we suppose the data xt can be written in terms of a
signal plus noise model as

xt = st + εt. (4.126)

The goal here is to remove the noise from the data, and obtain an estimate of
the signal, st, without having to specify a parametric form of the signal. The
technique based on wavelets is referred to as waveshrink.

The basic idea behind waveshrink is to shrink the wavelet coefficients in
the DWT of xt toward zero in an attempt to denoise the data and then to
estimate the signal via (4.121) with the new coefficients. One obvious way to
shrink the coefficients toward zero is to simply zero out any coefficient smaller
in magnitude than some predetermined value, λ. Such a shrinkage rule is
discontinuous and sometimes it is preferable to use a continuous shrinkage
function. One such method, termed soft shrinkage, proceeds as follows. If
the value of a coefficient is a, we set that coefficient to zero if |a| ≤ λ, and
to sign(a)(|a| − λ) if |a| > λ. The choice of a shrinkage method is based on
the goal of the signal extraction. This process entails choosing a value for the
shrinkage threshold, λ, and we may wish to use a different threshold value, say,
λj , for each level of scale j = 1, . . . , J . One particular method that works well
if we are interested in a relatively high degree of smoothness in the estimate
is to choose λ = σ̂ε

√
2 log n for all scale levels, where σ̂ε is an estimate of

the scale of the noise, σε. Typically a robust estimate of σε is used, e.g., the
median of the absolute deviations of the data from the median (MAD). For
other thresholding techniques or for a better understanding of waveshrink, see
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Donoho and Johnstone (1994, 1995), or the S-PLUS wavelets module manual
(Bruce and Gao, 1996, Ch 6).

Example 4.22 Waveshrink Analysis of the Explosion and Earthquake
Series

Figure 4.26 shows the results of a waveshrink analysis on the earthquake
and explosion series. In this example, soft shrinkage was used with a
universal threshold of λ = σ̂ε

√
2 log n where σ̂ε is the MAD. Figure 4.26

displays the data xt, the estimated signal ŝt, as well as the residuals
xt − ŝt. According to this analysis, the earthquake is mostly signal and
characterized by prolonged energy, whereas the explosion is comprised of
short bursts of energy.

Figure 4.26 was generated in S-PLUS using the wavelets module. For
example, the analysis of the earthquake series was performed as follows.

> eq.dwt <- dwt(eq)
> eq.shrink <- waveshrink(eq.dwt, shrink.rule="universal",
+ shrink.fun="soft")

In R, using the waveslim package for the earthquake series, use the
following commands.

> eq.dwt = dwt(eq, n.levels=6)
> eq.trsh = universal.thresh(eq.dwt, hard=F)
> eq.smo = idwt(eq.trsh)
> par(mfrow=c(3,1))
> plot.ts(eq, ylab="Earthquake", ylim=c(-.5,.5))
> plot.ts(eq.smo,ylab="Smoothed Earthquake",ylim=c(-.5,.5))
> plot.ts(eq-eq.smo, ylab="Noise", ylim=c(-.5,.5))

4.10 Lagged Regression Models

One of the intriguing possibilities offered by the coherence analysis of the
relation between the SOI and Recruitment series discussed in Example 4.16
would be extending classical regression to the analysis of lagged regression
models of the form

yt =
∞∑

r=−∞
βrxt−r + vt, (4.127)

where vt is a stationary noise process, xt is the observed input series, and
yt is the observed output series. We are interested in estimating the filter
coefficients βr relating the adjacent lagged values of xt to the output series yt.

In the case of SOI and Recruitment series, we might identify the El Niño
driving series, SOI, as the input, xt, and yt, the Recruitment series, as the
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Figure 4.26 Waveshrink estimates of the earthquake signal and of the explo-
sion signal.

output. In general, there will be more than a single possible input series and
we may envision a q × 1 vector of driving series. This multivariate input
situation is covered in Chapter 7. The model given by (4.127) is useful under
several different scenarios, corresponding to different assumptions that can be
made about the components.

We assume that the inputs and outputs have zero means and are jointly
stationary with the 2 × 1 vector process (xt, yt)′ having a spectral matrix of
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the form

f(ω) =
(

fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)
. (4.128)

Here, fxy(ω) is the cross-spectrum relating the input xt to the output yt, and
fxx(ω) and fyy(ω) are the spectra of the input and output series, respectively.
Generally, we observe two series, regarded as input and output and search for
regression functions {βt} relating the inputs to the outputs. We assume all
autocovariance functions satisfy the absolute summability conditions of the
form (4.31).

Then, minimizing the mean squared error

MSE = E

(
yt −

∞∑
r=−∞

βrxt−r

)2

(4.129)

leads to the usual orthogonality conditions

E

[(
yt −

∞∑
r=−∞

βrxt−r

)
xt−s

]
= 0 (4.130)

for all s = 0,±1,±2, . . .. Taking the expectations inside leads to the normal
equations

∞∑
r=−∞

βr γxx(s − r) = γyx(s) (4.131)

for s = 0,±1,±2, . . .. These equations might be solved, with some effort, if
the covariance functions were known exactly. If data (xt, yt) for t = 1, ..., n
are available, we might use a finite approximation to the above equations
with γ̂xx(h) and γ̂yx(h) substituted into (4.131). If the regression vectors are
essentially zero for |s| ≥ M/2, and M < n, the system (4.131) would be of full
rank and the solution would involve inverting an (M − 1) × (M − 1) matrix.

A frequency domain approximate solution is easier in this case for two
reasons. First, the computations depend on spectra and cross-spectra that can
be estimated from sample data using the techniques of §4.6. In addition, no
matrices will have to be inverted, although the frequency domain ratio will have
to be computed for each frequency. In order to develop the frequency domain
solution, substitute the representation (4.85) into the normal equations, using
the convention defined in (4.128). The left side of (4.131) can then be written
in the form∫ 1/2

−1/2

∞∑
r=−∞

βr e2πiω(s−r) fxx(ω) dω =
∫ 1/2

−1/2
e2πiωsB(ω)fxx(ω) dω,

where

B(ω) =
∞∑

r=−∞
βr e−2πiωr (4.132)
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is the Fourier transform of the regression coefficients βt. Now, because γyx(s) is
the inverse transform of the cross-spectrum fyx(ω), we might write the system
of equations in the frequency domain, using the uniqueness of the Fourier
transform, as

B(ω)fxx(ω) = fyx(ω), (4.133)

which then become the analogs of the usual normal equations. Then, we may
take

B̂(ωk) =
f̂yx(ωk)

f̂xx(ωk)
(4.134)

as the estimator for the Fourier transform of the regression coefficients, evalu-
ated at some subset of fundamental frequencies ωk = k/M with M << n. Gen-
erally, we assume smoothness of B(·) over intervals of the form {ωk + 
/n; 
 =
−(L− 1)/2, . . . , (L− 1)/2}. The inverse transform of the function B̂(ω) would
give β̂t, and we note that the discrete time approximation can be taken as

β̂t = M−1
M−1∑
k=0

B̂(ωk)e2πiωkt (4.135)

for t = 0,±1,±2, . . . ,±(M/2 − 1). If we were to use (4.135) to define β̂t for
|t| ≥ M/2, we would end up with a sequence of coefficients that is periodic with
a period of M . In practice we define β̂t = 0 for |t| ≥ M/2 instead. Problem
4.32 explores the error resulting from this approximation.

Example 4.23 Lagged Regression Results for SOI and Recruitment
Series

The high coherence between the SOI and Recruitment series noted in
Example 4.16 suggests a lagged regression relation between the two series.
A natural direction for the implication in this situation is implied because
we feel that the sea surface temperature or SOI should be the input and
the Recruitment series should be the output. With this in mind, let xt

be the SOI series and yt the Recruitment series.

Although we think naturally of the SOI as the input and the Recruitment
as the output, two input-output configurations are of interest. With SOI
as the input, the model is

yt =
∞∑

r=−∞
arxt−r + wt

whereas a model that reverses the two roles would be

xt =
∞∑

r=−∞
bryt−r + vt,
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Figure 4.27 Estimated impulse response functions relating SOI to Recruit-
ment (top) and Recruitment to SOI (bottom) L = 15, M = 32.

where wt and vt are white noise processes. Even though there is no
plausible environmental explanation for the second of these two models,
displaying both possibilities helps to settle on a parsimonious transfer
function model. The two estimated regression or impulse response func-
tions with M = 32 and L = 15 are shown in Figure 4.27. Note the
negative peak at a lag of five points in the first of the two situations
where the SOI series is assumed to be the input. The fall-off after lag
five seems to be approximately exponential. A possible model for this
situation is

yt = −22xt−5 − 15xt−6 − 11xt−7 − 10xt−8 − 7xt−9 − . . . + wt.

If we examine the inverse relation, namely, a regression model with the
Recruitment series yt as the input, we get a much simpler model that
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seems to depend on only two coefficients, namely,

xt = .012yt+4 − .018yt+5 + vt,

or, shifting by five points and transposing,

yt = .667yt−1 − 56xt−5 + εt,

where εt is white noise. Using the backshift operator, we may write

(1 − .667B)yt = −56B5xt + εt.

The analysis of this example was performed using the time series package
ASTSA, which is available for download from the website of this text.

The example shows we can get a clean estimator for the transfer functions
relating the two series if the coherence ρ̂2

xy(ω) is large. The reason is that we
can write the minimized mean squared error (4.129) as

MSE = E

[(
yt −

∞∑
r=−∞

βrxt−r

)
yt

]
= γyy(0) −

∞∑
r=−∞

βrγxy(−r),

using the result about the orthogonality of the data and error term in the Pro-
jection theorem. Then, substituting the spectral representations of the autoco-
variance and cross-covariance functions and identifying the Fourier transform
(4.132) in the result leads to

MSE =
∫ 1/2

−1/2
[fyy(ω) − B(ω)fxy(ω)] dω

=
∫ 1/2

−1/2
fyy(ω)[1 − ρ2

yx(ω)]dω, (4.136)

where ρ2
yx(ω) is just the squared coherence given by (4.83). The similarity of

(4.136) to the usual mean square error that results from predicting y from x
is obvious. In that case, we would have

E(y − βx)2 = σ2
y(1 − ρ2

xy)

for jointly distributed random variables x and y with zero means, variances σ2
x

and σ2
y, and covariance σxy = ρxyσxσy. Because the mean squared error in

(4.136) satisfies MSE ≥ 0 with fyy(ω) a non-negative function, it follows that
the coherence satisfies

0 ≤ ρ2
xy(ω) ≤ 1

for all ω. Furthermore, Problem 4.33 shows the squared coherence is one
when the output are linearly related by the filter relation (4.127), and there
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is no noise, i.e., vt = 0. Hence, the multiple coherence gives a measure of the
association or correlation between the input and output series as a function of
frequency.

The matter of verifying that the F -distribution claimed for (4.93) will hold
when the sample coherence values are substituted for theoretical values still
remains. Again, the form of the F -statistic is exactly analogous to the usual t-
test for no correlation in a regression context. We give an argument leading to
this conclusion later using the results in Appendix C, §C.3. Another question
that has not been resolved in this section is the extension to the case of multiple
inputs xt1, xt2, . . . , xtq. Often, more than just a single input series is present
that can possibly form a lagged predictor of the output series yt. An example
is the cardiovascular mortality series that depended on possibly a number of
pollution series and temperature. We discuss this particular extension as a
part of the multivariate time series techniques considered in Chapter 7.

4.11 Signal Extraction and Optimum Filtering

A model closely related to regression can be developed by assuming again that

yt =
∞∑

r=−∞
βrxt−r + vt, (4.137)

but where the βs are known and xt is some unknown random signal that is
uncorrelated with the noise process vt. In this case, we observe only yt and
are interested in an estimator for the signal xt of the form

x̂t =
∞∑

r=−∞
aryt−r. (4.138)

In the frequency domain, it is convenient to make the additional assumptions
that the series xt and vt are both mean-zero stationary series with spectra
fxx(ω) and fvv(ω), often referred to as the signal spectrum and noise spectrum,
respectively. Often, the special case βt = δt, in which δt is the Kronecker delta,
is of interest because (4.137) reduces to the simple signal plus noise model

yt = xt + vt (4.139)

in that case. In general, we seek the set of filter coefficients at that minimize
the mean squared error of estimation, say,

MSE = E[(xt −
∞∑

r=−∞
aryt−r)2]. (4.140)

This problem was originally solved by Kolmogorov (1941) and by Wiener
(1949), who derived the result in 1941 and published it in classified reports
during World War II.
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We can apply the orthogonality principle to write

E[(xt −
∞∑

r=−∞
aryt−r)yt−s] = 0

for s = 0,±1,±2, . . ., which leads to

∞∑
r=−∞

arγyy(s − r) = γxy(s),

to be solved for the filter coefficients. Substituting the spectral representations
for the autocovariance functions into the above and identifying the spectral
densities through the uniqueness of the Fourier transform produces

A(ω)fyy(ω) = fxy(ω), (4.141)

where A(ω) and the optimal filter at are Fourier transform pairs, as in Defini-
tion 4.1 for B(ω) and βt. Now, a special consequence of the model is that (see
Problem 4.23)

fxy(ω) = B(ω)fxx(ω) (4.142)

and
fyy(ω) = |B(ω)|2fxx(ω) + fvv(ω), (4.143)

implying the optimal filter would be Fourier transform of

A(ω) =
B(ω)(

|B(ω)|2 + fvv(ω)
fxx(ω)

) , (4.144)

where the second term in the denominator is just the inverse of the signal to
noise ratio, say,

SNR(ω) =
fxx(ω)
fvv(ω)

. (4.145)

The result shows the optimum filters can be computed for this model if the
signal and noise spectra are both known or if we can assume knowledge of the
signal-to-noise ratio SNR(ω) as function of frequency. In Chapter 7, we show
some methods for estimating these two parameters in conjunction with random
effects analysis of variance models, but we assume here that it is possible to
specify the signal-to-noise ratio a priori. If the signal-to-noise ratio is known,
the optimal filter can be computed by the inverse transform of the function
A(ω). It is more likely that the inverse transform will be intractable and a
finite filter approximation like that used in the previous section can be applied
to the data. In this case, we will have

aM
t = M−1

M−1∑
k=0

A(ωk)e2πiωkt (4.146)
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Figure 4.28 Impulse Response and frequency response functions for designed
SOI filters. Note the ripples in the top panel frequency response of the unta-
pered filter.

as the estimated filter function. It will often be the case that the form of the
specified frequency response will have some rather sharp transitions between
regions where the signal-to-noise ratio is high and regions where there is little
signal. In these cases, the shape of the frequency response function will have
ripples that can introduce frequencies at different amplitudes. An aesthetic
solution to this problem is to introduce tapering as was done with spectral
estimation in (4.61)-(4.68). We use below the tapered filter ãt = htat where
ht is the cosine taper given in (4.68). The squared frequency response of the
resulting filter will be |Ã(ω)|2, where

Ã(ω) =
∞∑

t=−∞
athte−2πiωt. (4.147)

The results are illustrated in the following example that extracts the El Niño
component of the sea surface temperature series.
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Figure 4.29 Original SOI series (top) compared to filtered version showing
the estimated El Niño temperature signal (bottom).

Example 4.24 Estimating the El Niño Signal Using Optimal Filters

Figure 4.5 shows the spectrum of the SOI series, and we note that essen-
tially two components have power, the El Niño frequency of about .02
cycles per month and a yearly frequency of about .08 cycles per month.
We assume, for this example, that we wish to preserve the lower fre-
quency as signal and to eliminate the higher order frequencies. In this
case, we assume the simple signal plus noise model

yt = xt + vt,

so that there is no convolving function βt. Furthermore, the signal-to-
noise ratio is assumed to be high to about .06 cycles per month and zero
thereafter. The optimal frequency response was assumed to be unity to
.05 cycles per point and then to decay linearly to zero in several steps.
Figure 4.28 shows the Fourier transform, (4.146), at M = 64 frequen-
cies, say, aM

t and the tapered version hta
M
t . The estimated squared

frequency response, approximated as a long (256 point) transform of the
form (4.147), has ripples when tapering is not applied and is relatively
smooth for the tapered filter. Figure 4.28 shows both positive and neg-
ative frequencies. Figure 4.29 shows the original and filtered SOI index,
and we see a smooth extracted signal that conveys the essence of the
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underlying El Niño signal. The frequency response of the designed filter
can be compared with that of the symmetric 12-month moving average
applied to the same series in Example 4.17. The filtered series, shown in
Figure 4.3, shows a good deal of higher frequency chatter riding on the
smoothed version, which has been introduced by the higher frequencies
that leak through in the squared frequency response, as in Figure 4.14.

The analysis of this example was performed using the time series package
ASTSA, which is available for download from the website of this text.

The design of finite filters with a specified frequency response requires some
experimentation with various target frequency response functions and we have
only touched on the methodology here. The filter designed here, sometimes
called a low-pass filter reduces the high frequencies and keeps or passes the
low frequencies. Alternately, we could design a high-pass filter to keep high
frequencies if that is where the signal is located. An example of a simple
high-pass filter is the first difference with a frequency response that is shown
in Figure 4.14. We can also design band-pass filters that keep frequencies in
specified bands. For example, seasonal adjustment filters are often used in
economics to reject seasonal frequencies while keeping both high frequencies,
lower frequencies, and trend (see, for example, Grether and Nerlove, 1970).

The filters we have discussed here are all symmetric two-sided filters, be-
cause the designed frequency response functions were purely real. Alterna-
tively, we may design recursive filters to produce a desired response. An ex-
ample of a recursive filter is one that replaces the input xt by the filtered
output

yt =
p∑

k=1

φkyt−k + xt −
q∑

k=1

θkxt−k. (4.148)

Note the similarity between (4.148) and the ARIMA(p, 1, q) model, in which
the white noise component is replaced by the input. Transposing the terms
involving yt and using the basic linear filter result in Property 4.4 leads to

fy(ω) =
|θ(e−2πiω)|2
|φ(e−2πiω)|2 fx(ω), (4.149)

where

φ(e−2πiω) = 1 −
p∑

k=1

φke−2πikω

and

θ(e−2πiω) = 1 −
q∑

k=1

θke−2πikω.

Recursive filters such as those given by (4.149) distort the phases of arriving
frequencies, and we do not consider the problem of designing such filters in
any detail.
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4.12 Spectral Analysis of Multidimensional
Series

Multidimensional series of the form xsss, where sss = (s1, s2, . . . , sr)′ is an r-
dimensional vector of spatial coordinates or a combination of space and time
coordinates, were introduced in §1.7. The example given there, shown in Fig-
ure 1.15, was a collection of temperature measurements taking on a rectangular
field. This data would form a two-dimensional process, indexed by row and
column in space. In that section, the multidimensional autocovariance func-
tion of an r-dimensional stationary series was given as γx(hhh) = E[xsss+hhhxsss],
where the multidimensional lag vector is hhh = (h1, h2, . . . , hr)′.

The multidimensional wavenumber spectrum is given as the Fourier trans-
form of the autocovariance, namely,

fx(ωωω) =
∑
hhh

γx(hhh)e−2πiωωω′hhh. (4.150)

Again, the inverse result

γx(hhh) =
∫ 1/2

−1/2
fx(ωωω)e2πiωωω′hhhdωωω (4.151)

holds, where the integral is over the multidimensional range of the vector ωωω.
The wavenumber argument is exactly analogous to the frequency argument,
and we have the corresponding intuitive interpretation as the cycling rate ωi

per distance traveled si in the i-th direction.
Two-dimensional processes occur often in practical applications, and the

representations above reduce to

fx(ω1, ω2) =
∞∑

h1=−∞

∞∑
h2=−∞

γx(h1, h2)e−2πi(ω1h1+ω2h2) (4.152)

and

γx(h1, h2) =
∫ 1/2

−1/2

∫ 1/2

−1/2
fx(ω1, ω2)e2πi(ω1h1+ω2h2)dω1 dω2 (4.153)

in the case r = 2. The notion of linear filtering generalizes easily to the
two-dimensional case by defining the impulse response function as1,s2 and the
spatial filter output as

ys1,s2 =
∑
u1

∑
u2

au1,u2xs1−u1,s2−u2 . (4.154)

The spectrum of the output of this filter can be derived as

fy(ω1, ω2) = |A(ω1, ω2)|2fx(ω1, ω2), (4.155)
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where
A(ω1, ω2) =

∑
u1

∑
u2

au1,u2e
−2πi(ω1u1+ω2u2). (4.156)

These results are analogous to those in the one-dimensional case, described by
Property P4.4.

The multidimensional DFT is also a straightforward generalization of the
univariate expression. In the two-dimensional case with data on a rectangular
grid, {xs1,s2 ; s1 = 1, ..., n1, s2 = 1, ..., n2}, we will write, for −1/2 ≤ ω1, ω2 ≤
1/2,

d(ω1, ω2) = (n1n2)−1/2
n1∑

s1=1

n2∑
s2=1

xs1,s2e
−2πi(ω1s1+ω2s2) (4.157)

as the two-dimensional DFT, where the frequencies ω1, ω2 are evaluated at
multiples of (1/n1, 1/n2) on the spatial frequency scale. The two-dimensional
wavenumber spectrum can be estimated by the smoothed sample wavenumber
spectrum

f̄x(ω1, ω2) = (L1L2)−1
∑
�1,�2

|d(ω1 + 
1/n1, ω2 + 
2/n2)|2 , (4.158)

where the sum is taken over the grid {−mj ≤ 
j ≤ mj ; j = 1, 2}, where
L1 = 2m1 + 1 and L2 = 2m2 + 1. The statistic

2L1L2f̄x(ω1, ω2)
fx(ω1, ω2)

·∼ χ2
2L1L2

(4.159)

can be used to set confidence intervals or make approximate tests against
a fixed assumed spectrum f0(ω1, ω2). We may also extend this analysis to
weighted estimation and window estimation as discussed in §4.5.

Example 4.25 Wavenumber Spectrum of Soil Surface Temperatures

As an example, consider the periodogram of the two-dimensional tem-
perature series shown in Figure 1.15 and analyzed by Bazza et al. (1988).
We recall the spatial coordinates in this case will be (s1, s2), which define
the spatial coordinates rows and columns so that the frequencies in the
two directions will be expressed as cycles per row and cycles per column.
Figure 4.30 shows the periodogram of the two-dimensional temperature
series, and we note the ridge of strong spectral peaks running over rows
at a column frequency of zero. An obvious periodic component appears
at frequencies of .0625 and −.0625 cycles per row, which corresponds to
16 rows or about 272 ft. On further investigation of previous irrigation
patterns over this field, treatment levels of salt varied periodically over
columns. This analysis is extended in Problem 4.17, where we recover
the salt treatment profile over rows and compare it to a signal, computed
by averaging over columns.
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Figure 4.30 Two-dimensional periodogram of soil temperature profile showing
peak at .0625 cycles/row. The period is 16 rows, and this corresponds to 16×17
ft = 272 ft.

Another application of two-dimensional spectral analysis of agricultural
field trials is given in McBratney and Webster (1981), who used it to de-
tect ridge and furrow patterns in yields. The requirement for regular, equally
spaced samples on fairly large grids has tended to limit enthusiasm for strict
two-dimensional spectral analysis. An exception is when a propagating sig-
nal from a given velocity and azimuth is present so predicting the wavenumber
spectrum as a function of velocity and azimuth becomes feasible (see Shumway
et al., 1999).

Problems

Section 4.2

4.1 Repeat the simulations and analyses in Examples 4.1 and 4.2 with the
following changes:

(a) Change the sample size to n = 128 and generate and plot the same
series as in Example 4.1:

xt1 = 2 cos(2πt 6/100) + 3 sin(2πt 6/100),
xt2 = 4 cos(2πt 10/100) + 5 sin(2πt 10/100),
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xt3 = 6 cos(2πt 40/100) + 7 sin(2πt 40/100),
xt = xt1 + xt2 + xt3.

What is the major difference between these series and the series
generated in Example 4.1? (Hint: The answer is fundamental. But
if your answer is the series are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series,
xt, generated in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Exam-
ple 4.1), and adding noise to xt; that is

xt = xt1 + xt2 + xt3 + wt

where wt ∼ iid N(0, 25). That is, you should simulate and plot the
data, and then plot the periodogram of xt and comment.

4.2 With reference to equations (4.2) and (4.3), let Z1 = U1 and Z2 = −U2 be
independent, standard normal variables. Consider the polar coordinates
of the point (Z1, Z2), that is,

A2 = Z2
1 + Z2

2 and φ = tan−1(Z2/Z1).

(a) Find the joint density of A2 and φ, and from the result, conclude
that A2 and φ are independent random variables, where A2 is a chi-
squared random variable with 2 df, and φ is uniformly distributed
on (−π, π).

(b) Going in reverse from polar coordinates to rectangular coordinates,
suppose we assume that A2 and φ are independent random variables,
where A2 is chi-squared with 2 df, and φ is uniformly distributed
on (−π, π). With Z1 = A cos(φ) and Z2 = A sin(φ), where A is the
positive square root of A2, show that Z1 and Z2 are independent,
standard normal random variables.

4.3 Verify (4.5).

Section 4.3

4.4 A time series was generated by first drawing the white noise series wt from
a normal distribution with mean zero and variance one. The observed
series xt was generated from

xt = wt − θwt−1, t = 0,±1,±2, . . . ,

where θ is a parameter.

(a) Derive the theoretical mean value and autocovariance functions for
the series xt and wt. Are the series xt and wt stationary? Give your
reasons.
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(b) Give a formula for the power spectrum of xt, expressed in terms of
θ and ω.

4.5 A first-order autoregressive model is generated from the white noise series
wt using the generating equations

xt = φxt−1 + wt,

where φ, for |φ| < 1, is a parameter and the wt are independent random
variables with mean zero and variance σ2

w.

(a) Show the power spectrum of xt is given by

fx(ω) =
σ2

w

1 + φ2 − 2φ cos(2πω)
.

(b) Verify the autocovariance function of this process is

γx(h) =
σ2

w φ|h|

1 − φ2 ,

h = 0,±1,±2, . . ., by showing that the inverse transform of γx(h) is
the spectrum derived in part (a).

4.6 In applications, we will often observe series containing a signal that has
been delayed by some unknown time D, i.e.,

xt = st + Ast−D + nt,

where st and nt are stationary and independent with zero means and
spectral densities fs(ω) and fn(ω), respectively. The delayed signal is
multiplied by some unknown constant A.

(a) Prove

fx(ω) = [1 + A2 + 2A cos(2πωD)]fs(ω) + fn(ω).

(b) How could the periodicity expected in the spectrum derived in (a)
be used to estimate the delay D? (Hint: Consider the case where
fn(ω) = 0; i.e., there is no noise.)

4.7 Suppose xt and yt are stationary zero-mean time series with xt indepen-
dent of ys for all s and t. Consider the product series

zt = xtyt.

Prove the spectral density for zt can be written as

fz(ω) =
∫ 1/2

−1/2
fx(ω − ν)fy(ν) dν.
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Figure 4.31 Smoothed 12-month sunspot numbers sampled twice per year,
n = 459.

Section 4.4

4.8 Figure 4.31 shows the biyearly smoothed (12-month moving average)
number of sunspots from June 1749 to December 1978 with n = 459
points that were taken twice per year. With Example 4.9 as a guide,
perform a periodogram analysis of the sunspot data (the data are in the
file sunspots.dat) identifying the predominant periods and obtaining
confidence intervals for the identified periods. Interpret your findings.

4.9 The levels of salt concentration known to have occurred over rows, cor-
responding to the average temperature levels for the soil science data
considered in Figures 1.15 and 1.16, are shown in Figure 4.32. The data
are in the file salt.dat, which consists of one column of 128 observations;
the first 64 observations correspond to the temperature series. Identify
the dominant frequencies by performing separate spectral analyses on
the two series. Include confidence intervals for the dominant frequencies
and interpret your findings.

4.10 Let the observed series xt be composed of a periodic signal and noise so
it can be written as

xt = β1 cos(2πωkt) + β2 sin(2πωkt) + wt,

where wt is a white noise process with variance σ2
w. The frequency ωk is

assumed to be known and of the form k/n in this problem. Suppose we
consider estimating β1, β2 and σ2

w by least squares, or equivalently, by
maximum likelihood if the wt are assumed to be Gaussian.

(a) Prove, for a fixed ωk, the minimum squared error is attained by(
β̂1
β̂2

)
= 2n−1/2

(
dc(ωk)
ds(ωk)

)
,
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Figure 4.32 Temperature and salt profiles over 64 rows at 17-ft spacing.

where the cosine and sine transforms (4.24) and (4.25) appear on
the right-hand side.

(b) Prove that the error sum of squares can be written as

SSE =
n∑

t=1

x2
t − 2Ix(ωk)

so that the value of ωk that minimizes squared error is the same as
the value that maximizes the periodogram Ix(ωk) estimator (4.21).

(c) Under the Gaussian assumption and fixed ωk, show that the F -test
of no regression leads to an F -statistic that is a monotone function
of Ix(ωk).

4.11 Prove the convolution property of the DFT, namely,

n∑
s=1

asxt−s =
n−1∑
k=0

dA(ωk)dx(ωk) exp{2πωkt},

for t = 1, 2, . . . , n, where dA(ωk) and dx(ωk) are the discrete Fourier
transforms of at and xt, respectively, and we assume that xt = xt+n is
periodic.

Section 4.5

4.12 Repeat Problem 4.8 using a nonparametric spectral estimation proce-
dure. In addition to discussing your findings in detail, comment on your
choice of a spectral estimate with regard to smoothing and tapering.
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4.13 Repeat Problem 4.9 using a nonparametric spectral estimation proce-
dure. In addition to discussing your findings in detail, comment on your
choice of a spectral estimate with regard to smoothing and tapering.

4.14 The periodic behavior of a time series induced by echoes can also be
observed in the spectrum of the series; this fact can be seen from the
results stated in Problem 4.6(a). Using the notation of that problem,
suppose we observe xt = st + Ast−D + nt, which implies the spectra
satisfy fx(ω) = [1 + A2 + 2A cos(2πωD)]fs(ω) + fn(ω). If the noise is
negligible (fn(ω) ≈ 0) then log fx(ω) is approximately the sum of a
periodic component, log[1+A2+2A cos(2πωD)], and log fs(ω). Bogart et
al. (1962) proposed treating the detrended log spectrum as a pseudo time
series and calculating its spectrum, or cepstrum, which should show a
peak at a quefrency corresponding to 1/D. The cepstrum can be plotted
as a function of quefrency, from which the delaty D can be estimated.

For the speech series presented in Example 1.3, estimate the pitch period
using cepstral analysis as follows. The data are in the file speech.dat.

(a) Calculate and display the log-periodogram of the data. Is the peri-
odogram periodic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged pe-
riodogram, and use the results to estimate the delay D. How does
your answer compare with the analysis of Example 1.24, which was
based on the ACF?

4.15 Use Property P4.1 to verify (4.63). Then verify (4.66) and (4.67)

4.16 Consider two time series

xt = wt − wt−1,

yt =
1
2
(wt + wt−1),

formed from the white noise series wt with variance σ2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance func-
tion must also be a function only of the lag h and cannot depend
on time.

(b) Compute the spectra fy(ω) and fx(ω), and comment on the differ-
ence between the two results.

(c) Suppose sample spectral estimators f̄y(.10) are computed for the
series using L = 3. Find a and b such that

P

{
a ≤ f̄y(.10) ≤ b

}
= .90.

This expression gives two points that will contain 90% of the sample
spectral values. Put 5% of the area in each tail.
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Section 4.6

4.17 Analyze the coherency between the temperature and salt data discussed
in Problem 4.9. Discuss your findings.

4.18 Consider two processes

xt = wt and yt = φxt−D + vt

where wt and vt are independent white noise processes with common
variance σ2, φ is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt.

(b) Simulate n = 1024 normal observations from xt and yt for φ = .9,
σ2 = 1, and D = 0. Then estimate and plot the coherency between
the simulated series for the following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

Section 4.7

4.19 For the processes in Problem 4.18,

(a) Compute the phase between xt and yt.

(b) Simulate n = 1024 observations from xt and yt for φ = .9, σ2 = 1,
and D = 1. Then estimate and plot the phase between the simulated
series for the following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.20 Consider the bivariate time series records containing monthly U.S. pro-
duction as measured monthly by the Federal Reserve Board Production
Index and unemployment as given in Figure 3.22.

(a) Compute the spectrum and the log spectrum for each series, and
identify statistically significant peaks. Explain what might be gen-
erating the peaks. Compute the coherence, and explain what is
meant when a high coherence is observed at a particular frequency.

(b) What would be the effect of applying the filter

ut = xt − xt−1

followed by
vt = ut − ut−12

to the series given above? Plot the predicted frequency responses of
the simple difference filter and of the seasonal difference of the first
difference.
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(c) Apply the filters successively to one of the two series and plot the
output. Examine the output after taking a first difference and com-
ment on whether stationarity is a reasonable assumption. Why or
why not? Plot after taking the seasonal difference of the first dif-
ference. What can be noticed about the output that is consistent
with what you have predicted from the frequency response? Verify
by computing the spectrum of the output after filtering.

4.21 Determine the theoretical power spectrum of the series formed by com-
bining the white noise series wt to form

yt = wt−2 + 4wt−1 + 6wt + 4wt+1 + wt+2.

Determine which frequencies are present by plotting the power spectrum.

4.22 Let xt = cos(2πωt), and consider the output

yt =
∞∑

k=−∞
akxt−k,

where
∑

k |ak| < ∞. Show

yt = |A(ω)| cos(2πωt + φ(ω)),

where |A(ω)| and φ(ω) are the amplitude and phase of the filter, respec-
tively. Interpret the result in terms of the relationship between the input
series, xt, and the output series, yt.

4.23 Suppose xt is a stationary series, and we apply two filtering operations
in succession, say,

yt =
∑

r

arxt−r,

and then
zt =

∑
s

bsyt−s.

(a) Show the spectrum of the output is

fz(ω) = |A(ω)|2|B(ω)|2fx(ω),

where A(ω) and B(ω) are the Fourier transforms of the filter se-
quences at and bt, respectively.

(b) What would be the effect of applying the filter

ut = xt − xt−1

followed by
vt = ut − ut−12

to a time series?
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(c) Plot the predicted frequency responses of the simple difference filter
and of the seasonal difference of the first difference. Filters like these
are called seasonal adjustment filters in economics because they tend
to attenuate frequencies at multiples of the monthly periods. The
difference filter tends to attenuate low-frequency trends.

4.24 Suppose we are given a stationary zero-mean series xt with spectrum
fx(ω) and then construct the derived series

yt = ayt−1 + xt, t = ±1,±2, ... .

(a) Show how the theoretical fy(ω) is related to fx(ω).

(b) Plot the function that multiplies fx(ω) in part (a) for a = .1 and
for a = .8. This filter is called a recursive filter.

Section 4.8

4.25 Often, the periodicities in the sunspot series are investigated by fitting
an autoregressive spectrum of sufficiently high order. The main peri-
odicity is often stated to be in the neighborhood of 11 years. Fit an
autoregressive spectral estimator to the sunspot data using a model se-
lection method of your choice. Compare the result with a conventional
nonparametric spectral estimator found in Problem 4.8.

4.26 Fit an autoregressive spectral estimator to the Recruitment series and
compare it to the results of Example 4.11.

4.27 Suppose a sample time series with n = 256 points is available from the
first-order autoregressive model. Furthermore, suppose a sample spec-
trum computed with L = 3 yields the estimated value f̄x(1/8) = 2.25. Is
this sample value consistent with σ2

w = 1, φ = .5? Repeat using L = 11
if we just happen to obtain the same sample value.

4.28 Suppose we wish to test the noise alone hypothesis H0 : xt = nt against
the signal-plus-noise hypothesis H1 : xt = st + nt, where st and nt

are uncorrelated zero-mean stationary processes with spectra fs(ω) and
fn(ω). Suppose that we want the test over a band of L = 2m + 1
frequencies of the form ωj:n + k/n, for k = 0,±1,±2, . . . ,±m near some
fixed frequency ω. Assume that both the signal and noise spectra are
approximately constant over the interval.

(a) Prove the approximate likelihood-based test statistic for testing H0
against H1 is proportional to

T =
∑

k

|dx(ωj:n + k/n)|2
(

1
fn(ω)

− 1
fs(ω) + fn(ω)

)
.
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(b) Find the approximate distributions of T under H0 and H1.

(c) Define the false alarm and signal detection probabilities as PF =
P{T > K|H0} and Pd = P{T > k|H1}, respectively. Express these
probabilities in terms of the signal-to-noise ratio fs(ω)/fn(ω) and
appropriate chi-squared integrals.

Section 4.9

4.29 Repeat the dynamic Fourier analysis of Example 4.20 on the remaining
seven earthquakes and seven explosions in the data file eq+exp.dat. Do
the conclusions about the difference between earthquakes and explosions
stated in the example still seem valid?

4.30 Repeat the wavelet analyses of Examples 4.21 and 4.22 on all earthquake
and explosion series in the data file eq+exp.dat. Do the conclusions
about the difference between earthquakes and explosions stated in Ex-
amples 4.21 and 4.22 still seem valid?

4.31 Using Examples 4.20-4.22 as a guide, perform a dynamic Fourier analy-
sis and wavelet analyses (dwt and waveshrink analysis) on the event of
unknown origin that took place near the Russian nuclear test facility in
Novaya Zemlya. State your conclusion about the nature of the event at
Novaya Zemlya.

Section 4.10

4.32 Consider the problem of approximating the filter output

yt =
∞∑

k=−∞
akxt−k,

∞∑
−∞

|ak| < ∞,

by
yM

t =
∑

|k|<M/2

aM
k xt−k

for t = M/2− 1, M/2, . . . , n−M/2, where xt is available for t = 1, . . . , n
and

aM
t = M−1

M−1∑
k=0

A(ωk) exp{2πiωkt}

with ωk = k/M . Prove

E{(yt − yM
t )2} ≤ 4γx(0)

( ∑
|k|≥M/2

|ak|
)2

.
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Figure 4.33 Monthly values of weather and inflow at Shasta Lake

4.33 Prove the squared coherence ρ2
y·x(ω) = 1 for all ω when

yt =
∞∑

r=−∞
arxt−r,

that is, when xt and yt can be related exactly by a linear filter.

4.34 Figure 4.33 contains 454 months of measured values for the climatic vari-
ables air temperature, dew point, cloud cover, wind speed, precipitation,
and inflow at Shasta Lake in California. We would like to look at possi-
ble relations among the weather factors and between the weather factors
and the inflow to Shasta Lake.

(a) Argue the strongest determinant of the inflow series is precipitation
using the coherence functions. Use transformed inflow It = log it,
where it is inflow, and transformed precipitation Pt =

√
p

t
, where
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pt is precipitation. It should be mentioned here that Chapter 6 dis-
cusses methods for determining whether inflow might depend jointly
on several input series.

(b) Using the estimated impulse response function, argue for the model

It = α0 +
α1

1 − φB
Pt,

where the notation is as discussed in Chapter 2. What would be
a reasonable value for φ? Assume the means are taken out of the
series before the analysis begins.

Section 4.11

4.35 Consider the signal plus noise model

yt =
∞∑

r=−∞
βrxt−r + vt,

where the signal and noise series, xt and vt are both stationary with
spectra fx(ω) and fv(ω), respectively. Assuming that xt and vt are
independent of each other for all t, verify (4.142) and (4.143).

4.36 Consider the model
yt = xt + vt,

where
xt = φ1xt−1 + wt,

such that vt is Gaussian white noise and independent of xt with var(vt) =
σ2

v , and wt is Gaussian white noise and independent of vt, with var(wt) =
σ2

w, and |φ1| < 1 and Ex0 = 0. Prove that the spectrum of the observed
series yt is

fy(ω) =
σ2|1 − θ1e

−2πiω|2
|1 − φ1e−2πiω|2 ,

where

θ1 =
c ± √

c2 − 4
2

,

σ2 =
σ2

vφ1

θ1
,

and

c =
σ2

w + σ2
v(1 + φ2

1)
σ2

vφ1
.

4.37 Consider the same model as in the preceding problem.
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(a) Prove the optimal smoothed estimator of the form

x̂t =
∞∑

s=−∞
asyt−s

has

as =
σ2

w

σ2

θ
|s|
1

1 − θ2
1
.

(b) Show the mean square error is given by

E{(xt − x̂t)2} =
σ2

vσ2
w

σ2(1 − θ2
1)

.

(c) Compare mean square error of the estimator in part (b) with that
of the optimal finite estimator of the form

x̂t = a1yt−1 + a2yt−2

when σ2
v = .053, σ2

w = .172, and φ1 = .9.

Section 4.12

4.38 Consider the two-dimensional linear filter given as the output (4.154).

(a) Express the two-dimensional autocovariance function of the output,
say, γy(h1, h2), in terms of an infinite sum involving the autocovari-
ance function of xsss and the filter coefficients as1,s2 .

(b) Use the expression derived in (a), combined with (4.153) and (4.156)
to derive the spectrum of the filtered output (4.155).

The following problems require the supplemental material given in Appendix C

4.39 Let wt be a Gaussian white noise series with variance σ2
w. Prove that the

results of Theorem C.4 hold without error for the DFT of wt.

4.40 Show that condition (4.41) implies (C.19) under the assumption that
wt ∼ wn(0, σ2

w).

4.41 Prove Lemma C.4.

4.42 Finish the proof of Theorem C.5.

4.43 For the zero-mean complex random vector zzz = xxxc − ixxxs, with cov(zzz) =
Σ = C − iQ, with Σ = Σ∗, define

w = 2Re(aaa∗zzz),

where aaa = aaac − iaaas is an arbitrary non-zero complex vector. Prove

cov(w) = 2aaa∗Σaaa.

Recall ∗ denotes the complex conjugate transpose.



Chapter 5

Additional Time Domain
Topics

5.1 Introduction

In this chapter, we present material that may be considered special or advanced
topics in the time domain. Chapter 6 is devoted to one of the most useful and
interesting time domain topics, state-space models. So, we do not cover state-
space models or related topics—of which there are many—in this chapter. This
chapter consists of sections of independent topics that may be read in any order.
Most of the sections depend on a basic knowledge of ARMA models, forecasting
and estimation, which is the material that is covered in Chapter 3, §3.1-§3.8.
A few sections, for example the first section on long memory models, require
some knowledge of spectral analysis and related topics covered in Chapter 4.
In addition to long memory, we discuss GARCH models, threshold models,
regression with autocorrelated errors, lagged regression or transfer functions,
and selected topics in multivariate ARMAX models.

5.2 Long Memory ARMA and Fractional
Differencing

The conventional ARMA(p, q) process is often referred to as a short memory
process because the coefficients in the representation

xt =
∞∑

j=0

ψjwt−j ,

271
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obtained by solving
φ(z)ψ(z) = θ(z),

are dominated by exponential decay. As pointed out in §3.3, this result implies
the ACF of the short memory process ρ(h) → 0 exponentially fast as h → ∞.
When the sample ACF of a time series decays slowly, the advice given in
Chapter 3 has been to difference the series until it seems stationary. Following
this advice with the glacial varve series first presented in Example 3.31 leads
to the first difference of the logarithms of the data being represented as a first-
order moving average. In Example 3.37, further analysis of the residuals leads
to fitting an ARIMA(1, 1, 1) model,

∇xt = φ∇xt−1 + wt + θwt−1,

where we understand xt is the log-transformed varve series. In particular,
the estimates of the parameters (and the standard errors) were φ̂ = .23(.05),
θ̂ = −.89(.03), and σ̂2

w = .23. The use of the first difference ∇xt = (1 − B)xt

can be too severe a modification in the sense that the nonstationary model
might represent an overdifferencing of the original process.

Long memory (or persistent) time series were considered in Hosking (1981)
and Granger and Joyeux (1980) as intermediate compromises between the short
memory ARMA type models and the fully integrated nonstationary processes
in the Box–Jenkins class. The easiest way to generate a long memory series
is to think of using the difference operator (1 − B)d for fractional values of d,
say, 0 < d < .5, so a basic long memory series gets generated as

(1 − B)dxt = wt, (5.1)

where wt still denotes white noise with variance σ2
w. Now, d becomes a parame-

ter to be estimated along with σ2
w. Differencing the original process, as in the

Box–Jenkins approach, may be thought of as simply assigning a value of d = 1.
This idea has been extended to the class of fractionally integrated ARMA, or
ARFIMA models, where we allow −.5 < d < .5; when d is negative, the term
antipersistent is used. Long memory processes occur in hydrology (see Hurst,
1951, and McLeod and Hipel, 1978) and in environmental series, such as the
varve data we have previously analyzed, to mention a few examples. Long
memory time series data tend to exhibit sample autocorrelations that are not
necessarily large (as in the case of d = 1), but persist for a long time. Fig-
ure 5.1 shows the sample ACF, to lag 100, of the log-transformed varve series,
which exhibits classic long memory behavior.

The fractionally differenced series (5.1), for |d| < .5, is often called frac-
tional noise. To investigate its properties, we can use the binomial expansion
(d > −.5) to write

wt = (1 − B)dxt =
∞∑

j=0

πjB
jxt =

∞∑
j=0

πjxt−j (5.2)
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Figure 5.1 Sample ACF of the log transformed varve series.

where

πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
(5.3)

with Γ(x + 1) = xΓ(x) being the gamma function. Similarly (d < .5), we can
write

xt = (1 − B)−dwt =
∞∑

j=0

ψjB
jwt =

∞∑
j=0

ψjwt−j (5.4)

where

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
. (5.5)

The processes (5.2) and (5.4) are well-defined stationary processes (see
Brockwell and Davis, 1991, for details). In the case of fractional differencing,
however, the coefficients satisfy

∑
π2

j < ∞ and
∑

ψ2
j < ∞ as opposed to the

absolute summability of the coefficients in ARMA processes.
Using the representation (5.4)–(5.5), the ACF of xt is seen to be

ρ(h) =
Γ(h + d)Γ(1 − d)
Γ(h − d + 1)Γ(d)

∼ h2d−1 (5.6)

for large h. From this we see that for 0 < d < .5

∞∑
h=−∞

|ρ(h)| = ∞

and hence the term long memory.
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In order to examine a series such as the varve series for a possible long
memory pattern, it is convenient to look at ways of estimating d. Using (5.3)
it is easy to derive the recursions

πj+1(d) =
(j − d)πj(d)

(j + 1)
, (5.7)

for j = 0, 1, . . ., with π0(d) = 1. Maximizing the joint likelihood of the errors
under normality, say, wt(d), will involve minimizing the sum of squared errors

Q(d) =
∑

w2
t (d).

The usual Gauss–Newton method, described in §3.6, leads to the expansion

wt(d) = wt(d0) + w′
t(d0)(d − d0),

where

w′
t(d0) =

∂wt

∂d

∣∣∣∣
d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the usual
regression leads to

d = d0 −
∑

t w′
t(d0)wt(d0)∑
t w′

t(d0)
2 . (5.8)

The derivatives are computed recursively by differentiating (5.7) successively
with respect to d: π′

j+1(d) = [(j − d)π′
j(d) − πj(d)]/(j + 1), where π′

0(d) = 0.
The errors are computed from an approximation to (5.2), namely,

wt(d) =
t∑

j=0

πj(d)xt−j . (5.9)

It is advisable to omit a number of initial terms from the computation and
start the sum, (5.8), at some fairly large value of t to have a reasonable ap-
proximation.

Example 5.1 Long Memory Fitting of the Glacial Varve Series

We consider analyzing the glacial varve series discussed in Examples 2.5
and 3.31. Figure 2.6 shows the original and log-transformed series (which
we denote by xt). In Example 3.37, we noted that xt could be modeled
as an ARMA(1, 1, 1) process. We fit the fractionally differenced model,
(5.1), to the mean-adjusted series, xt − x̄. Applying the Gauss–Newton
iterative procedure previously described, starting with d = .1 and omit-
ting the first 30 points from the computation, leads to a final value of
d = .384, which implies the set of coefficients πj(.384), as given in Fig-
ure 5.2 with π0(.384) = 1. We can compare roughly the performance
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Figure 5.2 Coefficients πj(.384), j = 1, 2, . . . , 30 in the representation (5.7).

of the fractional difference operator with the ARIMA model by examin-
ing the autocorrelation functions of the two residual series as shown in
Figure 5.3. The ACFs of the two residual series are roughly comparable
with the white noise model.

To perform this analysis in R, first download and install the fracdiff
package from CRAN. Then, load the package and issue the following
commands (assuming the data are in varve).

> lvarve = log(varve)-mean(log(varve))
> varve.fd = fracdiff(lvarve, nar=0, nma=0, M=30)
> varve.fd$d

[1] 0.3841688
> varve.fd$stderror.dpq

[1] 4.589514e-06

The R package uses a truncated maximum likelihood procedure that was
discussed in Haslett and Raftery (1989), which is a little more elaborate
than simply zeroing out initial values. The default truncation value in
R is M = 100. In the default case, the estimate is d̂ = .37 with approx-
imately the same standard error. The standard error is obtained from
the Hessian as described in Example 3.28. At this time the R package
fracdiff does not supply the residuals for diagnostics or an estimate
of σ2

w, hence some additional programming would be necessary for a full
analysis.
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Figure 5.3 ACF of residuals from the ARIMA(1, 1, 1) fit to the varve series
(top) and of the residuals from the long memory model fit, (1 − B)dxt = wt,
with d = .384 (bottom).

Forecasting long memory processes is similar to forecasting ARIMA models.
That is, (5.2) and (5.7) can be used to obtain the truncated forecasts

x̃n
n+m =

n∑
j=1

πj(d̂) x̃n
n+m−j , (5.10)

for m = 1, 2, . . . . Error bounds can be approximated by using

Pn
n+m = σ̂2

w

⎛⎝m−1∑
j=0

ψ2
j (d̂)

⎞⎠ (5.11)

where, as in (5.7),

ψj(d̂) =
(j + d̂)ψj(d̂)

(j + 1)
, (5.12)

with ψ0(d̂) = 1.
No obvious short memory ARMA-type component can be seen in the ACF

of the residuals from the fractionally differenced varve series shown in Fig-
ure 5.3. It is natural, however, that cases will exist in which substantial short
memory-type components will also be present in data that exhibits long mem-
ory. Hence, it is natural to define the general ARFIMA(p, d, q), −.5 < d < .5
process as

φ(B)∇d(xt − µ) = θ(B)wt, (5.13)
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where φ(B) and θ(B) are as given in Chapter 3. Writing the model in the form

φ(B)πd(B)(xt − µ) = θ(B)wt (5.14)

makes it clear how we go about estimating the parameters for the more general
model. Forecasting for the ARFIMA(p, d, q) series can be easily done, noting
that we may equate coefficients in

φ(z)ψ(z) = (1 − z)−dθ(z) (5.15)

and
θ(z)π(z) = (1 − z)dφ(z) (5.16)

to obtain the representations

xt = µ +
∞∑

j=0

ψjwt−j

and

wt =
∞∑

j=0

πj(xt−j − µ).

We then can proceed as discussed in (5.10) and (5.11).
A comprehensive treatment of long memory models is given in Beran (1994),

and it should be noted that several other techniques for estimating the parame-
ters, especially, the long memory parameter, can be developed in the frequency
domain. In this case, we may think of the equations as generated by an infinite
order autoregressive series with coefficients πj given by (5.7) . Using the same
approach as before, we obtain

fx(ω) =
σ2

w

|∑∞
k=0 πke−2πikω|2 (5.17)

= σ2
w|1 − e−2πiω|−2d (5.18)

= [4 sin2(πω)]−dσ2
w (5.19)

as equivalent representations of the spectrum of a long memory process. The
long memory spectrum approaches infinity as the frequency ω → 0.

The main reason for defining the Whittle approximation to the log likeli-
hood is to propose its use for estimating the parameter d in the long memory
case as an alternative to the time domain method previously mentioned. The
time domain approach is useful because of its simplicity and easily computed
standard errors. One may also use an exact likelihood approach by developing
an innovations form of the likelihood as in Brockwell and Davis (1991).

For the approximate approach using the Whittle likelihood (4.116), we con-
sider using the approach of Fox and Taqqu (1986) who showed that maximizing
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the Whittle log likelihood leads to a consistent estimator with the usual as-
ymptotic normal distribution that would be obtained by treating (4.116) as a
conventional log likelihood (see also Dahlhaus, 1989; Robinson, 1995; Hurvich
et al., 1998). Unfortunately, the periodogram ordinates are not asymptoti-
cally independent (Hurvich and Beltrao, 1993), although a quasi-likelihood in
the form of the Whittle approximation works well and has good asymptotic
properties.

To see how this would work for the purely long memory case, write the
long memory spectrum as

fx(ωk; d, σ2
w) = σ2

wg−d
k , (5.20)

where
gk = 4 sin2(πωk). (5.21)

Then, differentiating the log likelihood, say,

lnL(xxx; d, σ2
w) ≈ −m lnσ2

w + d

m∑
k=1

ln gk − 1
σ2

w

m∑
k=1

gd
k I(ωk) (5.22)

at m = n/2 − 1 frequencies and solving for σ2
w yields

σ2
w(d) =

1
m

m∑
k=1

gd
k I(ωk) (5.23)

as the approximate maximum likelihood estimator for the variance parameter.
To estimate d, we use a grid scan of the concentrated log likelihood

lnL(xxx; d) ≈ −m lnσ2
w(d) − d

m∑
k=1

ln gk − m (5.24)

over the interval (−.5, .5), followed by a Newton–Raphson procedure to con-
vergence.

Example 5.2 Long Memory Spectra for the Varve Series

We have previously examined the fit of the long memory model for the
glacial varve data that is thought to be a reasonable surrogate for temper-
ature. Fitting the long memory model using the Whittle approximation
above gives d̂ = .394, with an estimated standard error of .022. The
earlier time domain method gave d̂ = .384, with a standard error of
4.6 × 10−6, so the results of the two methods are different. The error
variance estimated was σ̂2

w = .2320. One might also consider fitting an
autoregressive model to this data using a procedure similar to that used
in Example 4.19. Following this approach gave an autoregressive model
with p = 8 and φ̂̂φ̂φ = (.34, .11, .03, .09, .09, .08, .02, .09)′, with σ̂2

w = .2303
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Figure 5.4 Long Memory (d = .394) and autoregressive AR(8) spectral esti-
mators for the paleoclimatic glacial varve series.

as the error variance. The two log spectra are plotted in Figure 5.4 for
ω > 0, and we note that long memory spectrum is lower for the first
frequency estimated (ω1 = 1/512) but will eventually become infinite,
whereas the AR(8) spectrum is higher at that point, but takes a finite
value at ω = 0.

It should be noted that there is a strong likelihood that the spectrum will
not be purely long memory, as it seemed to be in the example given above.
A common situation has the long memory component multiplied by a short
memory component, leading to an alternate version of (5.20) of the form

fx(ωk; d, θ) = g−d
k f0(ωk; θθθ), (5.25)

where f0(ωk; θ) might be the spectrum of an autoregressive moving average
process with vector parameter θθθ, or it might be unspecified. If the spectrum
has a parametric form, the Whittle likelihood can be used. However, there is
a substantial amount of semiparametric literature that develops the estima-
tors when the underlying spectrum f0(ω; θθθ) is unknown. A class of Gaussian
semi-parametric estimators simply uses the same Whittle likelihood (5.24),
evaluated over a sub-band of low frequencies, say m′ =

√
n. There is some lat-

itude in selecting a band that is relatively free from low frequency interference
due to the short memory component in (5.25).
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Geweke and Porter–Hudak (1983) developed an approximate method for
estimating d based on a regression model, derived from (5.24). Note that we
may write a simple equation for the logarithm of the spectrum as

ln fx(ωk; d) = ln f0(ωk; θθθ) − d ln[4 sin2(πωk)], (5.26)

with the frequencies ωk = k/n restricted to a range k = 1, 2, . . . , m′ near the
zero frequency with m′ =

√
n as the recommended value. Relationship (5.26)

suggests using a simple linear regression model of the form,

ln I(ωk) = β0 − d ln[4 sin2(πωk)] + ek (5.27)

for the periodogram to estimate the parameters σ2
w and d. In this case,

one performs least squares using ln I(ωk) as the dependent variable, and
ln[4 sin2(πωk)] as the independent variable for k = 1, 2, . . . , m. The resulting
slope estimate is then used as an estimate of −d. For a good discussion of
various alternative methods for selecting m, see Hurvich and Deo (1999).

One of the above two procedures works well for estimating the long memory
component but there will be cases (such as ARFIMA) where there will be a
parameterized short memory component f0(ωk; θθθ) that needs to be estimated.
If the spectrum is highly parameterized, one might estimate using the Whittle
log likelihood (5.21) and

fx(ωk; θθθ) = g−d
k f0(ωk; θθθ)

and jointly estimating the parameters d and θθθ using the Newton–Raphson
method. If we are interested in a nonparametric estimator, using the conven-
tional smoothed spectral estimator for the periodogram, adjusted for the long
memory component, say gd

k I(ωk) might be a possible approach.

5.3 GARCH Models

Recent problems in finance have motivated the study of the volatility, or vari-
ability, of a time series. Although ARMA models assume a constant vari-
ance, models such as the autoregressive conditionally heteroscedastic or ARCH
model, first introduced by Engle (1982), were developed to model changes in
volatility. These models were later extended to generalized ARCH, or GARCH
models by Bollerslev (1986).

In §3.8, we discussed the return or growth rate of a series. For example, if
xt is the value of a stock at time t, then the return or relative gain, yt, of the
stock at time t is

yt =
xt − xt−1

xt−1
. (5.28)

Definition (5.28) implies that xt = (1+yt)xt−1. Thus, based on the discussion
in §3.8, if the return represents a small (in magnitude) percentage change then

∇[ln(xt)] ≈ yt. (5.29)
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Either value, ∇[ln(xt)] or (xt − xt−1)/xt−1, will be called the return, and will
be denoted by yt. It is the study of yt that is the focus of ARCH, GARCH,
and other volatility models. Recently there has been interest in stochastic
volatility models and we will discuss these models in Chapter 6 because they
are state-space models.

Typically, for financial series, the return yt, does not have a constant vari-
ance, and highly volatile periods tend to be clustered together. In other words,
there is a strong dependence of sudden bursts of variability in a return on the
series own past. For example, Figure 1.4 shows the daily returns of the New
York Stock Exchange (NYSE) from February 2, 1984 to December 31, 1991.
In this case, as is typical, the return yt is fairly stable, except for short-term
bursts of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

yt = σtεt (5.30)
σ2

t = α0 + α1y
2
t−1, (5.31)

where εt is standard Gaussian white noise; that is, εt ∼ iid N(0, 1). As with
ARMA models, we must impose some constraints on the model parameters
to obtain desirable properties. One obvious constraint is that α1 must not be
negative, or else σ2

t may be negative.
As we shall see, the ARCH(1) models return as a white noise process with

nonconstant conditional variance, and that conditional variance depends on
the previous return. First, notice that the conditional distribution of yt given
yt−1 is Gaussian:

yt

∣∣ yt−1 ∼ N(0, α0 + α1y
2
t−1). (5.32)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian
AR(1) model in the square of the returns y2

t . To do this, rewrite (5.30)-(5.31)
as

y2
t = σ2

t ε2t

α0 + α1y
2
t−1 = σ2

t ,

and subtract the two equations to obtain

y2
t − (α0 + α1y

2
t−1) = σ2

t ε2t − σ2
t .

Now, write this equation as

y2
t = α0 + α1y

2
t−1 + vt, (5.33)

where vt = σ2
t (ε2t − 1). Because ε2t is the square of a N(0, 1) random variable,

ε2t − 1 is a shifted (to have mean-zero), χ2
1 random variable.

To explore the properties of ARCH, we define Ys = {ys, ys−1, ...}. Then,
using (5.32), we immediately see that yt has a zero mean:

E(yt) = EE(yt

∣∣ Yt−1) = EE(yt

∣∣ yt−1) = 0. (5.34)
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Because E(yt

∣∣ Yt−1) = 0, the process yt is said to be a martingale difference.
Because yt is a martingale difference, it is also an uncorrelated sequence.

For example, with h > 0,

cov(yt+h, yt) = E(ytyt+h) = EE(ytyt+h |Yt+h−1)
= E {ytE(yt+h |Yt+h−1)} = 0. (5.35)

The last line of (5.35) follows because yt belongs to the information set Yt+h−1
for h > 0, and, E(yt+h |Yt+h−1) = 0, as determined in (5.34).

An argument similar to (5.34) and (5.35) will establish the fact that the
error process vt in (5.33) is also a martingale difference and, consequently, an
uncorrelated sequence. If the variance of vt is finite and constant with respect
to time, and 0 ≤ α1 < 1, then based on Property P3.1, (5.33) specifies a causal
AR(1) process for y2

t . Therefore, E(y2
t ) and var(y2

t ) must be constant with
respect to time t. This, implies that

E(y2
t ) = var(yt) =

α0

1 − α1
(5.36)

and, after some manipulations,

E(y4
t ) =

3α2
0

(1 − α1)2
1 − α2

1

1 − 3α2
1
, (5.37)

provided 3α2
1 < 1. These results imply that the kurtosis, κ, of yt is

κ =
E(y4

t )
[E(y2

t )]2
= 3

1 − α2
1

1 − 3α2
1
, (5.38)

which is always larger than 3 (unless α1 = 0), the kurtosis of the normal
distribution. Thus, the marginal distribution of the returns, yt, is leptokurtic,
or has “fat tails.”

In summary, an ARCH(1) process, yt, as given by (5.30)-(5.31), or equiva-
lently (5.32), is characterized by the following properties.

• If 0 ≤ α1 < 1, the process yt itself is white noise and its unconditional
distribution is symmetrically distributed around zero; this distribution
is leptokurtic.

• If, in addition, 3α2
1 < 1, the square of the process, y2

t , follows a causal
AR(1) model with ACF given by ρy2(h) = αh

1 ≥ 0, for all h > 0. If
3α1 ≥ 1, but α1 < 1, then y2

t is strictly stationary with infinite variance.

Estimation of the parameters α0 and α1 of the ARCH(1) model is typi-
cally accomplished by conditional MLE. The conditional likelihood of the data
y2, ...., yn given y1, is given by

L(α0, α1
∣∣ y1) =

n∏
t=2

fα0,α1(yt

∣∣ yt−1), (5.39)
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where the density fα0,α1(yt

∣∣ yt−1) is the normal density specified in (5.32).
Hence, the criterion function to be minimized, l(α0, α1) ∝ − lnL(α0, α1

∣∣ y1)
is given by

l(α0, α1) =
1
2

n∑
t=2

ln(α0 + α1y
2
t−1) +

1
2

n∑
t=2

(
y2

t

α0 + α1y2
t−1

)
. (5.40)

Estimation is accomplished by numerical methods, as described in §3.6. In
this case, analytic expressions for the gradient vector, l(1)(α0, α1), and Hessian
matrix, l(2)(α0, α1), as described in Example 3.28, can be obtained by straight-
forward calculations. For example, the 2 × 1 gradient vector, l(1)(α0, α1), is
given by (

∂l/∂α0
∂l/∂α1

)
=

n∑
t=2

(
1

y2
t−1

)
× α0 + α1y

2
t−1 − y2

t

2
(
α0 + α1y2

t−1

)2 . (5.41)

The calculation of the Hessian matrix is left as an exercise (Problem 5.7).
The likelihood of the ARCH model tends to be flat unless n is very large. A
discussion of this problem can be found in Shephard (1996).

It is also possible to combine a regression or an ARMA model for the mean
with an ARCH model for the errors. For example, a regression with ARCH(1)
errors model would have the observations xt as linear function of p regressors,
zzzt = (zt1, ..., ztp)′, and ARCH(1) noise yt, say,

xt = βββ′zzzt + yt,

where yt satisfies (5.30)-(5.31), but, in this case, is unobserved. Similarly, for
example, an AR(1) model for data xt exhibiting ARCH(1) errors would be

xt = φ0 + φ1xt−1 + yt.

These types of models were explored by Weiss (1984).

Example 5.3 Analysis of U.S. GNP

In Example 3.35, we fit an MA(2) model and an AR(1) model to the
U.S. GNP series and we concluded that the residuals from both fits ap-
peared to behave like a white noise process. In Example 3.39 we con-
cluded that the AR(1) is probably the better model in this case. It
has been suggested that the U.S. GNP series has ARCH errors, and in
this example, we will investigate this claim. If the GNP noise term is
ARCH, the squares of the residuals from the fit should behave like a
non-Gaussian AR(1) process, as pointed out in (5.33). Figure 5.5 shows
the ACF and PACF of the squared residuals it appears that there may
be some dependence, albeit small, left in the residuals.

We used the S-PLUS GARCH module to fit an AR(1)-ARCH(1) model
to the U.S. GNP returns with the following results:
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Figure 5.5 ACF and PACF of the squares of the residuals from the AR(1) fit
on U.S. GNP.

> gnp96 <- matrix(scan("/mydata/gnp96.dat"),ncol=2,byrow=T)
> gnpr <- diff(log(gnp96[,2])) # gnp returns
> gnpr.mod <- garch(gnpr˜ar(1),˜garch(1,0)) # model call
> summary(gnpr.mod)

Estimated Coefficients:
Value Std.Error t value Pr(>|t|)

C 0.00522 8.264e-004 6.326 6.990e-010 # AR cnst
AR(1) 0.36721 7.888e-002 4.656 2.798e-006 # AR coef

A 0.00007 6.978e-006 10.349 0.000e+000 # ARCH cnst
ARCH(1) 0.20242 7.031e-002 2.879 2.193e-003 # ARCH coef

Residual Tests:
Jarque-Bera P-value # tests normal skewness & kurtosis

8.643 0.01328
Shapiro-Wilk P-value # tests normal order statistics

0.9827 0.4829
Q-Statistic P-value Chiˆ2-d.f.

13.88 0.3087 12

In this example, we obtain φ̂0 = .005 and φ̂1 = .367 for the AR(1)
parameter estimates; in Example 3.35 the values were .005 and .347,
respectively. The ARCH(1) parameter estimates are α̂0 = 0 for the
constant and α̂1 = .202, which is highly significant with a p-value of



5.3: GARCH Models 285

about .002. The Jarque–Bera statistic tests the residuals of the fit for
normality based on the observed skewness and kurtosis, and it appears
that the residuals have some non-normal skewness and kurtosis. The
Shapiro–Wilk statistic tests the residuals of the fit for normality based
on the empirical order statistics. In this case, the residuals appear to
be normal. Finally, the Q-statistic is used on the squared residuals, and
we conclude that the squared residuals appear to be an uncorrelated
sequence.

To repeat the analysis in R without the simultaneous estimation, down-
load the package tseries from CRAN and load it. Then, perform the
AR estimation first and use those residuals for the ARCH fit as follows
(assuming gnpr is available as in the S-PLUS example). We note that the
results are similar to the simultaneous estimation results from S-PLUS.
> gnpr.ar = ar.mle(gnpr, order.max=1) # recall phi1 =.347
> y = gnpr.ar$resid[2:length(gnpr)] # first resid is NA
> arch.y = garch(y,order=c(0,1))
> summary.garch(arch.y) # partial output below

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 7.403e-05 7.275e-06 10.175 < 2e-16 # ARCH cnst
a1 1.939e-01 6.781e-02 2.859 0.00425 # ARCH coef

Jarque Bera Test:
X-squared = 8.4801, df = 2, p-value = 0.01441

Box-Ljung test (squared residuals):
X-squared = 3e-04, df = 1, p-value = 0.9865

The ARCH(1) model can be extended to the general ARCH(m) model in
an obvious way. That is, (5.30) is retained,

yt = σtεt, (5.30)

but (5.31) is extended to

σ2
t = α0 + α1y

2
t−1 + · · · + αmy2

t−m. (5.42)

Estimation for ARCH(m) also follows in an obvious way from the discussion
of estimation for ARCH(1) models. That is, the conditional likelihood of the
data ym+1, ...., yn given y1, . . . , ym, is given by

L(ααα
∣∣ y1, . . . , ym) =

n∏
t=m+1

fααα(yt

∣∣ yt−1, . . . , yt−m), (5.43)

where ααα = (α0, α1, . . . , αm) and the conditional densities fααα(·|·) in (5.43) are
normal densities; that is, for t > m,

yt

∣∣ yt−1, . . . , yt−m ∼ N(0, α0 + α1y
2
t−1 + · · · + αmy2

t−m).
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Another extension of ARCH is the generalized ARCH or GARCH model
developed by Bollerslev (1986). For example, a GARCH(1, 1) model retains
(5.30),

yt = σtεt, (5.30)

but extends (5.31) as follows:

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1. (5.44)

Under the condition that α1 + β1 < 1, using similar manipulations as in
(5.33), the GARCH(1, 1) model, (5.30) and (5.44), admits a non-Gaussian
ARMA(1, 1) model for the squared process

y2
t = α0 + (α1 + β1)y2

t−1 + vt − β1vt−1, (5.45)

where vt is as defined in (5.33). Representation (5.45) follows by writing (5.30)
as

y2
t − σ2

t = σ2
t (ε2t − 1)

β1(y2
t−1 − σ2

t−1) = β1σ
2
t−1(ε

2
t−1 − 1),

subtracting the second equation from the first, and using the fact that, from
(5.44), σ2

t − β1σ
2
t−1 = α0 + α1y

2
t−1, on the left-hand side of the result. The

GARCH(m, r) model retains (5.30) and extends (5.44) to

σ2
t = α0 +

m∑
j=1

αjy
2
t−j +

r∑
j=1

βjσ
2
t−j . (5.46)

Conditional maximum likelihood estimation of the GARCH(m, r) model
parameters is similar to the ARCH(m) case, wherein the conditional likelihood,
(5.43), is the product of N(0, σ2

t ) densities with σ2
t given by (5.46) and where

the conditioning is on the first max(m, r) observations, with σ2
1 = · · · = σ2

r = 0.
Once the parameter estimates are obtained, the model can be used to obtain
one-step-ahead forecasts of the volatility, say σ̂2

t+1, given by

σ̂2
t+1 = α̂0 +

m∑
j=1

α̂jy
2
t+1−j +

r∑
j=1

β̂j σ̂
2
t+1−j . (5.47)

We explore these concepts in the following example.

Example 5.4 GARCH Analysis of the NYSE Returns

As previously mentioned, the daily returns of the NYSE shown in Fig-
ure 1.4 exhibit classic GARCH features. We used the R tseries package
to fit a GARCH(1, 1) model to the series with the following results:
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> nyse = scan("/mydata/nyse.dat")
> nyse.g = garch(nyse, order=c(1,1))
> summary.garch(nyse.g)

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 6.552e-06 6.761e-07 9.691 <2e-16 # alpha0
a1 1.118e-01 4.056e-03 27.554 <2e-16 # alpha1
b1 8.086e-01 1.292e-02 62.566 <2e-16 # beta1

Diagnostic Tests:
Jarque Bera Test - data: Residuals
X-squared = 3983.873, df = 2, p-value < 2.2e-16
Box-Ljung Test - data: Squared.Residuals
X-squared = 1.5874, df = 1, p-value = 0.2077

To explore the GARCH predictions, we calculated and plotted the mid-
dle of the data along (which includes the October 19, 1987 crash) with
the one-step-ahead predictions of the corresponding volatility, σ2

t . The
results are displayed as ±σ̂t as a dashed line surrounding the data in Fig-
ure 5.6. These predictions can be obtained easily in R using the tseries
package.

> u = predict.garch(nyse.g)
> plot(800:1000, nyse[800:1000], type="l", xlab="Time",
+ ylab="NYSE Returns")
> lines(u[,1], col="blue", lty="dashed")
> lines(u[,2], col="blue", lty="dashed")

Some key points can be gleaned from the examples of this section. First,
it is apparent that the conditional distribution of the returns is rarely normal.
S-PLUS allows for long tailed distributions to be fit to the data, whereas R
does not. In particular, aside from the Gaussian distribution (the default),
the S-PLUS Garch module allows for t, double exponential, and generalized
double exponential1 conditional distributions. Also, the predictions shown in
Figure 5.6 leave something to be desired. It appears the model is better at
telling you what the volatility was rather than what it is going to be; basically,
increases or decreases in predicted volatility are a day late. In addition to
these points, some other drawbacks of the GARCH model are: (i) the model
assumes positive and negative returns have the same effect because volatility
depends on squared returns; (ii) the model is restrictive because of the tight
constraints on the model parameters (e.g., for an ARCH(1), 0 ≤ α2

1 < 1
3 ); (iii)

the likelihood is flat unless n is very large; (iv) the model tends to overpredict
volatility because it responds slowly to large isolated returns.

1f(x) = pα exp(−αx)I(0,∞)(x) + (1 − p)β exp(βx)I(−∞,0)(x); 0 < p < 1.
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Figure 5.6 GARCH predictions of the NYSE volatility, ±σ̂t, displayed as
dashed lines.

Various extensions to the original model have been proposed to overcome
some of the shortcomings we have just mentioned. For example, we have
already discussed the fact that the S-PLUS Garch module will fit some non-
normal, albeit symmetric, distributions. For asymmetric return dynamics, one
can use the EGARCH (exponential GARCH) model, which is a complex model
that has different components for positive returns and for negative returns. In
the case of persistence in volatility, the integrated GARCH (IGARCH) model
may be used. Recall (5.45) where we showed the GARCH(1, 1) model can be
written as

y2
t = α0 + (α1 + β1)y2

t−1 + vt − β1vt−1

and y2
t is stationary if α1 + β1 < 1. The IGARCH model sets α1 + β1 = 1, in

which case the IGARCH(1, 1) model is

yt = σtεt and σ2
t = α0 + (1 − β1)y2

t−1 + β1σ
2
t−1.

There are many different extensions to the basic ARCH model that were de-
veloped to handle the various situations noticed in practice. Interested read-
ers might find the general discussions in Bollerslev et al. (1994) and Shep-
hard (1996) worthwhile reading. Also, Gouriéroux (1997) gives a detailed
presentation of ARCH and related models with financial applications and con-
tains an extensive bibliography. Two excellent texts on financial time series
analysis are Chan (2002) and Tsay (2001).
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Finally, we briefly discuss stochastic volatility models; a detailed treatment
of these models is given in Chapter 6. The volatility component, σ2

t , in the
GARCH model is conditionally nonstochastic. In the ARCH(1) model for
example, any time the previous return is zero, i.e., yt−1 = 0, it must be the
case that σ2

t = α0, and so on. This assumption seems a bit unrealistic. The
stochastic volatility model adds a stochastic component to the volatility in the
following way. In the GARCH model, a return, say yt, is

yt = σtεt ⇒ log y2
t = log σ2

t + log ε2t . (5.48)

In this way, we see that the observations log y2
t , are made up of two components,

the unobserved volatility log σ2
t , which may be considered a latent variable,

and unobserved noise log ε2t . While, for example, the GARCH(1, 1) models
volatility without error, σ2

t+1 = α0+α1r
2
t +β1σ

2
t , the basic stochastic volatility

model assumes the latent variable is an autoregressive process,

log σ2
t+1 = φ0 + φ1 log σ2

t + wt (5.49)

where wt ∼ iid N(0, σ2
w). The introduction of the noise term wt makes the

latent volatility process stochastic. Together (5.48) and (5.49) comprise the
stochastic volatility model. Given n observations, the goals are to estimate
the parameters φ0, φ1 and σ2

w, and then predict future observations log y2
n+m.

Details are provided in §6.10.

5.4 Threshold Models

In §3.5 we discussed the fact that, for a stationary time series, best linear
prediction forward in time is the same as best linear prediction backward in
time. This result followed from the fact that the variance–covariance matrix
of xxx1:n = (x1, x2, ..., xn)′, say, Γ = {γ(i − j)}n

i,j=1, is the same as the variance–
covariance matrix of xxxn:1 = (xn, xn−1, ..., x1)′. In addition, if the process is
Gaussian, the distributions of xxx1:n and xxxn:1 are identical. In this case, a time
plot of xxx1:n (that is, the data plotted forward in time) should look similar to
a time plot of xxxn:1 (that is, the data plotted backward in time).

There are, however, many series that do not fit into this category. For
example, Figure 5.7 shows a plot of monthly pneumonia and influenza deaths
per 10,000 in the U.S. for 11 years, 1968 to 1978. Typically, the number of
deaths tends to increase slower than it decreases. Thus, if the data were plotted
backward in time, the backward series would tend to increase faster than it
decreases. Also, if monthly pneumonia and influenza deaths followed a linear
Gaussian process, we would not expect to see such large bursts of positive and
negative changes that occur periodically in this series. Moreover, although the
number of deaths is typically largest during the winter months, the data are
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Figure 5.7 U.S. monthly pneumonia and influenza deaths per 10,000 over 11
years from 1968 to 1978.

not perfectly seasonal. That is, although the peak of the series often occurs in
January, in other years, the peak occurs in December, February, or March.

If our goal is to predict flu epidemics, then it should be clear that a Gaussian
linear model would not be appropriate. Many approaches to modeling nonlin-
ear series exist that could be used (see Priestley, 1988); here, we focus on the
class of threshold autoregressive models presented in Tong (1983, 1990). The
basic idea of these models is that of fitting local linear AR(p) models, and their
appeal is that we can use the intuition from fitting global linear AR(p) models.
Suppose we know p, and given the vectors xxxt−1 = (xt−1, ..., xt−p)′, we can iden-
tify r mutually exclusive and exhaustive regions for xxxt−1, say, R1, ..., Rr, where
the dynamics of the system changes. The threshold model is then written as
r AR(p) models,

xt = α(j) + φ
(j)
1 xt−1 + · · · + φ(j)

p xt−p + w
(j)
t , xxxt−1 ∈ Rj , (5.50)

for j = 1, ..., r. In (5.50), the w
(j)
t are independent white noise series, each with

variance σ2
j , for j = 1, ..., r. Model estimation, identification, and diagnostics

proceed as in the case in which r = 1.

Example 5.5 Threshold Modeling of the Influenza Series

As previously discussed, examination of Figure 5.7 leads us to believe
that the monthly pneumonia and influenza deaths time series, say flut,
is not linear. It is also evident from Figure 5.7 that there is a slight
negative trend in the data. We have found that the most convenient way
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to fit a threshold model to this data set, while removing the trend, is to
work with the first difference of the data. The differenced data,

xt = flut − flut−1

is exhibited in Figure 5.8 as the dark solid line with circles representing
observations. The dashed line with squares in Figure 5.8 are the one-
month-ahead predictions, and we will discuss this series later.

The nonlinearity of the data is more pronounced in the plot of the first
differences, xt. Clearly, the change in the numbers of deaths, xt, slowly
rises for some months and, then, sometime in the winter, has a possibility
of jumping to a large number once xt exceeds about .05. If the processes
does make a large jump, then a subsequent significant decrease occurs in
flu deaths. As an initial analysis, we fit the following threshold model

xt = α(1) +
p∑

j=1

φ
(1)
j xt−j + w

(1)
t , xt−1 < .05

xt = α(2) +
p∑

j=1

φ
(2)
j xt−j + w

(2)
t , xt−1 ≥ .05, (5.51)

with p = 6, assuming this would be larger than necessary.

Model (5.51) is easy to fit using two linear regression runs. That is, let
δ
(1)
t = 1 if xt−1 < .05, and zero otherwise, and let δ

(2)
t = 1 if xt−1 ≥ .05,

and zero otherwise. Then, using the notation of §2.2, for t = p + 1, ..., n,
either equation in (5.51) can be written as

yt = βββ′zzzt + wt

where, for i = 1, 2,

yt = δ
(i)
t xt, zzz′

t, = δ
(i)
t (1, xt−1, ..., xt−p), wt = δ

(i)
t w

(i)
t ,

and
βββ′ = (α(i), φ

(i)
1 , φ

(i)
2 , ..., φ(i)

p ).

Parameter estimates can then be obtained using the regression techniques
of §2.2 twice, once for i = 1 and again for i = 2.

For each model, an order p = 4 model was finally selected. The final
model was

x̂t = .51(.08)xt−1 − .20(.06)xt−2 + .12(.05)xt−3

−.11(.5)xt−4 + ŵ
(1)
t , when xt−1 < .05

x̂t = .40 − .75(.17)xt−1 − 1.03(.21)xt−2 − 2.05(1.05)xt−3

−6.71(1.25)xt−4 + ŵ
(2)
t , when xt−1 ≥ .05,
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Figure 5.8 First differenced U.S. monthly pneumonia and influenza deaths per
1,000 (solid line - circles); one-month-ahead predictions (dashed line -squares).

where σ̂1 = .05 and σ̂2 = .07. The threshold of .05 was exceeded 17 times.
Using the final model, one-month-ahead predictions can be made, and
these are shown in Figure 5.8 as a dashed line with squares. The model
does extremely well at predicting a flu epidemic; the peak at t = 96,
however, was missed by this model. When we fit a model with a smaller
threshold of .04, flu epidemics were somewhat underestimated, but the
flu epidemic in the eighth year was predicted one month early. We chose
the model with a threshold of .05 because the residual diagnostics showed
no obvious departure from the model assumption (except for one outlier
at t = 96); the model with a threshold of .04 still had some correlation
left in the residuals and there were more than one outliers. Finally,
prediction beyond one-month-ahead for this model is very complicated,
but some approximate techniques exist (see Tong, 1983).



5.5: Autocorrelated Errors 293

5.5 Regression with Autocorrelated Errors

In §2.2, we covered the classical regression model with uncorrelated errors wt.
In this section, we discuss the modifications that might be considered when
the errors are correlated. That is, consider the regression model

yt = βββ′zzzt + xt, (5.52)

t = 1, . . . , n, where xt is a process with some covariance function γ(s, t). Then,
we have the matrix form

yyy = Zβββ + xxx, (5.53)

where xxx = (x1, . . . , xn)′ is a n × 1 vector with n × n covariance matrix
Γ = {γ(s, t)}. Note that Z = [zzz1, zzz2, . . . , zzzn]′ is the n × q matrix of input
variables, as before. If we know the covariance matrix Γ, it is possible to find
a transformation matrix A, such that AΓA′ = σ2I, where I denotes the n × n
identity matrix. Then, the underlying model can be transformed into

Ayyy = AZβββ + Axxx
= Uβββ + www,

where U = AZ and www is a white noise vector with covariance matrix σ2I as
in §2.2. Then, applying least squares or maximum likelihood to the vector Ayyy
gives

β̂ββw = (U ′U)−1U ′Ayyy

= (Z ′A′AZ)−1Z ′A′Ayyy

= (Z ′Γ−1Z)−1Z ′Γ−1yyy (5.54)

because
σ2Γ−1 = A′A.

The difficulty in applying (5.54) is, we do not know the form of the matrix Γ.
It may be possible, however, in the time series case, to assume a stationary

covariance structure for the error process xt that corresponds to a linear process
and try to find an ARMA representation for xt. For example, if we have a pure
AR(p) error, then

φ(B)xt = wt,

and φ(B) is the linear transformation that, when applied to the error process,
produces the white noise wt. Regarding this transformation as the appropri-
ate matrix A of the preceding paragraph produces the transformed regression
equation

φ(B)yt = βββ′φ(B)zzzt + wt,

and we are back to the same model as before. Defining ut = φ(B)yt and
vvvt = φ(B)zzzt leads to the simple regression problem

ut = βββ′vvvt + wt (5.55)
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considered before. The preceding discussion suggests an algorithm, due to
Cochrane and Orcutt (1949), for fitting a regression model with autocorrelated
errors.

(i) First, run an ordinary regression of yt on zt (acting as if the errors are
uncorrelated). Retain the residuals.

(ii) Fit an ARMA model to the residuals x̂t = yt − β̂ββ
′
zzzt, say,

φ̂(B)x̂t = θ̂(B)wt (5.56)

(iii) Then, apply the ARMA transformation to both sides (5.52), that is,

ut =
φ̂(B)

θ̂(B)
yt

and

vvvt =
φ̂(B)

θ̂(B)
zzzt,

to obtain the transformed regression model (5.55).

(iv) Run an ordinary least squares regression model assuming uncorrelated
errors on the transformed regression model (5.55), obtaining

β̂ββw = (V ′V )−1V ′uuu, (5.57)

where V = [vvv1, . . . , vvvn]′ and uuu = (u1, . . . , un)′ are the corresponding
transformed components.

The above procedure can be repeated until convergence and will approach the
maximum likelihood solution under normality of the errors (for details, see
Sargan, 1964).

Example 5.6 Pollution, Temperature, Mortality with Correlated
Errors

We consider further the best regression obtained in Example 2.2 of Chap-
ter 2, relating adjusted temperature Tt − T·, (Tt − T·)2 and particulate
levels Pt to cardiovascular mortality Mt. Identifying the vectors

zzzt = (1, t, (Tt − T·), (Tt − T·)2, Pt)′

leads to a model of the form (5.52). Taking the residuals from the least
squares regression, as described in Step (i), the sample ACF and PACF,
shown in Figure 5.9, suggest an AR(2) model for the residuals. Note,
σ̂2 = 40.77 and R2 = .59 for this model.
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Figure 5.9 Sample ACF and PACF of the mortality residuals indicating an
AR(2) process.

For the residuals, we obtain a second-order autoregressive model with
operator

φ(B) = 1 − .2207B − .3627B2

which is applied to both sides of the defining equation (5.52) to produce
the transformed equation (5.55), as in Step (ii) above. Running the
regression, as in Step (iii), yields the model

M̂t = 83.54 − .028(.004)t − .196(.039)(Tt − 74.6)

+ .017(.002)(Tt − 74.6)2 + .229(.023)Pt

as the model for transformed mortality, where the coefficients and esti-
mated variances have changed slightly because of the transformation.
The linear temperature component has decreased in magnitude from
−.473 to −.196, whereas the other components stayed almost the same.
The new residuals from the transformed model have sample ACF and
PACF in Figure 5.10 that show no prominent peaks and can probably
be taken as white noise.

5.6 Lagged Regression: Transfer Function
Modeling

In §4.10, we considered lagged regression in a frequency domain approach based
on coherency. In this section we focus on a time domain approach to the same
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Figure 5.10 Sample ACF and PACF of the mortality residuals after fitting
an AR(2) model.

problem. In the previous section, we looked at autocorrelated errors but, still
regarded the input series zzzt as being fixed unknown functions of time. This
consideration made sense for the time argument t, but was less satisfactory
for the other inputs, which are probably stochastic processes. For example,
consider the SOI and Recruitment series that were presented in Example 1.5.
The series are displayed in Figure 1.5. In this case, the interest is in predicting
the output Recruitment series, say, yt, from the input SOI, say xt. We might
consider the lagged regression model

yt =
∞∑

j=0

αjxt−j + ηt = α(B)xt + ηt, (5.58)

where
∑

j |αj | < ∞. We assume the input process xt and noise process ηt

in (5.58) are both stationary and mutually independent. The coefficients
α0, α1, . . . describe the weights assigned to past values of xt used in predicting
yt and we have used the notation

α(B) =
∞∑

j=0

αjB
j . (5.59)

In the Box and Jenkins (1970) formulation, we assign ARIMA models,
say, ARIMA(p, d, q) and ARIMA(pη, dη, qη), to the series xt and ηt, respec-
tively. The components of (5.58) in backshift notation, for the case of simple
ARMA(p, q) modeling of the input and noise, would have the representation

φ(B)xt = θ(B)wt (5.60)
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and
φη(B)ηt = θη(B)zt, (5.61)

where wt and zt are independent white noise processes with variances σ2
w and

σ2
z , respectively. Box and Jenkins (1970) proposed that systematic patterns

often observed in the coefficients αj , for j = 1, 2, ..., could often be expressed
as a ratio of polynomials involving a small number of coefficients, along with
a specified delay, d, so

α(B) =
δ(B)Bd

ω(B)
, (5.62)

where
ω(B) = 1 − ω1B − ω2B

2 − · · · − ωrB
r (5.63)

and
δ(B) = δ0 + δ1B + · · · + δsB

s (5.64)

are the indicated operators; in this section, we find it convenient to represent
the inverse of an operator, say, [ω(B)]−1, as 1/ω(B).

Determining a parsimonious model involving a simple form for α(B) and
estimating all of the parameters in the above model are the main tasks in the
transfer function methodology. Because of the large number of parameters, it
is necessary to develop a sequential methodology. Suppose we focus first on
finding the ARIMA model for the input xt and apply this operator to both
sides of (5.58), obtaining the new model

ỹt =
φ(B)
θ(B)

yt

= α(B)wt +
φ(B)
θ(B)

ηt

= α(B)wt + η̃t,

where wt and the transformed noise η̃t are independent.
The series wt is a prewhitened version of the input series, and its cross-

correlation with the transformed output series ỹt will be just

γỹw(h) = E[ỹt+hwt]

= E[
∞∑

j=0

αjwt+h−jwt]

= σ2
wαh, (5.65)

because the autocovariance function of white noise will be zero except when j =
h in (5.65). Hence, computing the cross-correlation between the prewhitened
input series and the transformed output series should yield a rough estimate
of the behavior of α(B).
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Figure 5.11 Sample ACF and PACF of SOI.

Figure 5.12 Sample CCF of the prewhitened, detrended SOI and the sim-
ilarly transformed Recruitment series; negative lags indicate that SOI leads
Recruitment.

Example 5.7 Relating the Prewhitened SOI to the Transformed
Recruitment Series

We give a simple example of the suggested procedure for the SOI and
the Recruitment series. Figure 5.11 shows the sample ACF and PACF
of the detrended SOI index, and it is clear, from the PACF, that an
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autoregressive series with p = 1 will do a reasonable job. Fitting the
series gave φ̂ = .589, σ̂2

w = .092, and we applied the operator (1− .589B)
to both xt and yt and computed the cross-correlation function, which is
shown in Figure 5.12. Noting the apparent shift of d = 5 months and
the exponential decrease thereafter, it seems plausible to hypothesize a
model of the form

α(B) = δ0B
5(1 + ω1B + ω2

1B2 + · · ·)
=

δ0B
5

1 − ω1B

for the transfer function. In this case, we would expect ω1 to be negative.

In some cases, we may postulate the form of the separate components δ(B)
and ω(B), so we might write the equation

yt =
δ(B)Bd

ω(B)
xt + ηt

as
ω(B)yt = δ(B)Bdxt + ω(B)ηt,

or in regression form

yt =
r∑

k=1

ωkyt−k +
s∑

k=0

δkxt−d−k + ut, (5.66)

where
ut = ω(B)ηt. (5.67)

The form of (5.66) suggests doing a regression on the lagged versions of both
the input and output series to obtain β̂̂β̂β, the estimate of the (r + s + 1) × 1
regression vector

βββ = (ω1, . . . , ωr, δ0, δ1, . . . , δs)′.

The residuals from the regression above, say,

ût = yt − β̂ββ
′
zzzt,

where
zzzt = (yt−1, . . . , yt−r, xt−d, . . . , xt−d−s)′

denotes the usual vector of independent variables, could be used to approxi-
mate the best ARMA model for the noise process ηt, because we can compute
an estimator for that process from the (5.67), using ût and ω̂(B) and applying
the moving average operator to get η̂t. Fitting an ARMA(pη, qη) model to the
this estimated noise then completes the specification. The preceding suggests
the following sequential procedure for fitting the transfer function model to
data.
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(i) Fit an ARMA model to the input series xt to estimate the parameters
φ1, . . . , φp, θ1, . . . , θq, σ

2
w in the specification (5.60). Retain ARMA co-

efficients for use in Step (ii) and the fitted residuals ŵt for use in Step
(iii).

(ii) Apply the operator determined in Step (i), that is,

φ̂(B)yt = θ̂(B)ỹt,

to determine the transformed output series ỹt.

(iii) Use the cross-correlation function between ỹt and ŵt in (i) and (ii) to
suggest a form for the components of the polynomial

α(B) =
δ(B)Bd

ω(B)

and the estimated time delay d.

(iv) Obtain β̂̂β̂β = (ω̂1, . . . , ω̂r, δ̂0, δ̂1, . . . , δ̂s) by fitting a linear regression of the
form (5.66). Retain the residuals ût for use in Step (v).

(v) Apply the moving average transformation (5.67) to the residuals ût to
find the noise series η̂t, and fit an ARMA model to the noise, obtaining
the estimated coefficients in φ̂η(B) and θ̂η(B).

The above procedure is fairly reasonable, but does not have any recogniz-
able overall optimality. Simultaneous least squares estimation, based on the
observed xt and yt, can be accomplished by noting that the transfer function
model can be written as

yt =
δ(B)Bd

ω(B)
xt +

θη(B)
φη(B)

zt,

which can be put in the form

ω(B)φη(B)yt = φη(B)δ(B)Bdxt + ω(B)θη(B)zt, (5.68)

and it is clear that we may use least squares to minimize
∑

t z2
t , as in earlier

sections. We may also express the transfer function in state-space form (see
Brockwell and Davis, 1991, Chapter 12). It is often easier to fit a transfer
function model in the spectral domain as presented in §4.10.

Example 5.8 Transfer Function Model for the SOI and Recruitment
Series

We illustrate the procedure for fitting a transfer function model of the
form suggested in Example 5.7 to the detrended SOI series (xt) and
the detrended Recruitment series (yt). The results reported here can be
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Figure 5.13 ACF and PACF of the estimated noise η̂t departures from the
transfer function model.

compared with the results obtained from the frequency domain approach
used in Example 4.23. Note first that Steps (i)-(iii). have already been
applied to determine the ARMA model

(1 − .589B)xt = wt,

where σ̂2
w = .092. Using the model determined in Example 5.7, we run

the regression
yt = ω1yt−1 + δ0xt−5 + ut,

yielding ω̂1 = .848, δ̂0 = −20.54, where the residuals satisfy

ût = (1 − .848B)ηt.

This completes Step (iv). To complete the specification, we apply the
moving average operator above to estimate the original noise series ηt and
fit a second-order autoregressive model, based on the ACF and PACF
shown in Figure 5.13. We obtain

(1 − 1.255B + .410B2)ηt = zt,

with σ̂2
z = 52.46 as the estimated error variance.
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5.7 Multivariate ARMAX Models

To understand multivariate time series models and their capabilities, we
first present an introduction to multivariate time series regression techniques.
A useful extension of the basic univariate regression model presented in §2.2
is the case in which we have more than one output series, that is, multivariate
regression analysis. Suppose, instead of a single output variable yt, a collection
of k output variables yt1, yt2, . . . , ytk exist that are related to the inputs as

yti = βi1zt1 + βi2zt2 + · · · + βirztr + wti (5.69)

for each of the i = 1, 2, . . . , k output variables. We assume the wti variables
are correlated over the variable identifier i, but are still independent over time.
Formally, we assume cov{wsi, wtj} = σij for s = t and is zero otherwise. Then,
writing (5.69) in matrix notation, with yyyt = (yt1, yt2, . . . , ytk)′ being the vector
of outputs, and B = {βij}, i = 1, . . . , k, j = 1, . . . , r being an k × r matrix
containing the regression coefficients, leads to the simple looking form

yyyt = Bzzzt + wwwt. (5.70)

Here, the k × 1 vector process wwwt is assumed to be a collection of independent
vectors with common covariance matrix E{wwwtwww

′
t} = Σw, the k × k matrix

containing the covariances σij . The maximum likelihood estimator, under the
assumption of normality, for the regression matrix in this case is

B̂ = Y ′Z(Z ′Z)−1, (5.71)

where Z ′ = [zzz1, zzz2, . . . , zzzn] is as before and Y ′ = [yyy1, yyy2, . . . , yyyn]. The error
covariance matrix Σw is estimated by

Σ̂w =
1

(n − r)

n∑
t=1

(yyyt − B̂zzzt)(yyyt − B̂zzzt)′. (5.72)

The uncertainty in the estimators can be evaluated from

se(β̂ij) =
√

σ̂jjcii, (5.73)

for i = 1, . . . , r, j = 1, . . . , k, where se denotes estimated standard error, σ̂jj

is the j-th diagonal element of Σ̂w, and cii is the i-th diagonal element of
(
∑n

t=1 zzztzzz
′
t)

−1.
Also, the information theoretic criterion changes to

AIC = ln |Σ̂w| +
2
n

(
kr +

k(k + 1)
2

)
. (5.74)

and SIC replaces the second term in (5.74) by K lnn/n where K = kr + k(k +
1)/2. Bedrick and Tsai (1994) have given a corrected form for AIC in the
multivariate case as

AICc = ln |Σ̂w| +
k(r + n)

n − k − r − 1
. (5.75)
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Many data sets involve more than one time series, and we are often in-
terested in the possible dynamics relating all series. In this situation, we
are interested in modeling and forecasting k × 1 vector-valued time series
xxxt = (xt1, . . . , xtk)′, t = 0,±1,±2, . . .. Unfortunately, extending univariate
ARMA models to the multivariate case is not so simple. The multivariate au-
toregressive model, however, is a straight-forward extension of the univariate
AR model.

For the first-order vector autoregressive model, VAR(1), we take

xxxt = ααα + Φxxxt−1 + wwwt, (5.76)

where Φ is a k × k transition matrix that expresses the dependence of xxxt on
xxxt−1. The vector white noise process wwwt is assumed to be multivariate normal
with mean-zero and covariance matrix

E (wwwtwww
′
t) = ΣΣΣw. (5.77)

The vector ααα = (α1, α2, . . . , αk)′ appears as the constant in the regression
setting. If E(xxxt) = µµµ, then ααα = (I − Φ)µµµ.

Note the similarity between the VAR model and the multivariate linear
regression model (5.70). The regression formulas carry over, and we can, on
observing xxx1, . . . , xxxn, set up the model (5.76) with yyyt = xxxt, B = (ααα,Φ) and zzzt =
(1, xxx′

t−1)
′. Then, write the solution as (5.71) with the conditional maximum

likelihood estimator for the covariance matrix given by

Σ̂w = (n − 1)−1
n∑

t=2

(xxxt − α̂̂α̂α − Φ̂xxxt−1)(xxxt − α̂̂α̂α − Φ̂xxxt−1)′. (5.78)

Example 5.9 Pollution, Weather, and Mortality

For example, for the three-dimensional series composed of detrended car-
diovascular mortality xt1, temperature xt2, and particulate levels xt3,
introduced in Example 2.2, take xxxt = (xt1, xt2, xt3)′ as a vector of di-
mension k = 3. We might envision dynamic relations among the three
series defined as the first order relation,

xt1 = α1 + φ11xt−1,1 + φ12xt−1,2 + φ13xt−1,3 + wt1,

which expresses the current value of mortality as a linear combination of
its immediate past value and the past values of temperature and partic-
ulate levels. Similarly,

xt2 = α2 + φ21xt−1,1 + φ22xt−1,2 + φ23xt−1,3 + wt2

and
xt3 = α3 + φ31xt−1,1 + φ32xt−1,2 + φ33xt−1,3 + wt3
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express the dependence of temperature and particulate levels on the other
series. Of course, methods for the preliminary identification of these
models exist, and we will discuss these methods shortly.

For this particular case, we obtain α̂̂α̂α = (−4.57, 6.09, 19.78)′ and

Φ̂ =

⎛⎝ .47(.04) −.36(.03) .10(.02)
−.24(.04) .49(.04) −.13(.02)
−.13(.08) −.48(.07) .58(.04)

⎞⎠ ,

where the standard errors, computed as in (5.73), are given in parenthe-
ses. Hence, for the vector (xt1, xt2, xt3) = (Mt, Tt, Pt), with Mt, Tt and
Pt denoting mortality, temperature, and particulate level, respectively,
we obtain the prediction equation for mortality,

M̂t = −4.57 + .47Mt−1 − .36Tt−1 + .10Pt−1.

Comparing observed and predicted mortality with this model leads to an
R2 of about .78, whereas the value in the regression model fitted by the
method of Example 2.2 gave an R2 = .69.

It is easy to extend the VAR(1) process to higher orders, VAR(p). To do
this, we use the notation of (5.70) and write the vector of regressors as

zzzt = (1, xxx′
t−1, xxx

′
t−2, . . . xxx

′
t−p)

′

and the regression matrix as B = (ααα,Φ1, Φ2, . . . ,Φp). Then, this regression
model can be written as

xxxt = ααα +
p∑

j=1

Φjxxxt−j + wwwt (5.79)

for t = p + 1, . . . , n. The k × k error sum of products matrix becomes

RSP =
n∑

t=p+1

(xxxt − Bzzzt)(xxxt − Bzzzt)′, (5.80)

so that the conditional maximum likelihood estimator for the error covariance
matrix Σw is

Σ̂w = RSP/(n − p), (5.81)

as in the multivariate regression case, except now only n − p residuals exist in
(5.80). For the multivariate case, we have found that the Schwarz criterion

SIC = log |Σ̂w| + k2p lnn/n, (5.82)

gives more reasonable classifications than either AIC or corrected version AICc.
The result is consistent with those reported in simulations by Lütkepohl (1985).
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Table 5.1 Summary Statistics for Example 5.10

Order (p) k2p |Σ̂w| SIC AICc

1 505 118,520 11.79 14.71
2 503 74,708 11.44 14.26
3 501 70,146 11.49 14.21
4 499 65,268 11.53 14.15
5 497 59,684 11.55 14.08

Example 5.10 Mortality, Pollution and Temperature Data

A trivariate AR(2) model for the data in Example 5.9 yields

Φ̂1 =

⎛⎝ .30(.04) −.20(.04) .04(.02)
−.11(.05) .26(.05) −.05(.03)

.08(.09) −.39(.09) .39(.05)

⎞⎠ ,

Φ̂2 =

⎛⎝ .28(.04) −.08(.04) .07(.03)
−.04(.05) .36(.05) −.09(.03)
−.33(.09) .05(.09) .38(.05)

⎞⎠ .

In Table 5.1, fitting successively higher order models beyond p = 2 does
not improve the value of SIC, and we would tend to settle on the second-
order model. Note that the value of AICc continues to decrease as the
model order increases.

A k × 1 vector-valued time series xxxt, for t = 0,±1,±2, . . ., is said to be
VARMA(p, q) if xxxt is stationary and

xxxt = ααα + Φ1xxxt−1 + · · · + Φpxxxt−p + wwwt + Θ1wwwt−1 + · · · + Θqwwwt−q, (5.83)

with Φp �= 0, Θq �= 0, and Σw > 0 (that is, Σw is positive definite). The
coefficient matrices Φj ; j = 1, ..., p and Θj ; j = 1, ..., q are, of course, p × p
matrices. If xxxt has mean µµµ then ααα = (I −Φ1 −· · ·−Φp)µµµ. As in the univariate
case, we will have to place a number of conditions on the multivariate ARMA
model to ensure the model is unique and has desirable properties such as
causality. These conditions will be discussed shortly.

The special form assumed for the constant component, ααα, of the vector
ARMA model in (5.83) can be generalized to include a fixed r × 1 vector of
inputs, uuut. That is, we could have proposed the vector ARMAX model,

xxxt = Γuuut +
p∑

j=1

Φjxxxt−j +
q∑

k=1

Θkwwwt−k + wwwt, (5.84)

where Γ is a p×r parameter matrix. The X in ARMAX refers to the exogenous
vector process we have denoted here by uuut. The introduction of exogenous
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variables through replacing ααα by Γuuut does not present any special problems in
making inferences. For example, the case of the ARX model, that is, q = 0
in (5.84), can be estimated using standard regression results. In this case, the
model can be written as a multivariate regression model in which the vector
of regressors are

zzzt = (uuu′
t, xxx

′
t−1, ..., xxx

′
t−p)

′ (5.85)

and the new regression matrix is

B = [Γ, Φ1, Φ2, ...,Φp]. (5.86)

The general VARMA model, (5.83), is a special case of the vector ARMAX
model, (5.84), with r = 1, uuut = 1, and Γ = ααα.

As previously indicated, extending univariate AR (or pure MA) models to
the vector case is fairly easy, but extending univariate ARMA models to the
multivariate case is not a simple matter. Our discussion will be brief, but
interested readers can get more details in Lütkepohl (1993), Reinsel (1997),
and Tiao and Tsay (1989).

In the multivariate case, the autoregressive operator is

Φ(B) = I − Φ1B − · · · − ΦpB
p, (5.87)

and the moving average operator is

Θ(B) = I + Θ1B + · · · + ΘqB
q, (5.88)

The zero-mean VARMA(p, q) model is then written in the concise form as

Φ(B)xxxt = Θ(B)wwwt. (5.89)

The model is said to be causal if the roots of |Φ(z)| (where | · | denotes
determinant) are outside the unit circle, |z| > 1; that is, |Φ(z)| �= 0 for any
value z such that |z| ≤ 1. In this case, we can write

xxxt = Ψ(B)wwwt,

where Ψ(B) =
∑∞

j=0 ΨjB
j , Ψ0 = I, and

∑∞
j=0 ||Ψj || < ∞. The model is said

to be invertible if the roots of |Θ(z)| lie outside the unit circle. Then, we can
write

wwwt = Π(B)xxxt,

where Π(B) =
∑∞

j=0 ΠjB
j , Π0 = I, and

∑∞
j=0 ||Πj || < ∞. Analogous to

the univariate case, we can determine the matrices Ψj by solving Ψ(z) =
Φ(z)−1Θ(z), |z| ≤ 1, and the matrices Πj by solving Π(z) = Θ(z)−1Φ(z), |z| ≤
1.

For a causal model, we can write xxxt = Ψ(B)wwwt so the general autocovari-
ance structure of an ARMA(p, q) model is

Γ(h) = cov(xxxt+h, xxxt) = E(xxxt+hxxx′
t) =

∞∑
j=0

Ψj+hΣwΨ′
j . (5.90)
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Note, Γ(−h) = Γ′(h) so we will only exhibit the autocovariances for h ≥ 0.
For pure MA(q) processes, (5.90) becomes

Γ(h) =
q−h∑
j=0

Θj+hΣwΘ′
j , (5.91)

where Θ0 = I. Of course, (5.91) implies Γ(h) = 0 for h > q. For pure AR(p)
models, the autocovariance structure leads to the multivariate version of the
Yule–Walker equations:

Γ(h) =
p∑

j=1

ΦjΓ(h − j), h = 1, 2, ..., (5.92)

Γ(0) =
p∑

j=1

ΦjΓ(−j) + Σw. (5.93)

As in the univariate case, we will need conditions for model uniqueness.
These conditions are similar to the condition in the univariate case the the
autoregressive and moving average polynomials have no common factors. To
explore the uniqueness problems that we encounter with multivariate ARMA
models, consider a bivariate AR(1) process, xxxt = (xt,1, xt,2)′, given by

xt,1 = φxt−1,2 + wt,1,

xt,2 = wt,2,

where wt,1 and wt,2 are independent white noise processes and |φ| < 1. Both
processes, xt,1 and xt,2 are causal and invertible. Moreover, the processes are
jointly stationary because cov(xt+h,1, xt,2) = φ cov(xt+h−1,2, xt,2) ≡ φ γ2,2(h−
1) = φσ2

w2
δh
1 does not depend on t; note, δh

1 = 1 when h = 1, otherwise, δh
1 = 0.

In matrix notation, we can write this model as

xxxt = Φxxxt−1 + wwwt, (5.94)

where

Φ =
[

0 φ
0 0

]
.

We can write (5.94) in operator notation as

Φ(B)xxxt = wwwt

where

Φ(z) =
[

1 −φz
0 1

]
.

In addition, model (5.94) can be written as a bivariate ARMA(1,1) model

xxxt = Φ1xxxt−1 + Θ1wwwt−1 + wwwt, (5.95)
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where

Φ1 =
[

0 φ + θ
0 0

]
and Θ1 =

[
0 −θ
0 0

]
,

and θ is arbitrary. To verify this, we write (5.95), as Φ1(B)xxxt = Θ1(B)wwwt, or

Θ1(B)−1Φ1(B)xxxt = wwwt,

where

Φ1(z) =
[

1 −(φ + θ)z
0 1

]
and Θ1(z) =

[
1 −θz
0 1

]
.

Then,

Θ1(z)−1Φ1(z) =
[

1 θz
0 1

] [
1 −(φ + θ)z
0 1

]
=
[

1 −φz
0 1

]
= Φ(z),

where Φ(z) is the polynomial associated with the bivariate AR(1) model in
(5.94). Because θ is arbitrary, the parameters of the ARMA(1,1) model given
in (5.95) are not identifiable. No problem exists, however, in fitting the AR(1)
model given in (5.94).

The problem in the previous discussion was caused by the fact that both
Θ(B) and Θ(B)−1 are finite; such a matrix operator is called unimodular.
If U(B) is unimodular, |U(z)| is constant. It is also possible for two seem-
ingly different multivariate ARMA(p, q) models, say, Φ(B)xxxt = Θ(B)wwwt and
Φ∗(B)xxxt = Θ∗(B)wwwt, to be related through a unimodular operator, U(B) as
Φ∗(B) = U(B)Φ(B) and Θ∗(B) = U(B)Θ(B), in such a way that the orders of
Φ(B) and Θ(B) are the same as the orders of Φ∗(B) and Θ∗(B), respectively.
For example, consider the bivariate ARMA(1,1) models given by

Φxxxt ≡
[

1 −φB
0 1

]
xxxt =

[
1 θB
0 1

]
wwwt ≡ Θwt

and

Φ∗(B)xxxt ≡
[

1 (α − φ)B
0 1

]
xxxt =

[
1 (α + θ)B
0 1

]
wwwt ≡ Θ∗(B)wwwt,

where α, φ, and θ are arbitrary constants. Note,

Φ∗(B) ≡
[

1 (α − φ)B
0 1

]
=
[

1 αB
0 1

] [
1 −φB
0 1

]
≡ U(B)Φ(B)

and

Θ∗(B) ≡
[

1 (α + θ)B
0 1

]
=
[

1 αB
0 1

] [
1 θB
0 1

]
≡ U(B)Θ(B).

In this case, both models have the same infinite MA representation xxxt =
Ψ(B)wwwt, where

Ψ(B) = Φ(B)−1Θ(B) = Φ(B)−1U(B)−1U(B)Θ(B) = Φ∗(B)−1Θ∗(B).



5.7: Multivariate ARMAX 309

This result implies the two models have the same autocovariance function Γ(h).
Two such ARMA(p, q) models are said to be observationally equivalent.

As previously mentioned, in addition to requiring causality and invertiblity,
we will need some additional assumptions in the multivariate case to make
sure that the model is unique. To ensure the identifiability of the parameters
of the multivariate ARMA(p, q) model, we need the following additional two
conditions: (i) the matrix operators Φ(B) and Θ(B) have no common left
factors other than unimodular ones; that is, if Φ(B) = U(B)Φ∗(B) and Θ(B) =
U(B)Θ∗(B), the common factor must be unimodular; and (ii) with q as small
as possible and p as small as possible for that q, the matrix [Φp, Θq] must be
full rank, k. One suggestion for avoiding most of the aforementioned problems
is to fit only vector AR(p) models in multivariate situations. Although this
suggestion might be reasonable for many situations, this philosophy is not in
accordance with law of parsimony because we might have to fit a large number
of parameters to describe the dynamics of a process.

Analogous to the univariate case, we can define a sequence of matrices,
Φhh, for h = 1, 2, ..., called the partial autoregression matrices at lag h. These
matrices are obtained by solving the Yule–Walker equations of order h, namely,

Γ(
) =
h∑

j=1

ΦjhΓ(
 − j), 
 = 1, 2, ..., h. (5.96)

The partial autoregression matrices can be viewed as the result of successive
AR(h) fits to the data; that is,

xxxt =
h∑

j=1

Φjhxxxt−j + wwwt, h = 1, 2, ... . (5.97)

If the process is truly an AR(p), the partial autoregression matrices have the
property that Φpp = Φp and Φhh = 0 for h > p. Unlike the univariate case,
however, the elements of these matrices are not partial correlations, or correla-
tions of any kind. As in the univariate case, the Φhh can be obtained iteratively
using a multivariate extension of the Durbin-Levinson algorithm; details can
be found in Reinsel (1997).

The partial canonical correlations can be viewed as the multivariate ex-
tension of the PACF in the univariate case. In general, the first canonical
correlation, λ1, between the k1 × 1 random vector XXX1 and the k2 × 1 random
vector XXX2, k1 ≤ k2, with variance–covariance matrices Σ11 and Σ22, respec-
tively, is the largest possible correlation between a linear combination of the
components of XXX1, say, ααα′XXX1, and a linear combination of the components of
XXX2, say, βββ′XXX2, where ααα is k1 × 1 and βββ is k2 × 1. That is,

λ1 = max
ααα,βββ

corr
(
ααα′XXX1, βββ

′XXX2
)
,

subject to the constraints var(ααα′XXX1) = ααα′Σ11ααα = 1 and var(βββ′XXX2) = βββ′Σ22βββ =
1. If we let Σij = cov(XXXi,XXXj), for i, j = 1, 2, then λ2

1 is the largest eigenvalue
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of the matrix Σ−1
11 Σ12Σ−1

22 Σ21; see Johnson and Wichern (1992, Chapter 10) for
details. We call the solutions U1 = ααα′

1XXX1 and V1 = βββ′
1XXX2 the first canonical

variates, that is, λ1 = corr(U1, V1), and ααα1 and βββ1 are the coefficients of
the linear combinations that maximize the correlation. In a similar fashion,
the second canonical correlation, λ2, is then the largest possible correlation
between ααα′XXX1 and βββ′XXX2 such that ααα is orthogonal to ααα1 (that is, ααα′ααα1 = 0), and
βββ is orthogonal to βββ1 (βββ′βββ1 = 0) . If we call the solutions U2 = ααα′

2XXX1 and V2 =
βββ′

2XXX2, then corr(U1, U2) = 0 = corr(V1, V2), corr(Ui, Vj) = 0 for i �= j, and by
design, λ2

1 ≥ λ2
2. Also, λ2

2 is the second largest eigenvalue of Σ−1
11 Σ12Σ−1

22 Σ21.
Continuing this way, we obtain the squared canonical correlations 1 ≥ λ2

1 ≥
λ2

2 ≥ · · · ≥ λ2
k1

≥ 0 as the ordered eigenvalues of Σ−1
11 Σ12Σ−1

22 Σ21. The canonical
correlations, λj , are typically taken to be nonnegative.

We can extend this idea to obtain partial canonical correlations between
XXX1 and XXX2 given another random k3 × 1 vector XXX3. Let Σij = cov(XXXi,XXXj),
for i, j = 1, 2, 3. The regression of XXX1 on XXX3 is Σ13Σ−1

33 XXX3 so that XXX1|3 =
XXX1 −Σ13Σ−1

33 XXX3 can be thought of as XXX1 with the linear effects of XXX3 removed
(partialled out). Similarly, XXX2|3 = XXX2 − Σ23Σ−1

33 XXX3 can be thought of as XXX2
with the linear effects of XXX3 partialled out. The partial variance–covariance
matrices are Σij|3 = cov(XXXi|3,XXXj|3) = Σij − Σi3Σ−1

33 Σ3j , for i, j = 1, 2. The
squared partial canonical correlations between XXX1 and XXX2 given XXX3 are the
ordered eigenvalues of Σ−1

11|3Σ12|3Σ−1
22|3Σ21|3.

For a stationary vector process xxxt, the partial canonical correlations at lag
h, for h = 2, 3, ..., denoted λ1(h) ≥ λ2(h) ≥ · · · ≥ λk(h) ≥ 0, are defined
to be the partial canonical correlations between xxxh and xxx0 with the effects
of XXX = (xxx′

h−1, ..., xxx
′
1)

′ removed. For ease of notation, we put r = h − 1.

Let Σ00|X = Γ(0) − Γ(r)
1 Γ−1

r,rΓ(r)′

1 , where Γr,r = {Γ(i − j)}r
i,j=1 is a kr × kr

symmetric matrix, and Γ(r)
1 = [Γ(r)′, Γ(r − 1)′, ...,Γ(1)′] is k × kr. Similarly,

let Σhh|X = Γ(0) − Γ(1)
r Γ−1

r,rΓ(1)′
r , where Γ(1)

r = [Γ(1),Γ(2), ...,Γ(r)] is k × kr.

Also needed are Σh0|X = Γ(r)−Γ(1)
r Γ−1

r,rΓ(r)′

1 and Σ0h|X = Σ′
h0|X . The squared

partial canonical correlations, λ2
j (h), j = 1, ..., k at lag h, h = 2, 3, ..., are given

by the ordered eigenvalues of Σ−1
00|XΣ0h|XΣ−1

hh|XΣh0|X . The inversion of Γr,r,
when h is large will, be a problem; see Reinsel (1997) for methods that avoid
having to invert Γr,r. Finally, we will define the partial canonical correlations
between xxxt and xxxt−1 to be the lag-one canonical correlations. In this case,
λ2

j (1), j = 1, ..., k are the ordered eigenvalues of Γ(0)−1Γ(1)Γ(0)−1Γ(1)′.
Prediction and estimation for identifiable multivariate ARMA models fol-

low analogously to the univariate case, except in the general case, the estima-
tion of the coefficient parameters and Σw must be done simultaneously. Pre-
liminary identification of the model uses the sample autocovariance matrices,
the sample partial autoregression matrices, and the sample partial canonical
correlations. We illustrate the techniques using the mortality data of Examples
2.2, 5.9, and 5.10.
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Example 5.11 Identification, Estimation and Prediction for the
Mortality Series

As in Example 5.10, we consider the trivariate series composed of de-
trended cardiovascular mortality xt1, temperature xt2, and particulate
levels xt3, and set xxxt = (xt1, xt2, xt3)′ as the three-dimensional data vec-
tor.

Estimation of the autocovariance matrix is similar to the univariate case,
that is, with x̄̄x̄x = n−1∑n

t=1 xxxt, as an estimate of µµµ = Exxxt,

Γ̂(h) = n−1
n−h∑
t=1

(xxxt+h − x̄̄x̄x)(xxxt − x̄̄x̄x)′, h = 0, 1, 2, .., n − 1, (5.98)

and Γ̂(−h) = Γ̂(h)′. If γ̂i,j(h) denotes the element in the i-th row and
j-th column of Γ̂(h), the cross-correlation functions (CCF), as discussed
in (1.35), are estimated by

ρ̂i,j(h) =
γ̂i,j(h)√

γ̂i,i(0)
√

γ̂j,j(0)
h = 0, 1, 2, .., n − 1. (5.99)

When i = j in (5.99), we get the estimated autocorrelation function
(ACF) of the individual series. The first six estimated autocovariance
matrices, Γ̂(h), h = 0, 1, ..., 5, are (we have rounded the entries to integers
to ease the display):

Γ̂(0) =

⎡⎣ 79 −37 62
−37 81 −2

62 −2 227

⎤⎦ Γ̂(1) =

⎡⎣ 56 −46 52
−45 49 −45

44 −35 125

⎤⎦

Γ̂(2) =

⎡⎣ 56 −42 62
−42 50 −48

35 −20 136

⎤⎦ Γ̂(3) =

⎡⎣ 47 −42 59
−41 44 −55

27 −18 123

⎤⎦ (5.100)

Γ̂(4) =

⎡⎣ 44 −34 72
−39 46 −53

16 −9 120

⎤⎦ Γ̂(5) =

⎡⎣ 38 −35 68
−39 39 −67

7 3 104

⎤⎦ .

Inspecting the autocovariance matrices, we find mortality, xt1, and tem-
perature, xt2, are negatively correlated at about the same strength for
both positive and negative lags. The strongest cross-correlation oc-
curs at lag ±1, where ρ̂12(−1) ≈ −45/

√
79

√
81 = −.56, and ρ̂12(1) ≈

−46/
√

79
√

81 = −.58. Also, mortality xt1 and particulates xt3 are posi-
tively correlated, the strongest correlation being when particulates leads
mortality by about one month, ρ̂13(4) ≈ 72/

√
79

√
227 = .54. Finally,

we note that particulates and temperature are negatively correlated, the
strongest displayed value (which is approximately the strongest overall
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correlation between the two series) is when particulates leads tempera-
ture by about five weeks, ρ̂23(5) ≈ −67/

√
81

√
227 = .49. The autocovari-

ance matrices do not cut off at any small lag, and hence a pure moving
average model is not indicated.

Replacing Γ(h) by Γ̂(h) in (5.96), we can obtain estimates of the partial
autoregression matrices. The first four estimated matrices are

Φ̂11 =

⎡⎣ .47 −.36 .10
−.25 .49 −.13
−.12 −.48 .58

⎤⎦ Φ̂22 =

⎡⎣ .27 −.08 .07
−.04 .35 −.09
−.33 .05 .38

⎤⎦

Φ̂33 =

⎡⎣ −.04 .02 −.01
.00 .11 −.03

−.21 .07 .17

⎤⎦ Φ̂44 =

⎡⎣ −.04 .08 .06
−.07 .17 .01
−.26 .12 .13

⎤⎦ .

As explained above (5.97), we can use (5.96) to estimate successive
AR(h) models with parameter estimates Φ̂j = Φ̂jh, j = 1, . . . , h, and
h = 1, 2, . . .. Note, Φ̂11 is practically the same as Φ̂ in Example 5.9, and
Φ̂22 is practically the same as Φ̂2 in Example 5.10. The only difference in
the estimates is that we are using Yule–Walker here, whereas regression
was used in the other examples. These matrices contain small compo-
nents after lag two, indicating the AR(2) relationship, although there is
evidence of some relationship between mortality and particulates at lags
of three and four weeks.

The estimated autocovariance matrices can also be used to obtain esti-
mates of the partial canonical correlations. For example, to estimate the
lag h = 3 partial canonical correlations, {λ̂2

1(3), λ̂2
2(3), λ̂2

3(3)}, we would
put

Γ̂22 =
[

Γ̂(0) Γ̂(1)
Γ̂(1)′ Γ̂(0)

]
, (5.101)

which represents, in this case, a 6 × 6 matrix of the estimated autoco-
variances that were displayed in (5.100). In addition, we will need the
matrices

Γ̂(2)
1 =

[
Γ̂(2)′, Γ̂(1)′

]
and Γ̂(1)

2 =
[
Γ̂(1), Γ̂(2)

]
,

which are both, in this example, 3×6 matrices. From these matrices, we
construct the 3 × 3 matrices

Σ̂00|21 = Γ̂(0) − Γ̂(2)
1 Γ̂−1

22 Γ̂(2)′

1 ,

Σ̂33|21 = Γ̂(0) − Γ̂(1)
2 Γ̂−1

22 Γ̂(1)′

2 ,

and
Σ̂30|21 = Γ̂(2) − Γ̂(1)

2 Γ̂−1
22 Γ̂(2)′

1 = Σ̂′
03|21.
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Finally, the squared partial canonical correlations, λ2
j (3), for j = 1, 2, 3,

are obtained as the ordered eigenvalues of Σ̂−1
00|21Σ̂03|21Σ̂−1

33|21Σ̂33|21.

In this example we obtain

(
λ̂2

1(h), λ̂2
2(h), λ̂2

3(h)
)

=

⎧⎪⎨⎪⎩
(.81, .24, .02) h = 1
(.22, .14, .06) h = 2
(.05, .01, .00) h = 3
(.05, .02, .00) h = 4,

which also suggests an AR(2) model for the data.

In addition, successive Yule–Walker estimates, for h = 1, 2, ..., of the
error variance–covariance matrix can be obtained from (5.93), that is,

Σ̂(h)
w = Γ̂(0) −

h∑
j=1

Φ̂jhΓ̂(−j). (5.102)

For this data, we obtained (entries are rounded to integers)

Σ̂(1)
w =

⎡⎣ 31 6 17
6 41 42

17 42 144

⎤⎦ , Σ̂(2)
w =

⎡⎣ 28 7 16
7 37 40

16 40 123

⎤⎦ ,

Σ̂(3)
w =

⎡⎣ 28 7 16
7 37 40

16 40 118

⎤⎦ , Σ̂(4)
w =

⎡⎣ 27 6 14
6 36 38

14 38 114

⎤⎦ .

The estimates stabilize (except for perhaps the variance of the particulate
series) after h = 2, indicating the AR(3) and AR(4) fits do not improve
much over the AR(2) fit. Recall the comparison of the autoregressions
of order one to five using the SIC, as reported in Table 5.1 also indicated
the AR(2) model.

At this point, we would settle on the AR(2) model estimated in Ex-
ample 5.10 on the detrended data. We will write the estimated model
as

x̂̂x̂xt = Φ̂1xxxt−1 + Φ̂2xt−2 + ŵ̂ŵwt, (5.103)

where Φ̂1 and Φ̂2 are given in Example 5.10. The estimate of Σw for this
model is Σ̂(2)

w , which is listed below (5.102). Residual analysis, performed
on the residuals ŵ̂ŵwt = x̂̂x̂xt − Φ̂1xxxt−1 − Φ̂2xxxt−2, for t=3,...,508, suggests the
model fits well. Individual residual analyses on the ŵwwti, for i = 1, 2, 3,
show, except for the particulate series, wt3, the residuals are Gaussian
white noise. For the particulate series, a small, but significant, amount
of autocorrelation is still left in that series. In this case, we may wish to
fit a higher order (higher than two) model to the particulate series only.
In addition, we might be inclined to fit a reduced rank model, and we
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will discuss this matter later. Inspection of the pairwise CCF between
all residual series shows no obvious departures from independence.

Once the model has been estimated, estimated forecasts can be obtained.
Analogous to the univariate case, the m-step-ahead forecast, m = 1, 2, ...,
in this example (n = 508), is obtained as follows:

x̂̂x̂xn
n+m = Φ̂1x̂̂x̂x

n
n+m−1 + Φ̂2x̂̂x̂x

n
n+m−2, (5.104)

where x̂̂x̂xn
t = xxxt when 1 ≤ t ≤ n. The mean square prediction error

matrices can be calculated in a manner similar to the univariate case,
(3.67). In the general case of vector ARMA or ARMAX models, forecasts
and their mean square prediction errors can be obtained by using the
state-space formulation of the model and the Kalman filter (see §6.6).
Analogous to (3.67), the general form of the m-step-ahead mean square
prediction error matrix is,

Pn
n+m = E

(
xxxn+m − xxxn

n+m

) (
xxxn+m − xxxn

n+m

)′ (5.105)

= Γ(0) − Γ(m)
n Γ−1

nnΓ(m)′
n , (5.106)

where Γ(m)
n = [Γ(m), Γ(m + 1), ...,Γ(m + n − 1)], is a k × nk matrix, and

Γnn = {Γ(i− j)}n
i,j=1, is an nk ×nk symmetric matrix. Of course, Pn

n+m

can be estimated by substituting Γ̂(h) for Γ(h) in (5.106). The analogue
of (3.77) for multivariate ARMA models is

Pn
n+m =

m−1∑
j=0

ΨjΣwΨ′
j . (5.107)

When the model is autoregressive, as in this example, a simplification
occurs by noticing a k-dimensional AR(p) model can be written as a kp-
dimensional AR(1) model. For example, we can write the vector AR(2)
model as

XXXt = ααα + A(XXXt−1 − ααα) + ηηηt, (5.108)

where

XXXt =
[

xxxt

xxxt−1

]
ααα =

[
µµµ
µµµ

]
A =

[
Φ1 Φ2
I 0

]
ηηηt =

[
wwwt

000

]
.

Of course, this technique generalizes to any dimension k and any order
p. From (5.108) we immediately obtain the forecasts and mean square
prediction errors as

XXXn
n+m = ααα + Am(XXXn − ααα)

and

Qn
n+m = E

(
XXXn+m − XXXn

n+m

) (
XXXn+m − XXXn

n+m

)′
= ΓX(0) − AmΓX(0)A′m,
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where

ΓX(0) =
[

Γ(0) Γ(1)
Γ(1)′ Γ(0)

]
.

We can then obtain the desired mean square prediction error matrices
Pn

n+m as submatrices of Qn
n+m. In addition, Yule–Walker estimation and

forecasting can be accomplished by substituting autocovariance matrices
by their sample equivalents obtained via (5.98).

For this numerical example,

Â =
[

Γ̂(1) Γ̂(2)
Γ̂(0) Γ̂(1)

] [
Γ̂(0) Γ̂(1)
Γ̂(1)′ Γ̂(0)

]−1

=
[

Φ̂1 Φ̂2
I 0

]
,

where Φ̂1 and Φ̂2 are as given in Example 5.10. In the general case,
we obtain the coefficient estimates from the top k rows of Â. Similarly,
estimated forecasts in this example are found as follows:[

x̂̂x̂xn
n+m

x̂̂x̂xn
n+m−1

]
= Âm

[
xxxn

xxxn−1

]
.

Because xxx507 = (8.62,−1.85, 12.16)′ and xxx508 = (4.71,−4.67, 17.20)′, we
can, for example, calculate the one-step-ahead and two-step-ahead fore-
casts by putting m = 2 and using the numerical values given in Example
5.10 to construct Â2,

⎡⎣ x̂̂x̂x508
510

x̂̂x̂x508
509

⎤⎦ = Â2
[

x̂̂x̂x508
x̂̂x̂x507

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6.13
−5.94
11.23

6.43
−4.77
10.53

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Substituting autocovariance matrices with their estimates, we may write

Q̂508
510 =

[
Γ̂(0) Γ̂(1)
Γ̂(1)′ Γ̂(0)

]
− Â2

[
Γ̂(0) Γ̂(1)
Γ̂(1)′ Γ̂(0)

]
Â′2

=

⎡⎣ P̂ 508
510 P̂ 508

510,509

P̂ 508
509,510 P̂ 508

509

⎤⎦ ,

where we have written P̂n
s,t to be the estimate of E{(xxxs − xxxn

s ) (xxxt − xxxn
t )′}.
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In this example, we found (entries are rounded)

Q̂508
510 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

31 5 19 8 −4 2
5 39 38 −2 7 2

19 38 135 6 2 33

8 −2 6 28 7 16
−4 7 2 7 37 40

2 2 33 16 40 123

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note, P̂ 508
509 = Σ̂w = Σ̂(2)

w . The diagonal elements of Q̂508
510 give the indi-

vidual mean-square prediction errors. For example, an approximate 95%
prediction interval for x508

510,1 is 6.13 ± 2
√

31 or (−5.0, 17.2).

Although the estimation in Example 5.11 was performed using Yule–Walker
estimation, we could have also used conditional or unconditional maximum
likelihood estimation, or conditional (as in Example 5.10) or unconditional
least squares estimation. Because, as we have seen, any k-dimensional AR(p)
model can be written as a kp-dimensional AR(1) model, any of these estimation
techniques are straightforward multivariate extensions to the univariate case
presented in equations (2.124)-(2.133). Also, as in the univariate case, the
Yule–Walker estimators, the maximum likelihood estimators, and the least
squares estimators are asymptotically equivalent. To exhibit the asymptotic
distribution of the autoregression parameter estimators, we write

φφφ = vec (Φ1, ...,Φp) ,

where the vec operator stacks the columns of a matrix into a vector. For
example, for a bivariate AR(2) model,

φφφ = vec (Φ1, Φ2) = (Φ111 , Φ121 , Φ112 , Φ122Φ211 , Φ221 , Φ212 , Φ222)
′
,

where Φ�ij
is the ij-th element of Φ�, 
 = 1, 2. Because (Φ1, ...,Φp) is a k × kp

matrix, φφφ is a k2p × 1 vector. We now state the following property.

Property P5.1: Large Sample Distribution of the Vector
Autoregression Estimators
Let φ̂̂φ̂φ denote the vector of parameter estimators (obtained via Yule–Walker,
least squares, or maximum likelihood) for a k-dimensional AR(p) model. Then,

√
n
(
φ̂̂φ̂φ − φφφ

)
∼ AN(000, Σw ⊗ Γ−1

pp ), (5.109)

where Γpp = {Γ(i − j)}p
i,j=1 is a kp × kp matrix, Σw ⊗ Γ−1

pp = {σijΓ−1
pp }k

i,j=1 is
a k2p × k2p matrix, and σij is the ij-th element of Σw.

The variance–covariance matrix of the estimator φ̂̂φ̂φ is approximated by replac-
ing Σw by Σ̂w, and replacing Γ(h) by Γ̂(h) in Γpp. The square root of the
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diagonal elements of Σ̂w ⊗ Γ̂−1
pp divided by

√
n gives the individual standard

errors. For the mortality data example, the estimated standard errors for the
VAR(2) fit are listed in Example 5.10; although those standard errors were
taken from a regression run, they could have also been calculated using Prop-
erty P5.1 along with the numerical values taken from Σ̂(2)

w given below (5.102)
and Γ̂22 given in (5.101).

Asymptotic inference for the general case of vector ARMA models is more
complicated than pure AR models; details can be found in Reinsel (1997) or
Lütkepohl (1993), for example. We also note that estimation for VARMA
models can be recast into the problem of estimation for state-space models
that will be discussed in Chapter 6.

A simple algorithm for fitting multivariate ARMA models from Spliid (1983)
is worth mentioning because it repeatedly uses the multivariate regression
equations. Consider a general ARMA(p, q) model for a time series with a
nonzero mean

xxxt = ααα + Φ1xxxt−1 + · · · + Φpxxxt−p + wwwt + Θ1wwwt−1 + · · · + Θqwwwt−q. (5.110)

If µµµ = Exxxt, then ααα = (I − Φ1 − · · · − Φp)µµµ. If wwwt−1, ...,wwwt−q were observed, we
could rearrange (5.110) as a multivariate regression model

xxxt = Bzzzt + wwwt, (5.111)

with
zzzt = (1, xxx′

t−1, ..., xxx
′
t−p,www

′
t−1, ...,www

′
t−q)

′ (5.112)

and
B = [ααα,Φ1, ...,Φp, Θ1, ...,Θq], (5.113)

for t = p + 1, ..., n. Given an initial estimator B0, of B, we can reconstruct
{wwwt−1, ...,wwwt−q} by setting

wwwt−j = xxxt−j − B0zzzt−j , t = p + 1, ..., n, j = 1, ..., q, (5.114)

where, if q > p, we put wwwt−j = 000 for t−j ≤ 0. The new values of {wwwt−1, ...,wwwt−q}
are then put into the regressors zzzt and a new estimate, say, B1, is obtained.
The initial value, B0, can be computed by fitting a pure autoregression of order
p or higher, and taking Θ1 = · · · = Θq = 000. The procedure is then iterated
until the parameter estimates stabilize. The algorithm usually converges, but
not to the maximum likelihood estimators. Experience suggests the estimators
are reasonably close to the maximum likelihood estimators.

As previously discussed, the special form assumed for the constant compo-
nent, ααα, of the general ARMA model in (5.110) can be generalized to include
a fixed r × 1 vector of inputs, say, uuut. In this case we have a k-dimensional
ARMAX model:

xxxt = Γuuut +
p∑

j=1

Φjxxxt−j +
q∑

j=1

Θjwwwt−j + wwwt, (5.115)
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Figure 5.14 CCF between prewhitened mortality and temperature (positive
lag means temperature leads mortality).

where Γ is a k × r parameter matrix. Recall the X in ARMAX refers to the
exogenous vector process we have denoted here by uuut and the introduction
of exogenous variables through setting ααα = Γuuut does not present any special
problems in making inferences.

Example 5.12 An ARMAX Model for Cardiovascular Mortality

In Example 2.2, we regressed the cardiovascular mortality series, Mt, on
time t, temperature Tt, and particulate pollution Pt. There, the interest
was an analysis of the effect of temperature and pollution on cardiovas-
cular mortality. In Example 5.10, we fit a multivariate ARMA model to
the trivariate vector (Mt, Tt, Pt), as if modeling the behavior of tempera-
ture and pollution was equally as important as modeling the behavior of
mortality. In this example, we are interested in using temperature and
pollution to explain some of the variation in the mortality series.

To examine the CCF between mortality and temperature, and between
mortality and pollution, we first prewhitened mortality by fitting an
AR(2) to the detrended data. That is, we first fit the model

Mt = β0 + β1t + φ1Mt−1 + φ2Mt−2 + εt.

Using the residuals of the fit, say, ε̂t, we then calculated the CCF between
ε̂t and Tt, and between ε̂t and Pt. Figure 5.14 shows the cross-correlation
of prewhitened mortality and temperature (positive lag means tempera-
ture leads mortality) and a significant correlation is seen at lag h = 1.
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Figure 5.15 CCF between prewhitened mortality and particulate pollution
(positive lag means pollution leads mortality).

Figure 5.15 shows a similar plot for the CCF of prewhitened mortality
and pollution, and significant correlations are seen at lags h = 0, 2, 4, 7.
After some preliminary fitting, the final model uses the exogenous vari-
ables uuut = (1, t, Tt−1, T

2
t−1, Pt, Pt−4)′, along with an AR(2) on mortality,

Mt; the inclusion of particulate pollution at lags two and seven were not
significant when lags zero and four are in the model. In this case, the
ARMAX model is

Mt = Γuuut + φ1Mt−1 + φ2Mt−2 + wt,

where Γ = [γ0, γ1, γ2, γ3, γ4].

Estimation was accomplished using the regression approach described in
(5.85) and (5.86). In this case, the fitted model was (values are rounded)

M̂t = 42.9 − .01(.002)t − .18(.03)Tt−1 + .11(.02)Pt + .05(.02)Pt−4
+ .31(.04)Mt−1 + .30(.04)Mt−2 + ŵt,

where σ̂2
w = 25.7 and R2 = 74.3%. Each coefficient is significant, as seen

from the estimated standard errors listed below each parameter estimate.
Finally, an analysis of the residuals, ŵt, shows, except for a few outliers,
the model fits well. The value of the Ljung–Box–Pierce statistic for
H=24 was Q=25.7, which when compared to a χ2

22, is not significant. In
addition, a Q-Q plot shows no departure from the Gaussian assumption,
except for the few outliers. Our general conclusions are that decrease
in cardiovascular mortality occurred during the period studied, and an
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increase in mortality is associated with lower temperatures the previous
week and higher particulate pollution both currently and one month
prior.

Problems

Section 5.2

5.1 The data set labeled fracdiff.dat is n = 1000 simulated observations
from a fractionally differenced ARIMA(1, 1, 0) model with φ = .75 and
d = .4.

(a) Plot of the data and comment.

(b) Plot the ACF and PACF of the data and comment.

(c) Estimate the parameters and test for the significance of the esti-
mates φ̂ and d̂.

(d) Explain why, using the results of part (a) and (b), it would seem
reasonable to difference the data prior to the analysis. That is, if xt

represents the data, explain why we might choose to fit an ARMA
model to ∇xt.

(e) Plot the ACF and PACF of ∇xt and comment.

(f) Fit an ARMA model to ∇xt and comment.

5.2 The data in globtemp2.dat are annual global temperature deviations
from 1880 to 2004 (there are three columns in the data file; work with
the annual means and not the 5-year smoothed data). The data are
an update to the Hansen–Lebedeff global temperature data displayed in
Figure 1.2. The url of the data source is in the file, you can go there for
further explanation of the data. Fit an ARFIMA model to this series.

5.3 Compute the sample ACF of the absolute values of the NYSE returns
displayed in Figure 1.4 up to lag 200 and comment on whether the ACF
indicates long memory. Fit an ARFIMA model to the absolute values
and comment.

Section 5.3

5.4 Investigate whether the monthly returns of a stock dividend yield listed
in the file sdyr.dat exhibit GARCH behavior. If so, fit an appropriate
model to the returns. The data are monthly returns of a stock dividend
yield from January 1947 through May 1993 and are taken from Hamilton
and Lin (1996).



Problems 321

5.5 Investigate whether the growth rate of the monthly Oil Prices exhibit
GARCH behavior. If so, fit an appropriate model to the growth rate.

5.6 The stats package of R contains the daily closing prices of four major
European stock indices; type help(EuStockMarkets) for details. Fit a
GARCH model to the returns of these series and discuss your findings.
(Note: The data set contains actual values, and not returns. Hence, the
data must be transformed prior to the model fitting.)

5.7 The 2 × 1 gradient vector, l(1)(α0, α1), given for an ARCH(1) model was
displayed in (5.41). Verify (5.41) and then use the result to calculate the
2 × 2 Hessian matrix

l(2)(α0, α1) =
(

∂2l/∂α2
0 ∂2l/∂α0∂α1

∂2l/∂α0∂α1 ∂2l/∂α2
1

)
.

Section 5.4

5.8 The sunspot data are plotted in Chapter 4, Figure 4.31. From a time
plot of the data, discuss why is it reasonable to fit a threshold model to
the data, and then fit a threshold model.

Section 5.5

5.9 Let St represent the monthly sales data listed in sales.dat (n = 150),
and let Lt be the leading indicator listed in lead.dat. Fit the regression
model ∇St = β0 + β1∇Lt−3 + xt, where xt is an ARMA process.

5.10 Consider the correlated regression model, defined in the text by (5.53),
say,

yyy = Zβββ + xxx,

where xxx has mean zero and covariance matrix Γ. In this case, we know
that the weighted least squares estimator is (5.54), namely,

β̂ββw = (Z ′Γ−1Z)−1Z ′Γ−1yyy.

Now, a problem of interest in spatial series can be formulated in terms of
this basic model. Suppose yi = y(σi), i = 1, 2, . . . , n is a function of the
spatial vector coordinates σi = (si1, si2, . . . , sir)′, the error is xi = x(σi),
and the rows of Z are defined as zzz(σi)′, i = 1, 2, . . . , n. The Kriging
estimator is defined as the best spatial predictor of y0 = zzz′

0βββ + x0 using
the estimator

ŷ0 = aaa′yyy,

subject to the unbiased condition Eŷ0 = Ey0, and such that the mean
square prediction error

MSE = E[(y0 − ŷ0)2]

is minimized.
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(a) Prove the estimator is unbiased when Z ′aaa = zzz0.
(b) Show the MSE is minimized by solving the equations

Γaaa + Zλλλ = γγγ0

and
Z ′aaa = zzz0,

where γγγ0 = E[xxxx0] represents the vector of covariances between the
error vector of the observed data and the error of the new point the
vector λλλ is a q × 1 vector of LaGrangian multipliers.

(c) Show the predicted value can be expressed as

ŷ0 = zzz′
0β̂ββw + γγγ′

0Γ
−1(yyy − Zβ̂ββw),

so the optimal prediction is a linear combination of the usual pre-
dictor and the least squares residuals.

Section 5.6

5.11 The file labeled clim-hyd has 454 months of measured values for the
climatic variables air temperature, dew point, cloud cover, wind speed,
precipitation (pt), and inflow (it), at Shasta Lake. We would like to look
at possible relations between the weather factors and the inflow to Shasta
Lake.

(a) Fit ARIMA(0, 0, 0)× (0, 1, 1)12 models to (i) transformed precipita-
tion Pt =

√
pt and (ii) transformed inflow It = log it.

(b) Apply the ARIMA model fitted in part (a) for transformed precip-
itation to the flow series to generate the prewhitened flow residuals
assuming the precipitation model. Compute the cross-correlation
between the flow residuals using the precipitation ARIMA model
and the precipitation residuals using the precipitation model and
interpret. Use the coefficients from the ARIMA model to construct
the transformed flow residuals.

5.12 Consider predicting the transformed flows It = log it from transformed
precipitation values Pt =

√
pt using a transfer function model of the form

(1 − B12)It = α(B)(1 − B12)Pt + nt,

where we assume that seasonal differencing is a reasonable thing to do.
The data are the 454 monthly values of precipitation and inflow from the
Shasta Lake reservoir in the file clim-hyd. You may think of it as fitting

yt = α(B)xt + nt,

where yt and xt are the seasonally differenced transformed flows and
precipitations.
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(a) Argue that xt can be fitted by a first-order seasonal moving average,
and use the transformation obtained to prewhiten the series xt.

(b) Apply the transformation applied in (a) to the series yt, and com-
pute the cross-correlation function relating the prewhitened series
to the transformed series. Argue for a transfer function of the form

α(B) =
δ0

1 − ω1B
.

(c) Write the overall model obtained in regression form to estimate δ0
and ω1. Note that you will be minimizing the sums of squared
residuals for the transformed noise series (1 − ω̂1B)nt. Retain the
residuals for further modeling involving the noise nt. The observed
residual is ut = (1 − ω̂1B)nt.

(d) Fit the noise residuals obtained in (c) with an ARMA model, and
give the final form suggested by your analysis in the previous parts.

(e) Discuss the problem of forecasting yt+m using the infinite past of
yt and the present and infinite past of xt. Determine the predicted
value and the forecast variance.

Section 5.7

5.13 Consider the data set containing quarterly U.S. unemployment, U.S. GNP,
consumption, and government and private investment from 1948-III to
1988-II. The seasonal component has been removed from the data. Con-
centrating on unemployment (Ut), GNP (Gt), and consumption (Ct), fit
a vector ARMA model to the data after first logging each series, and
then removing the linear trend. That is, fit a vector ARMA model to
xxxt = (x1t, x2t, x3t)′, where, for example, x1t = log(Ut) − β̂0 − β̂1t, where
β̂0 and β̂1 are the least squares estimates for the regression of log(Ut) on
time, t. Run a complete set of diagnostics on the residuals.
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State-Space Models

6.1 Introduction

A very general model that seems to subsume a whole class of special cases of
interest in much the same way that linear regression does is the state-space
model or the dynamic linear model, which was introduced in Kalman (1960)
and Kalman and Bucy (1961). Although the model was originally introduced as
a method primarily for use in aerospace-related research, it has been applied
to modeling data from economics (Harrison and Stevens, 1976; Harvey and
Pierse, 1984; Harvey and Todd, 1983; Kitagawa and Gersch 1984, Shumway
and Stoffer, 1982), medicine (Jones, 1984) and the soil sciences (Shumway,
1985). An excellent modern treatment of time series analysis based on the
state space model is the text by Durbin and Koopman (2001).

Although there are some packages available for R that focus on various
aspects of state-space modeling and Kalman filtering, we prefer to write our
own code. As a result, the code we have written is long and will most likely be
subject to frequent updates. Hence, we have decided to distribute the R code
for this chapter on the website for the text.

The state-space model or dynamic linear model (DLM), in its basic form,
employs an order one, vector autoregression as the state equation,

xxxt = Φxxxt−1 + wwwt, (6.1)

where the state equation determines the rule for the generation of the p × 1
state vector xxxt from the past p× 1 state xxxt−1, for time points t = 1, . . . , n. We
assume the wwwt are p × 1 independent and identically distributed, zero-mean
normal vectors with covariance matrix Q. In the DLM, we assume the process
starts with a normal vector xxx0 that has mean µµµ0 and p × p covariance matrix
Σ0.

The DLM, however, adds an additional component to the model in assum-
ing we do not observe the state vector xxxt directly, but only a linear transformed

324
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version of it with noise added, say

yyyt = Atxxxt + vvvt (6.2)

where At is a q×p measurement or observation matrix; equation (6.2) is called
the observation equation. The model arose originally in the space tracking set-
ting, where the state equation defines the motion equations for the position or
state of a spacecraft with location xxxt and yyyt reflects information that can be
observed from a tracking device such as velocity and azimuth. The observed
data are in the q×1 vectors yyyt, which can be larger than or smaller than p, the
dimension of the underlying series of interest. The additive observation noise
vvvt is assumed to be white and Gaussian with q×q covariance matrix R. In ad-
dition, we initially assume, for simplicity, {wwwt} and {vvvt} are uncorrelated; this
assumption is not necessary, but it helps in the explanation of first concepts.
The case of correlated errors is discussed in §6.6. Of course, we can further
modify the basic model, (6.1) and (6.2), to include exogenous variables, and
we will also discuss this in §6.6.

As in the ARMAX model of §5.7, exogenous variables, or fixed inputs, may
enter into the states or into the observations. In this case, we suppose we have
an r × 1 vector of inputs uuut, and write the model as

xxxt = Φxxxt−1 + Υuuut + wwwt (6.3)

yyyt = Atxxxt + Γuuut + vvvt (6.4)

where Υ is p × r and Γ is q × r.

Example 6.1 A Biomedical Example

Suppose we consider the problem of monitoring the level of several bio-
medical parameters monitored after a cancer patient undergoes a bone
marrow transplant. The data in Figure 6.1, used by Jones (1984), are
measurements made for 91 days on the three variables, log(white blood
count), log(platelet), and hematocrit (HCT), denoted yt1, yt2, and yt3,
respectively. Approximately 40% of the values are missing, with missing
values occurring primarily after the 35th day. The main objectives are
to model the three variables using the state-space approach, and to es-
timate the missing values. According to Jones, “Platelet count at about
100 days post transplant has previously been shown to be a good indi-
cator of subsequent long term survival.” For this particular situation, we
model the three variables in terms of the state equation (6.1); that is,⎛⎝xt1

xt2
xt3

⎞⎠ =

⎛⎝φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

⎞⎠⎛⎝xt−1,1
xt−1,2
xt−1,3

⎞⎠+

⎛⎝wt1
wt2
wt3

⎞⎠ . (6.5)

The 3×3 observation matrix, At, is either the identity matrix, or the iden-
tity matrix with all zeros in a row when that variable is missing. The co-
variance matrices R and Q are 3×3 matrices with R = diag{r11, r22, r33},
a diagonal matrix, required for a simple approach when data are missing.
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Figure 6.1 Longitudinal series of blood parameter levels monitored,
log (white blood count) [top], log (platelet) [middle], and hematocrit (HCT)
[bottom], after a bone marrow transplant (n = 91 days).

The model given in (6.1) involving only a single lag is not unduly restrictive.
A multivariate model with m lags, such as the VAR(m) discussed in §5.7, could
be developed by replacing the p×1 state vector, xxxt, by the pm×1 state vector
XXXt = (xxx′

t, xxx
′
t−1, . . . , xxx

′
t−m+1)

′ and the transition matrix by

Φ =

⎛⎜⎜⎜⎜⎝
Φ1 Φ2 . . . Φm−1 Φm

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎞⎟⎟⎟⎟⎠ . (6.6)

Letting WWW t = (www′
t,000

′, . . . ,000′)′ be the new pm × 1 state error vector, the new
state equation will be

XXXt = ΦXXXt−1 + WWW t, (6.7)

where the new matrix “Q” now has the form of a pm × pm matrix with Q in
the upper right-hand corner and zeros elsewhere. The observation equation
can then be written as

yyyt =
[
At

∣∣ 0 ∣∣ · · · ∣∣ 0]XXXt + vvvt. (6.8)

This simple recoding shows one way of handling higher order lags within the
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Figure 6.2 Two average global temperature deviations for n = 108 years in
degrees centigrade (1880-1987). The solid line is the land-based series whereas
the dotted line shows the marine-based series.

context of the single lag structure. Further discussion of this notion is given
in §6.6.

The real advantages of the state-space formulation, however, do not really
come through in the simple example given above. The special forms that can
be developed for various versions of the matrix At and for the transition scheme
defined by the matrix Φ allow fitting more parsimonious structures with fewer
parameters needed to describe a multivariate time series. We will give some
examples of structural models in §6.5, but the simple example shown below is
instructive.

Example 6.2 Global Warming

Figure 6.2 shows two different estimators for the global temperature series
from 1880 to 1987, plotted on the same scale. The solid line is considered
in the first chapter (see Jones, 1994), which gives average surface air
temperature computed from land-based observation stations. The second
series (see Parker et al., 1996) gives averages from a number of marine-
based stations. Conceptually, both series should be measuring the same
underlying climatic signal, and we may consider the problem of extracting
this underlying signal. We suppose both series are observing the same
signal with different noises; that is,

yt1 = xt + vt1

and
yt2 = xt + vt2,
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where xt is the unknown common signal. Suppose it can be modeled as
a random walk of the form

xt = xt−1 + wt, (6.9)

which we can argue for by noting the stability of the first difference as
has been noted in Chapter 2. Furthermore, the first difference of the
observed series will be a first-order moving average under this model,
arguing from the fact that the first difference of the land-based series has
a peak at lag 1. In this example, p = 1, q = 2, and Φ = 1 is held at
a constant value. The observation equation (6.2) can be written in the
form (

yt1
yt2

)
=
(

1
1

)
xt +

(
vt1
vt2

)
, (6.10)

and we have the covariance matrices given by Q = q11 and

R =
(

r11 r12
r21 r22

)
.

The introduction of the state-space approach as a tool for modeling data in
the social and biological sciences requires model identification and parameter
estimation because there is rarely a well-defined differential equation describing
the state transition. The questions of general interest for the dynamic linear
model (6.3) and (6.4) relate to estimating the unknown parameters contained
in Φ, Υ, Q,Γ, At, and R, that define the particular model, and estimating or
forecasting values of the underlying unobserved process xxxt. The advantages
of the state-space formulation are in the ease with which we can treat various
missing data configurations and in the incredible array of models that can be
generated from (6.1) and (6.2). The analogy between the observation matrix
At and the design matrix in the usual regression and analysis of variance setting
is a useful one. We can generate fixed and random effect structures that are
either constant or vary over time simply by making appropriate choices for the
matrix At and the transition structure Φ. We will give only a few examples in
this chapter; for further examples, see Durbin and Koopman (2001), Harvey
(1993) or Shumway (1988) to mention a few.

Before continuing our investigation of the more complex model, it is in-
structive to consider a simple univariate state-space model.

Example 6.3 An AR(1) Process with Observational Noise

Consider a univariate state-space model where the observations satisfy

yt = xt + vt, (6.11)

and the signal (state) is an AR(1) process,

xt = φxt−1 + wt, (6.12)
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for t = 1, 2, . . . , n, where vt ∼ iid N(0, σ2
v), wt ∼ iid N(0, σ2

w), and x0 ∼
N
(
0, σ2

w/(1 − φ2)
)
; {vt}, {wt}, x0 are independent.

In Chapter 3, we investigated the properties of the state, xt, because it is
a stationary AR(1) process (recall Problem 3.2e). For example, we know
the autocovariance function of xt is

γx(h) =
σ2

w

1 − φ2 φh, h = 0, 1, 2, . . . . (6.13)

But, here, we must investigate how the addition of observation noise
affects the dynamics. Although it is not a necessary assumption, we
have assumed in this example that xt is stationary. In this case, the
observations are also stationary because yt is the sum of two independent
stationary components xt and vt. We have

γy(0) = var(yt) = var(xt + vt) =
σ2

w

1 − φ2 + σ2
v , (6.14)

and, when h ≥ 1,

γy(h) = cov(yt, yt−h) = cov(xt + vt, xt−h + vt−h) = γx(h). (6.15)

Consequently, for h ≥ 1, the ACF of the observations is

ρy(h) =
γy(h)
γy(0)

=
(

1 +
σ2

v

σ2
w

(1 − φ2)
)−1

φh. (6.16)

It should be clear from the correlation structure given by (6.16) the
observations, yt, are not AR(1) unless σ2

v = 0. In addition, the autocor-
relation structure of yt is identical to the autocorrelation structure of an
ARMA(1,1) process, as presented in Example 3.11. Thus, the observa-
tions can also be written in an ARMA(1,1) form,

yt = φyt−1 + θut−1 + ut,

where ut is Gaussian white noise with variance σ2
u, and with θ and σ2

u

suitably chosen (see Example 6.11).

Although an equivalence exists between stationary ARMA models and sta-
tionary state-space models (see §6.6), it is sometimes easier to work with one
form than another. As previously mentioned, in the case of missing data, com-
plex multivariate systems, mixed effects, and certain types of nonstationarity,
it is easier to work in the framework of state-space models; in this chapter, we
explore some of these situations.



330 State-Space Models

6.2 Filtering, Smoothing, and Forecasting

From a practical view, the primary aims of any analysis involving the state-
space model as defined by (6.1)-(6.2), or by (6.3)-(6.4), would be to pro-
duce estimators for the underlying unobserved signal xxxt, given the data Ys =
{yyy1, . . . , yyys}, to time s. When s < t, the problem is called forecasting or predic-
tion. When s = t, the problem is called filtering, and when s > t, the problem
is called smoothing. In addition to these estimates, we would also want to
measure their precision. The solution to these problems is accomplished via
the Kalman filter and smoother and is the focus of this section.

Throughout this chapter, we will use the following definitions:

xxxs
t = E(xxxt

∣∣ Ys) (6.17)

and
P s

t1,t2 = E
{
(xxxt1 − xxxs

t1)(xxxt2 − xxxs
t2)

′} . (6.18)

When t1 = t2 (= t say) in (6.18), we will write P s
t for convenience.

In obtaining the filtering and smoothing equations, we will rely heavily on
the Gaussian assumption. Some knowledge of the material covered in Appen-
dix B, §B.1, will be helpful in understanding the details of this section (although
these details may be skipped on a casual reading of the material). Even in the
non-Gaussian case, the estimators we obtain are the minimum mean-squared
error estimators within the class of linear estimators. That is, we can think of
E in (6.17) as the projection operator in the sense of §B.1 rather than expec-
tation and P s

t as the corresponding mean-squared error. When we assume, as
in this section, the processes are Gaussian, (6.18) is also the conditional error
covariance; that is,

P s
t1,t2 = E

{
(xxxt1 − xxxs

t1)(xxxt2 − xxxs
t2)

′ ∣∣ Ys

}
.

This fact can be seen, for example, by noting the covariance matrix between
(xxxt − xxxs

t ) and Ys, for any t and s, is zero; we could say they are orthogonal in
the sense of §B.1. This result implies that (xxxt − xxxs

t ) and Ys are independent
(because of the normality), and hence, the conditional distribution of (xxxt −xxxs

t )
given Ys is the unconditional distribution of (xxxt − xxxs

t ). Derivations of the
filtering and smoothing equations from a Bayesian perspective are given in
Meinhold and Singpurwalla (1983); more traditional approaches based on the
concept of projection and on multivariate normal distribution theory are given
in Jazwinski (1970) and Anderson and Moore (1979).

First, we present the Kalman filter, which gives the filtering and forecasting
equations. The name filter comes from the fact that xxxt

t is a linear filter of the
observations yyy1, . . . , yyyt; that is, xxxt

t =
∑t

s=1 Bsyyys for suitably chosen p × q
matrices Bs. The advantage of the Kalman filter is that it specifies how to
update the filter from xxxt−1

t−1 to xxxt
t once a new observation yyyt is obtained, without

having to reprocess the entire data set yyy1, . . . , yyyt.
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Property P6.1: The Kalman Filter
For the state-space model specified in (6.3) and (6.4), with initial conditions
xxx0

0 = µµµ0 and P 0
0 = Σ0, for t = 1, . . . , n,

xxxt−1
t = Φxxxt−1

t−1 + Υuuut, (6.19)

P t−1
t = ΦP t−1

t−1 Φ′ + Q, (6.20)

with
xxxt

t = xxxt−1
t + Kt(yyyt − Atxxx

t−1
t − Γuuut), (6.21)

P t
t = [I − KtAt]P t−1

t , (6.22)

where
Kt = P t−1

t A′
t[AtP

t−1
t A′

t + R]−1 (6.23)

is called the Kalman gain. Prediction for t > n is accomplished via (6.19) and
(6.20) with initial conditions xxxn

n and Pn
n .

Proof. The derivations of (6.19) and (6.20) follow from straight forward cal-
culations, because from (6.3) we have

xxxt−1
t = E(xxxt

∣∣ Yt−1) = E(Φxxxt−1 + Υuuut + wwwt

∣∣ Yt−1) = Φxt−1
t−1 + Υuuut,

and thus

P t−1
t = E

{
(xxxt − xxxt−1

t )(xxxt − xxxt−1
t )′}

= E
{[

Φ(xxxt−1 − xxxt−1
t−1) + wwwt

] [
Φ(xxxt−1 − xxxt−1

t−1) + wwwt

]′}
= ΦP t−1

t−1 Φ′ + Q.

To derive (6.21), we first define the innovations as

εεεt = yyyt − E(yyyt

∣∣ Yt−1) = yyyt − Atxxx
t−1
t − Γuuut, (6.24)

for t = 1, . . . , n. Note, E(εεεt) = 000 and

Σt
def= var(εεεt) = var[At(xxxt − xxxt−1

t ) + vvvt] = AtP
t−1
t A′

t + R (6.25)

In addition, E(εεεtyyy
′
s) = 0 for s < t, which in view of the fact the innovation

sequence is a Gaussian process, implies that the innovations are independent
of the past observations. Furthermore, the conditional covariance between xxxt

and εεεt given Yt−1 is

cov(xxxt, εεεt

∣∣ Yt−1) = cov(xxxt, yyyt − Atxxx
t−1
t − Γuuut

∣∣ Yt−1)

= cov(xxxt − xxxt−1
t , yyyt − Atxxx

t−1
t − Γuuut

∣∣ Yt−1)

= cov[xxxt − xxxt−1
t , At(xxxt − xxxt−1

t ) + vvvt]
= P t−1

t A′
t. (6.26)



332 State-Space Models

Using these results we have that joint conditional distribution of xxxt and εεεt

given Yt−1 is normal(
xxxt

εεεt

) ∣∣∣ Yt−1 ∼ N
([

xxxt−1
t

000

]
,

[
P t−1

t P t−1
t A′

t

AtP
t−1
t Σt

])
. (6.27)

Thus, using (B.9) of Appendix B, we can write

xxxt
t = E(xxxt

∣∣ yyy1, . . . , yyyt−1, yyyt) = E(xxxt

∣∣ Yt−1, εεεt) = xxxt−1
t + Ktεεεt, (6.28)

where
Kt = P t−1

t A′
tΣ

−1
t = P t−1

t A′
t(AtP

t−1
t A′

t + R)−1.

The evaluation of P t
t is easily computed from (6.27) [see (B.10)] as

P t
t = cov

(
xxxt

∣∣ Yt−1, εεεt

)
= P t−1

t − P t−1
t A′

tΣ
−1
t AtP

t−1
t ,

which simplifies to (6.22).

Next, we explore the model, prediction, and filtering from a density point
of view. For the sake of brevity, consider the Gaussian DLM without inputs,
as described in (6.1) and (6.2); that is,

xxxt = Φxxxt−1 + wwwt and yyyt = Atxxxt + vvvt.

Recall wwwt and vvvt are independent, white Gaussian sequences, and the initial
state is normal, say, xxx0 ∼ N(µµµ0, Σ0); we will denote the initial p-variate state
normal density by f0(xxx0). Now, letting pΘ(·) denote a generic density function
with parameters represented by Θ, we could describe the state relationship as

pΘ(xxxt

∣∣ xxxt−1, xxxt−2, . . . , xxx0) = pΘ(xxxt

∣∣ xxxt−1) = fw(xxxt − Φxxxt−1), (6.29)

where fw(·) denotes the p-variate normal density with mean zero and variance-
covariance matrix Q. In (6.29), we are stating the process is Markovian, linear,
and Gaussian. The relationship of the observations to the state process is
written as

pΘ(yyyt

∣∣ xxxt, Yt−1) = pΘ(yyyt

∣∣ xxxt) = fv(yyyt − Atxxxt), (6.30)

where fv(·) denotes the q-variate normal density with mean zero and variance-
covariance matrix R. In (6.30), we are stating the observations are condition-
ally independent given the state, and the observations are linear and Gaussian.
Note, (6.29), (6.30), and the initial density, f0(·), completely specify the model
in terms of densities, namely,

pΘ(xxx0, xxx1, . . . , xxxn, yyy1, . . . , yyyn) = f0(xxx0)
n∏

t=1

fw(xxxt−Φxxxt−1)fv(yyyt−Atxxxt), (6.31)

where Θ = {µµµ0, Σ0, Φ, Q, R}.
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Given the data, Yt−1 = {yyy1, . . . , yyyt−1}, and the current filter density,
pΘ(xxxt−1 |Yt−1), Property P6.1 tells us, via conditional means and variances,
how to recursively generate the Gaussian forecast density, pΘ(xxxt |Yt−1), and
how to update the density given the current observation, yyyt, to obtain the
Gaussian filter density, pΘ(xxxt |Yt). In terms of densities, the Kalman filter
can be seen as a simple Bayesian updating scheme, where, to determine the
forecast and filter densities, we have

pΘ(xxxt

∣∣ Yt−1) =
∫

Rp

pΘ(xxxt, xxxt−1
∣∣ Yt−1) dxxxt−1

=
∫

Rp

pΘ(xxxt

∣∣ xxxt−1)pΘ(xxxt−1
∣∣ Yt−1) dxxxt−1

=
∫

Rp

fw(xxxt − Φxxxt−1)pΘ(xxxt−1
∣∣ Yt−1)dxxxt−1, (6.32)

which simplifies to the p-variate N(xxxt−1
t , P t−1

t ) density, and

pΘ(xxxt

∣∣ Yt) = pΘ(xxxt

∣∣ yyyt, Yt−1)

∝ pΘ(yyyt

∣∣ xxxt) pΘ(xxxt

∣∣ Yt−1),

= fv(yyyt − Atxxxt)pΘ(xxxt

∣∣ Yt−1), (6.33)

from which we can deduce pΘ(xxxt

∣∣ Yt) is the p-variate N(xxxt
t, P

t
t ) density. These

statements are true for t = 1, . . . , n, with initial condition pΘ(xxx0
∣∣ Y0) =

f0(xxx0). The prediction and filter recursions of Property P6.1 could also have
been calculated directly from the density relationships (6.32) and (6.33) using
multivariate normal distribution theory. The following example illustrates the
Bayesian updating scheme.

Example 6.4 Bayesian Analysis of a Local Level Model

In this example, we suppose that we observe a univariate series yt that
consists of a trend component, µt, and a noise component, vt, where

yt = µt + vt (6.34)

and vt ∼ iid N(0, σ2
v). In particular, we assume the trend is a random

walk given by
µt = µt−1 + wt (6.35)

where wt ∼ iid N(0, σ2
w) is independent of {vt}. Recall Example 6.2,

where we suggested this type of trend model for the global temperature
series.

The model is, of course, a state-space model with (6.34) being the ob-
servation equation, and (6.35) being the state equation. For forecasting,
we seek the posterior density p(µt

∣∣ Yt−1). We will use the following
notation introduced in Blight (1974) for the multivariate case. Let

{x; µ, σ2} = exp
{

− 1
2σ2 (x − µ)2

}
, (6.36)
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then simple manipulation shows

{x; µ, σ2} = {µ; x, σ2} (6.37)

and

{x; µ1, σ
2
1}{x; µ2, σ

2
2} =

{
x;

µ1/σ2
1 + µ2/σ2

2

1/σ2
1 + 1/σ2

2
, (1/σ2

1 + 1/σ2
2)−1

}
× {

µ1; µ2, σ
2
1 + σ2

2
}

. (6.38)

Thus, using (6.32), (6.37) and (6.38) we have

p(µt

∣∣ Yt−1) ∝
∫ {

µt; µt−1, σ
2
w

} {
µt−1; µt−1

t−1, P
t−1
t−1

}
dµt−1

=
∫ {

µt−1; µt, σ
2
w

} {
µt−1; µt−1

t−1, P
t−1
t−1

}
dµt−1

=
{
µt; µt−1

t−1, P
t−1
t−1 + σ2

w

}
. (6.39)

From (6.39) we conclude that

µt

∣∣ Yt−1 ∼ N(µt−1
t , P t−1

t ) (6.40)

where
µt−1

t = µt−1
t−1 and P t−1

t = P t−1
t−1 + σ2

w (6.41)

which agrees with the first part of Property P6.1.

To derive the filter density using (6.33) and (6.37) we have

p(µt

∣∣ Yt) ∝ {
yt; µt, σ

2
v

} {
µt; µt−1

t , P t−1
t

}
=

{
µt; yt, σ

2
v

} {
µt; µt−1

t , P t−1
t

}
. (6.42)

An application of (6.38) gives

µt

∣∣ Yt ∼ N(µt
t, P

t
t ) (6.43)

with

µt
t =

σ2
vµt−1

t

P t−1
t + σ2

v

+
P t−1

t yt

P t−1
t + σ2

v

= µt−1
t + Kt(yt − µt−1

t ), (6.44)

where we have defined

Kt =
P t−1

t

P t−1
t + σ2

v

, (6.45)

and

P t
t =

(
1
σ2

v

+
1

P t−1
t

)−1

=
σ2

vP t−1
t

P t−1
t + σ2

v

= (1 − Kt)P t−1
t . (6.46)

The filter for this specific case, of course, agrees with Property P6.1.
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Next, we consider the problem of obtaining estimators for xxxt based on the
entire data sample yyy1, . . . , yyyn, where t ≤ n, namely, xxxn

t . These estimators
are called smoothers because a time plot of the sequence {xxxn

t ; t = 1, . . . , n}
is typically smoother than the forecasts {xxxt−1

t ; t = 1, . . . , n} or the filters
{xxxt

t; t = 1, . . . , n}. As is obvious from the above remarks, smoothing implies
that each estimated value is a function of the present, future, and past, whereas
the filtered estimator depends on the present and past. The forecast depends
only on the past, as usual.

Property P6.2: The Kalman Smoother
For the state-space model specified in (6.3) and (6.4), with initial conditions
xxxn

n and Pn
n obtained via Property P6.1, for t = n, n − 1, . . . , 1,

xxxn
t−1 = xxxt−1

t−1 + Jt−1
(
xxxn

t − xxxt−1
t

)
, (6.47)

Pn
t−1 = P t−1

t−1 + Jt−1
(
Pn

t − P t−1
t

)
J ′

t−1, (6.48)

where
Jt−1 = P t−1

t−1 Φ′ [P t−1
t

]−1
. (6.49)

Proof. The smoother can be derived in many ways. Here we provide a proof
that was given in Ansley and Kohn (1982). First, for 1 ≤ t ≤ n, define

Yt−1 = {yyy1, . . . , yyyt−1} and ηt = {vvvt, . . . , vvvn,wwwt+1, . . . ,wwwn},

with Y0 being empty, and let

qqqt−1 = E{xxxt−1
∣∣ Yt−1, xxxt − xxxt−1

t , ηt}.

Then, because Yt−1, {xxxt − xxxt−1
t }, and ηt are mutually independent, and xxxt−1

and ηt are independent, using (B.9) we have

qqqt−1 = xxxt−1
t−1 + Jt−1(xxxt − xxxt−1

t ), (6.50)

where
Jt−1 = cov(xxxt−1, xxxt − xxxt−1

t )[P t−1
t ]−1 = P t−1

t−1 Φ′[P t−1
t ]−1.

Finally, because Yt−1, xxxt − xxxt−1
t , and ηt generate Yn = {yyy1, . . . , yyyn},

xn
t−1 = E{xt−1

∣∣ Yn} = E{qqqt−1

∣∣ Yn} = xxxt−1
t−1 + Jt−1(xxxn

t − xxxt−1
t ),

which establishes (6.47).
The recursion for the error covariance, Pn

t−1, is obtained by straight-forward
calculation. Using (6.47) we obtain

xxxt−1 − xxxn
t−1 = xxxt−1 − xxxt−1

t−1 − Jt−1
(
xxxn

t − Φxxxt−1
t−1

)
,
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or (
xxxt−1 − xxxn

t−1
)

+ Jt−1xxx
n
t =

(
xxxt−1 − xxxt−1

t−1

)
+ Jt−1Φxxxt−1

t−1. (6.51)

Multiplying each side of (6.51) by the transpose of itself and talking expecta-
tion, we have

Pn
t−1 + Jt−1E(xxxn

t xxxn′
t )J ′

t−1 = P t−1
t−1 + Jt−1ΦE(xxxt−1

t−1xxx
t−1′
t−1 )Φ′J ′

t−1, (6.52)

using the fact the cross-product terms are zero. But,

E(xxxn
t xxxn′

t ) = E(xxxtxxx
′
t) − Pn

t = ΦE(xxxt−1xxx
′
t−1)Φ

′ + Q − Pn
t ,

and
E(xxxt−1

t−1xxx
t−1′
t−1 ) = E(xxxt−1xxx

′
t−1) − P t−1

t−1 ,

so (6.52) simplifies to (6.48).

Example 6.5 Prediction, Filtering and Smoothing for the Local Level
Model

For this example, we simulated n = 50 observations from the local level
trend model discussed in Example 6.4. We generated a random walk

µt = µt−1 + wt (6.53)

with wt ∼ iid N(0, 1) and µ0 ∼ N(0, 1). We then supposed that we
observe a univariate series yt consisting of the trend component, µt, and
a noise component, vt ∼ iid N(0, 1), where

yt = µt + vt. (6.54)

The sequences {wt}, {vt} and µ0 were generated independently. We then
ran the Kalman filter and smoother, Properties P6.1 and P6.2, using the
actual parameters. The top panel of Figure 6.3 shows the actual values
of µt as points, and the predictions µt−1

t superimposed on the graph as

a line. In addition, we display µt−1
t ± 2

√
P t−1

t as dashed lines on the

plot. The middle panel displays the filters, µt
t as a line with µt

t ± 2
√

P t
t

as dashed lines. The bottom panel of Figure 6.3 shows a similar plot for
the smoothers µn

t .

Table 6.1 shows the first 10 observations as well as the corresponding
state values, the predictions, filters and smoothers. Note that in Ta-
ble 6.1, one-step-ahead prediction is more uncertain than the correspond-
ing filtered value, which, in turn, is more uncertain than the correspond-
ing smoother value (that is P t−1

t > P t
t > Pn

t ). Also, in each case, the
error variances stabilize quickly. The R code for this example may be
found on the website for the text.
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Figure 6.3 Displays for Example 6.5. The simulated values of µt, for t =
1, . . .,50, given by (6.53) are shown as points. Top: The predictions µt−1

t

obtained via the Kalman filter are shown as a line. Error bounds, µt−1
t ±

2
√

P t−1
t , are shown as dashed lines. Middle: The filter µt

t obtained via the

Kalman filter are shown as a line. Error bounds, µt
t ± 2

√
P t

t , are shown as
dashed lines. Bottom: The smoothers µn

t obtained via the Kalman smoother
are shown as a line. Error bounds, µn

t ± 2
√

Pn
t , are shown as dashed lines.

In the next section, we will need a set of recursions for obtaining Pn
t,t−1, as

defined in (6.18). We give the necessary recursion in the following property.

Property P6.3: The Lag-One Covariance Smoother
For the state-space model specified in (6.3) and (6.4), with Kt, Jt (t = 1, . . . , n),
and Pn

n obtained from Properties P6.1 and P6.2, and with initial condition

Pn
n,n−1 = (I − KnAn)ΦPn−1

n−1 , (6.55)
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Table 6.1 Forecasts, Filters, and Smoothers for Example 6.5.

t yt µt µt−1
t P t−1

t µt
t P t

t µn
t Pn

t

0 — −.63 — — .00 1.00 −.32 .62
1 −1.05 −.44 .00 2.00 −.70 .67 −.65 .47
2 −.94 −1.28 −.70 1.67 −.85 .63 −.57 .45
3 −.81 .32 −.85 1.63 −.83 .62 −.11 .45
4 2.08 .65 −.83 1.62 .97 .62 1.04 .45
5 1.81 −.17 .97 1.62 1.49 .62 1.16 .45
6 −.05 .31 1.49 1.62 .53 .62 .63 .45
7 .01 1.05 .53 1.62 .21 .62 .78 .45
8 2.20 1.63 .21 1.62 1.44 .62 1.70 .45
9 1.19 1.32 1.44 1.62 1.28 .62 2.12 .45

10 5.24 2.83 1.28 1.62 3.73 .62 3.48 .45

for t = n, n − 1, . . . , 2,

Pn
t−1,t−2 = P t−1

t−1 J ′
t−2 + Jt−1

(
Pn

t,t−1 − ΦP t−1
t−1

)
J ′

t−2. (6.56)

Proof. Because we are computing covariances, we may assume uuut ≡ 000 without
loss of generality. To derive the initial term (6.55), we first define

x̃̃x̃xs
t = xxxt − xxxs

t .

Then, using (6.21) and (6.47), we write

P t
t,t−1 = E

(
x̃̃x̃xt

t x̃̃x̃xt′
t−1

)
= E

{
[x̃̃x̃xt−1

t − Kt(yyyt − Atxxx
t−1
t )][x̃̃x̃xt−1

t−1 − Jt−1Kt(yyyt − Atxxx
t−1
t )]′

}
= E

{
[x̃̃x̃xt−1

t − Kt(Atx̃̃x̃x
t−1
t + vvvt)][x̃̃x̃x

t−1
t−1 − Jt−1Kt(Atx̃̃x̃x

t−1
t + vvvt)]′

}
.

Expanding terms and taking expectation, we arrive at

P t
t,t−1 = P t−1

t,t−1 − P t−1
t A′

tK
′
tJ

′
t−1 − KtAtP

t−1
t,t−1 + Kt(AtP

t−1
t A′

t + R)K ′
tJ

′
t−1,

noting E(x̃̃x̃xt−1
t vvv′

t) = 000. The final simplification occurs by realizing that
Kt(AtP

t−1
t A′

t + R) = P t−1
t A′

t, and P t−1
t,t−1 = ΦP t−1

t−1 . These relationships hold
for any t = 1, . . . , n, and (6.55) is the case t = n.

We give the basic steps in the derivation of (6.56). The first step is to use
(6.47) to write

x̃̃x̃xn
t−1 + Jt−1xxx

n
t = x̃̃x̃xt−1

t−1 + Jt−1Φxxxt−1
t−1 (6.57)
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and
x̃̃x̃xn

t−2 + Jt−2xxx
n
t−1 = x̃̃x̃xt−2

t−2 + Jt−2Φxxxt−2
t−2. (6.58)

Next, multiply the left-hand side of (6.57) by the transpose of the left-hand
side of (6.58), and equate that to the corresponding result of the right-hand
sides of (6.57) and (6.58). Then, taking expectation of both sides, the left-hand
side result reduces to

Pn
t−1,t−2 + Jt−1E(xxxn

t xxxn′
t−1)J

′
t−2 (6.59)

and the right-hand side result reduces to

P t−2
t−1,t−2 − Kt−1At−1P

t−2
t−1,t−2 + Jt−1ΦKt−1At−1P

t−2
t−1,t−2

+ Jt−1ΦE(xxxt−1
t−1xxx

t−2′
t−2 )Φ′J ′

t−2. (6.60)

In (6.59), write

E(xxxn
t xxxn′

t−1) = E(xxxtxxx
′
t−1) − Pn

t,t−1 = ΦE(xxxt−1xxx
′
t−2)Φ

′ + ΦQ − Pn
t,t−1,

and in (6.60), write

E(xxxt−1
t−1xxx

t−2′
t−2 ) = E(xxxt−2

t−1xxx
t−2′
t−2 ) = E(xxxt−1xxx

′
t−2) − P t−2

t−1,t−2.

Equating (6.59) to (6.60) using these relationships and simplifying the result
leads to (6.56).

6.3 Maximum Likelihood Estimation

The estimation of the parameters that specify the state-space model, (6.3)
and (6.4), is quite involved. We use Θ = {µµµ0, Σ0, Φ, Q, R, Υ,Γ} to represent
the vector of parameters containing the elements of the initial mean and co-
variance µµµ0 and Σ0, the transition matrix Φ, and the state and observation
covariance matrices Q and R and the input coefficient matrices, Υ and Γ. We
use maximum likelihood under the assumption that the initial state is normal,
xxx0 ∼ N(µµµ0, Σ0), and the errors www1, . . . ,wwwn and vvv1, . . . , vvvn are jointly normal
and uncorrelated vector variables. We continue to assume, for simplicity, {wwwt}
and {vvvt} are uncorrelated.

The likelihood is computed using the innovations εεε1, εεε2, . . . , εεεn, defined by
(6.24),

εεεt = yyyt − Atxxx
t−1
t − Γuuut.

The innovations form of the likelihood function, which was first given by
Schweppe (1965), is obtained using an argument similar to the one leading
to (3.105) and proceeds by noting the innovations are independent Gaussian
random vectors with zero means and, as shown in (6.25), covariance matrices

Σt = AtP
t−1
t A′

t + R. (6.61)
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Hence, ignoring a constant, we may write the likelihood, LY (Θ), as

− lnLY (Θ) =
1
2

n∑
t=1

log |Σt(Θ)| +
1
2

n∑
t=1

εεεt(Θ)′Σt(Θ)−1εεεt(Θ), (6.62)

where we have emphasized the dependence of the innovations on the parame-
ters Θ. Of course, (6.62) is a highly nonlinear and complicated function of the
unknown parameters. The usual procedure is to fix xxx0 and then develop a set
of recursions for the log likelihood function and its first two derivatives (for
example, Gupta and Mehra, 1974). Then, a Newton–Raphson algorithm (see
Example 3.28) can be used successively to update the parameter values until
the negative of the log likelihood is minimized. This approach is advocated,
for example, by Jones (1980), who developed ARMA estimation by putting the
ARMA model in state-space form. For the univariate case, (6.62) is identical,
in form, to the likelihood for the ARMA model given in (3.105).

The steps involved in performing a Newton–Raphson estimation procedure
are as follows.

1. Select initial values for the parameters, say, Θ(0).

2. Run the Kalman filter, Property P6.1, using the initial parameter values,
Θ(0), to obtain a set of innovations and error covariances, say, {εεε(0)t ; t =
1, . . . , n} and {Σ(0)

t ; t = 1, . . . , n}.

3. Run one iteration of a Newton–Raphson procedure with − lnLY (Θ) as
the criterion function (refer to Example 3.28 for details), to obtain a new
set of estimates, say Θ(1).

4. At iteration j, (j = 1, 2, . . .), repeat step 2 using Θ(j) in place of Θ(j−1) to
obtain a new set of innovation values {εεε(j)t ; t = 1, . . . , n} and {Σ(j)

t ; t =
1, . . . , n}. Then repeat step 3 to obtain a new estimate Θ(j+1). Stop
when the estimates or the likelihood stabilize; for example, stop when
the values of Θ(j+1) differ from Θ(j), or when LY (Θ(j+1)) differs from
LY (Θ(j)), by some predetermined, but small amount.

Example 6.6 Newton–Raphson for Example 6.3

In this example, we generated n = 100 observations, y1, . . . , y100, using
the model in Example 6.3, to perform a Newton–Raphson estimation of
the parameters φ, σ2

w, and σ2
v . In the notation of §6.2, we would have

Φ = φ, Q = σ2
w and R = σ2

v . The actual values of the parameters are
φ = .8, σ2

w = σ2
v = 1.

In the simple case of an AR(1) with observational noise, initial estimation
can be accomplished using the results of Example 6.3. For example, using
(6.16), we set

φ(0) = ρ̂y(2)/ρ̂y(1).
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Similarly, from (6.15), γx(1) = γy(1) = φσ2
w/(1 − φ2), so that, initially,

we set
σ2(0)

w = (1 − φ(0)2)γ̂y(1)/φ(0).

Finally, using (6.14) we obtain an initial estimate of σ2
v , namely,

σ2(0)

v = γ̂y(0) − [σ2(0)

w /(1 − φ(0)2)].

Newton–Raphson estimation was accomplished using the R program
optim. The code used for this example can be obtained on the web-
site for the text. In that program, we must provide an evaluation of the
function to be minimized, namely, − lnLY (Θ). In this case, the “function
call” combines steps 2 and 3, using the current values of the parameters,
Θ(j−1), to obtain first the filtered values, then the innovation values,
and then calculating the criterion function, − lnLY (Θ(j−1)), to be mini-
mized. We can also provide analytic forms of the gradient or score vector,
−∂ lnLY (Θ)/∂Θ, and the Hessian matrix, −∂2 lnLY (Θ)/∂Θ ∂Θ′, in the
optimization routine, or allow the program to calculate these values nu-
merically. In this example, we let the program proceed numerically and
we note the need to be cautious when calculating gradients numerically.
For better stability, we can also provide an iterative solution for obtain-
ing analytic gradients and Hessians of the log likelihood function; for
details, see Problems 6.11 and 6.12; also, see Gupta and Mehra (1974).
The final estimates, along with their standard errors (in parentheses),
were

φ̂ = .81 (.08), σ̂w = .85 (.17), σ̂v = .87 (.14),

and the algorithm converged in seven steps. The standard errors are a
byproduct of the estimation procedure, and we will discuss their evalua-
tion later in this section, after Property P6.4.

Example 6.7 Newton–Raphson for the Global Temperature Series
in Example 6.2

In Example 6.2 we considered two different global temperature series
of n = 108 observations each, and they are plotted in Figure 6.2. In
that example, we argued that both series should be measuring the same
underlying climatic signal, xt, which we model as a random walk,

xt = xt−1 + wt.

Recall that the observation equation was written as(
yt1
yt2

)
=
(

1
1

)
xt +

(
vt1
vt2

)
,
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Figure 6.4 Plot for Example 6.7. The thin solid and dashed lines are the two
average global temperature deviations shown in Figure 6.2. The thick solid
line is the estimated smoother x̂n

t .

and the model covariance matrices are given by Q = q11 and

R =
(

r11 r12
r21 r22

)
.

Hence, there are four parameters to estimate, namely q11, r11, r12, r22,
noting that r21 = r12 We hold the the initial state parameters fixed in
this example at µ0 = −.35 and Σ0 = .01 (these are, approximately, the
mean and variance of the first observation in each series).

The final estimates are q̂11 = .05, r̂11 = .019, r̂12 = .006, r̂22 = .005, with
all values being significant. The observations and the smoothed estimate
of the signal, x̂n

t , are displayed in Figure 6.4.

In addition to Newton–Raphson, Shumway and Stoffer (1982) presented
a conceptually simpler estimation procedure based on the EM (expectation-
maximization) algorithm (Dempster et al., 1977). For the sake of brevity, we
ignore the inputs and consider the model in the form of (6.1) and (6.2); the
general case is left as an exercise (Problem 6.9). The basic idea is that if we
could observe the states, Xn = {xxx0, xxx1, . . . , xxxn}, in addition to the observations
Yn = {yyy1, . . . , yyyn}, then we would consider {Xn, Yn} as the complete data, with
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the joint density

fΘ(Xn, Yn) = fµ0,Σ0(xxx0)
n∏

t=1

fΦ,Q(xxxt|xxxt−1)
n∏

t=1

fR(yyyt|xxxt). (6.63)

Under the Gaussian assumption and ignoring constants, the complete data
likelihood, (6.63), can be written as

−2 ln LX,Y (Θ) = ln |Σ0| + (xxx0 − µµµ0)
′Σ−1

0 (xxx0 − µµµ0)

+ n ln |Q| +
n∑

t=1

(xxxt − Φxxxt−1)′Q−1(xxxt − Φxxxt−1)

+ n ln |R| +
n∑

t=1

(yyyt − Atxxxt)′R−1(yyyt − Atxxxt). (6.64)

Thus, in view of (6.64), if we did have the complete data, we could then use
the results from multivariate normal theory to easily obtain the MLEs of Θ.
We do not have the complete data; however, the EM algorithm gives us an
iterative method for finding the MLEs of Θ based on the incomplete data,
Yn, by successively maximizing the conditional expectation of the complete
data likelihood. To implement the EM algorithm, we write, at iteration j,
(j = 1, 2, . . .),

Q
(
Θ
∣∣ Θ(j−1)

)
= E

{
−2 ln LX,Y (Θ)

∣∣ Yn, Θ(j−1)
}

. (6.65)

Calculation of (6.65) is the expectation step. Of course, given the current value
of the parameters, Θ(j−1), we can use Property P6.2 to obtain the desired
conditional expectations as smoothers. This property yields

Q
(
Θ
∣∣ Θ(j−1)

)
= ln |Σ0| + tr

{
Σ−1

0 [Pn
0 + (xxxn

0 − µµµ0)(xxx
n
0 − µµµ0)

′]
}

+ n ln |Q| + tr
{
Q−1[S11 − S10Φ′ − ΦS′

10 + ΦS00Φ′]
}

+ n ln |R| (6.66)

+ tr

{
R−1

n∑
t=1

[(yyyt − Atxxx
n
t )(yyyt − Atxxx

n
t )′ + AtP

n
t A′

t]

}
,

where

S11 =
n∑

t=1

(xxxn
t xxxn

t
′ + Pn

t ), (6.67)

S10 =
n∑

t=1

(xxxn
t xxxn

t−1
′ + Pn

t,t−1), (6.68)

and

S00 =
n∑

t=1

(xxxn
t−1xxx

n
t−1

′ + Pn
t−1). (6.69)
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In (6.66)-(6.69), the smoothers are calculated under the current value of the
parameters Θ(j−1); for simplicity, we have not explicitly displayed this fact.

Minimizing (6.66) with respect to the parameters, at iteration j, constitutes
the maximization step, and is analogous to the usual multivariate regression
approach, which yields the updated estimates

Φ(j) = S10S
−1
00 , (6.70)

Q(j) = n−1 (S11 − S10S
−1
00 S′

10
)
, (6.71)

and

R(j) = n−1
n∑

t=1

[(yyyt − Atxxx
n
t )(yyyt − Atxxx

n
t )′ + AtP

n
t A′

t]. (6.72)

The updates for the initial mean and variance–covariance matrix are

µµµ
(j)
0 = xxxn

0 and Σ(j)
0 = Pn

0 (6.73)

obtained from minimizing (6.66).
The overall procedure can be regarded as simply alternating between the

Kalman filtering and smoothing recursions and the multivariate normal maxi-
mum likelihood estimators, as given by (6.70)–(6.73). Convergence results for
the EM algorithm under general conditions can be found in Wu (1983). We
summarize the iterative procedure as follows.

1. Initialize the procedure by selecting starting values for the parameters
Θ(0) = {µµµ0, Σ0, Φ, Q, R}.

On iteration j, (j = 1, 2, . . .):

2. Compute the incomplete-data likelihood, − lnLY (Θ(j−1)); see equation
(6.62).

3. Perform the E-Step. Use Properties 6.1, 6.2, and 6.3 to obtain the
smoothed values xxxn

t , Pn
t and Pn

t,t−1, for t = 1, . . . , n, using the para-
meters Θ(j−1). Use the smoothed values to calculate S11, S10, S00 given
in (6.67)–(6.69).

4. Perform the M-Step. Update the estimates, µµµ0, Σ0, Φ, Q, and R using
(6.70)–(6.73), to obtain Θ(j).

5. Repeat Steps 2 – 4 to convergence.
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Example 6.8 EM Algorithm for Example 6.3

Using the same data generated in Example 6.6, we performed an EM
algorithm estimation of the parameters φ, σ2

w and σ2
v as well as the

initial parameters µ0 and Σ0.

The convergence rate of the EM algorithm compared with the Newton–
Raphson procedure is slow. In this example, with convergence being
claimed when the log likelihood does not change by more that .001, con-
vergence was attained after 38 iterations.

The final estimates, along with their standard errors (in parentheses),
were

φ̂ = .83 (.08), σ̂w = .81 (.17), σ̂v = .91 (.14),

with µ̂0 = −.06 and Σ̂0 = .44.

Evaluation of the standard errors used a call to fdHess in the nlme R
package to evaluate the Hessian at the final estimates. The nlme package
must be loaded prior to the call to fdHess.

Asymptotic Distribution of the MLEs

The asymptotic distribution of estimators of the model parameters, say, Θ̂n,
is studied extensively in Caines (1988, Chapters 7 and 8), and in Hannan and
Deistler (1988, Chapter 4). In both of these references, the consistency and
asymptotic normality of the estimators is established under general conditions.
Although we will only state the basic result, some crucial elements are needed
to establish large sample properties of the estimators. An essential condition
is the stability of the filter. Stability of the filter assures that, for large t,
the innovations εεεt are basically copies of each other (that is, independent and
identically distributed) with a stable covariance matrix Σ that does not depend
on t and that, asymptotically, the innovations contain all of the information
about the unknown parameters. Although it is not necessary, for simplicity,
we shall assume here that At ≡ A for all t. Details on departures from this
assumption can be found in Jazwinski (1970, Sections 7.6 and 7.8). We also
drop the inputs as use the model in the form of (6.1) and (6.2).

For stability of the filter, we assume the eigenvalues of Φ are less than one
in absolute value; this assumption can be weakened (for example, see Harvey,
1991, Section 4.3), but we retain it for simplicity. This assumption is enough
to ensure the stability of the filter in that, as t → ∞, the filter error covariance
matrix P t

t converges to P , the steady-state error covariance matrix, the gain
matrix Kt converges to K, the steady-state gain matrix, from which it follows
that the innovation variance–covariance matrix Σt converges to Σ, the steady-
state variance–covariance matrix of the stable innovations; details can be found
in Jazwinski (1970, Sections 7.6 and 7.8) and Anderson and Moore (1979,
Section 4.4). In particular, the steady-state filter error covariance matrix, P ,
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satisfies the Riccati equation:

P = Φ[P − PA′(APA′ + R)−1AP ]Φ′ + Q;

the steady-state gain matrix satisfies K = PA′[APA′ +R]−1. In Example 6.5,
for all practical purposes, stability was reached by the fourth observation.

When the process is in steady-state, we may consider xxxt
t+1 as the steady-

state predictor and interpret it as xxxt
t+1 = E(xxxt+1

∣∣ yyyt, yyyt−1, . . .). As can be
seen from (6.19) and (6.21), the steady-state predictor can be written as

xxxt
t+1 = Φ[I − KA]xxxt−1

t + ΦKyt

= Φxxxt−1
t + ΦKεεεt, (6.74)

where εεεt is the steady-state innovation process given by

εεεt = yt − E(yyyt

∣∣ yyyt−1, yyyt−2, . . .).

In this case, εεεt ∼ iid N(000, Σ), where Σ = APA′ + R. In steady-state, the
observations can be written as

yyyt = Axxxt−1
t + εεεt. (6.75)

Together, (6.74) and (6.75) make up the steady-state innovations form of the
dynamic linear model.

Two other conditions worth mentioning are observability and controlla-
bility. Observability focuses on the question of how much information can
be gained about the p-dimensional state vector xxxt from p future observations
{yyyt, yyyt+1, . . . , yyyt+p−1}. Consider the state without any noise term,

xxxt+p = Φxxxt+p−1 = · · · = Φpxxxt.

Then, the data (without observational noise) satisfy

yyyt+j = Axxxt+j = AΦjxxxt, j = 0, . . . , p − 1,

or
(yyy′

t, . . . , yyy
′
t+p−1) = xxx′

t[A
′, Φ′A′, . . . ,Φ

′p−1A′].

Hence, if the observability matrix O′ = [A′, Φ′A′, . . . ,Φ
′p−1A′] has full rank

p, we may explicitly solve for xxxt in terms of yyyt:p = (yyy′
t, . . . , yyy

′
t+p−1)

′, namely,
xxxt = (O′O)−1O′yyyt:p, and the system is said to be observable.

In a similar manner, to define controllability, write the state noise as wwwt =
Buuut, where B is p × r and uuut is an r-dimensional, nonsingular, white noise
process. Thus, the state equation is xxxt = Φxxxt−1 + Buuut. If the matrix C =
[B,ΦB,Φ2B, . . . ,Φp−1B] has full rank p, the process is said to be controllable.
Controllability has to do with the fact that the state equation satisfies

xxxt+p =
p−1∑
j=0

ΦjBuuut+p−j + Φpxxxt = CUUU t + Φpxxxt,
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where UUU t = (uuu′
t+p, . . . , uuu

′
t+1)

′. If we think of the variables {uuut+p, . . . , uuut+1} as
“controlling” the state output xxxt, and we act as if we are free to choose the
uuut at will, the fact that C is full rank means any desired value of xxxt+p can be
obtained from any initial state xxxt by control of UUU t. In particular, we can put
UUU t = C′(CC′)−1xxxt+p − Φpxxxt.

The key point about controllability and observability is that these con-
ditions are necessary and sufficient to ensure the state-space model has the
smallest possible dimension; details can be found in Hannan and Diestler
(1988, Section 2.3). As a simple example, suppose the state system is bi-
variate, xxxt = (xt1, xt2)′, where xt1 and xt2 are independent components with
Φ = diag{φ1, φ2}, and yt = [1, 0]xxxt +vt; that is, yt = xt1 +vt. Clearly we could
not hope to reasonably estimate φ2. This system is not observable because
O has rank one. Additional details on this point can be found in Jazwinski
(1970, Section 7.5).

In the following property, we assume the Gaussian state-space model (6.1)
and (6.2), is time invariant, i.e., At ≡ A, the eigenvalues of Φ are within the
unit circle and the system is observable and controllable. We denote the true
parameters by Θ0, and we assume the dimension of Θ0 is the dimension of
the parameter space. Although it is not necessary to assume wwwt and vvvt are
Gaussian, certain additional conditions would have to apply and adjustments
to the asymptotic covariance matrix would have to be made (see Caines, 1988,
Chapter 8).

Property P6.4: Asymptotic Distribution of the Estimators
Under general conditions, let Θ̂n be the estimator of Θ0 obtained by maximizing
the innovations likelihood, LY (Θ), as given in (6.62). Then, as n → ∞,

√
n
(
Θ̂n − Θ0

)
d→ N

[
0, I(Θ0)−1] ,

where I(Θ) is the asymptotic information matrix given by

I(Θ) = lim
n→∞ n−1E

[−∂2 lnLY (Θ)/∂Θ ∂Θ′] .
Precise details and the proof of Property P6.4 are given in Caines (1988, Chap-
ter 7) and in Hannan and Deistler (1988, Chapter 4). For a Newton procedure,
the Hessian matrix (as described in Example 6.6) at the time of convergence
can be used as an estimate of nI(Θ0) to obtain estimates of the standard
errors. In the case of the EM algorithm, no derivatives are calculated, but
we may include a numerical evaluation of the Hessian matrix at the time of
convergence to obtain estimated standard errors. Also, extensions of the EM
algorithm exist, such as the SEM algorithm (Meng and Rubin, 1991), that
include a procedure for the estimation of standard errors. In the examples of
this section, the estimated standard errors were obtained from the numerical
Hessian matrix of − lnLY (Θ̂), where Θ̂ is the vector of parameters estimates
at the time of convergence.
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6.4 Missing Data Modifications

An attractive feature available within the state-space framework is its abil-
ity to treat time series that have been observed irregularly over time. For
example, Palma and Chan (1997) used the state-space model for estimation
and forecasting of long memory (specifically, fractionally integrated ARMA, or
ARFIMA, processes) time series with missing observations. Throughout this
section we assume the model is of the form (6.1) and (6.2). The EM algo-
rithm allows parts of the observation vector yyyt to be missing at a number of
observation times. Shumway and Stoffer (1982) described the modifications
necessary for the special case in which the subvectors of vvvt corresponding to
the observed and unobserved parts of yyyt happen to be uncorrelated. Here, we
will also discuss the general case.

Suppose, at a given time t, we define the partition of the q × 1 observation
vector yyyt = (yyy(1)

t

′
, yyy

(2)
t

′
)′, where the first q1t × 1 component is observed and

the second q2t × 1 component is unobserved, q1t + q2t = q. Then, write the
partitioned observation equation(

yyy
(1)
t

yyy
(2)
t

)
=
[

A
(1)
t

A
(2)
t

]
xxxt +

(
vvv

(1)
t

vvv
(2)
t

)
, (6.76)

where A
(1)
t and A

(2)
t are, respectively, the q1t × p and q2t × p partitioned ob-

servation matrices, and

cov
(

vvv
(1)
t

vvv
(2)
t

)
=
[

R11t R12t

R21t R22t

]
(6.77)

denotes the covariance matrix of the measurement errors between the observed
and unobserved parts. Stoffer (1982) established the filtering equations, Prop-
erty P6.1, hold for the missing data case if, at update t, we make the replace-
ments

yyy(t) =
(

yyy
(1)
t

000

)
, A(t) =

[
A

(1)
t

0

]
, R(t) =

[
R11t 0

0 R22t

]
, (6.78)

for yyyt, At, and R, respectively, in (6.21)–(6.23).
Once the “missing data” filtered values have been obtained, Stoffer (1982)

also established the smoother values can be processed using Properties P6.2
and P6.3 with the values obtained from the missing data-filtered values.
The implication of these results is that, if yyyt is incomplete, the filtered and
smoothed estimators can be calculated from the usual equations by entering
zeros in the observation vector when data are missing, by zeroing out the
corresponding rows of the design matrix At, and by entering zeros in the off-
diagonal elements of R that correspond to R12t and R21t at update t in the
filter equation (6.23). In doing this procedure, the state estimators are

xxx
(s)
t = E

(
xxxt

∣∣ yyy(1)
1 , . . . , yyy(1)

s

)
, (6.79)
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with error variance–covariance matrix

P
(s)
t = E

{(
xxxt − xxx

(s)
t

)(
xxxt − xxx

(s)
t

)′}
. (6.80)

The missing data lag-one smoother covariances will be denoted by P
(n)
t,t−1.

The maximum likelihood estimators, as computed in the EM procedure,
must also be modified in the missing data case. Now, we consider

Y (1)
n = {yyy(1)

1 , . . . , yyy(1)
n } (6.81)

as the incomplete data, and Xn, Yn, as defined in (6.63), as the complete data.
In this case, the complete data likelihood, (6.63), or equivalently (6.64), is the
same, but to implement the E-step, at iteration j, we must calculate

Q
(
Θ
∣∣ Θ(j−1)

)
= E

{
−2 ln LX,Y (Θ)

∣∣ Y (1)
n , Θ(j−1)

}
= E∗

{
ln |Σ0| + tr Σ−1

0 (xxx0 − µµµ0)(xxx0 − µµµ0)
′ ∣∣ Y (1)

n

}
+ E∗

{
n ln |Q| +

n∑
t=1

tr
[
Q−1(xxxt − Φxxxt−1)(xxxt − Φxxxt−1)′] ∣∣ Y (1)

n

}

+ E∗

{
n ln |R| +

n∑
t=1

tr
[
R−1(yyyt − Atxxxt)(yyyt − Atxxxt)′] ∣∣ Y (1)

n

}
, (6.82)

where E∗ denotes the conditional expectation under Θ(j−1) and tr denotes
trace. The first two terms in (6.82) will be like the first two terms of (6.66) with
the smoothers xxxn

t , Pn
t , and Pn

t,t−1 replaced by their missing data counterparts,

xxx
(n)
t , P

(n)
t , and P

(n)
t,t−1. What changes in the missing data case is the third term

of (6.82), where we must evaluate E∗(yyy
(2)
t

∣∣ Y
(1)
n ) and E∗(yyy

(2)
t yyy

(2)′
t

∣∣ Y
(1)
n ). In

Stoffer (1982), it is shown that

E∗
{

(yyyt − Atxxxt)(yyyt − Atxxxt)′ ∣∣ Y (1)
n

}

=
(

yyy
(1)
t − A

(1)
t xxx

(n)
t

R∗21tR
−1
∗11t(yyy

(1)
t − A

(1)
t xxx

(n)
t )

)(
yyy

(1)
t − A

(1)
t xxx

(n)
t

R∗21tR
−1
∗11t(yyy

(1)
t − A

(1)
t xxx

(n)
t )

)′

+
(

A
(1)
t

R∗21tR
−1
∗11tA

(1)
t

)
P

(n)
t

(
A

(1)
t

R∗21tR
−1
∗11tA

(1)
t

)′

+
(

0 0
0 R∗22t − R∗21tR

−1
∗11tR∗12t

)
. (6.83)

In (6.83), the values of R∗ikt, for i, k = 1, 2, are the current values specified
by Θ(j−1). In addition, xxx

(n)
t and P

(n)
t are the values obtained by running the

smoother under the current parameter estimates specified by Θ(j−1).
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In the case in which observed and unobserved components have uncorre-
lated errors, that is, R∗12t is the zero matrix, (6.83) can be simplified to

E∗
{

(yyyt − Atxxxt)(yyyt − Atxxxt)′ ∣∣ Y (1)
n

}
=

(
yyy(t) − A(t)xxx

(n)
t

)(
yyy(t) − A(t)xxx

(n)
t

)′
+ A(t)P

(n)
t A′

(t)

+
(

0 0
0 R∗22t

)
, (6.84)

where yyy(t) and A(t) are defined in (6.78).
In this simplified case, the “missing data” M-step looks like the M-step

given in (6.67)-(6.73). That is, with

S(11) =
n∑

t=1

(xxx(n)
t xxx

(n)
t

′
+ P

(n)
t ), (6.85)

S(10) =
n∑

t=1

(xxx(n)
t xxx

(n)
t−1

′
+ P

(n)
t,t−1), (6.86)

and

S(00) =
n∑

t=1

(xxx(n)
t−1xxx

(n)
t−1

′
+ P

(n)
t−1), (6.87)

where the smoothers are calculated under the present value of the parameters
Θ(j−1) using the missing data modifications, at iteration j, the maximization
step is

Φ(j) = S(10)S
−1
(00), (6.88)

Q(j) = n−1
(
S(11) − S(10)S

−1
(00)S

′
(10)

)
, (6.89)

and

R(j) = n−1
n∑

t=1

Dt

{(
yyy(t) − A(t)xxx

(n)
t

)(
yyy(t) − A(t)xxx

(n)
t

)′
+ A(t)P

(n)
t A′

(t)

+
(

0 0
0 R

(j−1)
22t

)}
D′

t, (6.90)

where Dt is a permutation matrix that reorders the variables at time t in their
original order and yyy(t) and A(t) are defined in (6.78). For example, suppose
q = 3 and at time t, yt2 is missing. Then,

yyy(t) =

⎛⎝ yt1
yt3
0

⎞⎠ , A(t) =

⎡⎣At1
At3
000′

⎤⎦ , and Dt =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ ,



6.4: Missing Data 351

log(white blood count)

Time

0 20 40 60 80

1
.5

2
.5

3
.5

4
.5

log(platelet)

Time

0 20 40 60 80

4
.0

4
.5

5
.0

5
.5

HCT

Time

0 20 40 60 80

2
5

3
0

3
5

4
0

Figure 6.5 Smoothed values for various components in the blood parameter
tracking problem. The actual data are shown as points, the smoothed values
are shown as solid lines, and ±3 standard error bounds are shown as dashed
lines.

where Ati is the ith row of At and 000′ is a 1 × p vector of zeros. In (6.90), only
R11t gets updated, and R22t at iteration j is simply set to its value from the
previous iteration, j −1. Of course, if we cannot assume R12t = 0, (6.90) must
be changed accordingly using (6.83), but (6.88) and (6.89) remain the same.
As before, the parameter estimates for the initial state are updated as

µµµ
(j)
0 = xxx

(n)
0 and Σ(j)

0 = P
(n)
0 . (6.91)



352 State-Space Models

Example 6.9 Longitudinal Biomedical Data

We consider the biomedical data in Example 6.1 which has portions of
the three-dimensional vector missing after the 40th day. The maximum
likelihood procedure yielded the estimators

Φ̂ =

⎛⎝ 1.02 −.09 .01
.08 .90 .01

−.90 1.42 .87

⎞⎠ , Q̂ =

⎛⎝ .018 .002 .000
.002 .004 .017
.000 .017 2.27

⎞⎠ ,

and R̂ = diag{.004, .022, 1.69} for the transition, state error covariance
and observation error covariance matrices, respectively. The coupling
between the first and second series is relatively weak, whereas the third
series HCT is strongly related to the first two; that is,

x̂t3 = −.90xt−1,1 + 1.42xt−1,2 + .87xt−1,3.

Hence, the HCT is negatively correlated with white blood count and
positively correlated with platelet count. Byproducts of the procedure
are estimated trajectories for all three longitudinal series and their re-
spective prediction intervals. In particular, Figure 6.5 shows the data
as points, the estimated smoothed values x̂

(n)
t as solid lines, and error

bounds, x̂
(n)
t ±3

√
P̂

(n)
t as dotted lines, for critical post-transplant platelet

count.

6.5 Structural Models: Signal Extraction and
Forecasting

In order to develop computing techniques for handling a versatile cross section
of possible models, it is necessary to restrict the state-space model somewhat,
and we consider one possible class of specializations in this section. The com-
ponents of the model are taken as linear processes that can be adapted to
represent fixed and disturbed trends and periodicities as well as classical au-
toregressions. The observed series is regarded as being a sum of component
signal series. To illustrate the possibilities, consider the economic example
given below that shows how to fit a sum of trend, seasonal, and irregular
components the quarterly earnings data that we have considered before.

Example 6.10 Johnson & Johnson Quarterly Earnings

Consider the quarterly earnings series from the U.S. company Johnson &
Johnson as given in Figure 1.1. The series is highly nonstationary, and
there is both a trend signal that is gradually increasing over time and a
seasonal component that cycles every four quarters or once per year. The
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Figure 6.6 Estimated trend component, Tn
t (top), and estimated trend plus

seasonal component, Sn
t (bottom), for the Johnson and Johnson quarterly

earnings series.

seasonal component is getting larger over time as well. Transforming into
logarithms or even taking the nth root does not seem to make the series
stationary, as there is a slight bend to the transformed curve. Suppose,
however, we consider the series to be the sum of a trend component, a
seasonal component, and a white noise. That is, let the observed series
be expressed as

yt = Tt + St + vt, (6.92)

where Tt is trend and St is the seasonal component. Suppose we allow
trend to increase exponentially; that is,

Tt = φTt−1 + wt1, (6.93)

where the coefficient φ > 1 characterizes the increase. Let the seasonal
component be modeled as

St + St−1 + St−2 + St−3 = wt2, (6.94)
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which corresponds to assuming the seasonal component is expected to
sum to zero over a complete period or four quarters. To express this
model in state-space form, let xxx′

t = (Tt, St, St−1, St−2) be the state vector
so the observation equation (6.2) can be written as

yt = ( 1 1 0 0 )

⎛⎜⎝
Tt

St

St−1
St−2

⎞⎟⎠+ vt,

with the state equation written as⎛⎜⎝
Tt

St

St−1
St−2

⎞⎟⎠ =

⎛⎜⎜⎝
φ 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎝

Tt−1
St−1
St−2
St−3

⎞⎟⎠+

⎛⎜⎝
wt1
wt2
0
0

⎞⎟⎠ ,

where R = r11 and

Q =

⎛⎜⎝
q11 0 0 0
0 q22 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ .

The model reduces to state-space form, (6.1) and (6.2), with p = 4
and q = 1. The parameters to be estimated are r11, the noise vari-
ance in the measurement equations, q11 and q22, the model variances
corresponding to the trend and seasonal components and φ, the tran-
sition parameter that models the growth rate. Growth is about 3%
per year, and we began with φ = 1.03. The initial mean was fixed
at µµµ0 = (.5, .3, .2, .1)′, with uncertainty modeled by the diagonal covari-
ance matrix with Σ0ii = .01, for i = 1, . . . , 4. Initial state covariance
values were taken as q11 = .01, q22 = .10, corresponding to relatively
low uncertainty in the trend model compared with that in the seasonal
model. The measurement error covariance was started at r11 = .04.
After 70 iterations of the EM algorithm the transition parameter stabi-
lized at φ̂ = 1.035, corresponding to exponential growth with inflation
at about 3.5% per year. The measurement uncertainty was small at
r̂11 = .0086, compared with the model uncertainties q̂11 = .0169 and
q̂22 = .0497. From initial guesses, the trend uncertainty increased and
the seasonal uncertainty decreased. Figure 6.6 shows the smoothed trend
estimate and the exponentially increasing seasonal components. We may
also consider forecasting the Johnson & Johnson series, and the result of
a 12-quarter forecast is shown in Figure 6.7 as basically an extension of
the latter part of the observed data.
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Figure 6.7 A 12-quarter forecast for the Johnson & Johnson quarterly earn-
ings series. The last three years of data (quarters 72-84), are shown as points
connected by a solid line. The forecasts are shown as points connected by a
solid line (quarters 85-96) and dotted lines are upper and lower 95% prediction
intervals.

6.6 ARMAX Models in State-Space Form

Sometimes, it is advantageous to write the state-space model in a slightly
different way, as is done by numerous authors; for example, Anderson and
Moore (1970) and Hannan and Deistler (1988). Here, we write the state-space
model as

xxxt+1 = Φxxxt + Υuuut + wwwt t = 0, 1, . . . , n (6.95)

yyyt = Atxxxt + Γuuut + vvvt t = 1, . . . , n (6.96)

where, in the state equation, xxx0 ∼ N(µµµ0, Σ0), Φ is p× p, and Υ is p× r. In the
observation equation, At is q × p and Γ is q × r. Now, wwwt and vvvt are still white
noise series (both independent of xxx0), with var(wwwt) = Q, var(vvvt) = R, but we
also allow the state noise and observation noise to be correlated at time t; that
is,

cov(wwwt, vvvt) = E(wwwtvvv
′
t) = S (6.97)

and zero otherwise; note, S is a p × q matrix. To obtain the innovations,
εεεt = yyyt − Atxxx

t−1
t − Γuuut, and the innovation variance Σt = AtP

t−1
t A′

t + R,
in this case, we need the one-step-ahead state predictions. Of course, the
filtered estimates will also be of interest, and they will be needed for smoothing.
Property P6.2 (the smoother) as displayed in §6.2 still holds. The following
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property generates the predictor xxxt
t+1 from the past predictor xxxt−1

t when the
noise terms are correlated and exhibits the filter update.

Property P6.5: The Kalman Filter with Correlated State and
Measurement Noise
For the state-space model specified in (6.95) and (6.96), with initial conditions
xxx0

1 and P 0
1 , for t = 1, . . . , n,

xxxt
t+1 = Φxxxt−1

t + Υuuut + K∗
t (yyyt − Atxxx

t−1
t − Γuuut), (6.98)

P t
t+1 = [Φ − K∗

t At]P t−1
t [Φ − K∗

t At]′ + Q + K∗
t RK∗′

t − SK∗′
t − K∗

t S′, (6.99)

where the new gain matrix is given by

K∗
t = [ΦP t−1

t A′
t + S][[AtP

t−1
t A′

t + R]−1. (6.100)

The filter update, given a new observation yyyt+1 and input uuut+1 is given by

xxxt+1
t+1 = xxxt

t+1 + P t
t+1A

′
t+1
[
At+1P

t
t+1A

′
t+1 + R

]−1
εεεt+1, (6.101)

P t+1
t+1 = P t

t+1 − P t
t+1A

′
t+1
[
At+1P

t
t+1A

′
t+1 + R

]−1
At+1P

t
t+1. (6.102)

The derivation of Property P6.5 is similar to the derivation of the Kalman
filter in Property P6.1 (Problem 6.17). Note, (6.101) and (6.102) are identical
to (6.19) and (6.20).

Consider a p-dimensional ARMAX model given by,

yyyt = Γuuut +
m∑

j=1

Φjyyyt−j +
q∑

k=1

Θkvvvt−k + vvvt. (6.103)

The Φs and Θs are p × p matrices, Γ is p × r, and vvvt is a p × 1 white noise
process; in fact, (6.103) and (5.84) are identical models, but here, we have
written the observations as yyyt. We now have the following property.
Property P6.6: A State-Space Form of ARMAX
For m ≥ q, the state-space model given by

xxxt+1 =

⎡⎢⎢⎢⎢⎣
Φ1 I 0 · · · 0
Φ2 0 I · · · 0
...

...
...

. . .
...

Φm−1 0 0 · · · I
Φm 0 0 · · · 0

⎤⎥⎥⎥⎥⎦xxxt +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Θ1 + Φ1
...

Θq + Φq

Φq+1
...

Φm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
vvvt, (6.104)

yyyt = [ I, 0, · · · , 0 ]xxxt + Γuuut + vvvt, (6.105)

implies the ARMAX model (6.103). The state process, xxxt, is pm × 1, and the
observations process yyyt is p × 1. If m < q, set Φm+1 = · · · = Φq = 0, in which
case m = q and (6.104)–(6.105) still apply.
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This form of the model is somewhat different than the form suggested
in §5.1, equations (6.6)-(6.8). For example, in (6.8), by setting At equal to
the p × p identity matrix (for all t) and setting R = 0 implies the data yt

in (6.8) follow a VAR(m) process. In doing so, however, we do not make
use of the ability to allow for correlated state and observation error, so a
singularity is introduced into the system in the form of R = 0. The method
in Property P6.6 avoids that problem, and points out the fact that the same
model can take many forms. We do not prove Property P6.6 directly, but the
following example should suggest how to establish the general result.

Example 6.11 Univariate ARMA(1, 1) in State-Space Form

Consider the univariate ARMA(1, 1) model yt = φyt−1+θvt−1+vt. Using
Property P6.6, we can write the model as

xt+1 = φxt + wt, (state eqn), (6.106)

where wt = (θ + φ)vt and

yt = xt + vt, (obs eqn). (6.107)

In this case, cov(wt, vt) = (θ + φ)var(vt) = (θ + φ)R, and cov(wt, vs) = 0
when s �= t, so Property P6.5 would apply. To verify (6.106) and (6.107)
specify an ARMA(1,1) model, we have

yt = xt + vt from (6.107)
= φxt−1 + (θ + φ)vt−1 + vt from (6.106)
= φ(xt−1 + vt−1) + θvt−1 + vt

= φyt−1 + θvt−1 + vt, from (6.107).

Properties P6.5 and P6.6, together, can be used to accomplish maximum
likelihood estimation for ARMAX models. In this case, the likelihood would
be in the innovations form given in Chapter 2, equation (3.106), or equivalently
(6.62), and estimation could be accomplished using Newton–Raphson or the
EM algorithm as described §6.3.

6.7 Bootstrapping State-Space Models

Although, in §6.3, we discussed the fact that, under general conditions (which
we assume to hold in this section), the MLEs of the parameters of a DLM
are consistent and asymptotically normal, time series data are often of short
or moderate length. Several researchers have found evidence that samples
must be fairly large before asymptotic results are applicable (Dent and Min,
1978; Ansley and Newbold, 1980). Moreover, as we discussed in Example 3.31,
problems occur if the parameters are near the boundary of the parameter
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space. In this section, we discuss an algorithm for bootstrapping state-space
models; this algorithm and its justification, including the non-Gaussian case,
along with numerous examples, can be found in Stoffer and Wall (1991) and
in Stoffer and Wall (2004). In view of §6.6, anything we do or say here about
DLMs applies equally to ARMAX models.

Using the DLM given by (6.95)–(6.97) and Property P6.5, we write the
innovations form of the filter as

εεεt = yyyt − Atxxx
t−1
t − Γuuut, (6.108)

Σt = AtP
t−1
t A′

t + R, (6.109)
xxxt

t+1 = Φxxxt−1
t + Υuuut + Ktεεεt, (6.110)

Kt = [ΦP t−1
t A′

t + S]Σ−1
t , (6.111)

P t
t+1 = ΦP t−1

t Φ′ + Q − KtΣtK
′
t. (6.112)

This form of the filter is just a rearrangement of the filter given in Prop-
erty P6.5; we have dropped the * in the new form of the gain matrix.

In addition, we can rewrite the model to obtain the innovations form of the
model,

xxxt
t+1 = Φxxxt−1

t + Υuuut + Ktεεεt, (6.113)

yyyt = Atxxx
t−1
t + Γuuut + εεεt. (6.114)

This form of the model is a rewriting of (6.108) and (6.110), and it accommo-
dates the bootstrapping algorithm.

As discussed in Example 6.5, although the innovations εεεt are uncorrelated,
initially, Σt can be different for different time points t. Thus, in a resampling
procedure, we can either ignore the first few values of εεεt until Σt stabilizes or
we can work with the standardized innovations

eeet = Σ−1/2
t εεεt, (6.115)

so we are guaranteed these innovations have, at least, the same first two mo-
ments. In (6.115), Σ1/2

t denotes the unique square root matrix of Σt defined by
Σ1/2

t Σ1/2
t = Σt. In what follows, we base the bootstrap procedure on the stan-

dardized innovations, but we stress the fact that, even in this case, ignoring
startup values might be necessary, as noted by Stoffer and Wall (1991).

The model coefficients and the correlation structure of the model are uniquely
parameterized by a k×1 parameter vector Θ0; that is, Φ = Φ(Θ0), Υ = Υ(Θ0),
Q = Q(Θ0), At = At(Θ0), Γ = Γ(Θ0), and R = R(Θ0). Recall the innovations
form of the Gaussian likelihood (ignoring a constant) is

−2 ln LY (Θ) =
n∑

t=1

[
ln |Σt(Θ)| + εεεt(Θ)′Σt(Θ)−1εεεt(Θ)

]
=

n∑
t=1

[ln |Σt(Θ)| + eeet(Θ)′eeet(Θ)] . (6.116)
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We stress the fact that it is not necessary for the model to be Gaussian to
consider (6.116) as the criterion function to be used for parameter estimation.

Let Θ̂ denote the MLE of Θ0, that is, Θ̂ = argmaxΘLY (Θ), obtained by
the methods discussed in §6.3. Let εεεt(Θ̂) and Σt(Θ̂) be the innovation values
obtained by running the filter, (6.108)–(6.112), under Θ̂. Once this has been
done, the bootstrap procedure is accomplished by the following steps.

1. Construct the standardized innovations

eeet(Θ̂) = Σ−1/2
t (Θ̂)εεεt(Θ̂).

2. Sample, with replacement, n times from the set {eee1(Θ̂), . . . , eeen(Θ̂)} to
obtain {eee∗

1(Θ̂), . . . , eee∗
n(Θ̂)}, a bootstrap sample of standardized innova-

tions.

3. Construct a bootstrap data set {yyy∗
1, . . . , yyy

∗
n} as follows. Define the (p +

q) × 1 vector ξξξt = (xxxt′
t+1, yyy

′
t)

′. Stacking (6.113) and (6.114) results in a
vector first-order equation for ξξξt given by

ξξξt = Ftξξξt−1 + Guuut + Hteeet, (6.117)

where

Ft =
[

Φ 0
At 0

]
, G =

[
Υ
Γ

]
, Ht =

[
KtΣ

−1/2
t

Σ−1/2
t

]
.

Thus, to construct the bootstrap data set, solve (6.117) using eee∗
t (Θ̂) in

place of eeet. The exogenous variables uuut and the initial conditions of
the Kalman filter remain fixed at their given values, and the parameter
vector is held fixed at Θ̂.

4. Using the bootstrap data set {yyy∗
t ; t = 1, . . . , n}, construct a likelihood,

LY ∗(Θ), and obtain the MLE of Θ, say, Θ̂∗.

5. Repeat steps 2 through 4, a large number, B, of times, obtaining a
bootstrapped set of parameter estimates {Θ̂∗

b ; b = 1, . . . , B}. The finite
sample distribution of Θ̂ − Θ0 may be approximated by the distribution
of Θ̂∗

b − Θ̂, b = 1, . . . , B.

In the next example, we discuss the case of a linear regression model, but
where the regression coefficients are stochastic and allowed to vary with time.
The state-space model provides a convenient setting for the analysis of such
models.

Example 6.12 Stochastic Regression

Figure 6.8 shows the interest rate recorded for three-month treasury bills
(line–squares), yt, and the quarterly inflation rate (dotted line–circles) in
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Figure 6.8 Interest rate for three-month treasury bills (line–squares) and quar-
terly inflation rate (dotted line–circles) in the Consumer Price Index, 1953:1
to 1965:2.

the Consumer Price Index, zt, from the first quarter of 1953 through the
second quarter of 1965, n = 50 observations. These data were analyzed
by Newbold and Bos (1985, pp. 61-73).

In this analysis, the treasury bill interest rate is modeled as being linearly
related to quarterly inflation as

yt = α + βtzt + vt,

where α is a fixed constant, βt is a stochastic regression coefficient, and
vt is white noise with variance σ2

v . The stochastic regression term, which
comprises the state variable, is specified by a first-order autoregression,

(βt − b) = φ(βt−1 − b) + wt,

where b is a constant, and wt is white noise with variance σ2
w. The noise

processes, vt and wt, are assumed to be uncorrelated.

Using the notation of the state-space model (6.95) and (6.96), we have
in the state equation, xxxt = βt, Φ = φ, uuut ≡ 1, Υ = (1 − φ)b, Q =
σ2

w, and in the observation equation, At = zt, Γ = α, R = σ2
v , and

S = 0. The parameter vector is Θ = (φ, α, b, σw, σv)′. The results of
the Newton–Raphson estimation procedure are listed in Table 6.2. Also
shown in the Table 6.2 are the corresponding standard errors obtained
from B = 500 runs of the bootstrap. These standard errors are simply



6.7: Bootstrapping State-Space Models 361

Figure 6.9 Bootstrap distribution, B = 500, of the estimator of φ.

Figure 6.10 Bootstrap distribution, B = 500, of the estimator of σw.

the standard deviations of the bootstrapped estimates, that is, the square
root of

∑B
b=1(Θ

∗
ib−Θ̄∗

i )
2/(B−1), where Θi, represents the ith parameter,

i = 1, . . . , 5, and Θ̄∗
i =

∑B
b=1 Θ∗

ib/B.

The asymptotic standard errors listed in Table 6.2 are typically smaller
than those obtained from the bootstrap. This result is the most pro-
nounced in the estimates of φ, σw, and σv, where the bootstrapped
standard errors are about 50% larger than the corresponding asymp-
totic value. Also, asymptotic theory prescribes the use of normal theory
when dealing with the parameter estimates. The bootstrap, however,
allows us to investigate the small sample distribution of the estimators
and, hence, provides more insight into the data analysis.
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Table 6.2 Comparison of Asymptotic Standard Errors and
Bootstrapped Standard Errors (B = 500)

Asymptotic Bootstrap
Parameter MLE Standard Error Standard Error

φ .841 .200 .304
α −.771 .645 .645
b .855 .278 .277

σw .127 .092 .182
σv 1.131 .142 .217

For example, Figure 6.9 shows the bootstrap distribution of the estimator
of φ. This distribution is highly skewed with values concentrated around
.8, but with a long tail to the left. Some quantiles of the bootstrapped
distribution of φ are -.09 (2.5%), .03 (5%), .16 (10%), .87 (90%), .92
(95%), .94 (97.5%), and they can be used to obtain confidence intervals.
For example, a 90% confidence interval for φ would be approximated by
(.03, .92). This interval is rather wide, and we will interpret this after
we discuss the results of the estimation of σw.

Figure 6.10 shows the bootstrap distribution of σ̂w. The distribution is
concentrated at two locations, one at approximately σ̂w = .15 and the
other at σ̂w = 0. The cases in which σ̂w ≈ 0 correspond to deterministic
state dynamics. When σw = 0 and |φ| < 1, then βt ≈ b for large t, so the
approximately 25% of the cases in which σ̂w ≈ 0 suggest a fixed state,
or constant coefficient model. The cases in which σ̂w is away from zero
would suggest a truly stochastic regression parameter. To investigate
this matter further, Figure 6.11 shows the joint bootstrapped estimates,
(φ̂, σ̂w), for positive values of φ̂. The joint distribution suggests σ̂w > 0
corresponds to φ̂ ≈ 0. When φ = 0, the state dynamics are given by
βt = b+wt. If, in addition, σw is small relative to b, the system is nearly
deterministic; that is, βt ≈ b. Considering these results, the bootstrap
analysis leads us to conclude the dynamics of the data are best described
in terms of a fixed regression effect.

6.8 Dynamic Linear Models with Switching

The problem of modeling changes in regimes for vector-valued time series has
been of interest in many different fields. In §5.4, we explored the idea that the
dynamics of the system of interest might change over the course of time. In
Example 5.5, we saw that pneumonia and influenza mortality rates behave dif-
ferently when a flu epidemic occurs than when no epidemic occurs. As another
example, some authors (for example, Hamilton, 1989, or McCulloch and Tsay,
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Figure 6.11 Joint bootstrap distribution, B = 500, of the estimators of φ and
σw. Only the values corresponding to φ̂∗ ≥ 0 are shown.

1993) have explored the possibility the dynamics of the quarterly U.S. GNP
series (say, yt) analyzed in Example 3.33 might be different during expansion
(∇ log yt > 0) than during contraction (∇ log yt < 0). In this section, we will
concentrate on the method presented in Shumway and Stoffer (1991). One
way of modeling change in an evolving time series is by assuming the dynam-
ics of some underlying model changes discontinuously at certain undetermined
points in time. Our starting point is the DLM given by (6.1) and (6.2), namely,

xxxt = Φxxxt−1 + wwwt, (6.118)

to describe the p × 1 state dynamics, and

yyyt = Atxxxt + vvvt (6.119)

to describe the q × 1 observation dynamics. Recall wwwt and vvvt are Gaussian
white noise sequences with var(wwwt) = Q, var(vvvt) = R, and cov(wwwt, vvvs) = 0 for
all s and t.

Generalizations of (6.118) and (6.119) to include the possibility of changes
occurring over time have been approached by allowing changes in the error co-
variances (Harrison and Stevens, 1976, Gordon and Smith, 1988, 1990) or by as-
signing mixture distributions to the observation errors vvvt (Peña and Guttman,
1988). Approximations to filtering were derived in all of the aforementioned
articles. An application to monitoring renal transplants was described in Smith
and West (1983) and in Gordon and Smith (1990). Changes can also be mod-
eled in the classical regression case by allowing switches in the design matrix,
as in Quandt (1972).
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Switching via a stationary Markov chain with independent observations has
been developed by Lindgren (1978) and Goldfeld and Quandt (1973). In the
Markov chain approach, we declare the dynamics of the system at time t is
generated by one of m possible regimes evolving according to a Markov chain
over time. As a simple example, suppose the dynamics of a univariate time
series, yt, is generated by either the model (1) yt = β1yt−1 + wt or the model
(2) yt = β2yt−1 + wt. We will write the model as yt = φtyt−1 + wt such that
Pr(φt = βj) = πj , j = 1, 2, π1 + π2 = 1, and with the Markov property

Pr(φt = βj

∣∣ φt−1 = βi, φt−2 = βi2 , . . .) = Pr(φt = βj

∣∣ φt−1 = βi) = πij ,

for i, j = 1, 2 (and i2, . . . = 1, 2). As previously mentioned, Markov switching
for dependent data has been applied by Hamilton (1989) to detect changes
between positive and negative growth periods in the economy. Applications to
speech recognition have been considered by Juang and Rabiner (1985). The
case in which the particular regime is unknown to the observer comes under
the heading of hidden Markov models, and the techniques related to analyzing
these models are summarized in Rabiner and Juang (1986). An application of
the idea of switching to the tracking of multiple targets has been considered in
Bar-Shalom (1978), who obtained approximations to Kalman filtering in terms
of weighted averages of the innovations.

Example 6.13 Tracking Multiple Targets

The approach of Shumway and Stoffer (1991) was motivated primarily
by the problem of tracking a large number of moving targets using a
vector yyyt of sensors. In this problem, we do not know at any given point
in time which target any given sensor has detected. Hence, it is the
structure of the measurement matrix At in (6.119) that is changing, and
not the dynamics of the signal xxxt or the noises, wwwt or vvvt. As an example,
consider a 3 × 1 vector of satellite measurements yyyt = (yt1, yt2, yt3)′ that
are observations on some combination of a 3 × 1 vector of targets or
signals, xxxt = (xt1, xt2, xt3)′. For the measurement matrix

At =

⎡⎣ 1 0 0
1 0 0
1 0 0

⎤⎦
in the model (6.119), all sensors are observing the first target, xt1,
whereas for the measurement matrix

At =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦
the first sensor, yt1, observes the second target, xt2; the second sensor,
yt2, observes the first target, xt1; and the third sensor, yt3, observes the
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third target, xt3. All possible detection configurations will define a set of
possible values for At, say, {M1, M2, . . . , Mm}, as a collection of plausible
measurement matrices.

Example 6.14 Modeling Economic Change

As another example of the switching model presented in this section,
consider the case in which the dynamics of the linear model changes
suddenly over the history of a given realization. For example, Lam (1990)
has given the following generalization of Hamilton’s (1989) model for
detecting positive and negative growth periods in the economy. Suppose
the data are generated by

yt = zt + nt, (6.120)

where zt is an autoregressive series and nt is a random walk with a drift
that switches between two values α0 and α0 + α1. That is,

nt = nt−1 + α0 + α1St, (6.121)

with St = 0 or 1, depending on whether the system is in state 1 or state
2. For the purpose of illustration, suppose

zt = φ1zt−1 + φ2zt−2 + wt (6.122)

is an AR(2) series with var(wt) = σ2
w. Lam (1990) wrote (6.120) in a

differenced form
∇yt = zt − zt−1 + α0 + α1St, (6.123)

which we may take as the observation equation (6.119) with state vector

xxxt = (zt, zt−1, α0, α1)′ (6.124)

and
M1 = [1,−1, 1, 0] and M2 = [1,−1, 1, 1] (6.125)

determining the two possible economic conditions. The state equation,
(6.118), is of the form⎛⎜⎝

zt

zt−1
α0
α1

⎞⎟⎠ =

⎡⎢⎣
φ1 φ2 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
⎛⎜⎝

zt−1
zt−2
α0
α1

⎞⎟⎠+

⎛⎜⎝
wt

0
0
0

⎞⎟⎠ . (6.126)

The observation equation, (6.119), in this case is

∇yt = Atxxxt + vt, (6.127)

where Pr(At = M1) = 1 − Pr(At = M2), with M1 and M2 given in
(6.125).
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To incorporate a reasonable switching structure for the measurement ma-
trix into the DLM that is compatible with both practical situations previously
described, we assume that the m possible configurations are states in a non-
stationary, independent process defined by the time-varying probabilities

πj(t) = Pr(At = Mj), (6.128)

for j = 1, . . . , m and t = 1, 2, . . . , n. Important information about the current
state of the measurement process is given by the filtered probabilities of being
in state j, defined as the conditional probabilities

πj(t|t) = Pr(At = Mj |Yt), (6.129)

which also vary as a function of time. In (6.129), we have used the notation
Ys = {yyy1, . . . , yyys}. The filtered probabilities (6.129) give the time-varying
estimates of the probability of being in state j given the data to time t.

It will be important for us to obtain estimators of the configuration prob-
abilities, πj(t|t), the predicted and filtered state estimators, xxxt−1

t and xxxt
t, and

the corresponding error covariance matrices P t−1
t and P t

t . Of course, the pre-
dictor and filter estimators will depend on the parameters, Θ, of the DLM. In
many situations, the parameters will be unknown and we will have to estimate
them. Our focus will be on maximum likelihood estimation, but other authors
have taken a Bayesian approach that assigns priors to the parameters, and
then seeks posterior distributions of the model parameters; see, for example,
Gordon and Smith (1990), Peña and Guttman (1988), or McCulloch and Tsay
(1993).

We now establish the recursions for the filters associated with the state
xxxt and the switching process, At. As discussed in §6.3, the filters are also an
essential part of the maximum likelihood procedure. The predictors, xxxt−1

t =
E(xxxt|Yt−1), and filters, xxxt

t = E(xxxt|Yt), and their associated error variance–
covariance matrices, P t−1

t and P t
t , are given by

xxxt−1
t = Φxxxt−1

t−1, (6.130)

P t−1
t = ΦP t−1

t−1 Φ′ + Q, (6.131)

xxxt
t = xxxt−1

t +
m∑

j=1

πj(t|t)Ktjεεεtj , (6.132)

P t
t =

m∑
j=1

πj(t|t)(I − KtjMj)P t−1
t , (6.133)

Ktj = P t−1
t M ′

jΣ
−1
tj , (6.134)

where the innovation values in (6.132) and (6.134) are

εεεtj = yyyt − Mjxxx
t−1
t , (6.135)



6.8: Dynamic Linear Models with Switching 367

Σtj = MjP
t−1
t M ′

j + R, (6.136)

for j = 1, . . . , m.
Equations (6.130)-(6.134) exhibit the filter values as weighted linear com-

binations of the m innovation values, (6.135)-(6.136), corresponding to each
of the possible measurement matrices. The equations are similar to the ap-
proximations introduced by Bar-Shalom and Tse (1975), by Gordon and Smith
(1990), and Peña and Guttman (1988).

To verify (6.132), let the indicator I(At = Mj) = 1 when At = Mj , and
zero otherwise. Then, using (6.21),

xxxt
t = E(xxxt|Yt) = E[E(xxxt|Yt, At)

∣∣ Yt]

= E

⎧⎨⎩
m∑

j=1

E(xxxt|Yt, At = Mj)I(At = Mj)
∣∣ Yt

⎫⎬⎭
= E

⎧⎨⎩
m∑

j=1

[xxxt−1
t + Ktj(yyyt − Mjxxx

t−1
t )]I(At = Mj)

∣∣ Yt

⎫⎬⎭
=

m∑
j=1

πj(t|t)[xxxt−1
t + Ktj(yyyt − Mjxxx

t−1
t )],

where Ktj is given by (6.134). Equation (6.133) is derived in a similar fashion;
the other relationships, (6.130), (6.131), and (6.134), follow from straightfor-
ward applications of the Kalman filter results given in Property P6.1.

Next, we derive the filters πj(t|t). Let fj(t|t − 1) denote the conditional
density of yyyt given the past yyy1, . . . , yyyt−1, and At = Mj , for j = 1, . . . , m. Then,

πj(t|t) =
πj(t)fj(t|t − 1)∑m

k=1 πk(t)fk(t|t − 1)
, (6.137)

where we assume the distribution πj(t), for j = 1, . . . , m has been specified
before observing yyy1, . . . , yyyt (details follow as in Example 6.15 below). If the
investigator has no reason to prefer one state over another at time t, the choice
of uniform priors, πj(t) = m−1, for j = 1, . . . , m, will suffice. Smoothness can
be introduced by letting

πj(t) =
m∑

i=1

πi(t − 1|t − 1)πij , (6.138)

where the non-negative weights πij are chosen so
∑m

i=1 πij = 1. If the At

process was Markov with transition probabilities πij , then (6.138) would be
the update for the filter probability, as shown in the next example.
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Example 6.15 Hidden Markov Chain Model

If {At} is a hidden Markov chain with stationary transition probabilities
πij = Pr(At = Mj |At−1 = Mi), for i, j = 1, . . . , m, letting p(·) denote a
generic probability function, we have

πj(t|t) =
p(At = Mj , yyyt, Yt−1)

p(yyyt, Yt−1)

=
p(Yt−1)p(At = Mj

∣∣ Yt−1)p(yyyt

∣∣ At = Mj , Yt−1)
p(Yt−1)p(yyyt

∣∣ Yt−1)

=
πj(t|t − 1)fj(t|t − 1)∑m

k=1 πk(t|t − 1)fk(t|t − 1)
. (6.139)

In the Markov case, the conditional probabilities

πj(t|t − 1) = Pr(At = Mj

∣∣Yt−1)

in (6.139) replace the unconditional probabilities, πj(t) = Pr(At = Mj),
in (6.137).

To evaluate (6.139), we must be able to calculate πj(t|t−1) and fj(t|t−1).
We will discuss the calculation of fj(t|t−1) after this example. To derive
πj(t|t − 1), note,

πj(t|t − 1) = Pr(At = Mj

∣∣Yt−1)

=
m∑

i=1

Pr(At = Mj , At−1 = Mi

∣∣Yt−1)

=
m∑

i=1

Pr(At = Mj

∣∣At−1 = Mi)Pr(At−1 = Mi

∣∣Yt−1)

=
m∑

i=1

πijπi(t − 1|t − 1). (6.140)

Expression (6.138) comes from equation (6.140), where, as previously
noted, we replace πj(t|t − 1) by πj(t).

The difficulty in extending the approach here to the Markov case is the
dependence among the yyyt, which makes it necessary to enumerate over all
possible histories to derive the filtering equations. This problem will be evident
when we derive the conditional density fj(t|t−1). Equation (6.138) has πj(t) as
a function of the past observations, Yt−1, which is inconsistent with our model
assumption. Nevertheless, this seems to be a reasonable compromise that
allows the data to modify the probabilities πj(t), without having to develop a
highly computer-intensive technique.

As previously suggested, the computation of fj(t|t − 1), without some ap-
proximations, is highly computer-intensive. To evaluate fj(t|t − 1), consider
the event

A1 = Mj1 , . . . , At−1 = Mjt−1 , (6.141)
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for ji = 1, . . . , m, and i = 1, . . . , t−1, which specifies a specific set of measure-
ment matrices through the past; we will write this event as A(t−1) = M(�). Be-
cause mt−1 possible outcomes exist for A1, . . . , At−1, the index 
 runs through

 = 1, . . . , mt−1. Using this notation, we may write

fj(t|t − 1)

=
mt−1∑
�=1

Pr{A(t−1) = M(�)
∣∣ Yt−1}f(yyyt

∣∣ Yt−1, At = Mj , A(t−1) = M(�))

≡
mt−1∑
�=1

α(
) N
(
yyyt

∣∣∣ µµµtj(
),Σtj(
)
)

, j = 1, . . . , m, (6.142)

where the notation N(· ∣∣ bbb, B) represents the normal density with mean vec-
tor bbb and variance–covariance matrix B. That is, fj(t|t − 1) is a mixture of
normals with non-negative weights α(
) = Pr{A(t−1) = M(�)

∣∣ Yt−1} such that∑
� α(
) = 1, and with each normal distribution having mean vector

µµµtj(
) = Mjxxx
t−1
t (
) = MjE[xxxt

∣∣ Yt−1, A(t−1) = M(�)] (6.143)

and covariance matrix

Σtj(
) = MjP
t−1
t (
)M ′

j + R. (6.144)

This result follows because the conditional distribution of yyyt in (6.142) is iden-
tical to the fixed measurement matrix case presented in Section 4.2. The values
in (6.143) and (6.144), and hence the densities, fj(t|t − 1), for j = 1, . . . , m,
can be obtained directly from the Kalman filter, Property P6.1, with the mea-
surement matrices A(t−1) fixed at M(�).

Although fj(t|t − 1) is given explicitly in (6.142), its evaluation is highly
computer intensive. For example, with m = 2 states and n = 20 observations,
we have to filter over 2 + 22 + · · · + 220 possible sample paths; note, 220 =
1, 048, 576. One remedy is to trim (remove), at each t, highly improbable
sample paths; that is, remove events in (6.141) with extremely small probability
of occurring, and then evaluate fj(t|t−1) as if the trimmed sample paths could
not have occurred. Another alternative, as suggested by Gordon and Smith
(1990) and Shumway and Stoffer (1991), is to approximate fj(t|t − 1) using
the closest (in the sense of Kulback–Leibler distance) normal distribution. In
this case, the approximation leads to choosing normal distribution with the
same mean and variance associated with fj(t|t − 1); that is, we approximate
fj(t|t − 1) by a normal with mean Mjxxx

t−1
t and variance Σtj given in (6.136).

To develop a procedure for maximum likelihood estimation, the joint den-
sity of the data is

f(yyy1, . . . , yyyn) =
n∏

t=1

f(yyyt|Yt−1)

=
n∏

t=1

m∑
j=1

Pr(At = Mj |Yt−1)f(yyyt|At = Mj , Yt−1),
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and hence, the likelihood can be written as

lnLY (Θ) =
n∑

t=1

ln

⎛⎝ m∑
j=1

πj(t)fj(t|t − 1)

⎞⎠ . (6.145)

For the hidden Markov model, πj(t) would be replaced by πj(t|t−1). In (6.145),
we will use the normal approximation to fj(t|t−1). That is, henceforth, we will
consider fj(t|t−1) as the normal, N(Mjxxx

t−1
t , Σtj), density, where xxxt−1

t is given
in (6.130) and Σtj is given in (6.136). We may consider maximizing (6.145)
directly as a function of the parameters Θ = {µµµ0, Φ, Q, R} using a Newton
method, or we may consider applying the EM algorithm to the complete data
likelihood.

To apply the EM algorithm as in §6.3, we call xxx0, xxx1, . . . , xxxn, A1, . . . , An,
and yyy1, . . . , yyyn, the complete data, with likelihood given by

−2 ln LX,A,Y (Θ) = ln |Σ0| + (xxx0 − µµµ0)
′Σ−1

0 (xxx0 − µµµ0)

+ n ln |Q| +
n∑

t=1

(xxxt − Φxxxt−1)′Q−1(xxxt − Φxxxt−1)

− 2
n∑

t=1

m∑
j=1

I(At =Mj) lnπj(t) + n ln |R|

+
n∑

t=1

m∑
j=1

I(At =Mj)(yyyt − Atxxxt)′R−1(yyyt − Atxxxt). (6.146)

As discussed in §6.3, we require the minimization of the conditional expectation

Q
(
Θ
∣∣ Θ(k−1)

)
= E

{
−2 ln LX,A,Y (Θ)

∣∣∣ Yn, Θ(k−1)
}

, (6.147)

with respect to Θ at each iteration, k = 1, 2, . . . . The calculation and maxi-
mization of (6.147) is similar to the case of (6.65). In particular, with

πj(t|n) = E[I(At = Mj)
∣∣ Yn], (6.148)

we obtain on iteration k,
π

(k)
j (t) = πj(t|n), (6.149)

µµµ
(k)
0 = xxxn

0 , (6.150)

Φ(k) = S10S
−1
00 , (6.151)

Q(k) = n−1 (S11 − S10S
−1
00 S′

10
)
, (6.152)

and

R(k) = n−1
n∑

t=1

m∑
j=1

πj(t|n)
[
(yyyt − Mjxxx

n
t )(yyyt − Mjxxx

n
t )′ + MjP

n
t M ′

j

]
. (6.153)
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where S11, S10, S00 are given in (6.67)-(6.69). As before, at iteration k, the
filters and the smoothers are calculated using the current values of the pa-
rameters, Θ(k−1), and Σ0 is held fixed. Filtering is accomplished by using
(6.130)-(6.134). Smoothing is derived in a similar manner to the derivation
of the filter, and one is led to the smoother given in Property P6.2 and P6.3,
with one exception, the initial smoother covariance, (6.55), is now

Pn
n,n−1 =

m∑
j=1

πj(n|n)(I − KtjMj)ΦPn−1
n−1 . (6.154)

Unfortunately, the computation of πj(t|n) is excessively complicated, and re-
quires integrating over mixtures of normal distributions. Shumway and Stof-
fer (1991) suggest approximating the smoother πj(t|n) by the filter πj(t|t), and
find the approximation works well.

Example 6.16 Analysis of Influenza Data

We use the results of this section to analyze the U.S. monthly pneumonia
and influenza mortality data presented in §5.4, Figure 5.7. Letting yt

denote the mortality caused by pneumonia and influenza at month t,
we model yt in terms of a structural component model coupled with a
hidden Markov process that determines whether a flu epidemic exists.

The model consists of three structural components. The first component,
xt1, is an AR(2) process chosen to represent the periodic (seasonal) com-
ponent of the data,

xt1 = α1xt−1,1 + α2xt−2,1 + wt1, (6.155)

where wt1 is white noise, with var(wt1) = σ2
1 . The second component,

xt2, is an AR(1) process with a nonzero constant term, which is chosen
to represent the sharp rise in the data during an epidemic,

xt2 = β0 + β1xt−1,2 + wt2, (6.156)

where wt2 is white noise, with var(wt2) = σ2
2 . The third component, xt3,

is a fixed trend component given by,

xt3 = xt−1,3 + wt3, (6.157)

where var(wt3) = 0. The case in which var(wt3) > 0, which corresponds
to a stochastic trend (random walk), was tried here, but the estimation
became unstable, and lead to us fitting a fixed, rather than stochastic,
trend. Thus, in the final model, the trend component satisfies ∇xt3 = 0;
recall in Example 2.42 the data were also differenced once before fitting
the model.
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Table 6.3 Estimation Results for Influenza Data
Initial Final

Parameter Estimate Estimate
α1 1.401 (.079) 1.379 (.073)
α2 −.618 (.091) −.575 (.075)
β0 .162 (.042) .201 (.028)
β1 .156 (.142) —
σ1 .023 (.001) .023 (.001)
σ2 .105 (.015) .108 (.016)
σv .000 (.032) —

Estimated standard errors are shown in parentheses.

Throughout the years, periods of normal influenza mortality (state 1)
are modeled as

yt = xt1 + xt3 + vt, (6.158)

where the measurement error, vt, is white noise with var(vt) = σ2
v . When

an epidemic occurs (state 2), mortality is modeled as

yt = xt1 + xt2 + xt3 + vt. (6.159)

The model specified in (6.155)–(6.159) can be written in the general
state-space form. The state equation is⎛⎜⎝

xt1
xt−1,1
xt2
xt3

⎞⎟⎠ =

⎡⎢⎣
α1 α2 0 0
1 0 0 0
0 0 β1 0
0 0 0 1

⎤⎥⎦
⎛⎜⎝

xt−1,1
xt−2,1
xt−1,2
xt−1,3

⎞⎟⎠+

⎛⎜⎝
0
0
β0
0

⎞⎟⎠+

⎛⎜⎝
wt1
0

wt2
0

⎞⎟⎠ .

(6.160)
Of course, (6.160) can be written in the standard state-equation form as

xxxt = Φxxxt−1 + Γut + wwwt, (6.161)

where xxxt = (xt1, xt−1,1, xt2, xt3)′, Γ = (0, 0, β0, 0)′, ut ≡ 1, and Q is a
4 × 4 matrix with σ2

1 as the (1,1)-element, σ2
2 as the (3,3)-element, and

the remaining elements set equal to zero. The observation equation is

yt = Atxxxt + vt, (6.162)

where At is 1 × 4, and vt is white noise with var(vt) = R = σ2
v . We

assume all components of variance wt1, wt2, and vt are uncorrelated.

As discussed in (6.158) and (6.159), At can take one of two possible forms

At = M1 = [1, 0, 0, 1] no epidemic,
At = M2 = [1, 0, 1, 1] epidemic,
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Figure 6.12 Influenza data, yt, (dark line–squares) and the predicted proba-
bility that no epidemic occurs in month t given the past, π̂1(t|t−1) (line–circles)
for the ten-year period 1969-1978; 1968 is not shown.

corresponding to the two possible states of (1) no flu epidemic and (2)
flu epidemic, such that Pr(At = M1) = 1 − Pr(At = M2). In this
example, we will assume At is a hidden Markov chain, and hence we use
the updating equations given in Example 6.15, (6.139) and (6.140), with
transition probabilities π11 = π22 = .75 (and, thus, π12 = π21 = .25).

Parameter estimation was accomplished using a quasi-Newton–Raphson
procedure to maximize the approximate log likelihood given in (6.145),
with initial values of π1(1|0) = π2(1|0) = .5. Table 6.3 shows the re-
sults of the estimation procedure. On the initial fit, two estimates are
not significant, namely, β̂1 and σ̂v. When σ2

v = 0, there is no measure-
ment error, and the variability in data is explained solely by the variance
components of the state system, namely, σ2

1 and σ2
2 . The case in which

β1 = 0 corresponds to a simple level shift during a flu epidemic. In the
final model, with β1 and σ2

v removed, the estimated level shift (β̂0) cor-
responds to an increase in mortality by about .2 per 1000 during a flu
epidemic. The estimates for the final model are also listed in Table 6.3.

Figure 6.12 shows a plot of the data, yt, for the ten-year period of
1969-1978 as well as the estimated approximate conditional probabili-
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Figure 6.13 The three filtered structural components of influenza mortality:
x̂t

t1 (cyclic trace), x̂t
t2 (spiked trace), and x̂t

t3 (negative linear trace) for the
ten-year period 1969-1978.

ties π̂1(t|t − 1), that is, the predicted probability no epidemic occurs in
month t given the past, y1, . . . , yt−1. The results for the first year of the
data, 1968, are not included in the figure because of initial instabilities of
the filter. Of course, the estimated predicted probability a flu epidemic
will occur next month is π̂2(t|t − 1) = 1 − π̂1(t|t − 1). Thus, a good esti-
mator would have small values of π̂1(t|t−1) corresponding to peaks in yt.
Except for initial values where instability exists, the estimated prediction
probabilities are right on the mark. That is, the predicted probability of
a flu epidemic exceeds the probability of no epidemic when indeed a flu
epidemic occurred the next month.

Figure 6.13 shows the estimated filtered values (that is, filtering is done
using the parameter estimates) of the three components of the model,
xt

t1, xt
t2, and xt

t3. Except for initial instability (which is not shown),
x̂t

t1 represents the seasonal (cyclic) aspect of the data, x̂t
t2 represents the

spikes during a flu epidemic, and x̂t
t3 represents the slow decline in flu

mortality over the ten-year period of 1969-1978.

One-month-ahead prediction, say, ŷt−1
t , is obtained as follows,

ŷt−1
t = M1x̂̂x̂x

t−1
t if π̂1(t|t − 1) > π̂2(t|t − 1),

ŷt−1
t = M2x̂̂x̂x

t−1
t if π̂1(t|t − 1) ≤ π̂2(t|t − 1).
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Figure 6.14 One-month-ahead prediction, ŷt−1
t (line), of the number of deaths

caused by pneumonia and influenza, yt (points) for 1969-1978. The standard
error of the prediction is .02 when a flu epidemic is not predicted, and .11 when
a flu epidemic is predicted.

Of course, x̂̂x̂xt−1
t is the estimated state prediction, obtained via the filter

presented in (6.130)-(6.134) (with the addition of the constant term in
the model) using the estimated parameters. The results are shown in
Figure 6.14. The precision of the forecasts can be measured by the in-
novation variances, Σt1 when no epidemic is predicted, and Σt2 when an
epidemic is predicted. These values become stable quickly, and when no
epidemic is predicted, the estimated standard error of the prediction is
approximately .02 (this is the square root of Σt1 for t large); when a flu
epidemic is predicted, the estimated standard error of the prediction is
approximately .11.

The results of this analysis are impressive given the small number of
parameters and the degree of approximation that was made to obtain a
computationally simple method for fitting a complex model. In partic-
ular, as seen in Figure 6.12, the model is never fooled as to when a flu
epidemic will occur. This result is particularly impressive, given that,
for example, in the third year, around t = 36, it appeared as though an
epidemic was about to begin, but it never was realized, and the model
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predicted no flu epidemic that year. As seen in Figure 6.14, the pre-
dicted mortality tends to be underestimated during the peaks, but the
true values are typically within one standard error of the predicted value.
Further evidence of the strength of this technique can be found in the
example given in Shumway and Stoffer (1991).

6.9 Nonlinear and Non-normal State-Space
Models Using Monte Carlo Methods

Most of this chapter has focused on linear dynamic models assumed to be
Gaussian processes. Historically, these models were convenient because an-
alyzing the data was a relatively simple matter. These assumptions cannot
cover every situation, and it is advantageous to explore departures from these
assumptions. As seen in §6.8, the solution to the nonlinear and non-Gaussian
case will require computer-intensive techniques currently in vogue because of
the availability of cheap and fast computers. In this section, we take a Bayesian
approach to forecasting as our main objective; see West and Harrison (1997)
for a detailed account of Bayesian forecasting with dynamic models. Prior to
the mid-1980s, a number of approximation methods were developed to filter
non-normal or nonlinear processes in an attempt to circumvent the computa-
tional complexity of the analysis of such models. For example, the extended
Kalman filter and the Gaussian sum filter (Alspach and Sorensen, 1972) are
two such methods described in detail in Anderson and Moore (1979). As in
the previous section, these techniques typically rely on approximating the non-
normal distribution by one or several Gaussian distributions or by some other
parametric function.

With the advent of cheap and fast computing, a number of authors devel-
oped computer-intensive methods based on numerical integration. For exam-
ple, Kitagawa (1987) proposed a numerical method based on piecewise linear
approximations to the density functions for prediction, filtering, and smooth-
ing for non-Gaussian and nonstationary state-space models. Pole and West
(1988) used Gaussian quadrature techniques in a Bayesian analysis of nonlin-
ear dynamic models; West and Harrison (1997, Chapter 13) provide a detailed
explanation of these and similar methods. Markov chain Monte Carlo (MCMC)
methods refer to Monte Carlo integration methods that use a Markovian up-
dating scheme. We will describe the method in more detail later. The most
common MCMC method is the Gibbs sampler, which is essentially a modifica-
tion of the Metropolis algorithm (Metropolis et al., 1953) developed by Hast-
ings (1970) in the statistical setting and by Geman and Geman (1984) in the
context of image restoration. Later, Tanner and Wong (1987) used the ideas
in their substitution sampling approach, and Gelfand and Smith (1990) devel-
oped the Gibbs sampler for a wide class of parametric models. This technique
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was first used by Carlin et al. (1992) in the context of general nonlinear and
non-Gaussian state-space models. Frühwirth-Schnatter (1994) and Carter and
Kohn (1994) built on these ideas to develop efficient Gibbs sampling schemes
for more restrictive models.

If the model is linear, that is, (6.1) and (6.2) hold, but the distributions
are not Gaussian, a non-Gaussian likelihood can be defined by (6.31) in §6.2,
but where f0(·), fw(·) and fv(·) are not normal densities. In this case, pre-
diction and filtering can be accomplished using numerical integration tech-
niques (e.g., Kitagawa, 1987; Pole and West, 1988) or Monte Carlo techniques
(e.g. Frühwirth-Schnatter, 1994; Carter and Kohn, 1994) to evaluate (6.32)
and (6.33). Of course, the prediction and filter densities pΘ(xxxt

∣∣ Yt−1) and
pΘ(xxxt

∣∣ Yt) will no longer be Gaussian and will not generally be of the location-
scale form as in the Gaussian case. A rich class of non-normal densities is given
in (6.173).

In general, the state-space model can be given by the following equations:

xxxt = Ft(xxxt−1,wwwt) and yyyt = Ht(xxxt, vvvt), (6.163)

where Ft and Ht are known functions that may depend on parameters Θ
and wwwt and vvvt are white noise processes. The main component of the model
retained by (6.163) is that the states are Markov, and the observations are
conditionally independent, but we do not necessarily assume Ft and Ht are
linear, or wwwt and vvvt are Gaussian. Of course, if Ft(xxxt−1,wwwt) = Φtxxxt−1 + wwwt

and Ht(xxxt, vvvt) = Atxxxt + vvvt and wwwt and vvvt are Gaussian, we have the standard
DLM (exogenous variables can be added to the model in the usual way). In
the general model, (6.163), the likelihood is given by

LX,Y (Θ) = pΘ(xxx0)
n∏

t=1

pΘ(xxxt

∣∣ xxxt−1)pΘ(yyyt

∣∣ xxxt), (6.164)

and the prediction and filter densities, as given by (6.32) and (6.33) in Section
4.2, still hold.

Because our focus is on simulation using MCMC methods, we first describe
the technique in a general context.

Example 6.17 MCMC Techniques and the Gibbs Sampler

The goal of a Monte Carlo technique, of course, is to simulate a pseudo-
random sample of vectors from a desired density function pΘ(zzz). In
Markov chain Monte Carlo, we simulate an ordered sequence of pseudo-
random vectors, zzz0 �→ zzz1 �→ zzz2 �→ · · · by specifying a starting value, zzz0
and then sampling successive values from a transition density π(zzzt|zzzt−1),
for t = 1, 2, . . .. In this way, conditional on zzzt−1, the t-th pseudo-random
vector, zzzt, is simulated independent of its predecessors. This technique
alone does not yield a pseudo-random sample because contiguous draws
are dependent on each other (that is, we obtain a first-order dependent
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sequence of pseudo-random vectors). If done appropriately, the depen-
dence between the pseudo-variates zzzt and zzzt+m decays exponentially in
m, and we may regard the collection {zzzt+�m; 
 = 1, 2, . . .} for t and m
suitably large, as a pseudo-random sample. Alternately, one may repeat
the process in parallel, retaining the m-th value, on run g = 1, 2, . . ., say,
zzz
(g)
m , for large m. Under general conditions, the Markov chain converges

in the sense that, eventually, the sequence of pseudo-variates appear sta-
tionary and the individual zzzt are marginally distributed according to the
stationary “target” density pΘ(zzz). Technical details may be found in
Tierney (1994).

For Gibbs sampling, suppose we have a collection {zzz1, . . . , zzzk} of random
vectors with complete conditional densities denoted generically by

pΘ(zzzj

∣∣ zzzi, i �= j) ≡ pΘ(zzzj

∣∣ zzz1, . . . , zzzj−1, zzzj+1, . . . , zzzk),

for j = 1, . . . , k, available for sampling. Here, available means pseudo-
samples may be generated by some method given the values of the appro-
priate conditioning random vectors. Under mild conditions, these com-
plete conditionals uniquely determine the full joint density pΘ(zzz1, . . . , zzzk)
and, consequently, all marginals, pΘ(zzzj) for j = 1, . . . , k; details may
be found in Besag (1974). The Gibbs sampler generates pseudo-samples
from the joint distribution as follows. Start with an arbitrary set of start-
ing values, say, {zzz1[0], . . . , zzzk[0]}. Draw zzz1[1] from pΘ(zzz1|zzz2[0], . . . , zzzk[0]),
then draw zzz2[1] from pΘ(zzz2|zzz1[1], zzz3[0], . . . , zzzk[0]), and so on up to zzzk[1] from
pΘ(zzzk|zzz1[1], . . . , zzzk−1[1]), to complete one iteration. After 
 such itera-
tions, we have the collection {zzz1[�], . . . , zzzk[�]}. Geman and Geman (1984)
showed that under mild conditions, {zzz1[�], . . . , zzzk[�]} converges (
 → ∞)
in distribution to a random observation from pΘ(zzz1, . . . , zzzk). For this
reason, we typically drop the subscript [
] from the notation, assuming

 is sufficiently large for the generated sample to be thought of as a re-
alization from the joint density; hence, we denote this first realization
as {zzz(1)

1[�], . . . , zzz
(1)
k[�]} ≡ {zzz(1)

1 , . . . , zzz
(1)
k }. This entire process is replicated in

parallel, a large number, G, of times providing pseudo-random iid collec-
tions {zzz(g)

1 , . . . , zzz
(g)
k }, for g = 1, . . . , G from the joint distribution. These

simulated values can the be used to estimate the marginal densities. In
particular, if pΘ(zzzj |zzzi, i �= j) is available in closed form, then

p̂Θ(zzzj) = G−1
G∑

g=1

pΘ(zzzj

∣∣ zzz(g)
i , i �= j). (6.165)

Approximation (6.165) is based on the fact that, for random variables x
and y with joint density p(x, y), the marginal density of x is obtained as
follows: p(x) =

∫
p(x, y)dy =

∫
p(x|y)p(y)dy. Because of the relatively

recent appearance of Gibbs sampling methodology, several important
theoretical and practical issues are under investigation. These issues
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include the diagnosis of convergence, modification of the sampling order,
efficient estimation, and sequential sampling schemes (as opposed to the
parallel processing described above) to mention a few. At this time, the
best advice can be obtained from the texts by Gelman et al. (1995) and
Gilks et al. (1996), and we are certain that many more will follow.

Finally, it may be necessary to nest rejection sampling within the Gibbs
sampling procedure. The need for rejection sampling arises when we
want to sample from a density, say, f(zzz), but f(zzz) is known only up to a
proportionality constant, say, p(zzz) ∝ f(zzz). If a density g(zzz) is available,
and there is a constant c for which p(zzz) ≤ cg(zzz) for all zzz, the rejection
algorithm generates pseudo-variates from f(zzz) by generating a value,
zzz∗ from g(zzz) and accepting it as a value from f(zzz) with probability
π(zzz∗) = p(zzz∗)/[cg(zzz∗)]. This algorithm can be quite inefficient if π(·) is
close to zero; in such cases, more sophisticated envelope functions may
be needed. Further discussion of these matters in the case of nonlinear
state-space models can be found in Carlin et al. (1992, Examples 1.2 and
3.2).

In Example 6.17, the generic random vectors zzzj can represent parameter values,
such as components of Θ, state values xxxt, or future observations yyyn+m, for
m ≥ 1. This will become evident in the following examples. Before discussing
the general case of nonlinear and non-normal state-space models, we briefly
introduce MCMC methods for the Gaussian DLM, as presented in Frühwirth-
Schnatter (1994) and Carter and Kohn (1994).

Example 6.18 Assessing Model Parameters for the Gaussian DLM

Consider the Gaussian DLM given by

xxxt = Φtxxxt−1 + wwwt and yt = aaa′
txxxt + vt. (6.166)

The observations are univariate, and the state process is p-dimensional;
this DLM includes the structural models presented in §6.5. The prior
on the initial state is xxx0 ∼ N(µµµ0, Σ0), and we assume that wwwt ∼ iid
N(000, Qt), independent of vt ∼ iid N(0, rt). The collection of unknown
model parameters will be denoted by Θ.

To explore how we would assess the values of Θ using an MCMC tech-
nique, we focus on the problem obtaining the posterior distribution,
p(Θ

∣∣ Yn), of the parameters given the data, Yn = {y1, . . . , yn} and a
prior π(Θ). Of course, these distributions depend on “hyperparameters”
that are assumed to be known. (Some authors consider the states xxxt as
the first level of parameters because they are unobserved. In this case,
the values in Θ are regarded as the hyperparameters, and the parameters
of their distributions are regarded as hyper-hyperparameters.) Denoting
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the entire set of state vectors as Xn = {xxx0, xxx1, . . . , xxxn}, the posterior can
be written as

p(Θ
∣∣ Yn) =

∫
p(Θ

∣∣ Xn, Yn) p(Xn, Θ∗ ∣∣ Yn) dXn dΘ∗. (6.167)

Although the posterior, p(Θ
∣∣ Yn), may be intractable, conditioning on

the states can make the problem manageable in that

p(Θ
∣∣ Xn, Yn) ∝ π(Θ) p(x0

∣∣ Θ)
n∏

t=1

p(xxxt

∣∣ xxxt−1, Θ) p(yt

∣∣ xxxt, Θ) (6.168)

can be easier to work with (either as members of conjugate families or
using some rejection scheme); we will discuss this in more detail when
we present the nonlinear, non-Gaussian case, but we will assume for the
present p(Θ

∣∣ Xn, Yn) is in closed form.

Suppose we can obtain G pseudo-random draws, X
(g)
n ≡ (Xn, Θ∗)(g),

for g = 1, . . . , G, from the joint posterior density p(Xn, Θ∗ ∣∣ Yn). Then
(6.167) can be approximated by

p̂(Θ
∣∣ Yn) = G−1

G∑
g=1

p(Θ
∣∣ X(g)

n , Yn).

A sample from p(Xn, Θ∗ ∣∣ Yn) is obtained using two different MCMC
methods. First, the Gibbs sampler is used, for each g, as follows: sample
Xn[�] given Θ∗

[�−1] from p(Xn

∣∣ Θ∗
[�−1], Yn), and then a sample Θ∗

[�] from
p(Θ

∣∣ Xn[�], Yn) as given by (6.168), for 
 = 1, 2, . . .. Stop when 
 is
sufficiently large, and retain the final values as X

(g)
n . This process is

repeated G times.

The first step of this method requires simultaneous generation of the
state vectors. Because we are dealing with a Gaussian linear model, we
can rely on the existing theory of the Kalman filter to accomplish this
step. This step is conditional on Θ, and we assume at this point that
Θ is fixed and known. In other words, our goal is to sample the entire
set of state vectors, Xn = {xxx0, xxx1, . . . , xxxn}, from the multivariate normal
posterior density pΘ(Xn

∣∣ Yn), where Yn = {y1, . . . , yn} represents the
observations. Because of the Markov structure, we can write,

pΘ(Xn

∣∣ Yn) = pΘ(xxxn

∣∣ Yn)pΘ(xxxn−1
∣∣ xxxn, Yn−1) · · · pΘ(xxx0

∣∣ xxx1). (6.169)

In view of (6.169), it is possible to sample the entire set of state vec-
tors, Xn, by sequentially simulating the individual states backward.
This process yields a simulation method that Frühwirth–Schnatter (1994)
called the forward-filtering, backward-sampling algorithm. In particular,
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because the processes are Gaussian, we need only obtain the conditional
means and variances, say, mmmt = EΘ(xxxt

∣∣ Yt, xxxt+1), and Vt = varΘ(xxxt

∣∣
Yt, xxxt+1). This conditioning argument is akin to having xxxt+1 as an addi-
tional observation on state xxxt. In particular, using standard multivariate
normal distribution theory,

mmmt = xxxt
t + Jt(xxxt+1 − xxxt

t+1),
Vt = P t

t − JtP
t
t+1J

′
t, (6.170)

for t = n − 1, n − 2, . . . , 0, where Jt is defined in (6.49). To verify
(6.170), the essential part of the Gaussian density (that is, the exponent)
of xxxt

∣∣ Yt, xxxt+1 is

(xxxt+1 − Φt+1xxxt)′[Qt+1]−1(xxxt+1 − Φt+1xxxt) + (xxxt − xxxt
t)

′[P t
t ]−1(xxxt − xxxt

t),

and we simply complete the square; see Frühwirth–Schnatter (1994) or
West and Harrison (1997, Section 4.7). Hence, the algorithm is to first
sample xxxn from a N(xxxn

n, Pn
n ), where xxxn

n and Pn
n are obtained from the

Kalman filter, Property P6.1, and then sample xxxt from a N(mmmt, Vt), for
t = n − 1, n − 2, . . . , 0, where the conditioning value of xxxt+1 is the value
previously sampled; mmmt and Vt are given in (6.170).

Next, we address an MCMC approach to nonlinear and non-Gaussian state-
space modeling that was first presented in Carlin et al. (1992). We consider
the general model given in (6.163), but with additive errors:

xxxt = Ft(xxxt−1) + wwwt and yyyt = Ht(xxxt) + vvvt, (6.171)

where Ft and Ht are given, but may also depend on unknown parameters, say,
Φt and At, respectively, the collection of which will be denoted by Θ. The errors
are independent white noise sequences with var(wwwt) = Qt and var(vvvt) = Rt.
Although time-varying variance–covariance matrices are easily incorporated in
this framework, to ease the discussion we focus on the case Qt ≡ Q and Rt ≡ R.
Also, although it is not necessary, we assume the initial state condition xxx0 is
fixed and known; this is merely for notational convenience, so we do not have
to carry along the additional terms involving xxx0 throughout the discussion.

In general, the likelihood specification for the model is given by

LX,Y (Θ, Q, R) =
n∏

t=1

f1(xxxt

∣∣ xxxt−1, Θ, Q) f2(yyyt

∣∣ xxxt, Θ, R), (6.172)

where it is assumed the densities f1(·) and f2(·) are scale mixtures of normals.
Specifically, for t = 1, . . . , n,

f1(xxxt

∣∣ xxxt−1, Θ, Q) =
∫

f(xxxt

∣∣ xxxt−1, Θ, Q, λt) p1(λt) dλt,

f2(yyyt

∣∣ xxxt, Θ, R) =
∫

f(yyyt

∣∣ xxxt, Θ, R, ωt) p2(ωt) dωt, (6.173)
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where conditional on the independent sequences of nuisance parameters λλλ =
(λt; t = 1, . . . , n) and ωωω = (ωt; t = 1, . . . , n),

xxxt

∣∣ xxxt−1, Θ, Q, λt ∼ N
(
Ft(xxxt−1; Θ), λtQ

)
,

yyyt

∣∣ xxxt, Θ, R, ωt ∼ N
(
Ht(xxxt; Θ), ωtR

)
. (6.174)

By varying p1(λt) and p2(ωt), we can have a wide variety of non-Gaussian
error densities. These densities include, for example, double exponential, lo-
gistic, and t distributions in the univariate case and a rich class of multivariate
distributions; this is discussed further in Carlin et al. (1992). The key to the
approach is the introduction of the nuisance parameters λλλ and ωωω and the struc-
ture (6.174), which lends itself naturally to the Gibbs sampler and allows for
the analysis of this general nonlinear and non-Gaussian problem.

According to Example 6.17, to implement the Gibbs sampler, we must be
able to sample from the following complete conditional distributions:

(i) xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn t = 1, . . . , n,

(ii) λt

∣∣ λs	=t, ωωω, Θ, Q, R, Yn, Xn ∼ λt

∣∣ Θ, Q,xxxt, xxxt−1 t = 1, . . . , n,

(iii) ωt

∣∣ ωs	=t, λλλ, Θ, Q, R, Yn, Xn ∼ ωt

∣∣ Θ, R, yyyt, xxxt t = 1, . . . , n,

(iv) Q
∣∣ λλλ,ωωω, Θ, R, Yn, Xn ∼ Q

∣∣ λλλ, Yn, Xn,

(v) R
∣∣ λλλ,ωωω, Θ, Q, Yn, Xn ∼ R

∣∣ ωωω, Yn, Xn,

(vi) Θ
∣∣ λλλ,ωωω, Q, R, Yn, Xn ∼ Θ

∣∣ Yn, Xn,

where Xn = {xxx1, . . . , xxxn} and Yn = {yyy1, . . . , yyyn}. The main difference between
this method and the linear Gaussian case is that, because of the generality, we
sample the states one-at-a-time rather than simultaneously generating all of
them. As discussed in Carter and Kohn (1994), if possible, it is more efficient
to generate the states simultaneously as in Example 6.18.

We will discuss items (i) and (ii) above. The third item follows in a similar
manner to the second, and items (iv)-(vi) will follow from standard multivariate
normal distribution theory and from Wishart distribution theory because of
the conditioning on λλλ and ωωω. We will discuss this matter further in the next
example. First, consider the linear model, Ft(xxxt−1) = Φtxxxt−1, and Ht(xxxt) =
Atxxxt in (6.171). In this case, for t = 1, . . . , n, xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn has a
p-dimensional Np(Btbbbt, Bt) distribution, with

B−1
t =

Q−1

λt
+

A′
tR

−1At

ωt
+

Φ′
t+1Q

−1Φt+1

λt+1
,

bbbt =
xxxt−1Φ′

tQ
−1

λt
+

yyytR
−1At

ωt
+

xxxt+1Q
−1Φt+1

λt+1
, (6.175)
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where, when t = n in (6.175), terms in the sum with elements having a sub-
script of n + 1 are dropped (this is assumed to be the case in what follows,
although we do not explicitly state it). This result follows by noting the es-
sential part of the multivariate normal distribution (that is, the exponent) of
xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn is

(xxxt − Φtxxxt−1)′(λtQ)−1(xxxt − Φtxxxt−1) + (yyyt − Atxxxt)′(ωtR)−1(yyyt − Atxxxt)

+(xxxt+1 − Φt+1xxxt)′(λt+1Q)−1(xxxt+1 − Φt+1xxxt), (6.176)

which upon manipulation yields (6.175).

Example 6.19 Nonlinear Models

In the case of nonlinear models, we can use (6.175) with slight modifica-
tions. For example, consider the case in which Ft is nonlinear, but Ht is
linear, so the observations are yyyt = Atxxxt + vvvt. Then,

xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn ∝ η1(xxxt)Np(B1tbbb1t, B1t), (6.177)

where

B−1
1t =

Q−1

λt
+

A′
tR

−1At

ωt
,

bbb1t =
F ′

t (xxxt−1)Q−1

λt
+

yyytR
−1At

ωt
,

and

η1(xxxt) = exp
{

− 1
2λt+1

(
xxxt+1 − Ft+1(xxxt)

)′
Q−1

(
xxxt+1 − Ft+1(xxxt)

)}
.

Because 0 ≤ η1(xxxt) ≤ 1, for all xxxt, the distribution we want to sample
from is dominated by the Np(B1tbbb1t, B1t) density. Hence, we may use
rejection sampling as discussed in Example 6.17 to obtain an observation
from the required density. That is, we generate a pseudo-variate from
the Np(B1tbbb1t, B1t) density and accept it with probability η1(xxxt).

We proceed analogously in the case in which Ft(xxxt−1) = Φtxxxt−1 is linear
and Ht(xxxt) is nonlinear. In this case,

xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn ∝ η2(xxxt)Np(B2tbbb2t, B2t), (6.178)

where

B−1
2t =

Q−1

λt
+

Φ′
t+1Q

−1Φt+1

λt+1
,

bbb2t =
xxxt−1Φ′

tQ
−1

λt
+

xxxt+1Q
−1Φt+1

λt+1
,



384 State-Space Models

and

η2(xxxt) = exp
{

− 1
2ωt

(
yyyt − Ht(xxxt)

)′
R−1

(
yyyt − Ht(xxxt)

)}
.

Here, we generate a pseudo-variate from the Np(B2tbbb2t, B2t) density and
accept it with probability η2(xxxt).

Finally, in the case in which both Ft and Ht are nonlinear, we have

xxxt

∣∣ xxxs	=t, λλλ,ωωω, Θ, Q, R, Yn ∝ η1(xxxt)η2(xxxt)Np(Ft(xxxt−1), λtQ), (6.179)

so we sample from a Np(Ft(xxxt−1), λtQ) density and accept it with prob-
ability η1(xxxt)η2(xxxt).

Determination of (ii), λt

∣∣ Θ, Q,xxxt, xxxt−1 follows directly from Bayes theo-
rem; that is, p(λt

∣∣ Θ, Q,xxxt, xxxt−1) ∝ p1(λt)p(xxxt

∣∣ λt, xxxt−1, Θ, Q). By (6.173),
however, we know the normalization constant is given by f1(xxxt

∣∣ xxxt−1, Θ, Q),
and thus the complete conditional density for λt is of a known functional form.

Many examples of these techniques are given in Carlin et al. (1992), in-
cluding the problem of model choice. In the next example, we consider a uni-
variate nonlinear model in which the state noise process has a t-distribution.
As noted in Meinhold and Singpurwalla (1989), using t-distributions for the
error processes is a way of robustifying the Kalman filter against outliers. In
this example we present a brief discussion of a detailed analysis presented in
Carlin et al. (1992, Example 4.2); readers interested in more detail may find it
in that article.

Example 6.20 Analysis of a Nonlinear, Non-Gaussian State-Space
Model

Kitagawa (1987) considered the analysis of data generated from the fol-
lowing univariate nonlinear model:

xt = Ft(xt−1) + wt and yt = Ht(xt) + vt t = 1, . . . , 100, (6.180)

with

Ft(xt−1) = αxt−1 + βxt−1/(1 + x2
t−1) + γ cos[1.2(t − 1)],

Ht(xt) = x2
t /20, (6.181)

where x0 = 0, wt are independent random variables having a central
t-distribution with ν = 10 degrees and scaled so var(wt) = σ2

w = 10 [we
denote this generically by t(0, σ, ν)], and vt is white standard Gaussian
noise, var(vt) = σ2

v = 1. The state noise and observation noise are
mutually independent. Kitagawa (1987) discussed the analysis of data
generated from this model with α = .5, β = 25, and γ = 8 assumed
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known. We will use these values of the parameters in this example, but
we will assume they are unknown. Figure 6.15 shows a typical data
sequence yt and the corresponding state process xt.

Our goal here will be to obtain an estimate of the prediction density
p(x101

∣∣ Y100). To accomplish this, we use n = 101 and consider y101 as
a latent variable (we will discuss this in more detail shortly). The priors
on the variance components are chosen from a conjugate family, that
is, σ2

w ∼ IG(a0, b0) independent of σ2
v ∼ IG(c0, d0), where IG denotes

the inverse (reciprocal) gamma distribution [z has an inverse gamma
distribution if 1/z has a gamma distribution; general properties can be
found, for example, in Box and Tiao (1973, Section 8.5)]. Then,

σ2
w

∣∣ λλλ, Yn, Xn ∼

IG

⎛⎝a0 +
n

2
,

{
1
b0

+
1
2

n∑
t=1

[xt − F (xt−1)]2/λt

}−1
⎞⎠ ,

σ2
v

∣∣ ωωω, Yn, Xn ∼

IG

⎛⎝c0 +
n

2
,

{
1
d0

+
1
2

n∑
t=1

[yt − H(xt)]2/ωt

}−1
⎞⎠ . (6.182)

Next, letting ν/λt ∼ χ2
ν , we get that, marginally, wt

∣∣ σw ∼ t(0, σw, ν),
as required, leading to the complete conditional λt

∣∣ σw, α, β, γ, Yn, Xn,
for t = 1, . . . , n, being distributed as

IG

(
ν + 1

2
, 2
{

[xt − F (xt−1)]2

σ2
w

+ ν

}−1
)

. (6.183)

We take ωt ≡ 1 for t = 1, . . . , n, because the observation noise is Gaussian.

For the states, xt, we take a normal prior on the initial state, x0 ∼
N(µ0, σ

2
0), and then we use rejection sampling to conditionally generate

a state value xt, for t = 1, . . . , n, as described in Example 6.19, equation
(6.179). In this case, η1(xt) and η2(xt) are given in (6.177) and (6.178),
respectively, with Ft and Ht given by (6.181), Θ = (α, β, γ)′, Q = σ2

w

and R = σ2
v . Endpoints take some special consideration; we generate x0

from a N(µ0, σ
2
0) and accept it with probability η1(x0), and we generate

x101 as usual and accept it with probability η2(x101). The last complete
conditional depends on y101, a latent data value not observed but instead
generated according to its complete conditional, which is N(x2

101/20, σ2
v),

because ω101 = 1.

The prior on Θ = (α, β, γ)′ is taken to be trivariate normal with mean
(µα, µβ , µγ)′ and diagonal variance–covariance matrix diag{σ2

α, σ2
β , σ2

γ}.
The necessary conditionals can be found using standard normal theory,
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Figure 6.15 The state process, xt (top), and the observations, yt (bottom),
for t = 1, . . . , 100 generated from the model (6.180).

as done in (6.175). For example, the complete conditional distribution
of α is of the form N(Bb,B), where

B−1 =
1
σ2

α

+
1

σ2
w

n∑
t=1

x2
t−1

λt

and

b =
µα

σ2
α

+
1

σ2
w

n∑
t=1

xt−1

λt

(
xt − β

xt−1

1 + x2
t−1

− γ cos[1.2(t − 1)]
)

.

The complete conditional for β has the same form, with

B−1 =
1
σ2

β

+
1

σ2
w

n∑
t=1

x2
t−1

λt(1 + x2
t−1)2

and

b =
µβ

σ2
β

+
1

σ2
w

n∑
t=1

xt−1

λt(1 + x2
t−1)

(xt − αxt−1 − γ cos[1.2(t − 1)]) ,
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Figure 6.16 Estimated one-step-ahead prediction posterior density
p̂(x101|Y100) of the state process for the nonlinear and non-normal model given
by (6.180) using Gibbs sampling, G = 500.

and for γ the values are

B−1 =
1
σ2

γ

+
1

σ2
w

n∑
t=1

cos2[1.2(t − 1)]
λt

and

b =
µγ

σ2
γ

+
1

σ2
w

n∑
t=1

cos[1.2(t − 1)]
λt

(
xt − αxt−1 − β

xt−1

1 + x2
t−1

)
.

In this example, we put µ0 = 0, σ2
0 = 10, and a0 = 3, b0 = .05 (so the

prior on σ2
w has mean and standard deviation equal to 10), and c0 = 3,

d0 = .5 (so the prior on σ2
v has mean and standard deviation equal to

one). The normal prior on Θ = (α, β, γ)′ had corresponding mean vector
equal to (µα = .5, µβ = 25, µγ = 8)′ and diagonal variance matrix equal
to diag{σ2

α = .25, σ2
β = 10, σ2

γ = 4}. The Gibbs sampler ran for 
 = 50
iterations for G = 500 parallel replications per iteration. We estimate
the marginal posterior density of x101 as

p̂(x101
∣∣ Y100) = G−1

G∑
g=1

N
(
x101

∣∣∣ [Ft(xt−1)](g), λ
(g)
101σ

2(g)
w

)
, (6.184)
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where N(·|a, b) denotes the normal density with mean a and variance b,
and

[Ft(xt−1)](g) = α(g)x
(g)
t−1 + β(g)x

(g)
t−1/(1 + x

2(g)
t−1 ) + γ(g) cos[1.2(t − 1)].

The estimate, (6.184), with G = 500, is shown in Figure 6.16. Other as-
pects of the analysis, for example, the marginal posteriors of the elements
of Θ, can be found in Carlin et al. (1992).

6.10 Stochastic Volatility

Recently, there has been considerable interest in stochastic volatility models.
These models are similar to the ARCH models presented in Chapter 5, but
they add a stochastic noise term to the equation for σt. Recall from §5.2 that
a GARCH(1, 1) model for a return, which we denote here by rt, is given by

rt = σtεt (6.185)
σ2

t = α0 + α1r
2
t−1 + β1σ

2
t−1, (6.186)

where εt is Gaussian white noise. If we define

ht = log σ2
t and yt = log r2

t ,

then (6.185) can be written as

yt = ht + log ε2t . (6.187)

Equation (6.187) is considered the observation equation, and the stochastic
variance ht is considered to be an unobserved state process. Similar to (6.186),
the volatility process follows, in its basic form, an autoregression,

ht = φ0 + φ1ht−1 + wt, (6.188)

where wt is white Gaussian noise with variance σ2
w.

Together, (6.187) and (6.188) make up the stochastic volatility model due
to Harvey, Ruiz and Shephard (1994). If ε2t had a log-normal distribution,
(6.187)-(6.188) would form a Gaussian state-space model, and we could then
use standard DLM results to fit the model to data. Unfortunately, yt = log r2

t

is rarely normal, so we typically keep the ARCH normality assumption on εt;
in which case, log ε2t is distributed as the log of a chi-squared random variable
with one degree of freedom. This density is given by

f(x) =
1√
2π

exp
{

−1
2

(ex − x)
}

− ∞ < x < ∞, (6.189)

and its mean and variance are −1.27 and π2/2, respectively; the density (6.189)
is highly skewed with a long tail on the left (see Figure 6.18).
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Various approaches to the fitting of stochastic volatility models have been
examined; these methods include a wide range of assumptions on the obser-
vational noise process. A good summary of the proposed techniques, both
Bayesian (via MCMC) and non-Bayesian approaches (such as quasi-maximum
likelihood estimation and the EM algorithm), can be found in Jacquier et
al. (1994), and Shephard (1996). Simulation methods for classical inference
applied to stochastic volatility models are discussed in Danielson (1994) and
Sandmann and Koopman (1998).

Kim, Shephard and Chib (1998) proposed modeling the log of a chi-squared
random variable by a mixture of seven normals to approximate the first four
moments of the observational error distribution; the mixture is fixed and no
additional model parameters are added by using this technique. In an effort to
keep matters simple, and perhaps somewhat more general (in that we allow the
observational error dynamics to depend on parameters that will be fitted), our
method of fitting stochastic volatility models is to retain the Gaussian state
equation (6.188), but to write the observation equation, with yt = log r2

t , as

yt = α + ht + ηt, (6.190)

where ηt is white noise, whose distribution is a mixture of two normals, one
centered at zero. In particular, we write

ηt = utzt0 + (1 − ut)zt1, (6.191)

where ut is an iid Bernoulli process, Pr{ut = 0} = π0, Pr{ut = 1} = π1
(π0 + π1 = 1), zt0 ∼ iid N(0, σ2

0), and zt1 ∼ iid N(µ1, σ
2
1).

The advantage to this model is that it is easy to fit because it uses nor-
mality. In fact, the model equations (6.188) and (6.190)-(6.191) are similar
to those presented in Peña and Guttman (1988), who used the idea to obtain
a robust Kalman filter, and, as previously mentioned, in Kim, Shephard and
Chib (1998). The material presented in §6.8 applies here, and in particular,
the filtering equations for this model are

ht
t+1 = φ0 + φ1h

t−1
t +

1∑
j=0

πtjKtjεtj , (6.192)

P t
t+1 = φ2

1P
t−1
t + σ2

w −
1∑

j=0

πtjK
2
tjΣtj , (6.193)

εt0 = yt − α − ht−1
t , (6.194)

εt1 = yt − α − ht−1
t − µ1, (6.195)

Σt0 = P t−1
t + σ2

0 , (6.196)
Σt1 = P t−1

t + σ2
1 , (6.197)

Kt0 = φ1P
t−1
t

/
Σt0, (6.198)

Kt1 = φ1P
t−1
t

/
Σt1. (6.199)
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To complete the filtering, we must be able to assess the probabilities πt1 =
Pr(ut = 1

∣∣ y1, . . . , yt), for t = 1, . . . , n; of course, πt0 = 1−πt1. Let fj(t
∣∣ t−1)

denote the conditional density of yt given the past y1, . . . , yt−1, and ut = j
(j = 0, 1). Then,

πt1 =
π1f1(t

∣∣ t − 1)
π0f0(t

∣∣ t − 1) + π1f1(t
∣∣ t − 1)

, (6.200)

where we assume the distribution πj , for j = 0, 1 has been specified a priori.
If the investigator has no reason to prefer one state over another the choice
of uniform priors, π1 = 1/2, will suffice. Unfortunately, it is computationally
difficult to obtain the exact values of fj(t

∣∣ t − 1); although we can give an
explicit expression of fj(t

∣∣ t − 1), the actual computation of the conditional
density is prohibitive. A viable approximation, however, is to choose fj(t

∣∣ t−1)
to be the normal density, N(ht−1

t + µj , Σtj), for j = 0, 1 and µ0 = 0; see §6.8
for details.

The innovations filter given in (6.192)–(6.137) can be derived from the
Kalman filter by a simple conditioning argument. For example, to derive
(6.192), we write

E
(
ht+1

∣∣y1, . . . , yt

)
=

1∑
j=0

E
(
ht+1

∣∣y1, . . . , yt, ut = j
)
Pr(ut = j

∣∣y1, . . . , yt)

=
1∑

j=0

(
φ0 + φ1h

t−1
t + Ktjεtj

)
πtj

= φ0 + φ1h
t−1
t +

1∑
j=0

πtjKtjεtj .

Estimation of the parameters, Θ = (φ0, φ1, σ
2
0 , µ1, σ

2
1 , σ2

w)′, is accomplished
via MLE based on the likelihood given by

lnLY (Θ) =
n∑

t=1

ln

⎛⎝ 1∑
j=0

πj fj(t
∣∣ t − 1)

⎞⎠ , (6.201)

where the density fj(t
∣∣ t−1) is approximated by the normal density, N(ht−1

t +
µj , σ2

j ), previously mentioned. We may consider maximizing (6.201) directly
as a function of the parameters Θ using a Newton method, or we may consider
applying the EM algorithm to the complete data likelihood.

Example 6.21 Analysis of the New York Stock Exchange Returns

Figure 6.17 shows the log of the squares of returns, yt = log r2
t , of 2000

daily observations of the NYSE previously displayed in Figure 1.4.
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Figure 6.17 Graph of yt = log r2
t , where rt is the daily return of the NYSE,

2000 observations.

Table 6.4 Estimation Results for the NYSE Fit
Estimated

Parameter Estimate Standard Error
φ0 −.006 .016
φ1 .988 .007
σw .091 .027
α −9.607 1.266
σ0 1.220 .065
µ1 −2.292 .204
σ1 2.683 .105

Model (6.188) and (6.190)-(6.191), with and π1 fixed at .5, was fit to the
data using a quasi-Newton–Raphson method to maximize (6.201). The
results are given in Table 6.4. Figure 6.18 compares the density of the
log of a χ2

1 with the fitted normal mixture; we note the data indicate
a substantial amount of probability in the upper tail that the log-χ2

1
distribution misses.

Finally, Figure 6.19 shows yt for 800 ≤ t ≤ 1000, which includes the
crash of October 19, 1987, with yt−1

t = α̂ + ht−1
t superimposed on the

graph; compare with Figure 5.6. Also displayed are error bounds.

It is possible to use the bootstrap procedure described in §6.7 for the sto-
chastic volatility model, with some minor changes. The following procedure
was described in Stoffer and Wall (2004). We develop a vector first-order
equation, as was done in (6.117). First, using (6.194)–(6.195), and noting that
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Figure 6.18 Density of the log of a χ2
1 as given by (6.189) (solid line) and the

fitted normal mixture (dashed line) form the NYSE example.

yt = πt0yt + πt1yt, we may write

yt = α + ht−1
t + πt0εt0 + πt1(εt1 + µ1). (6.202)

Consider the standardized innovations

etj = Σ−1/2
tj εtj , j = 0, 1, (6.203)

and define the 2 × 1 vector

eeet =
[

et0
et1

]
.

Also, define the 2 × 1 vector

ξξξt =
[

ht
t+1
yt

]
.

Combining (6.192) and (6.202) results in a vector first-order equation for ξξξt

given by
ξξξt = Fξξξt−1 + Gt + Hteeet, (6.204)

where

F =
[

φ1 0
1 0

]
, Gt =

[
φ0

α + πt1µ1

]
, Ht =

[
πt0Kt0Σ

1/2
t0 πt1Kt1Σ

1/2
t1

πt0Σ
1/2
t0 πt1Σ

1/2
t1

]
.
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Figure 6.19 Two hundred observations of yt = log r2
t , for 801 ≤ t ≤ 1000,

where rt is the daily return of the NYSE (top). Corresponding one-step-ahead
predicted log volatility, log σ2

t , with ±2 standard prediction errors (bottom).

Hence, the steps in bootstrapping for this case are the same as steps 1 through
5 described in §5.7, but with (6.117) replaced by the following first-order equa-
tion:

ξξξ∗
t = F (Θ̂)ξξξ∗

t−1 + Gt(Θ̂; π̂t1) + Ht(Θ̂; π̂t1)eee∗
t , (6.205)

where Θ̂ = (φ̂0, φ̂1, σ̂
2
0 , α̂, µ̂1, σ̂

2
1 , σ̂2

w)′ is the MLE of Θ, and π̂t1 is estimated via
(6.200), replacing f1(t

∣∣ t − 1) and f0(t
∣∣ t − 1) by their respective estimated

normal densities (π̂t0 = 1 − π̂t1).

Example 6.22 Analysis of the U.S. GNP Growth Rate

In Example 5.3, we fit an ARCH model to the U.S. GNP growth rate.
In this example, we will fit a stochastic volatility model to the residuals
from the MA(2) fit on the growth rate (see Example 3.35).

Figure 6.20 shows the log of the squared residuals, say yt, from the MA(2)
fit on the U.S. GNP series. The stochastic volatility model (6.187)–
(6.191) was then fit to yt. Table 6.5 shows the MLEs of the model
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Figure 6.20 Log of the squared residuals from an MA(2) fit on GNP growth
rate.

parameters along with their asymptotic SEs assuming the model is cor-
rect. Also displayed in Table 6.5 are the means and SEs of B = 500
bootstrapped samples. There is some amount of agreement between the
asymptotic values and the bootstrapped values. The interest here, how-
ever, is not so much in the SEs, but in the actual sampling distribu-
tion of the estimates. For example, Figure 6.21 compares the bootstrap
histogram and asymptotic normal distribution of φ̂1. In this case, the
bootstrap distribution exhibits positive kurtosis and skewness which is
missed by the assumption of asymptotic normality.

6.11 State-Space and ARMAX Models for
Longitudinal Data Analysis

In some studies, we may observe several independent k-dimensional time series,
say, yyyt�, for 
 = 1, . . . , N . For example, a new treatment may be given to N
patients with high blood pressure, and the systolic and diastolic blood pressures
(SBP and DBP) are recorded at equal time intervals, for some time, using
an ambulatory device. We may think of yyyt� as being the bivariate, k = 2,
recordings of SBP and DBP at time t for person 
. It is also reasonable to
assume, in this example, exogenous variables may have been collected on each



6.12: Analysis of Longitudinal Data 395

Figure 6.21 Bootstrap histogram and asymptotic distribution of φ̂1 for the
U.S. GNP example.

Table 6.5 Estimates and Their Asymptotic and Bootstrap
Standard Errors for U.S. GNP Example.

Asymptotic Bootstrap Bootstrap
Parameter MLE SE Mean† SE†

φ0 .068 .274 −.010 .353
φ1 .900 .099 .864 .102
σw .378 .208 .696 .375
α −10.524 2.321 −10.792 .748
µ1 −2.164 .567 −1.941 .416
σ1 3.007 .377 2.891 .422
σ0 .935 .198 .692 .362

† Based on 500 bootstrapped samples.

subject to help explain the variation in blood pressure (for example, gender,
race, age, activity, and so on). We might expect to encounter missing data or
irregularly spaced observations in this type of experiment; these problems are
easier to handle from a state-space perspective.

An extension of the ARMAX model given in (6.103) that might handle the
case of cross-sectional data, yyyt�, is

yyyt� = Γuuut� +
p∑

j=1

Φjyyyt−j,� +
q∑

j=1

Θjwwwt−j,� + wwwt�, (6.206)

where, for 
 = 1, . . . , N , var(wwwt�) = Σw and uuut� represents the r × 1 vector of
exogenous variables. As in §6.6, Property P6.6, we can write (6.206) in terms



396 State-Space Models

of a state-space model. That is, for 
 = 1, . . . , N ,

xxxt+1,� = Fxxxt,� + Gwwwt,�, (6.207)
yyyt,� = [I, 0, · · · , 0]xxxt� + Γuuut� + wwwt�, (6.208)

where matrices F and G are as in (6.104), xxxt,� represents the unobserved
state, and yyyt,� is the observation at time t, replication 
. Maximum likelihood
estimation for state space models with cross-sectional data, such as the example
given here, was investigated by Goodrich and Caines (1979), and can be carried
out with minor modifications to the methods described in §6.3. In particular,
given data yyyt,�, t = 1, . . . , n, 
 = 1, . . . , N , we can use Newton–Raphson to
minimize the criterion function, which is, up to a constant term, proportional
to the negative of the log likelihood function,

l(Θ) = N−1
N∑

�=1

(
n∑

t=1

log
∣∣Σt,�(Θ)

∣∣+ n∑
t=1

εεεt,�(Θ)′Σt,�(Θ)−1εεεt,�(Θ)

)
, (6.209)

where εεεt,�(Θ) and Σt,�(Θ) are the innovations and their variance–covariance
matrices, respectively. For details, see Goodrich and Caines (1979).

Anderson (1978) did an extensive study of replicated ARX models, that is,
the case in which q = 0 in (6.206). We can write this model using regression
notation as

yyyt� = Bzzzt� + wwwt�, (6.210)

for 
 = 1, . . . , N and t = p + 1, . . . , n, where

zzzt� = (uuu′
t�, yyy

′
t−1,�, . . . , yyy

′
t−p,�)

′ (6.211)

and the matrix of regression coefficients is

B = [Γ, Φ1, Φ2, . . . ,Φp]. (6.212)

The estimate of the regression matrix B in this case is

B̂ =

(
N∑

�=1

n∑
t=p+1

yyyt�zzz
′
t�

)(
N∑

�=1

n∑
t=p+1

zzzt�zzz
′
t�

)−1

, (6.213)

and an estimate of Σw is

Σ̂w =
1

N(n − p)

N∑
�=1

n∑
t=p+1

(yyyt� − B̂zzzt�)(yyyt� − B̂zzzt�)′. (6.214)

Inference for B̂ follows as in multivariate regression. That is, the large sample
standard error of the ij-th element of B is

√
σ̂jjcii, where σ̂jj is the j-th

diagonal element of Σ̂w and cii is the i-th diagonal element of(
N∑

�=1

n∑
t=p+1

zzzt�zzz
′
t�

)−1

.
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Model (6.206) may be somewhat restrictive in its assumption that the pa-
rameters do not change over time. Because replications exist, extending the
model to the case of time-varying parameters is easy. The case of time-varying
parameters in (6.210) was also presented in Anderson (1978). In particular,
the model is written as

yyyt� = Γtuuut� +
pt∑

j=1

Φtjyyyt−j,� + wwwt�, (6.215)

and var(wwwt�) = Σt, for 
 = 1, . . . , N . The order of the model, pt, is also allowed
to vary with time, and the equal spacing of time is not required. Of course,
we can still use regression for estimation because the time-varying model can
be written as n regressions, one for each point in time,

yyyt� = Btzzzt� + wwwt�, (6.216)

for 
 = 1, . . . , N , where zzzt� is as in (6.211), but with p replaced by pt, and
where now,

Bt = [Γt, Φt1, Φt2, . . . ,Φtpt
], (6.217)

assuming t > pt. The estimate of Bt, for any time t, is now given by

B̂t =

(
N∑

�=1

yyyt�zzz
′
t�

)(
N∑

�=1

zzzt�zzz
′
t�

)−1

, (6.218)

and an estimate of Σt is

Σ̂t =
1

N − pt − 1

N∑
�=1

(yyyt� − B̂tzzzt�)(yyyt� − B̂tzzzt�)′. (6.219)

Example 6.23 The Effect of Prenatal Smoking on Growth

In this example, we use data taken from an epidemiologic study at the
University of Pittsburgh that focused on the effects of substance use
during pregnancy. In particular, we focus on the growth of N = 318
children followed from birth to six years of age. In this longitudinal study,
the children were examined at birth (t = 0), and at eight months (t = 1),
18 months (t = 2), 36 months (t = 3), and 72 months (t = 4) of age.
At times t = 1, 2, 3, 4, a growth index, say, yt�, was calculated for each
child 
 = 1, . . . , 318. The growth index is essentially a standardized score
for a child’s weight adjusting for that child’s age, gender, and height,
against the national averages. At birth, y0� represents the standardized
birthweight of child 
.

We might consider that children not prenatally exposed to teratogens
would follow a certain growth curve, whereas exposed children would
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Figure 6.22 Average growth scores across time for four groups of children.
A solid line represents children not prenatally exposed to cigarette smoke; a
dashed line represents children prenatally exposed to cigarette smoke. A circle
represents white children, and a cross represents black children.

follow another. To investigate this hypothesis, we propose the following
time-varying ARX model for growth:

yt� = γ0t + γ1tS� + γ2tR� + γ3tS�R�

+
t∑

j=1

φtj (yt−j,� − ŷt−j,�) + wt�, (6.220)

for t = 0, 1, 2, 3, 4, where var(wt�) = σ2
t , for 
 = 1, . . . , 318. The exoge-

nous variables in the model are, S�, the average number of cigarettes per
day the mother smoked during the second trimester of pregnancy, and
R�, which indicates race (0 = black, 1 = white). The model is written in
terms of the innovation sequences, (yt−j,� − ŷt−j,�), where ŷt,� is the pre-
diction of yt,� from the previous model. We did this to remove any effect
of smoking or race on previous growth. Figure 6.22 shows the average
growth scores over time for four groups: 68 black children not exposed
to smoke prenatally (solid line-cross), 92 white children not exposed to
smoke (solid line-circle), 83 black children exposed to smoke (dashed line-
cross), and 75 white children exposed to smoke (dashed line-circle). For
display purposes in Figure 6.22, smoking has been dichotomized to no
exposure versus any exposure, but in the analysis, the smoking variable
is in average cigarettes per day.
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For example, the model for birthweight, t = 0, is

y0� = γ00 + γ10S� + γ20R� + γ30S�R� + w0�.

Once the model has been estimated, the predicted values are calculated

ŷ0� = γ̂00 + γ̂10S� + γ̂20R� + γ̂30S�R�.

Then, the model for growth at eight months, t = 1, is

y1� = γ01 + γ11S� + γ21R� + γ31S�R� + φ11(y0,� − ŷ0,�) + w1�,

where (y0,� − ŷ0,�) represents birthweight with the effect of smoking and
race removed. In this way, only S� represents smoking and R� represents
race, because their effect on birthweight has been removed. The other
cases, for t = 2, 3, 4 continue in the same way.

The following estimates are the results of the fit; we only report the final
models. At birth,

ŷ0� = 3.295 − .011(.002)S� + .215(.056)R�,

with σ̂0 = .472; estimated standard errors are shown in parenthesis. We
conclude that prenatal smoking significantly reduces birthweight, white
babies are born slightly bigger, and no interaction exists between smoking
and race. At eight months,

ŷ1� = −.015(.011)S� − .335(.147)R�

+ .029(.012)S�R� + .214(.127)(y0,� − ŷ0,�),

with σ̂1 = 1.066. The interaction term is significant, indicating that
white, unexposed babies are slightly smaller than the others.

The estimated model for 18 months is,

ŷ2� = .340 + .278(.125)R�

+ .661(.056)(y1,� − ŷ1,�) + .357(.126)(y0,� − ŷ0,�),

with σ̂2 = 1.059. Now, the effect of prenatal smoking is gone at 18
months, and, at this age, the white kids tend to be larger. The result
at 36 months (t = 3) is that prenatal smoking becomes significant again,
but exposed children are slightly bigger at this age, and race is no longer
significant (this result is not as unusual as it might seem; in fact, it has
been hypothesized that children exposed prenatally to cigarette smoke
tend to become obese as they grow older):

ŷ3� = .334 + .008(.004)S� + .310(.044)(y2,� − ŷ2,�)
+ .450(.043)(y1,� − ŷ1,�) + .465(.098)(y0,� − ŷ0,�),
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with σ̂2 = .817. Finally, the result for 72 months is

ŷ4� = .330 + .933(.082)(y3,� − ŷ3,�)
+ .462(.063)(y2,� − ŷ2,�) + .484(.062)(y1,� − ŷ1,�),

with σ̂2 = 1.176. At this age, the effect of prenatal smoking and the
effect of race are gone. Also growth at eight months (t = 1) is still a
predictor of growth at 72 months, but the effect of birthweight (t = 0) is
gone.

Mixed Linear Models in State-Space Form

A widely used general mixed model for longitudinal data was introduced by
Laird and Ware (1982). In this case, responses yyy� = {yt,�, t = 1, . . . , n�} are
obtained on N subjects, 
 = 1, . . . , N . Each response vector is modeled as

yyy� = X�βββ + Z�γγγ� + εεε�, (6.221)

where X� is an n� × b design matrix, βββ is a b × 1 vector of fixed parameters,
and Z� is an n� × g design matrix corresponding to the random g × 1 vector
of random effects, γγγ�, which is assumed to be independent across subject, and
distributed as γγγ� ∼N(000, D), where D > 0 is an arbitrary variance–covariance
matrix. The within-subject errors, εεε�, are independently distributed as εεε� ∼
N(000, Σ�); often, Σ� is of the form σ2I. A good introduction to these models can
be found in many texts; for example, Diggle et al. (1994), Jones (1993), and
Fahrmeir and Tutz (1994). Jones (1993) focuses on the state-space approach,
and so will we.

The model, (6.221), can be written as

yyy� ∼ N (X�βββ, V�) , (6.222)

independently, for 
 = 1, . . . , N , where

V� = Z�DZ ′
� + Σ�. (6.223)

An example of a typical covariance structure for V� is compound symmetry,
wherein g = 1, Z� is a vector of ones, D = σ2

γ is a scalar, and Σ� = σ2I. In
this way, V� is an n� × n� matrix given by

V� =

⎛⎜⎜⎜⎝
σ2 + σ2

γ σ2
γ . . . σ2

γ

σ2
γ σ2 + σ2

γ . . . σ2
γ

...
...

. . .
...

σ2
γ σ2

γ . . . σ2 + σ2
γ

⎞⎟⎟⎟⎠ . (6.224)

Another useful covariance structure is the autoregressive structure, where g = 0
(that is, no random effects exist) and

V� = Σ� = σ2

⎛⎜⎜⎝
1 ρ ρ2 . . . ρn�−1

ρ 1 ρ . . . ρn�−2

...
...

. . .
...

ρn�−1 ρn�−2 . . . 1

⎞⎟⎟⎠ , (6.225)
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with |ρ| < 1.
For a particular subject, 
, the vector yyy� consists of observations, yt�, taken

over time t = 1, 2, . . . , n�. For subject 
, model (6.221) states

yt� = xxx′
t�βββ + zzz′

t�γγγ� + εt�, (6.226)

where xxx′
t� is the t-th row of X� and zzz′

t� is the t-th row of Z�. Using the form
of the model given by (6.226), yt� is normal with

E(yt�) = xxx′
t�βββ,

cov(yt�, ys�) = zzz′
t�Dzzzs� + σ�,ts,

cov(yt�, ysk) = 0 
 �= k,

where σ�,ts is the ts-th element of Σ�. For the example given in (6.224), we
would have

var(yt�) = σ2 + σ2
γ and cov(yt�, ys�) = σ2

γ ,

for any t �= s, so the correlation between two observations on the same subject
is given by ρ = σ2

γ/(σ2+σ2
γ). In the autoregressive case, (6.225), the correlation

between two observations yt� and ys� on the same subject t−s time units apart
is, of course, ρ|t−s|.

The Laird–Ware model has a state space formulation; Jones (1993) provides
a detailed presentation of these and related topics. If random effects exist, that
is g ≥ 1, and Σ� = σ2I, let ssst,� denote a g×1 state vector with initial condition
sss0,� ∼N(000, D). Then, for each 
 = 1, . . . , N , (6.226) can be written as

ssst,� = ssst−1,� + wwwt,�, (6.227)
yt� = xxx′

t�βββ + zzz′
t�ssst,� + εt�, (6.228)

for t = 1, . . . , n�, where wwwt,� ≡ 000, or, equivalently, wwwt,� ∼N(000, Q), where Q = 0
is the zero matrix. All other values are as defined in (6.226). The data yt�

as written in (6.227)-(6.228) have the same properties as the data written in
(6.226).

If g = 0, that is, no random effects exist, and the variance–covariance
structure is autoregressive, as in (6.225), the state-space model can be written
as

st� = ρst−1,� + wt,�, (6.229)
yt� = xxx′

t�βββ + st�, (6.230)

where, now, the autoregressive structure is entered into the data via the (scalar,
in this example) state, and there is no measurement error. In this case, R =
0, which does not present a problem in running the Kalman filter, provided
P 0

0 > 0. To obtain a matrix of the form given in (6.225), wt� is white Gaussian
noise, with Q = σ2, and the initial state satisfies s0,� ∼ N(0, σ2/(1 − ρ2)). In
this case, recall the states, st�, for a given subject 
, form a stationary AR(1)
process with variance σ2/(1 − ρ2) and ACF given by ρ(h) = ρ|h|.
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In the more general case in which both random effects, g > 0, and an
autoregressive error structure exist, we can combine the ideas used to get
(6.227)-(6.228) and (6.229)-(6.230). In this case, the state equation would be
a (g+1)×1 process made by stacking (6.227) and (6.229), and the observation
equation would be

yt� = xxx′
t�βββ + Atst�,

where At = [z′
t�, 1].

We immediately see from (6.227)-(6.228), or from (6.229)-(6.230), that the
likelihood of the data is the same as the one given in (6.209), but with n set
to n�. Consequently, the methods presented in §5.3 can be used to estimate
the parameters of the Laird–Ware model, namely, βββ, and variance components
in V�, for 
 = 1, . . . , n�. For simplicity, let Θ represent the vector of all of the
parameters associated with the model.

In the notation of the algorithm presented in §6.3, Step 1 is to find initial
estimates, Θ(0), of the parameters Θ. If the V� were known, using a weighted
least squares argument (see §4.4), the least squares estimate of βββ in the model
(6.222)-(6.223) is given by

β̂̂β̂β =

(
N∑

�=1

X ′
�V

−1
� X�

)−1( N∑
�=1

X ′
�V

−1
� yyy�

)
. (6.231)

Initial guesses for V� should reflect the variance–covariance structure of the
model. We can use (6.231) with the initial values chosen for V� to obtain the
initial regression coefficients, βββ(0).

To accomplish Step 2 of the algorithm, for each 
 = 1, . . . , N , run the
Kalman filter (Property P6.1 with the states denoted by ssst) for t = 1, . . . , n�

to obtain the initial innovations and their covariance matrices. For example,
if the model is of the form given in (6.227)-(6.228), run the Kalman filter
with Φ = I, Q = 0, At = zzz′

t�, R = [σ(0)]2, and initial conditions sss0
0 = 000,

P 0
0 = D(0) > 0. In addition, yt� replaced by yt� −xxx′

t�βββ
(0); this is also equivalent

to running Property P6.6 with uncorrelated noises, wherein the rows of the
fixed effects design matrix, X�, are the exogenous variables. The Newton–
Raphson procedure (steps 3 and 4 of the algorithm in §6.3) is performed on
the criterion function given in (6.209). The following example may help in
understanding the technique.

Example 6.24 Response to Medication

As a simple example of how we can use the state-space formulation of
the Laird–Ware model, we analyze the S+ data set drug.mult. The data
are taken from an experiment in which six subjects are given a dose of
medication and then observed immediately and at weekly intervals for
three weeks. The data are given in Table 6.6.
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Table 6.6 Weekly Response to Medication
Week 0 Week 1 Week 2 Week 3


 Gender y1 y2 y3 y4

1 F 75.9 74.3 80.0 78.9
2 F 78.3 75.5 79.6 79.2
3 F 80.3 78.2 80.4 76.2
4 M 80.7 77.2 82.0 83.8
5 M 80.3 78.6 81.4 81.5
6 M 80.1 81.1 81.9 86.4

We fit model (6.229)-(6.230) to this data using gender as a grouping
variable. In particular, if yyyt� is the 4× 1 vector of observations over time
for a female (
 = 1, 2, 3), the model is⎛⎜⎝

y1
y2
y3
y4

⎞⎟⎠ =

⎛⎜⎝
1 0
1 0
1 0
1 0

⎞⎟⎠(β1
β2

)
+

⎛⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎠ ,

and for a male (
 = 4, 5, 6), the model is⎛⎜⎝
y1
y2
y3
y4

⎞⎟⎠ =

⎛⎜⎝
1 1
1 1
1 1
1 1

⎞⎟⎠(β1
β2

)
+

⎛⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎠ ,

where the εt, in general, form an AR(1) process given by

ε0 = w0/
√

1 − ρ2,

εt = ρεt−1 + wt t = 1, 2, 3, 4,

where wt is white Gaussian noise, with var(wt) = σ2
w. Recall var(εt) =

σ2
ε = σ2

w/(1−ρ2) and ρε(h) = ρ|h|. A different value of ρ was selected for
each gender group, say, ρ1 for female subjects and ρ2 for male subjects.

We initialized the estimation procedure with ρ
(0)
1 = ρ

(0)
2 = 0, σ

(0)
w =

2, which, upon using (6.231), yields βββ(0) = (78.07, 3.18)′. The final
estimates (and their estimated standard errors) were

β̂1 = 78.20(.56), β̂2 = 3.24(.89),

ρ̂1 = −.47(.36), ρ̂2 = .07(.53), σ̂w = 2.17(.36).

Because ρ̂1 and ρ̂2 are not significantly different from zero, this would
suggest either a simple linear regression is sufficient to describe the re-
sults, or the model is not correct.
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Next, we fit the compound symmetry model using (6.227)-(6.228) with
g = 1. In this case, the model for a female subject is⎛⎜⎝

y1
y2
y3
y4

⎞⎟⎠ =

⎛⎜⎝
1 0
1 0
1 0
1 0

⎞⎟⎠(β1
β2

)
+

⎛⎜⎝
1
1
1
1

⎞⎟⎠ γ1 +

⎛⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎠ ,

and for a male subject, the model is⎛⎜⎝
y1
y2
y3
y4

⎞⎟⎠ =

⎛⎜⎝
1 1
1 1
1 1
1 1

⎞⎟⎠(β1
β2

)
+

⎛⎜⎝
1
1
1
1

⎞⎟⎠ γ2 +

⎛⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎠ ,

where γ1 ∼ N(0, σ2
γ1

), γ2 ∼ N(0, σ2
γ2

), and the εt, for t = 1, 2, 3, 4 are
uncorrelated with variance σ2

ε .

In this case, the state variable is a scalar process with D = σ2
γ1

for
female subjects (
 = 1, 2, 3) and D = σ2

γ2
for male subjects (
 = 4, 5, 6).

Starting the estimation process off with σ
(0)
γ1 = σ

(0)
γ2 = 1, σ

(0)
ε = 2, and

βββ(0) = (78, 3)′, the final estimates were

β̂1 = 78.03 (.67), β̂2 = 3.51 (1.05),

σ̂γ1 = 2.05 (.45), σ̂γ2 = 2.51 (.59), σ̂ε = 2.00 (.13).

This model fits the data well.

Problems

Section 6.1

6.1 Consider a system process given by

xt = −.9xt−2 + wt t = 1, . . . , n

where x0 ∼ N(0, σ2
0), x−1 ∼ N(0, σ2

1), and wt is Gaussian white noise
with variance σ2

w. The system process is observed with noise, say,

yt = xt + vt,

where vt is Gaussian white noise with variance σ2
v . Further, suppose x0,

x−1, {wt} and {vt} are independent.

(a) Write the system and observation equations in the form of a state
space model.
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(b) Find the values of σ2
0 and σ2

1 that make the observations, yt, sta-
tionary.

(c) Generate n = 100 observations with σw = 1, σv = 1 and using the
values of σ2

0 and σ2
1 found in (b). Do a time plot of xt and of yt

and compare the two processes. Also, compare the sample ACF and
PACF of xt and of yt.

(d) Repeat (c), but with σv = 10.

6.2 Consider the state-space model presented in Example 6.3. Let xt−1
t =

E(xt|yt−1, . . . , y1) and let P t−1
t = E(xt − xt−1

t )2. The innovation se-
quence or residuals are εt = yt − yt−1

t , where yt−1
t = E(yt|yt−1, . . . , y1).

Find cov(εs, εt) in terms of xt−1
t and P t−1

t for (i) s �= t and (ii) s = t.

Section 6.2

6.3 Simulate n = 100 observations from the following state-space model:

xt = .8xt−1 + wt and yt = xt + vt

where x0 ∼ N(0, 2.78), wt ∼ iid N(0, 1), and vt ∼ iid N(0, 1) are all
mutually independent. Compute and plot the data, yt, the one-step-
ahead predictors, yt−1

t along with the root mean square prediction errors,
E1/2(yt − yt−1

t )2 using Figure 6.3 as a guide.

6.4 Suppose the vector zzz = (xxx′, yyy′)′, where xxx (p × 1) and yyy (q × 1) are jointly
distributed with mean vectors µµµx and µµµy and with covariance matrix

cov(zzz) =
(

Σxx Σxy

Σyx Σyy

)
.

Consider projecting xxx on M = sp{111, yyy}, say, x̂xx = bbb + Byyy.

(a) Show the orthogonality conditions can be written as

E(xxx − bbb − Byyy) = 0,

E[(xxx − bbb − Byyy)yyy′] = 0,

leading to the solutions

bbb = µµµx − Bµµµy and B = ΣxyΣ−1
yy .

(b) Prove the mean square error matrix is

MSE = E[(xxx − bbb − Byyy)xxx′] = Σxx − ΣxyΣ−1
yy Σyx.
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(c) How can these results be used to justify the claim that, in the ab-
sence of normality, Property P6.1 yields the best linear estimate of
the state xxxt given the data Yt, namely, xxxt

t, and its corresponding
MSE, namely, P t

t ?

6.5 Derivation of Property P6.2 Based on the Projection Theorem. Through-
out this problem, we use the notation of Property P6.2 and of the
Projection Theorem given in Appendix B, where H is L2. If Lk+1 =
sp{yyy1, . . . , yyyk+1}, and Vk+1 = sp{yyyk+1 − yyyk

k+1}, for k = 0, 1, . . . , n − 1,
where yyyk

k+1 is the projection of yyyk+1 on Lk, then, Lk+1 = Lk ⊕Vk+1. We
assume P 0

0 > 0 and R > 0.

(a) Show the projection of xxxk on Lk+1, that is, xxxk+1
k , is given by

xxxk+1
k = xxxk

k + Hk+1(yyyk+1 − yyyk
k+1),

where Hk+1 can be determined by the orthogonality property

E
{(

xxxk − Hk+1(yyyk+1 − yyyk
k+1)

) (
yyyk+1 − yyyk

k+1
)′}

= 0.

Show
Hk+1 = P k

k Φ′A′
k+1

[
Ak+1P

k
k+1A

′
k+1 + R

]−1
.

(b) Define Jk = P k
k Φ′[P k

k+1]
−1, and show

xxxk+1
k = xxxk

k + Jk(xxxk+1
k+1 − xxxk

k+1).

(c) Repeating the process, show

xxxk+2
k = xxxk

k + Jk(xxxk+1
k+1 − xxxk

k+1) + Hk+2(yyyk+2 − yyyk+1
k+2),

solving for Hk+2. Simplify and show

xxxk+2
k = xxxk

k + Jk(xxxk+2
k+1 − xxxk

k+1).

(d) Using induction, conclude

xxxn
k = xxxk

k + Jk(xxxn
k+1 − xxxk

k+1),

which yields the smoother with k = t − 1.

Section 6.3

6.6 (a) Consider the univariate state-space model given by state conditions
x0 = w0, xt = xt−1 + wt and observations yt = xt + vt, t = 1, 2, . . .,
where wt and vt are independent, Gaussian, white noise processes
with var(wt) = σ2

w and var(vt) = σ2
v . Show the data follow an

IMA(1,1) model, that is, ∇yt follows an MA(1) model.



Problems 407

(b) Fit the model specified in part (a) to the logarithm of the glacial
varve series and compare the results to those presented in Exam-
ple 3.31.

6.7 Let yt represent the land-based global temperature series shown in Fig-
ure 6.2. The data file for this problem is HL.dat on the website.

(a) Using regression, fit a third-degree polynomial in time to yt, that
is, fit the model

yt = β0 + β1t + β2t
2 + β3t

3 + εt,

where εt is white noise. Do a time plot of the data fit, ŷt, superim-
posed on the data, yt, for t=1,. . . ,108.

(b) Write the model yt = xt + vt with ∇2xt = wt, where wt and vt are
independent white noise processes, in state-space form. Hint: The
state will be a 2×1 vector, say, xxxt = (xt, xt−1)′. Fit the state-space
model to the data, and do a time plot of the estimated filter, x̂t−1

t ,
and the estimated smoother, x̂n

t , superimposed on the data, yt, for
t=1,. . . ,108. Compare these results with the results of part (a).

6.8 Consider the model
yt = xt + vt,

where vt is Gaussian white noise with variance σ2
v , xt are independent

Gaussian random variables with mean zero and var(xt) = rtσ
2
x with

xt independent of vt, and r1, . . . , rn are known constants. Show that
applying the EM algorithm to the problem of estimating σ2

x and σ2
v leads

to updates (represented by hats)

σ̂2
x =

1
n

n∑
t=1

σ2
t + µ2

t

rt
and σ̂2

v =
1
n

n∑
t=1

[(yt − µt)2 + σ2
t ],

where, based on the current estimates (represented by tildes),

µt =
rtσ̃

2
x

rtσ̃2
x + σ̃2

v

yt and σ2
t =

rtσ̃
2
xσ̃2

v

rtσ̃2
x + σ̃2

v

.

6.9 Develop the EM algorithm for the model with inputs, (6.3) and (6.4).

6.10 To explore the stability of the filter, consider a univariate state-space
model. That is, for t = 1, 2, . . ., the observations are yt = xt + vt and the
state equation is xt = φxt−1 + wt, where σw = σv = 1 and |φ| < 1. The
initial state, x0, has zero mean and variance one.

(a) Exhibit the recursion for P t−1
t in Property P6.1 in terms of P t−2

t−1 .
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(b) Use the result of (a) to verify P t−1
t approaches a limit (t → ∞) P

that is the positive solution of P 2 − φ2P − 1 = 0.
(c) With K = limt→∞ Kt as given in Property P6.1, show |1 − K| < 1.
(d) Show, in steady-state, the one-step-ahead predictor, yn

n+1 = E(yn+1
∣∣

yn, yn−1, . . .), of a future observation satisfies

yn
n+1 =

∞∑
j=0

φjK(1 − K)j−1yn+1−j .

6.11 In §6.3, we discussed that it is possible to obtain a recursion for the
gradient vector, −∂ lnLY (Θ)/∂Θ. Assume the model is given by (6.1)
and (6.2) and At is a known design matrix that does not depend on Θ,
in which case Property P6.1 applies. For the gradient vector, show

∂ lnLY (Θ)/∂Θi =
n∑

t=1

{
εεε′
tΣ

−1
t

∂εεεt

∂Θi
− 1

2
εεε′
tΣ

−1
t

∂Σt

∂Θi
Σ−1

t εεεt

+
1
2
tr
(

Σ−1
t

∂Σt

∂Θi

)}
,

where the dependence of the innovation values on Θ is understood. In ad-
dition, with the general definition ∂ig = ∂g(Θ)/∂Θi, show the following
recursions, for t = 2, . . . , n apply:

• ∂iεεεt = −At ∂ixxx
t−1
t ,

• ∂ixxx
t−1
t = ∂iΦ xxxt−2

t−1 + Φ ∂ixxx
t−2
t−1 + ∂iKt−1 εεεt−1 + Kt−1 ∂iεεεt−1,

• ∂iΣt = At ∂iP
t−1
t A′

t + ∂iR,

• ∂iKt =
[

∂iΦ P t−1
t A′

t + Φ ∂iP
t−1
t A′

t − Kt ∂iΣt

]
Σ−1

t ,

• ∂iP
t−1
t = ∂iΦ P t−2

t−1 Φ′ + Φ ∂iP
t−2
t−1 Φ′ + Φ P t−2

t−1 ∂iΦ′ + ∂iQ,

− ∂iKt−1 ΣtK
′
t−1 − Kt−1 ∂iΣt K ′

t−1 − Kt−1Σt ∂iK
′
t−1,

using the fact that P t−1
t = ΦP t−2

t−1 Φ′ + Q − Kt−1ΣtK
′
t−1.

6.12 Continuing with the previous problem, consider the evaluation of the
Hessian matrix and the numerical evaluation of the asymptotic variance–
covariance matrix of the parameter estimates. The information matrix
satisfies

E

{
−∂2 lnLY (Θ)

∂Θ ∂Θ′

}
= E

{(
∂ lnLY (Θ)

∂Θ

)(
∂ lnLY (Θ)

∂Θ

)′}
;

see Anderson (1984, Section 4.4), for example. Show the (i, j)-th element
of the information matrix, say, Iij(Θ) = E

{−∂2 lnLY (Θ)/∂Θi ∂Θj

}
, is

Iij(Θ) =
n∑

t=1

E
{

∂iεεε
′
t Σ−1

t ∂jεεεt +
1
2
tr
(
Σ−1

t ∂iΣt Σ−1
t ∂jΣt

)
+

1
4
tr
(
Σ−1

t ∂iΣt

)
tr
(
Σ−1

t ∂jΣt

)}
.
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Consequently, an approximate Hessian matrix can be obtained from the
sample by dropping the expectation, E, in the above result and using
only the recursions needed to calculate the gradient vector.

Section 6.4

6.13 As an example of the way the state-space model handles the missing data
problem, suppose the first-order autoregressive process

xt = φxt−1 + wt

has an observation missing at t = m, leading to the observations yt =
Atxt, where At = 1 for all t, except t = m wherein At = 0. Assume
x0 = 0 with variance σ2

w/(1 − φ2), where the variance of wt is σ2
w. Show

the Kalman smoother estimators in this case are

xn
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φy1, t = 0,

φ
1+φ2 (ym−1 + ym+1), t = m,

yt, t �= 0, m,

with mean square covariances determined by

Pn
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ2

w, t = 0,

σ2
w

1+φ2 , t = m,

0 t �= 0, m.

6.14 The data set labeled ar1miss.dat is n = 100 observations generated
from an AR(1) process, xt = φxt−1 + wt, with φ = .9 and σw = 1, where
10% of the data has been zeroed out at random. Considering the zeroed
out data to be missing data, use the results of Problem 6.13 to estimate
the parameters of the model, φ and σw, using the EM algorithm, and
then estimate the missing values.

Section 6.5

6.15 Using Example 6.10 as a guide, fit a structural model to the Federal
Reserve Board Production Index data and compare it with the model fit
in Example 3.43.

Section 6.6

6.16 Use Property P6.6 to complete the following exercises.
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(a) Write a univariate AR(1) model, yt = φyt−1 + vt, in state-space
form. Verify your answer is indeed an AR(1).

(b) Repeat (a) for an MA(1) model, yt = vt + θvt−1.

(c) Write an IMA(1,1) model, yt = yt−1 + vt + θvt−1, in state-space
form.

6.17 Verify Property P6.5.

6.18 Verify Property P6.6.

Section 6.7

6.19 Repeat the bootstrap analysis of Example 6.12 on the entire three-month
treasury bills and rate of inflation data set of 110 observations. Do
the conclusions of Example 6.12—that the dynamics of the data is best
described in terms of a fixed, rather than stochastic, regression—still
hold?

Section 6.8

6.20 Argue that a switching model is reasonable in explaining the behavior of
the number of sunspots (see Figure 4.31) and then fit a switching model
to the sunspot data.

Section 6.9

6.21 Use the material presented in Example 6.18 to perform a Bayesian analy-
sis of the model for the Johnson & Johnson data presented in Exam-
ple 6.10.

6.22 Verify (6.169) and (6.170).

6.23 Verify (6.175) and (6.182).

Section 6.10

6.24 Fit a stochastic volatility model to the returns of one (or more) of
the four financial time series available in the R datasets package as
EuStockMarkets.
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Section 6.11

6.25 In a small pilot study, a psychiatrist wanted to examine the effects of the
drug lithium on bulimics (bulimics have continuous abnormal hunger and
frequently go on eating binges). Although evidence of the effectiveness
of lithium on bulimics has been shown, he was not sure if depressed
subjects would respond differently than those without depression. He
treated eight teenage female patients with lithium for 12 weeks; four of
the subjects were diagnosed with depression, and half of the subjects
received behavioral therapy. At the end of each four-week period, he
recorded the number of binges each subject had during that week. The
following are the results:

Weekly Number of Binges
Subject Depression Week 0 Week 4 Week 8 Week 12

1 No 13 3 0 0
2 No 15 4 3 1
3 No 16 4 3 2
4 No 14 2 1 2
5 Yes 10 7 4 3
6 Yes 18 7 2 4
7 Yes 16 6 5 4
8 Yes 19 8 5 7

Fit a longitudinal model that addresses the concerns of the psychiatrist.
Because the data are counts (number of occurrences), consider a square
root transformation prior to the analysis.



Chapter 7

Statistical Methods in the
Frequency Domain

7.1 Introduction

In previous chapters, we saw many applied time series problems that involved
relating series to each other or to evaluating the effects of treatments or design
parameters that arise when time-varying phenomena are subjected to periodic
stimuli. In many cases, the nature of the physical or biological phenomena
under study are best described by their Fourier components rather than by
the difference equations involved in ARIMA or state-space models. The fun-
damental tools we use in studying periodic phenomena are the discrete Fourier
transforms (DFTs) of the processes and their statistical properties. Hence,
in §7.2, we review the properties of the DFT of a multivariate time series
and discuss various approximations to the likelihood function based on the
large-sample properties and the properties of the complex multivariate normal
distribution. This enables extension of the classical techniques discussed in the
following paragraphs to the multivariate time series case.

An extremely important class of problems in classical statistics develops
when we are interested in relating a collection of input series to some out-
put series. For example, in Chapter 2, we have previously considered relating
temperature and various pollutant levels to daily mortality, but have not in-
vestigated the frequencies that appear to be driving the relation and have not
looked at the possibility of leading or lagging effects. In Chapter 4, we isolated
a definite lag structure that could be used to relate sea surface temperature to
the number of new recruits. In Problem 5.11 of Chapter 5, the possible driving
processes that could be used to explain inflow to Shasta Lake were hypothe-
sized in terms of the possible inputs precipitation, cloud cover, temperature,
and other variables. Identifying the combination of input factors in Figure 4.33

412
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Figure 7.1 Mean response of subjects to various combinations of periodic
stimulae measured at the cortex (primary somatosensory, contralateral).

that produce the best prediction for inflow is an example of multiple regression
in the frequency domain, with the models treated theoretically by considering
the regression, conditional on the random input processes.

A situation somewhat different from that above would be one in which the
input series are regarded as fixed and known. In this case, we have a model
analogous to that occurring in analysis of variance, in which the analysis now
can be performed on a frequency by frequency basis. This analysis works
especially well when the inputs are dummy variables, depending on some con-
figuration of treatment and other design effects and when effects are largely
dependent on periodic stimuli. As an example, we will look at a designed ex-
periment measuring the fMRI brain responses of a number of awake and mildly
anesthetized subjects to several levels of periodic brushing, heat, and shock ef-
fects. Some limited data from this experiment have been discussed previously
in Example 1.6 of Chapter 1. Figure 7.1 shows mean responses to various
levels of periodic heat, brushing, and shock stimuli for subjects awake and
subjects under mild anesthesia. The stimuli were periodic in nature, applied
alternately for 32 seconds (16 points) and then stopped for 32 seconds. The
periodic input signal comes through under all three design conditions when
the subjects are awake, but is somewhat attenuated under anesthesia. The
mean shock level response hardly shows on the input signal; shock levels were
designed to simulate surgical incision without inflicting tissue damage. The
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means in Figure 7.1 are from a single location. Actually, for each individual,
some nine series were recorded at various locations in the brain. It is natural
to consider testing the effects of brushing, heat, and shock under the two levels
of consciousness, using a time series generalization of analysis of variance.

A generalization to random coefficient regression is also considered, paral-
leling the univariate approach to signal extraction and detection presented in
§4.9. This method enables a treatment of multivariate ridge-type regressions
and inversion problems. Also, the usual random effects analysis of variance in
the frequency domain becomes a special case of the random coefficient model.

The extension of frequency domain methodology to more classical ap-
proaches to multivariate discrimination and clustering is of interest in the
frequency dependent case. Many time series differ in their means and in their
autocovariance functions, making the use of both the mean function and the
spectral density matrices relevant. As an example of such data, consider the
bivariate series consisting of the P and S components derived from several
earthquakes and explosions, such as those shown in Figure 7.2, where the P
and S components, representing different arrivals have been separated from the
first and second halves, respectively, of wave forms like those shown originally
in Figure 1.7 of Chapter 1.

Two earthquakes and two explosions from a set of eight earthquakes and ex-
plosions are shown in Figure 7.2 and some essential differences exist that might
be used to characterize the two classes of events. Also, the frequency content
of the two components of the earthquakes appears to be lower than those of
the explosions, and relative amplitudes of the two classes appear to differ. For
example, the ratio of the S to P amplitudes in the earthquake group is much
higher for this restricted subset. Spectral differences were also noticed in Chap-
ter 4, where the explosion processes had a stronger high-frequency component
relative to the low-frequency contributions. Examples like these are typical of
applications in which the essential differences between multivariate time se-
ries can be expressed by the behavior of either the frequency-dependent mean
value functions or the spectral matrix. In discriminant analysis, these types
of differences are exploited to develop combinations of linear and quadratic
classification criteria. Such functions can then be used to classify events of
unknown origin, such as the Novaya Zemlya event shown in Figure 7.2, which
tends to bear a visual resemblance to the explosion group.

Finally, for multivariate processes, the structure of the spectral matrix
is also of great interest. We might reduce the dimension of the underlying
process to a smaller set of input processes that explain most of the variability
in the cross-spectral matrix as a function of frequency. Principal component
analysis can be used to decompose the spectral matrix into a smaller subset
of component factors that explain decreasing amounts of power. For example,
the hydrological data might be explained in terms of a component process that
weights heavily on precipitation and inflow and one that weights heavily on
temperature and cloud cover. Perhaps these two components could explain
most of the power in the spectral matrix at a given frequency. The ideas
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Figure 7.2 Bivariate earthquakes and explosions (40 pts/sec) compared with
an event NZ (Novaya Zemlya) of unknown origin.
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behind principal component analysis can also be generalized to include an
optimal scaling methodology for categorical data called the spectral envelope
(see Stoffer et al., 1993). In succeeding sections, we also give an introduction
to dynamic Fourier analysis and to wavelet analysis.

7.2 Spectral Matrices and Likelihood Functions

We have previously argued for an approximation to the log likelihood based
on the joint distribution of the DFTs in (4.116), where we used approximation
as an aid in estimating parameters for certain parameterized spectra. In this
chapter, we make heavy use of the fact that the sine and cosine transforms of
the p×1 vector process xxxt = (xt1, xt2, . . . , xtp)′ with mean Exxxt = µµµt, say, with
DFT1

XXX(ωk) = n−1/2
n∑

t=1

xxxt e−2πiωkt

= XXXc(ωk) − iXXXs(ωk) (7.1)

and mean

MMM(ωk) = n−1/2
n∑

t=1

µµµt e−2πiωkt

= MMM c(ωk) − iMMMs(ωk) (7.2)

will be approximately uncorrelated, where we evaluate at the usual Fourier
frequencies {ωk = k/n, 0 < |ωk| < 1/2}. By Theorem C.6, the approximate
2p × 2p covariance matrix of the cosine and sine transforms, say, XXX(ωk) =
(XXXc(ωk)′,XXXs(ωk)′)′, is

Σ(ωk) =
1
2

(
C(ωk) −Q(ωk)
Q(ωk) C(ωk)

)
, (7.3)

and the real and imaginary parts are jointly normal. This result implies, by
the results stated in Appendix C, the density function of the vector DFT, say,
XXX(ωk), can be approximated as

p(ωk) ≈ |f(ωk)|−1 exp
{−(XXX(ωk) − MMM(ωk)

)∗
f−1(ωk)

(
XXX(ωk) − MMM(ωk)

)}
,

where the spectral matrix is the usual

f(ωk) = C(ωk) − iQ(ωk). (7.4)
1In previous chapters, the DFT of a process xt was denoted by dx(ωk). In this chapter,

we will consider the Fourier transforms of many different processes, and so to avoid the
overuse of subscripts and hence, to ease the notation, we use a capital letter, e.g., X(ωk), to
denote Fourier transform of xt.
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Certain computations that we do in the section on discriminant analysis will
involve approximating the joint likelihood by the product of densities like the
one given above over subsets of the frequency band 0 < ωk < 1/2.

To use the likelihood function for estimating the spectral matrix, for exam-
ple, we appeal to the limiting result implied by Theorem C.7 and again choose L
frequencies in the neighborhood of some target frequency ω, say, XXX(ωk ±k/n),
for k = 1, . . . , m and L = 2m + 1. Then, let XXX�, for 
 = 1, . . . , L denote the
indexed values, and note the DFTs of the mean adjusted vector process are
approximately jointly normal with mean zero and complex covariance matrix
f = f(ω). Then, write the log likelihood over the L sub-frequencies as

lnL(XXX1, . . . ,XXXL; f) ≈ −L ln |f | −
L∑

�=1

(XXX� − MMM �)∗f−1(XXX� − MMM �), (7.5)

where we have suppressed the argument of f = f(ω) for ease of notation. The
use of spectral approximations to the likelihood has been fairly standard, be-
ginning with the work of Whittle (1961) and continuing in Brillinger (1981) and
Hannan (1970). In this case, assuming the mean adjusted series are available,
i.e., that MMM � is known, so that we may assume that XXX� is the mean-adjusted
series. We may obtain the maximum likelihood estimator for f by writing the
joint log likelihood of the real and imaginary parts in terms of ZZZ� = (XXX ′

c�,XXX
′
s�)

′

and obtaining the maximum likelihood estimators for C and Q, the real and
imaginary parts of f . Problem 7.2 shows we will obtain

f̂ = L−1
L∑

�=1

(XXX� − MMM �)(XXX� − MMM �)∗, (7.6)

which is just the usual mean-adjusted estimator for the spectral matrix.

7.3 Regression for Jointly Stationary Series

In §4.8, we considered a model of the form

yt =
∞∑

r=−∞
β1rxt−r,1 + vt, (7.7)

where xt1 is a single observed input series and yt is the observed output se-
ries, and we are interested in estimating the filter coefficients β1r relating the
adjacent lagged values of xt1 to the output series yt. In the case of the SOI
and Recruitment series, we identified the El Niño driving series as xt1, the
input and yt, the Recruitment series, as the output. In general, more than
a single plausible input series may exist. For example, the hydrological data
shown in Figure 4.33 suggests there may be at least five possible series driving
the inflow. Hence, we may envision a q × 1 input vector of driving series,
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say, xxxt = (xt1, xt2, . . . , xtq)′, and a set of q × 1 vector of regression functions
βββr = (β1r, β2r,, . . . , βqr)′, which are related as

yt =
∞∑

r=−∞
βββ′

rxxxt−r + vt. (7.8)

Writing the matrix form out as

yt =
q∑

j=1

∞∑
r=−∞

βjrxt−r,j + vt (7.9)

shows the output is basically a sum of linearly filtered versions of the input
processes and a stationary noise process vt, assumed to be uncorrelated with
xxxt. Each filtered component in the sum over j gives the contribution of lagged
values of the j-th input series to the output series. We assume the regression
functions βjr are fixed and unknown.

The model given by (7.8) is useful under several different scenarios, corre-
sponding to a number of different assumptions that can be made about the
components. Assuming the input and output processes are jointly stationary
with zero means leads to the conventional regression analysis given in this
section. The analysis depends on theory that assumes we observe the output
process yt conditional on fixed values of the input vector xxxt; this is the same
as the assumptions made in conventional regression analysis. Assumptions
considered later involve letting the coefficient vector βββt be a random unknown
signal vector that can be estimated by Bayesian arguments, using the condi-
tional expectation given the data. The answers to this approach, given in §7.5,
allow signal extraction and deconvolution problems to be handled. Assum-
ing the inputs are fixed allows various experimental designs and analysis of
variance to be done for both fixed and random effects models. Estimation of
the frequency-dependent random effects variance components in the analysis
of variance model is also considered in §7.5.

For the approach in this section, assume the inputs and outputs have zero
means and are jointly stationary with the (q +1)× 1 vector process (xxx′

t, yt)′ of
inputs xxxt and outputs yt assumed to have a spectral matrix of the form

f(ω) =
(

fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)
, (7.10)

where fyx(ω) = (fyx1(ω), fyx2(ω), . . . , fyxq (ω)) is the 1 × q vector of cross-
spectra relating the q inputs to the output and fxx(ω) is the q × q spectral
matrix of the inputs. Generally, we observe the inputs and search for the vector
of regression functions βββt relating the inputs to the outputs. We assume all
autocovariance functions satisfy the absolute summability conditions of the
form ∞∑

h=−∞
|h||γjk(h)| < ∞. (7.11)
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(j, k = 1, . . . , q + 1), where γjk(h) is the autocovariance corresponding to the
cross-spectrum fjk(ω) in (7.10). We also need to assume a linear process of
the form (C.35) as a condition for using Theorem C.7 on the joint distribution
of the discrete Fourier transforms in the neighborhood of some fixed frequency.

Estimation of the Regression Function

In order to estimate the regression function βββr, the Projection Theorem
(Appendix B) applied to minimizing

MSE = E
[
(yt −

∞∑
r=−∞

βββ′
rxxxt−r)2

]
(7.12)

leads to the orthogonality conditions

E
[
(yt −

∞∑
r=−∞

βββ′
rxxxt−r)xxx′

t−s

]
= 000′ (7.13)

for all s = 0,±1,±2, . . ., where 000′ denotes the 1 × q zero vector. Taking the
expectations inside and substituting for the definitions of the autocovariance
functions appearing and leads to the normal equations

∞∑
r=−∞

βββ′
r Γxx(s − r) = γγγ′

yx(s), (7.14)

for s = 0,±1,±2, . . ., where Γxx(s) denotes the q × q autocovariance matrix
of the vector series xxxt at lag s and γγγyx(s) = (γyx1(s), . . . , γyxq

(s)) is a 1 × q
vector containing the lagged covariances between yt and xxxt. Again, a frequency
domain approximate solution is easier in this case because the computations
can be done frequency by frequency using cross-spectra that can be estimated
from sample data using the DFT. In order to develop the frequency domain
solution, substitute the representation into the normal equations, using the
same approach as used in the simple case derived in §4.8. This approach yields∫ 1/2

−1/2

∞∑
r=−∞

βββ′
r e2πiω(s−r) fxx(ω) dω = γγγ′

yx(s).

Now, because γγγ′
yx(s) is the Fourier transform of the cross-spectral vector

fyx(ω) = f∗
xy(ω), we might write the system of equations in the frequency

domain, using the uniqueness of the Fourier transform, as

BBB′(ω)fxx(ω) = f∗
xy(ω), (7.15)

where fx(ω) is the q × q spectral matrix of the inputs and BBB(ω) is the q × 1
vector Fourier transform of βββt. Multiplying (7.15) on the right by f−1

xx (ω),
assuming fxx(ω) is nonsingular at ω, leads to the frequency domain estimator

BBB′(ω) = f∗
xy(ω)f−1

xx (ω). (7.16)
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Note, (7.16) implies the regression function would take the form

βββt =
∫ 1/2

−1/2
BBB(ω) e2πiωt dω. (7.17)

As before, it is conventional to introduce the DFT as the approximate estimator
for the integral (7.17) and write

βββM
t = M−1

M−1∑
k=0

BBB(ωk) e2πiωkt, (7.18)

where ωk = k/M, M << n. The approximation was shown in Problem 4.35 to
hold exactly as long as βββt = 000 for |t| ≥ M and to have a mean squared error
bounded by a function of the zero-lag autocovariance and the absolute sum of
the neglected coefficients.

The mean squared error (7.12) can be written using the orthogonality prin-
ciple, giving

MSE =
∫ 1/2

−1/2
fy·x(ω) dω, (7.19)

where
fy·x(ω) = fyy(ω) − f∗

xy(ω)f−1
xx (ω)fxy(ω) (7.20)

denotes the residual or error spectrum The resemblance of (7.20) to the usual
equations in regression analysis is striking. It is useful to pursue the multi-
ple regression analogy further by noting a squared multiple coherence can be
defined as

ρ2
y·x(ω) =

f∗
xy(ω)f−1

xx (ω)fxy(ω)
fyy(ω)

. (7.21)

This expression leads to the mean squared error in the form

MSE =
∫ 1/2

−1/2
fyy(ω)[1 − ρ2

y·x(ω)] dω, (7.22)

and we have an interpretation of ρ2
y·x(ω) as the proportion of power accounted

for by the lagged regression on xxxt at frequency ω. If ρ2
y·x(ω) = 0 for all ω, we

have

MSE =
∫ 1/2

−1/2
fyy(ω) dω = E[y2

t ],

which is the mean squared error when no predictive power exists. As long as
fxx(ω) is positive definite at all frequencies, MSE ≥ 0, and we will have

0 ≤ ρ2
y·x(ω) ≤ 1 (7.23)

for all ω. If the multiple coherence is unity for all frequencies, the mean squared
error in (7.22) is zero and the output series is perfectly predicted by a linearly
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filtered combination of the inputs. Problem 7.3 shows the ordinary squared
coherence between the series yt and the linearly filtered combinations of the
inputs appearing in (7.12) is exactly (7.21).

Estimation Using Sampled Data

Clearly, the matrices of spectra and cross-spectra will not ordinarily be
known, so the regression computations need to be based on sampled data. We
assume, therefore, the inputs xt1, xt2, . . . , xtq and output yt series are available
at the time points t = 1, 2, . . . , n, as in Chapter 4. In order to develop reason-
able estimates for the spectral quantities, some replication must be assumed.
Often, only one replication of each of the inputs and the output will exist,
so it is necessary to assume a band exists over which the spectra and cross-
spectra are approximately equal to fxx(ω) and fxy(ω), respectively. Then, let
Y (ωk + 
/n) and XXX(ωk + 
/n) be the DFTs of yt and xxxt over the band, say, at
frequencies of the form

ωk ± 
/n, 
 = 1, . . . , m,

where L = 2m + 1 as before. Then, simply substitute the sample spectral
matrix

f̂xx(ω) = L−1
m∑

�=−m

XXX(ωk + 
/n)XXX∗(ωk + 
/n) (7.24)

and the vector of sample cross-spectra

f̂xy(ω) = L−1
m∑

�=−m

XXX(ωk + 
/n)Y (ωk + 
/n) (7.25)

for the respective terms in (7.16) to get the regression estimator B̂BB(ω). For the
regression estimator (7.18), we may use

β̂M
t =

1
M

M−1∑
k=0

f̂∗
xy(ωk)f̂−1

xx (ωk) e2πiωkt (7.26)

for t = 0,±1,±2, . . . ,±(M/2 − 1), as the estimated regression function.

Tests of Hypotheses

The estimated squared multiple coherence, corresponding to the theoretical
coherence (7.21), becomes

ρ̂2
y·x(ω) =

f̂∗
xy(ω)f̂−1

xx (ω)f̂xy(ω)

f̂yy(ω)
. (7.27)
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We may obtain a distributional result for the multiple coherence function anal-
ogous to that obtained in the univariate case by writing the multiple regression
model in the frequency domain, as was done in §4.6. We obtain the statistic

F2q,2(L−q) =
(L − q)

q

ρ̂2
y·x(ω)

[1 − ρ̂2
y·x(ω)]

, (7.28)

which has an F -distribution with 2q and 2(L−q) degrees of freedom under the
null hypothesis that ρ2

y·x(ω) = 0, or equivalently, that BBB(ω) = 0, in the model

Y (ωk + 
/n) = BBB′(ω)X(ωk + 
/n) + V (ωk + 
/n), (7.29)

where the spectral density of the error V (ωk + 
/n) is fy·x(ω). Problem 7.5
sketches a derivation of this result.

A second kind of hypothesis of interest is one that might be used to test
whether a full model with q inputs is significantly better than some submodel
with q1 < q components. In the time domain, this hypothesis implies, for a
partition of the vector of inputs into q1 and q2 components (q1 + q2 = q), say,
xxxt = (xxx′

t1, xxx
′
t2)

′, and the similarly partitioned vector of regression functions
βββt = (βββ′

1t, βββ
′
2t)

′, we would be interested in testing whether βββ2t = 000 in the
partitioned regression model

yt =
∞∑

r=−∞
βββ′

1rxxxt−r,1 +
∞∑

r=−∞
βββ′

2rxxxt−r,2 + vt. (7.30)

Rewriting the regression model (7.30) in the frequency domain in a form that
is similar to (7.29) establishes that, under the partitions of the spectral matrix
into its qi × qj (i, j = 1, 2) submatrices, say,

f̂xx(ω) =

(
f̂11(ω) f̂12(ω)
f̂21(ω) f̂22(ω)

)
, (7.31)

and the cross-spectral vector into its qi × 1 (i = 1, 2) subvectors,

f̂xy(ω) =

(
f̂1y(ω)
f̂2y(ω)

)
, (7.32)

we may test the hypothesis βββ2t = 000 at frequency ω by comparing the estimated
residual power

f̂y·x(ω) = f̂yy(ω) − f̂∗
xy(ω)f̂−1

xx (ω)f̂xy(ω) (7.33)

under the full model with that under the reduced model, given by

f̂y·1(ω) = f̂yy(ω) − f̂∗
1y(ω)f̂−1

11 (ω)f̂1y(ω). (7.34)

The power due to regression can be written as

SSR(ω) = L[f̂y·1(ω) − f̂y·x(ω)], (7.35)



7.3: Regression for Jointly Stationary Series 423

Table 7.1 Analysis of Power (ANOPOW) for Testing No Contribution from
the Subset xxxt2 in the Partitioned Regression Model

Source Power Degrees of Freedom
xt,q1+1, . . . , xt,q1+q2 SSR(ω) (7.35) 2q2

Error SSE(ω) (7.36) 2(L − q1 − q2)
Total Lf̂y·1(ω) 2(L − q1)

with the usual error power given by

SSE(ω) = Lf̂y·x(ω). (7.36)

The test of no regression proceeds using the F -statistic

F2q2,2(L−q) =
(L − q)

q2

SSR(ω)
SSE(ω)

. (7.37)

The distribution of this F -statistic with 2q2 numerator degrees of freedom and
2(L− q) denominator degrees of freedom follows from an argument paralleling
that given in Chapter 4 for the case of a single input. The test results can
be summarized in an Analysis of Power (ANOPOW) table that parallels the
usual analysis of variance (ANOVA) table. Table 7.1 shows the components
of power for testing βββ2t = 000 at a particular frequency ω. The ratio of the two
components divided by their respective degrees of freedom just yields the F -
statistic (7.37) used for testing whether the q2 add significantly to the predictive
power of the regression on the q1 series.

Example 7.1 Predicting Shasta Lake Inflow

We illustrate some of the preceding ideas by considering the problem
of predicting the transformed inflow series shown in Figure 4.33 from
some combination of the inputs. First, look for the best single input
predictor using the squared coherence function (7.27). The results, ex-
hibited in Figure 7.3, show transformed precipitation produces the most
consistently high squared coherence values at all frequencies (L = 41),
with the seasonal frequencies .08, .17, .25, and .33 cycles per month corre-
sponding to 12-month, six-month, four-month, and three-month periods
contributing most significantly at the α = .001 level.

Other inputs, with the exception of wind speed, also appear to be plausi-
ble contributors. In order to evaluate the other contributors, we consider
partitioned tests with models including each of the other variables and
precipitation tested against models including precipitation alone. Fig-
ure 7.4 shows a plot of the F -statistic (7.28) as a function of frequency
for testing each of the inputs as a possible additional component. We see
here some isolated significance points, particularly in the temperature
series at some of the higher seasonal components, although the strong
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Figure 7.3 Univariate coherence functions relating Shasta Lake inflow to var-
ious inputs (frequency scale is cycles per month).
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Figure 7.4 F -statistics for testing whether various inputs combined with pre-
cipitation add to the ability to predict Shasta Lake inflow.
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Figure 7.5 Multiple coherence between inflow and combined precipitation and
temperature along with multiple impulse response functions for the regression
relations.

coherence at the 12-month frequency seems to have been essentially elim-
inated by the incorporation of precipitation.

The additional contribution of temperature to the model seems some-
what marginal because the multiple coherence (7.27), shown in the top
panel of Figure 7.5, seems only slightly better than the univariate coher-
ence with precipitation shown in Figure 7.3. It is, however, instructive to
produce the multiple regression functions, using (7.26) to see if a simple
model for inflow exists that would involve some regression combination
of inputs temperature and precipitation that would be useful for pre-
dicting inflow to Shasta Lake. With this in mind, denoting the possible
inputs Pt for transformed precipitation and Tt for transformed tempera-
ture, the regression function has been plotted in the lower two panels of
Figure 7.5. The time axes run over both positive and negative values and
are centered at time t = 0. Hence, the relation with temperature seems
to be instantaneous and positive and an exponentially decaying relation
to precipitation exists that has been noticed previously in the analysis in
Problem 4.37 of Chapter 4. The plots suggest a transfer function model
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of the general form fitted to the Recruitment and SOI series in Exam-
ple 5.7 of Chapter 5. We might propose fitting the inflow output, say, It,
using the model

It = α0 +
δ0

(1 − ω1B)
Pt + α2Tt + ηt,

which is the transfer function model, without the temperature compo-
nent, considered in that section.

7.4 Regression with Deterministic Inputs

The previous section considered the case in which the input and output series
were jointly stationary, but there are many circumstances where in which we
might want to assume that the input functions are fixed and have a known
functional form. This case happens in the analysis of data from designed
experiments. For example, we may want to take a collection of earthquakes
and explosions such as are shown in Figure 7.2 and test whether the mean
functions are the same for either the P or S components or, perhaps, for them
jointly. In certain other signal detection problems using arrays, the inputs are
used as dummy variables to express lags corresponding to the arrival times
of the signal at various elements, under a model corresponding to that of a
plane wave from a fixed source propagating across the array. In Figure 7.1, we
plotted the mean responses of the cortex as a function of various underlying
design configurations corresponding to various stimuli applied to awake and
mildly anesthetized subjects.

It is necessary to introduce a replicated version of the underlying model to
handle even the univariate situation, and we replace (7.8) by

yjt =
∞∑

r=−∞
βββ′

rzzzj,t−r + vjt (7.38)

for j = 1, 2, . . . , N series, where we assume the vector of known deterministic
inputs, zzzjt = (zjt1, . . . , zzzjtq)′, satisfies

∞∑
t=−∞

|t||zjtk| < ∞

for j = 1, . . . , N replicates of an underlying process involving k = 1, . . . , q
regression functions. The model can also be treated under the assumption that
the deterministic function satisfy Grenanders’ conditions, as in Hannan (1970),
but we do not need those conditions here and simply follow the approach in
Shumway (1983, 1988).
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It will sometimes be convenient in what follows to represent the model in
matrix notation, writing (7.38) as

yyyt =
∞∑

r=−∞
zt−r βββr + vvvt, (7.39)

where zt = (zzz1t, . . . , zzzNt)′ are the N × q matrices of independent inputs
and yyyt and vvvt are the N × 1 output and error vectors. The error vector
vvvt = (v1t, . . . , vNt)′ is assumed to be a multivariate, zero-mean, stationary,
normal process with spectral matrix fv(ω)IN that is proportional to the N ×N
identity matrix. That is, we assume the error series vjt are independently and
identically distributed with spectral densities fv(ω).

Example 7.2 An Infrasonic Signal from a Nuclear Explosion

Often, we will observe a common signal, say, βt on an array of sensors,
with the response at the j-th sensor denoted by yjt, j = 1, . . . , N For
example, Figure 7.6 shows an infrasonic or low-frequency acoustic sig-
nal from a nuclear explosion, as observed on a small triangular array
of N = 3 acoustic sensors. These signals appear at slightly different
times. Because of the way signals propagate, a plane wave signal of this
kind, from a given source, traveling at a given velocity, will arrive at
elements in the array at predictable time delays. In the case of the infra-
sonic signal in Figure 7.6, the delays were approximated by computing
the cross-correlation between elements and simply reading off the time
delay corresponding to the maximum. For a detailed discussion of the
statistical analysis of array signals, see Shumway et al. (1999).

A simple additive signal plus noise model of the form

yjt = βt−τj + vjt (7.40)

can be assumed, where τj , j = 1, 2, . . . , N are the time delays that deter-
mine the start point of the signal at each element of the array. The model
(7.40) is written in the form (7.38) by letting zjt = δt−τj , where δt = 1
when t = 0 and is zero otherwise. In this case, we are interested in both
the problem of detecting the presence of the signal and in estimating its
waveform βt. In this case, a plausible estimator of the waveform would
be the unbiased beam, say,

β̂t =

∑N
j=1 yj,t+τj

N
, (7.41)

where time delays in this case were measured as τ1 = −17, τ2 = 0, and
τ3 = 22 from the cross-correlation function. The bottom panel of Fig-
ure 7.6 shows the computed beam in this case, and the noise in the
individual channels has been reduced and the essential characteristics of
the common signal are retained in the average.
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Figure 7.6 Three series for a nuclear explosion detonated 25 km south of
Christmas Island and the delayed average or beam.

The above discussion and example serve to motivate a more detailed look
at the estimation and detection problems in the case in which the input series
zzzjt are fixed and known. We consider the modifications needed for this case in
the following sections.

Estimation of the Regression Relation

Because the regression model (7.38) involves fixed functions, we may par-
allel the usual approach using the Gauss–Markov theorem to search for linear-
filtered estimators of the form

β̂ββt =
N∑

j=1

∞∑
r=−∞

hhhjryj,t−r, (7.42)

where hhhjt = (hjt1 . . . , hjtq)′ is a vector of filter coefficients, determined so the
estimators are unbiased and have minimum variance. The equivalent matrix
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form is

β̂ββt =
∞∑

r=−∞
hr yyyt−r, (7.43)

where ht = (hhh1t, . . . , hhhNt) is a q × N matrix of filter functions. The matrix
form resembles the usual classical regression case and is more convenient for
extending the the Gauss–Markov theorem to lagged regression. The unbiased
condition is considered in Problem 7.7. It can be shown (see Shumway and
Dean, 1968) that hhhjs can be taken as the Fourier transform of

HHHj(ω) = S−1
z (ω)ZZZj(ω), (7.44)

where

ZZZj(ω) =
∞∑

t=−∞
zzzjte−2πiωt (7.45)

is the infinite Fourier transform of zzzjt. The matrix

Sz(ω) =
N∑

j=1

ZZZj(ω)ZZZ ′
j(ω) (7.46)

can be written in the form

Sz(ω) = Z∗(ω)Z(ω), (7.47)

where the N × q matrix Z(ω) is defined by Z(ω) = (ZZZ1(ω), . . . ,ZZZN (ω))′. In
matrix notation, the Fourier transform of the optimal filter becomes

H(ω) = S−1
z (ω)Z∗(ω), (7.48)

where H(ω) = (HHH1(ω), . . . ,HHHN (ω)) is the q × N matrix of frequency response
functions. The optimal filter then becomes the Fourier transform

ht =
∫ 1/2

−1/2
H(ω)e2πiωt dω. (7.49)

If the transform is not tractable to compute, an approximation analogous to
(7.26) may be used.

Example 7.3 Estimation of the Infrasonic Signal in Example 7.2

We consider the problem of producing a best linearly filtered unbiased
estimator for the infrasonic signal in Example 7.2. In this case, q = 1
and (7.45) becomes

Zj(ω) =
∞∑

t=−∞
δt−τj

e−2πiωt = e−2πiωτj
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and Sz(ω) = N . Hence, we have

Hj(ω) =
1
N

e2πiωτj .

Using (7.49), we obtain hjt = 1
N δ(t + τj). Substituting in (7.42), we

obtain the best linear unbiased estimator as the beam, computed as in
(7.41).

Tests of Hypotheses

We consider first testing the hypothesis that the complete vector βββt is zero,
i.e., that the vector signal is absent. We develop a test at each frequency ω
by taking single adjacent frequencies of the form ωk = k/n, as in the initial
section. We may approximate the DFT of the observed vector in the model
(7.38) using a representation of the form

Yj(ωk) = BBB′(ωk)ZZZj(ωk) + Vj(ωk) (7.50)

for j = 1, . . . , N , where the error terms will be uncorrelated with common vari-
ance f(ωk), the spectral density of the error term. The independent variables
ZZZj(ωk) can either be the infinite Fourier transform, or they can be approx-
imated by the DFT. Hence, we can obtain the matrix version of a complex
regression model, written in the form

YYY (ωk) = Z(ωk)BBB(ωk) + VVV (ωk), (7.51)

where the N × q matrix Z(ωk) has been defined previously below (7.47) and
YYY (ωk) and VVV (ωk) are N × 1 vectors with the error vector VVV (ωk) having mean
zero, with covariance matrix f(ωk)IN . The usual regression arguments show
that the maximum likelihood estimator for the regression coefficient will be

B̂BB(ωk) = S−1
z (ωk)ssszy(ωk), (7.52)

where Sz(ωk) is given by (7.47) and

ssszy(ωk) = Z∗(ωk)YYY (ωk)

=
N∑

j=1

ZZZj(ωk)Yj(ωk). (7.53)

Also, the maximum likelihood estimator for the error spectral matrix is pro-
portional to

s2
y·z(ωk) =

N∑
j=1

|Yj(ωk) − B̂BB(ωk)′ZZZj(ωk)|2

= YYY ∗(ωk)YYY (ωk) − YYY ∗(ωk)Z(ωk)[Z∗(ωk)Z(ωk)]−1Z∗(ωk)YYY (ωk)
= s2

y(ωk) − sss∗
zy(ωk)S−1

z (ωk)ssszy(ωk), (7.54)
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Table 7.2 Analysis of Power (ANOPOW) for Testing No Contribution from
the Independent Series at Frequency ω in the Fixed Input Case

Source Power Degrees of Freedom
Regression SSR(ω)(7.56) 2Lq

Error SSE(ω) (7.57) 2L(N − q)
Total SST(ω) 2LN

where

s2
y(ωk) =

N∑
j=1

|Yj(ωk)|2. (7.55)

Under the null hypothesis that the regression coefficient BBB(ωk) = 000, the esti-
mator for the error power is just s2

y(ωk) If smoothing is needed, we may replace
the (7.54) and (7.55) by smoothed components over the frequencies ωk + 
/n,
for 
 = −m, . . . , m and L = 2m + 1, close to ω. In that case, we obtain the
regression and error spectral components as

SSR(ω) =
m∑

�=−m

sss∗
zy(ωk + 
/n)S−1

z (ωk + 
/n)ssszy(ωk + 
/n) (7.56)

and

SSE(ω) =
m∑

�=−m

s2
y·z(ωk + 
/n). (7.57)

The F -statistic for testing no regression relation is

F2Lq,2L(N−q) =
N − q

q

SSR(ω)
SSE(ω)

. (7.58)

The analysis of power pertaining to this situation appears in Table 7.2.
In the fixed regression case, the partitioned hypothesis that is the analog

of βββ2t = 0 in (7.28) with xxxt1, xxxt2 replaced by zzzt1, zzzt2. Here, we partition Sz(ω)
into qi × qj (i, j = 1, 2) submatrices, say,

Sz(ωk) =
(

S11(ωk) S12(ωk)
S21(ωk) S22(ωk)

)
, (7.59)

and the cross-spectral vector into its qi × 1, for i = 1, 2, subvectors

ssszy(ωk) =
(

sss1y(ωk)
sss2y(ωk)

)
. (7.60)

Here, we test the hypothesis βββ2t = 000 at frequency ω by comparing the residual
power (7.54) under the full model with the residual power under the reduced
model, given by

s2
y·1(ωk) = s2

y(ωk) − sss∗
1y(ωk)S−1

11 (ωk)sss1y(ωk). (7.61)
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Table 7.3 Analysis of Power (ANOPOW) for Testing No Contribution from
the Last q2 Inputs in the Fixed Input Case

Source Power Degrees of Freedom
Regression SSR(ω)(7.62) 2Lq2

Error SSE(ω) (7.63) 2L(N − q)
Total SST(ω) 2L(N − q1)

Again, it is desirable to add over adjacent frequencies with roughly comparable
spectra so the regression and error power components can be taken as

SSR(ω) =
m∑

�=−m

[
s2

y·1(ωk + 
/n) − s2
y·z(ωk + 
/n)

]
(7.62)

and

SSE(ω) =
m∑

�=−m

s2
y·z(ωk + 
/n). (7.63)

The information can again be summarized as in Table 7.3, where the ratio of
mean power regression and error components leads to the F -statistic

F2Lq2,2L(N−q) =
(N − q)

q2

SSR(ω)
SSE(ω)

. (7.64)

We illustrate the analysis of power procedure using the infrasonic signal detec-
tion procedure of Example 7.2.

Example 7.4 Detecting the Infrasonic Signal Using ANOPOW

We consider the problem of detecting the common signal for the three
infrasonic series observing the common signal, as shown in Figure 7.3.
The presence of the signal is obvious in the waveforms shown, so the test
here mainly confirms the statistical significance and isolates the frequen-
cies containing the strongest signal components. Each series contained
n = 1024 points, sampled at 10 points per second. We use the model
in (7.40) so Zj(ω) = e−2πiωτj and Sz(ω) = N as in Example 7.3, with
szy(ωk) given as

szy(ωk) =
N∑

j=1

e2πiωτj Yj(ωk),

using (7.46) and (7.53). The above expression can be interpreted as being
proportional to the weighted mean or beam, computed in frequency, and
we introduce the notation

Bw(ωk) =
1
N

N∑
j=1

e2πiωτj Yj(ωk) (7.65)
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Figure 7.7 Analysis of power for infrasound array (top panel) and F -statistic
(bottom panel) showing detection at .033 cy/sec (10 pts/sec).

for that term. Substituting for the power components in Table 7.3 yields

sss∗
zy(ωk)S−1

z (ωk)ssszy(ωk) = N |Bw(ωk)|2

and

s2
y·z(ωk) =

N∑
j=1

|Yj(ωk) − Bw(ωk)|2

=
N∑

j=1

|Yj(ωk)|2 − N |Bw(ωk)|2

for the regression signal and error components, respectively. Because
only three elements in the array and a reasonable number of points in
time exist, it seems advisable to employ some smoothing over frequency
to obtain additional degrees of freedom. In this case, L = 3, yielding
2(3) = 6 and 2(3)(3 − 1) = 12 degrees of freedom for the numerator
and denominator of the F -statistic (7.58). Figure 7.7 shows the analysis
of power components due to error and the total power. The power is
maximum at about .0044 cycles per point or about .044 cycles per second.
The F -statistic is compared with the 1% significance level F.01(6, 12) =
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4.82 in the bottom panel and has the strongest detection at about .034
cycles per second, a result mainly because the error power is decreasing
more quickly than the regression or signal power in that band. Little
power of consequence appears to exist in the higher range (.3-.5 cycles
per second).

Although there are examples of detecting multiple regression functions of
the general type considered above (see, for example, Shumway, 1983), we do not
consider additional examples of partitioning in the fixed input case here. The
reason is that several examples exist in the section on designed experiments
that illustrate the partitioned approach.

7.5 Random Coefficient Regression

The lagged regression models considered so far have assumed the input process
is either stochastic or fixed and the components of the vector of regression func-
tion βββt are fixed and unknown parameters to be estimated. There are many
cases in time series analysis in which it is more natural to regard the regres-
sion vector as an unknown stochastic signal. For example, we have studied the
state-space model in Chapter 6, where the state equation can be considered as
involving a random parameter vector that is essentially a multivariate autore-
gressive process. In §4.10, we considered estimating the univariate regression
function βt as a signal extraction problem.

In this section, we consider a random coefficient regression model of (7.39)
in the equivalent form

yyyt =
∞∑

r=−∞
zt−r βββr + vvvt, (7.66)

where yyyt = (y1t, . . . , yNt)′ is the N ×1 response vector and zt = (zzz1t, . . . , zzzNt)′

are the N × q matrices containing the fixed input processes. Here, the compo-
nents of the q × 1 regression vector βββt are zero-mean, uncorrelated, stationary
series with common spectral matrix fβ(ω)Iq and the error series vvvt have zero-
means and spectral matrix fv(ω)IN , where IN is the N × N identity matrix.
Then, defining the N ×q matrix Z(ω) = (ZZZ1(ω),ZZZ2(ω), . . . ,ZZZN (ω))′ of Fourier
transforms of zt, as in (7.45), it is easy to show the spectral matrix of the re-
sponse vector yyyt is given by

fy(ω) = fβ(ω)Z(ω)Z∗(ω) + fv(ω)IN . (7.67)

The regression model with a stochastic stationary signal component is a general
version of the simple additive noise model

yt = βt + vt,
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considered by Wiener (1949) and Kolmogorov (1941), who derived the min-
imum mean squared error estimators for βt, as in §4.10. The more general
multivariate version (7.66) represents the series as a convolution of the signal
vector βββt and a known set of vector input series contained in the matrix zzzt.
Restricting the the covariance matrices of signal and noise to diagonal form is
consistent with what is done in statistics using random effects models, which
we consider here in a later section. The problem of estimating the regression
function βββt is often called deconvolution in the engineering and geophysical
literature.

Estimation of the Regression Relation

The regression function βββt can be estimated by a general filter of the form
(7.43), where we write that estimator in matrix form

β̂ββt =
∞∑

r=−∞
ht yyyt−r, (7.68)

where ht = (hhh1t, . . . , hhhNt), and apply the orthogonality principle, as in §3.9. A
generalization of the argument in that section (see Problem 7.8) leads to the
estimator

H(ω) = [Sz(ω) + θ(ω)Iq]−1Z∗(ω) (7.69)

for the Fourier transform of the minimum mean-squared error filter, where the
parameter

θ(ω) =
fv(ω)
fβ(ω)

(7.70)

is the inverse of the signal-to-noise ratio. It is clear from the frequency domain
version of the linear model (7.51), the comparable version of the estimator
(7.52) can be written as

B̂BB(ω) = [Sz(ω) + θ(ω)Iq]−1ssszy(ω). (7.71)

This version exhibits the estimator in the stochastic regressor case as the usual
estimator, with a ridge correction, θ(ω), that is proportional to the inverse of
the signal-to-noise ratio.

The mean-squared covariance of the estimator is shown to be

E[(B̂BB − BBB)(B̂BB − BBB)∗] = fv(ω)[Sz(ω) + θ(ω)Iq]−1, (7.72)

which again exhibits the close connection between this case and the variance
of the estimator (7.52), which can be shown to be fv(ω)S−1

z (ω).
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Example 7.5 Estimating the Random Infrasonic Signal

In Example 7.4, we have already determined the components needed in
(7.69) and (7.70) to obtain the estimators for the random signal. The
Fourier transform of the optimum filter at series j has the form

Hj(ω) =
e2πiωτj

N + θ(ω)
(7.73)

with the mean-squared error given by fv(ω)/[N +θ(ω)] from (7.72). The
net effect of applying the filters will be the same as filtering the beam
with the frequency response function

H0(ω) =
N

N + θ(ω)

=
Nfβ(ω)

fv(ω) + Nfβ(ω)
, (7.74)

where the last form is more convenient in cases in which portions of the
signal spectrum are essentially zero.

The optimal filters ht have frequency response functions that depend on the
signal spectrum fβ(ω) and noise spectrum fv(ω), so we will need estimators for
these parameters to apply the optimal filters. Sometimes, there will be values,
suggested from experience, for the signal-to-noise ratio 1/θ(ω) as a function
of frequency. The analogy between the model here and the usual variance
components model in statistics, however, suggests we try an approach along
those lines as in the next section.

Detection and Parameter Estimation

The analogy to the usual variance components situation suggests looking at
the regression and error components of Table 7.2 under the stochastic signal
assumptions. We consider the components of (7.56) and (7.57) at a single
frequency ωk. In order to estimate the spectral components fβ(ω) and fv(ω),
we reconsider the linear model (7.51) under the assumption that BBB(ωk) is a
random process with spectral matrix fβ(ωk)Iq. Then, the spectral matrix of
the observed process is (7.67), evaluated at frequency ωk.

Consider first the component of the regression power, defined as

SSR(ωk) = sss∗
zy(ωk)S−1

z (ωk)ssszy(ωk)

= YYY ∗(ωk)Z(ωk)S−1
z (ωk)Z∗(ωk)YYY (ωk).

A computation shows

E[SSR(ωk)] = fβ(ωk) tr{Sz(ωk)} + qfv(ωk),
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where tr denotes the trace of a matix. If we can find a set of frequencies of the
form ωk + 
/n, where the spectra and the Fourier transforms Sz(ωk + 
/n) ≈
Sz(ω) are relatively constant, the expectation of the averaged values in (7.56)
yields

E[SSR(ω)] = Lfβ(ω)tr [Sz(ω)] + Lqfv(ω). (7.75)

A similar computation establishes

E[SSE(ω)] = L(N − q)fv(ω). (7.76)

We may obtain an approximately unbiased estimator for the spectra fv(ω) and
fβ(ω) by replacing the expected power components by their values and solving
(7.75) and (7.76).

Example 7.6 Estimating the Power Components and the Random
Infrasonic Signal

In order to provide an optimum estimator for the infrasonic signal, we
need to have estimators for the signal and noise spectra fβ(ω) and fv(ω)
for the case considered in Example 7.5. The form of the filter is H0(ω),
given in (7.74), and with q = 1 and the matrix Sz(ω) = N at all frequen-
cies in this example simplifies the computations considerably. We may
estimate

f̂v(ω) =
SSE(ω)
L(N − 1)

(7.77)

and

f̂β(ω) = (LN)−1
(

SSR(ω) − SSE(ω)
(N − 1)

)
, (7.78)

using (7.75) and (7.76) for this special case. Cases will exist in which
(7.78) is negative and the estimated signal spectrum can be set to zero
for those frequencies. The estimators can be substituted into the optimal
filters to apply to the beam, say, H0(ω) in (7.74), or to use in the filter
applied to each level (7.73).

The analysis of variance estimators can be computed using the analysis
of power given in Figure 7.7, and the results of that computation and
applying (7.77) and (7.78) are shown in the top panel of Figure 7.8 for
a bandwidth of B = 7/2048 = cycles per point or about .03 cycles
per second (Hz). Neither spectrum contains any significant power for
frequencies greater than .04 cycles per point or about .4 Hz. As expected,
the signal spectral estimator is substantial over a narrow band, and this
leads to an estimated filter, with estimated frequency response function
Ĥ0(ω), shown on the left-hand side of the second panel. The estimated
optimal filter essentially deletes frequencies above .014 Hz and, subject
to slight modification, differs little from a standard low-pass filter with
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Figure 7.8 Estimated signal and noise spectra, filter responses, and beams.

that cutoff. Computing the time version with a cutoff at M = 201 points
and using a taper leads to the estimated impulse response function ĥ0(t),
as shown on the right-hand side of the middle panel. Finally, we apply
the optimal filter to the beam and get the filtered beam β̂t shown in the
bottom right-hand panel. It is smoother than the left-hand bottom panel,
where we have reproduced the beam shown earlier in Figure 7.3. The
analysis shows the primary signal as basically a low-frequency signal with
primary power at about .05 Hz or, essentially, a wave with a 20-second
period.

7.6 Analysis of Designed Experiments

An important special case (see Brillinger, 1973, 1980) of the regression model
(7.50) occurs when the regression (7.39) is of the form

yyyt = zβββt + vvvt, (7.79)

where z = (zzz1, zzz2, . . . , zzzN )′ is a matrix that determines what is observed by
the j-th series; i.e.,

yjt = zzz′
jβββt + vjt. (7.80)



7.6: ANOPOW 439

In this case, the the matrix zzz of independent variables is constant and we will
have the frequency domain model.

YYY (ωk) = ZBBB(ωk) + VVV (ωk) (7.81)

corresponding to (7.51), where the matrix Z(ωk) was a function of frequency
ωk. The matrix is purely real, in this case, but the equations (7.52)-(7.58) can
be applied with Z(ωk) replaced by the constant matrix Z.

Equality of Means

A typical general problem that we encounter in analyzing real data is a
simple equality of means test in which there might be a collection of time
series yijt, i = 1, . . . , I, j = 1, . . . , Ni, belonging to I possible groups, with Ni

series in group i. To test equality of means, we may write the regression model
in the form

yijt = µt + αit + vijt, (7.82)

where µt denotes the overall mean and αit denotes the effect of the i-th group
at time t and we require that

∑
i αit = 0 for all t. In this case, the full model

can be written in the general regression notation as

yijt = zzz′
ijβββt + vijt

where
βββt = (µt, α1t, α2t, . . . , αI−1,t)′

denotes the regression vector, subject to the constraint. The reduced model
becomes

yijt = µt + vijt (7.83)

under the assumption that the group means are equal. In the full model,
there are I possible values for the I × 1 design vectors zzzij ; the first component
is always one for the mean, and the rest have a one in the i-th position for
i = 1, . . . , I − 1 and zeros elsewhere. The vectors for the last group take the
value −1 for i = 2, 3, . . . , I − 1. Under the reduced model, each zzzij is a single
column of ones. The rest of the analysis follows the approach summarized
in (7.52)-(7.58). In this particular case, the power components in Table 7.3
(before smoothing) simplify to

SSR(ωk) =
I∑

i=1

Ni∑
j=1

|Yi·(ωk) − Y··(ωk)|2 (7.84)

and

SSE(ωk) =
I∑

i=1

Ni∑
j=1

|Yij(ωk) − Yi·(ωk)|2, (7.85)

which are analogous to the usual sums of squares in analysis of variance. Note
that a dot (·) stands for a mean, taken over the appropriate subscript, so the
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regression power component SSR(ωk) is basically the power in the residuals
of the group means from the overall mean and the error power component
SSE(ωk) reflects the departures of the group means from the original data
values. Smoothing each component over L frequencies leads to the usual F -
statistic (7.64) with 2L(I − 1) and 2L(

∑
i Ni − I) degrees of freedom at each

frequency ω of interest.

Example 7.7 Means Test for the Magnetic Resonance Imaging Data

Figure 7.1 showed the mean responses of subjects to various levels of pe-
riodic stimulation while awake and while under anesthesia, as collected
in a pain perception experiment of Antognini et al. (1997). Three types
of periodic stimuli were presented to awake and anesthetized subjects,
namely, brushing, heat, and shock. The periodicity was introduced by
applying the stimuli, brushing, heat, and shocks in on-off sequences last-
ing 32 seconds each and the sampling rate was one point every two sec-
onds. The blood oxygenation level (BOLD) signal intensity (Ogawa et
al., 1990) was measured at nine locations in the brain. Areas of activa-
tion were determined using a technique first described by Bandettini et
al. (1993). The specfic locations of the brain where the signal was mea-
sured were Cortex 1: Primary Somatosensory, Contralateral, Cortex 2:
Primary Somatosensory, Ipsilateral, Cortex 3: Secondary Somatosensory,
Contralateral, Cortex 4: Secondary Somatosensory, Ipsilateral, Caudate,
Thalamus 1: Contralateral, Thalamus 2: Ipsilateral, Cerebellum 1: Con-
tralateral and Cerebellum 2: Ipsilateral. Figure 7.1 shows the mean
response of subjects at Cortex 1 for each of the six treatment combi-
nations, 1: Awake-Brush (5 subjects), 2: Awake-Heat (4 subjects), 3:
Awake-Shock (5 subjects), 4: Low-Brush (3 subjects), 5: Low-Heat (5
subjects), and 6: Low-Shock( 4 subjects). The objective of this first
analysis is to test equality of these six group means, paying special at-
tention to the 64-second period band (1/64 cycles per second) expected
from the periodic driving stimuli. Because a test of equality is needed
at each of the nine brain locations, we took α = .001 to control for the
overall error rate. Figure 7.9 shows F -statistics, computed from (7.64),
with L = 3, and we see substantial signals for the four cortex locations
and for the second cerebellum trace, but the effects are nonsignificant in
the caudate and thalamus regions. Hence, we will retain the four cortex
locations and the second cerebellum location for further analysis.

An Analysis of Variance Model

The arrangement of treatments for the fMRI data in Figure 7.1 suggests more
information might be available than was obtained from the simple equality of
means test. Separate effects caused by state of consciousness as well as the
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Figure 7.9 Frequency-dependent equality of means tests for fMRI data at 9
brain locations. L = 3 and critical value F.001(30, 120) = 2.26.

separate treatments brush, heat, and shock might exist. The reduced signal
present in the low shock mean suggests a possible interaction between the
treatments and level of consciousness. The arrangement in the classical two-
way table suggests looking at the analog of the two factor analysis of variance
as a function of frequency. In this case, we would obtain a different version of
the regression model (7.82) of the form

yijkt = µt + αit + βjt + γijt + vijkt (7.86)

for k-th individual undergoing the i-th level of some factor A and the j-th level
of some other factor B, i = 1, . . . I, j = 1 . . . , J, k = 1, . . . nij . The number of
individuals in each cell can be different, as for the fMRI data in the next
example. In the above model, we assume the response can be modeled as the
sum of a mean, µt, a row effect (type of stimulus), αit, a column effect (level
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Table 7.4 Rows of the Design Matrix zzz′
j for fMRI Data. Number of

Observations per Cell in Parentheses

Awake Low Anesthesia
Brush 1 1 0 1 1 0 (5) 1 1 0 -1 -1 0 (3)
Heat 1 0 1 1 0 1 (4) 1 0 1 -1 0 -1 (5)
Shock 1 -1 -1 1 -1 -1 (5) 1 -1 -1 -1 1 1 (4)

of consciousness), βjt and an interaction, γijt, with the usual restrictions∑
i

αit =
∑

j

βjt =
∑

i

γijt =
∑

j

γijt = 0

required for a full rank design matrix Z in the overall regression model (7.81).
If the number of observations in each cell were the same, the usual simple
analogous version of the power components (7.84) and (7.85) would exist for
testing various hypotheses. In the case of (7.86), we are interested in testing
hypotheses obtained by dropping one set of terms at a time out of (7.86), so
an A factor (testing αit = 0), a B factor (βjt = 0), and an interaction term
(γijt = 0) will appear as components in the analysis of power. Because of the
unequal numbers of observations in each cell, we often put the model in the
form of the regression model (7.79)-(7.81).

Example 7.8 Analysis of Power Tests for the Magnetic Resonance
Imaging Data

For the fMRI data given as the means in Figure 7.1, a model of the
form (7.86) is plausible and will yield more detailed information than
the simple equality of means test described earlier. The results of that
test, shown in Figure 7.9, were that the means were different for the
four cortex locations and for the second cerebellum location. We may
examine these differences further by testing whether the mean differences
are because of the nature of the stimulus or the consciousness level, or
perhaps due to an interaction between the two factors. Unequal numbers
of observations exist in the cells that contributed the means in Figure 7.1.
For the regression vector,

(µt, α1t, β1t, β2t, γ11t, γ21t)′,

the rows of the design matrix are as specified in Table 7.4. Note the
restrictions given above for the parameters.

The results of testing the three hypotheses are shown in Figure 7.10
for the four cortex locations and the cerebellum, the components that
showed some significant differences in the means in Figure 7.9. Again,
the regression power components were smoothed over L = 3 frequencies.
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Figure 7.10 Analysis of power for fMRI data at five locations, L = 3 and
critical values F.001(6, 120) = 4.04 for stimulus and F.001(12, 120) = 3.02 for
consciousness and interaction.

Appealing to the ANOPOW results summarized in Table 7.3 for each
of the subhypotheses, q2 = 1 when the stimulus effect is dropped, and
q2 = 2 when either the conciousness effect or the interaction terms are
dropped. Hence, 2Lq2 = 6, 12 for the two cases, with N =

∑
ij nij = 26

total observations. Here, the form of the stimulus has the major effect,
with the brushing, heat, and shock means substantially different at the
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probe frequency in four out of five cases. The level of consciousness was
less significant and did not show the strong component at the signal
frequency. A significant interaction occurred, however, at the ipsilateral
component of the primary somatosensory cortex location. The more
detailed model does separate the stimuli as having the major effect, but
does not isolate which of the three might be more substantial than the
other two.

Simultaneous Inference

In the previous examples involving the fMRI data, it would be helpful to
focus on the components that contributed most to the rejection of the equal
means hypothesis. One way to accomplish this is to develop a test for the
significance of an arbitrary linear compound of the form

Ψ(ωk) = AAA∗(ωk)BBB(ωk), (7.87)

where the components of the vector AAA(ωk) = (A1(ωk), A2(ωk), . . . , Aq(ωk))′

are chosen in such a way as to isolate particular linear functions of parameters
in the regression vector BBB(ωk) in the regression model (7.81). This argument
suggests developing a test of the hypothesis Ψ(ωk) = 0 for all possible values
of the linear coefficients in the compound (7.87) as is done in the conventional
analysis of variance approach (see, for example, Scheffé, 1959).

Recalling the material involving the regression models of the form (7.51),
the linear compound (7.87) can be estimated by

Ψ̂(ωk) = AAA∗(ωk)B̂BB(ωk), (7.88)

where B̂BB(ωk) is the estimated vector of regression coefficients given by (7.52)
and independent of the error spectrum s2

y·z(ωk) in (7.54). It is possible to show
the maximum of the ratio

F (AAA) =
N − q

q

|Ψ̂(ωk) − Ψ(ωk)|2
s2

y·z(ωk)Q(AAA)
, (7.89)

where
Q(AAA) = AAA∗(ωk)S−1

z (ωk)AAA(ωk) (7.90)

is bounded by a statistic that has an F -distribution with 2q and 2(N − q) de-
grees of freedom. Testing the hypothesis that the compound has a particular
value, usually Ψ(ωk) = 0, then proceeds naturally, by comparing the statis-
tic (7.89) evaluated at the hypothesized value with the α level point on an
F2q,2(N−q) distribution. We can choose an infinite number of compounds of
the form (7.87) and the test will still be valid at level α. As before, arguing
the error spectrum is relatively constant over a band enables us to smooth the
numerator and denominator of (7.89) separately over L frequencies so distrib-
ution involving the smooth components is F2Lq,2L(N−q).
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Example 7.9 Simultaneous Inference for Magnetic Resonance
Imaging Data

As an example, consider the previous tests for significance of the fMRI
factors, in which we have indicated the primary effects are among the
stimuli but have not investigated which of the stimuli, heat, brushing, or
shock, had the most effect. To analyze this further, consider the means
model (7.82) and a 6 × 1 contrast vector of the form

Ψ̂ = AAA∗(ωk)B̂BB(ωk) =
6∑

i=1

A∗
i (ωk)YYY i·(ωk), (7.91)

where the means are easily shown to be the regression coefficients in this
particular case. In this case, the means are ordered by columns; the first
three means are the the three levels of stimuli for the awake state, and
the last three means are the levels for the anesthetized state. In this
special case, the denominator terms are

Q =
6∑

i=1

|Ai(ωk)|2
Ni

, (7.92)

with SSE(ωk) available in (7.85). In order to evaluate the effect of a
particular stimulus, like brushing over the two levels of consciousness, we
may take A1(ωk) = A4(ωk) = 1 for the two brush levels and A(ωk) = 0
zero otherwise. From Figure 7.11, we see that, at the first and third
cortex locations, brush and heat are both significant, whereas the fourth
cortex shows only brush and the second cerebellum shows only heat.
Shock appears to be transmitted relatively weakly, when averaged over
the awake and mildly anesthetized states.

Multivariate Tests

Although it is possible to develop multivariate regression along lines analo-
gous to the usual real valued case, we will only look at tests involving equality
of group means and spectral matrices, because these tests appear to be used
most often in applications. For these results, consider the p-variate time series
yyyijt = (yijt1, . . . , yijtp)′ to have arisen from observations on j = 1, . . . , Ni indi-
viduals in group i, all having mean µµµit and stationary autocovariance matrix
Γi(h). Denote the DFTs of the group mean vectors as YYY i·(ωk) and the p × p

spectral matrices as f̂i(ωk) for the i = 1, 2, . . . , I groups. Assume the same
general properties as for the vector series considered in §7.3.

In the multivariate case, we obtain the analogous versions of (7.84) and
(7.85) as the between cross-power and within cross-power matrices

SPR(ωk) =
I∑

i=1

Ni∑
j=1

(
YYY i·(ωk) − YYY ··(ωk)

)(
YYY i·(ωk) − YYY ··(ωk)

)∗ (7.93)



446 Frequency Domain Methods

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

Brush

cortex 1

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

Heat

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

Shock

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

cortex 2

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

cortex 3

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

cortex 4

0 0.1 0.2
0

5

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5
F

−
S

ta
ti
s
ti
c

0 0.1 0.2
0

5

cycles/sec

F
−

S
ta

ti
s
ti
c

cerebellum

0 0.1 0.2
0

5

cycles/sec

F
−

S
ta

ti
s
ti
c

0 0.1 0.2
0

5

cycles/sec

F
−

S
ta

ti
s
ti
c

Figure 7.11 Power in simultaneous linear compounds at five locations, en-
hancing brush, heat, and shock effects, L = 3, F.001(36, 120) = 1.80.

and

SPE(ωk) =
I∑

i=1

Ni∑
j=1

(
YYY ij(ωk) − YYY i·(ωk)

)(
YYY ij(ωk) − YYY i·(ωk)

)∗
. (7.94)

The equality of means test is rejected using the fact that the likelihood ratio
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test yields a monotone function of

Λ(ωk) =
|SPE(ωk)|

|SPE(ωk) + SPR(ωk)| . (7.95)

Khatri (1965) and Hannan (1970) give the approximate distribution of the
statistic

χ2
2(I−1)p = −2

(∑
Ni − I − p − 1

)
log Λ(ωk) (7.96)

as chi-squared with 2(I − 1)p degrees of freedom when the group means are
equal.

The case of I = 2 groups reduces to Hotelling’s T 2, as has been shown by
Giri (1965), where

T 2 =
N1N2

(N1 + N2)
[
YYY 1·(ωk) − YYY 2·(ωk)

]∗
f̂−1

v (ωk)
[
YYY 1·(ωk) − YYY 2·(ωk)

]
, (7.97)

where

f̂v(ωk) =
SPE(ωk)∑

i Ni − I
(7.98)

is the pooled error spectrum given in (7.94),with I = 2. The test statistic, in
this case, is

F2p,2(N1+N2−p−1) =
(N1 + N2 − 2)p

(N1 + N2 − p − 1)
T 2, (7.99)

which was shown by Giri (1965) to have the indicated limiting F -distribution
with 2p and 2(N1 + N2 − p − 1) degrees of freedom when the means are the
same. The classical t-test for inequality of two univariate means will be just
(7.98) and (7.99) with p = 1.

Testing equality of the spectral matrices is also of interest, not only for
discrimination and pattern recognition, as considered in the next section, but
also as a test indicating whether the equality of means test, which assumes
equal spectral matrices, is valid. The test evolves from the likelihood ration
criterion, which compares the single group spectral matrices

f̂i(ωk) =
1

Ni − 1

Ni∑
j=1

(
YYY ij(ωk) − YYY i·(ωk)

)(
YYY ij(ωk) − YYY i·(ωk)

)∗ (7.100)

with the pooled spectral matrix (7.98). A modification of the likelihood ratio
test, which incorporates the degrees of freedom Mi = Ni − 1 and M =

∑
Mi

rather than the sample sizes into the likelihood ratio statistic, uses

L′(ωk) =
MMp∏I

i=1 MMip
i

∏ |Mif̂i(ωk)|Mi

|Mf̂v(ωk)|M
. (7.101)

Krishnaiah et al. (1976) have given the moments of L′(ωk) and calculated
95% critical points for p = 3, 4 using a Pearson Type I approximation. For
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reasonably large samples involving smoothed spectral estimators, the approx-
imation involving the first term of the usual chi-squared series will suffice and
Shumway (1982) has given

χ2
(I−1)p2 = −2r log L′(ωk), (7.102)

where

1 − r =
(p + 1)(p − 1)

6p(I − 1)

(∑
i

M−1
i − M−1

)
, (7.103)

with an approximate chi-squared distribution with (I − 1)p2 degrees of free-
dom when the spectral matrices are equal. Introduction of smoothing over L
frequencies leads to replacing Mj and M by LMj and LM in the equations
above.

Of course, it is often of great interest to use the above result for testing
equality of two univariate spectra, and it is obvious from the material in Chap-
ter 4

F2LM1,2LM2 =
f̂1(ω)

f̂2(ω)
(7.104)

will have the requisite F -distribution with 2LM1 and 2LM2 degrees of freedom
when spectra are smoothed over L frequencies.

Example 7.10 Equality of Means and Spectral Matrices for Earth-
quakes and Explosions

An interesting problem arises when attempting to develop a method-
ology for discriminating between waveforms originating from explosions
and those that came from the more commonly occurring earthquakes.
Figure 7.2 shows a small subset of a larger population of bivariate se-
ries consisting of two phases from each of eight earthquakes and eight
explosions. If the large–sample approximations to normality hold for the
DFTs of these series, it is of interest to known whether the differences
between the two classes are better represented by the mean functions
or by the spectral matrices. The tests described above can be applied
to look at these two questions. The upper left panel of Figure 7.12
shows the test statistic (7.99) with the straight line denoting the crit-
ical level for α = .001, i.e., F.001(4, 26) = 7.36, for equal means using
L = 1, and the test statistic remains well below its critical value at all
frequencies, implying that the means of the two classes of series are not
significantly different. Checking Figure 7.2 shows little reason exists to
suspect that either the earthquakes or explosions have a nonzero mean
signal. Checking the equality of the spectra and the spectral matrices,
however, leads to a different conclusion. Some smoothing (L = 21) is
useful here, and univariate tests on both the P and S components using
(7.104) and N1 = N2 = 8 lead to strong rejections of the equal spectra
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Figure 7.12 Tests for equality of means, spectra, and spectral matrices for
the earthquake and explosion data p = 2, L = 21, n = 1024 points at 40 points
per second.

hypotheses, with F.001(∞,∞) = 1.00 exceeded at almost all frequencies.
The rejection seems stronger for the S component and we might tenta-
tively identify that component as being dominant. Testing equality of
the spectral matrices using (7.102) and χ2

.001(4) = 18.47 shows a similar
strong rejection of the equality of spectral matrices. We use these results
to suggest optimal discriminant functions based on spectral differences
in the next section.

7.7 Discrimination and Cluster Analysis

The extension of classical pattern-recognition techniques to experimental time
series is a problem of great practical interest. A series of observations indexed
in time often produces a pattern that may form a basis for discriminating be-
tween different classes of events. As an example, consider Figure 7.2, which
shows regional (100-2000 km) recordings of several typical Scandinavian earth-
quakes and mining explosions measured by stations in Scandinavia. A listing
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of the events is given in Kakizawa et al. (1998). The problem of discriminat-
ing between mining explosions and earthquakes is a reasonable proxy for the
problem of discriminating between nuclear explosions and earthquakes. This
latter problem is one of critical importance for monitoring a comprehensive
test-ban treaty. Time series classification problems are not restricted to geo-
physical applications, but occur under many and varied circumstances in other
fields. Traditionally, the detecting of a signal embedded in a noise series has
been analyzed in the engineering literature by statistical pattern recognition
techniques (see Problems 7.13 and 7.14).

The historical approaches to the problem of discriminating among different
classes of time series can be divided into two distinct categories. The opti-
mality approach, as found in the engineering and statistics literature, makes
specific Gaussian assumptions about the probability density functions of the
separate groups and then develops solutions that satisfy well-defined minimum
error criteria. Typically, in the time series case, we might assume the difference
between classes is expressed through differences in the theoretical mean and
covariance functions and use likelihood methods to develop an optimal classi-
fication function. A second class of techniques, which might be described as a
feature extraction approach, proceeds more heuristically by looking at quanti-
ties that tend to be good visual discriminators for well-separated populations
and have some basis in physical theory or intuition. Less attention is paid
to finding functions that are approximations to some well-defined optimality
criterion.

As in the case of regression, both time domain and frequency domain ap-
proaches to discrimination will exist. For relatively short univariate series,
a time domain approach that follows conventional multivariate discriminant
analysis as described in conventional multivariate texts, such as Anderson
(1984) or Johnson and Wichern (1992) may be preferable. We might even
characterize differences by the autocovariance functions generated by different
ARMA or state-space models. For longer multivariate time series that can
be regarded as stationary after the common mean has been subtracted, the
frequency domain approach will be easier computationally because the np di-
mensional vector in the time domain, represented here as xxx = (xxx′

1, xxx
′
t, . . . , xxx

′
n)′,

with xxxt = (xt1, . . . , xtp)′, will reduced to separate computations made on the p-
dimensional DFTs. This happens because of the approximate independence of
the DFTs, XXX(ωk), 0 ≤ ωk ≤ 1, a property that we have often used in preceding
chapters.

Finally, the grouping properties of measures like the discrimination informa-
tion and likelihood-based statistics can be used to develop measures of dispar-
ity for clustering multivariate time series. In this section, we define a measure
of disparity between two multivariate times series by the spectral matrices
of the two processes and then apply hierarchical clustering and partitioning
techniques to identify natural groupings within the bivariate earthquake and
explosion populations.
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The General Discrimination Problem

The general problem of classifying a vector time series xxx occurs in the
following way. We observe a time series xxx known to belong to one of g popula-
tions, denoted by Π1, Π2, . . . ,Πg. The general problem is to assign or classify
this observation into one of the g groups in some optimal fashion. An exam-
ple might be the g = 2 populations of earthquakes and explosions shown in
Figure 7.2. We would like to classify the unknown event, shown as NZ in the
bottom two panels, as belonging to either the earthquake (Π1) or explosion
(Π2) populations. To solve this problem, we need an optimality criterion that
leads to a statistic T (xxx) that can be used to assign the NZ event to either the
earthquake or explosion populations. To measure the success of the classifi-
cation, we need to evaluate errors that can be expected in the future relating
to the number of earthquakes classified as explosions (false alarms) and the
number of explosions classified as earthquakes (missed signals).

The problem can be formulated by assuming the observed series xxx has a
probability density pi(xxx) when the observed series is from population Πi for
i = 1, . . . , g. Then, partition the space spanned by the np-dimensional process
xxx into g mutually exclusive regions R1, R2, . . . , Rg such that, if xxx falls in Ri, we
assign xxx to population Πi. The misclassification probability is defined as the
probability of classifying the observation into population Πj when it belongs
to Πi, for j �= i and would be given by the expression

P (j|i) =
∫

Rj

pi(xxx) dxxx. (7.105)

The overall total error probability depends also on the prior probabilities,
say, π1, π2, . . . , πg, of belonging to one of the g groups. For example, the
probability that an observation xxx originates from Πi and is then classified into
Πj is obviously πiP (j|i), and the total error probability becomes

Pe =
g∑

i=1

πi

∑
j 	=i

P (j|i). (7.106)

Although costs have not been incorporated into (7.106), it is easy to do so by
multiplying P (j|i) by C(j|i), the cost of assigning a series from population Πi

to Πj .
The overall error Pe is minimized by classifying xxx into Πi if

pi(xxx)
pj(xxx)

>
πj

πi
(7.107)

for all j �= i (see, for example, Anderson, 1984). A quantity of interest, from
the Bayesian perspective, is the posterior probability an observation belongs
to population Πi, conditional on observing xxx, say,

P (Πi|xxx) =
πipi(xxx)∑

j πj(xxx)pj(xxx)
. (7.108)
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The procedure that classifies xxx into the population Πi for which the poste-
rior probability is largest is equivalent to that implied by using the criterion
(7.107). The posterior probabilities give an intuitive idea of the relative odds
of belonging to each of the plausible populations.

Many situations occur, such as in the classification of earthquakes and
explosions, in which there are only g = 2 populations of interest. For two pop-
ulations, the Neyman–Pearson lemma implies, in the absence of prior proba-
bilities, classifying an observation into Π1 when

p1(xxx)
p2(xxx)

> K (7.109)

minimizes each of the error probabilities for a fixed value of the other. The
rule is identical to the Bayes rule (7.107) when K = π2/π1.

The theory given above takes a simple form when the vector xxx has a p-
variate normal distribution with mean vectors µµµj and covariance matrices Σj

under Πj for j = 1, 2, . . . , g. In this case, simply use

pj(xxx) = (2π)−p/2|Σj |−1/2 exp
{

−1
2
(xxx − µµµj)

′Σ−1
j (xxx − µµµj)

}
. (7.110)

The classification functions are conveniently expressed by quantities that are
proportional to the logarithms of the densities, say,

gj(xxx) = −1
2

ln |Σj | − 1
2

xxx′Σ−1
j xxx + µµµ′

jΣ
−1
j xxx − 1

2
µµµ′

jΣ
−1
j µµµj + lnπj . (7.111)

In expressions involving the log likelihood, we will generally ignore terms in-
volving the constant − ln 2π. For this case, we may assign an observation xxx to
population Πi whenever

gi(xxx) > gj(xxx) (7.112)

for j �= i, j = 1, . . . , g and the posterior probability (7.108) has the form

P (Πi|xxx) =
exp{gi(xxx)}∑
j exp{gj(xxx)} .

A common situation occurring in applications involves classification for g =
2 groups under the assumption of multivariate normality and equal covariance
matrices; i.e., Σ1 = Σ2 = Σ. Then, the criterion (7.112) can be expressed in
terms of the linear discriminant function

dl(xxx) = g1(xxx) − g2(xxx)

= (µµµ1 − µµµ2)
′Σ−1xxx − 1

2
(µµµ1 − µµµ2)

′Σ−1(µµµ1 + µµµ2) + ln
π1

π2
, (7.113)

where we classify into Π1 or Π2 according to whether dl(xxx) ≥ 0 or dl(xxx) < 0.
The linear discriminant function is clearly a combination of normal variables
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and, for the case π1 = π2 = .5, will have mean D2/2 under Π1 and mean
−D2/2 under Π2, with variances given by D2 under both hypotheses, where

D2 = (µµµ1 − µµµ2)
′Σ−1(µµµ1 − µµµ2) (7.114)

is the Mahalanobis distance between the mean vectors µµµ1 and µµµ2. In this case,
the two misclassification probabilities (7.1) are

P (1|2) = P (2|1)

= Φ
(

−D

2

)
, (7.115)

and the performance is directly related to the Mahalanobis distance (7.114).
For the case in which the covariance matrices cannot be assumed to be the

the same, the discriminant function takes a different form, with the difference
g1(xxx) − g2(xxx) taking the form

dq(xxx) = −1
2

ln
|Σ1|
|Σ2| − 1

2
xxx′(Σ−1

1 − Σ−1
2 )xxx

+(µµµ′
1Σ

−1
1 − µµµ′

2Σ
−1
2 )xxx + ln

π1

π2
(7.116)

for g = 2 groups. This discriminant function differs from the equal covari-
ance case in the linear term and in a nonlinear quadratic term involving the
differing covariance matrices. The distribution theory is not tractable for the
quadratic case so no convenient expression like (7.115) is available for the error
probabilities for the quadratic discriminant function.

A difficulty in applying the above theory to real data is that the group mean
vectors µµµj and covariance matrices Σj are seldom known. Some engineering
problems, such as the detection of a signal in white noise, assume the means
and covariance parameters are known exactly, and this can lead to an optimal
solution (see Problems 7.14 and 7.15). In the classical multivariate situation,
it is possible to collect a sample of Ni training vectors from group Πi, say, xxxij ,
for j = 1, . . . , Ni, and use them to estimate the mean vectors and covariance
matrices for each of the groups i = 1, 2, . . . , g; i.e., simply choose xxxi· and

Si = (Ni − 1)−1
Ni∑
j=1

(xxxij − xxxi·)(xxxij − xxxi·)′ (7.117)

as the estimators for µµµi and Σi, respectively. In the case in which the covariance
matrices are assumed to be equal, simply use the pooled estimator

S =
(∑

i

Ni − g

)−1∑
i

(Ni − 1)Si. (7.118)

For the case of a linear discriminant function, we may use

ĝi(xxx) = xxx′
i·S

−1xxx − 1
2

xxx′
i·S

−1xxxi· + log πi (7.119)
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as a simple estimator for gi(xxx). For large samples, xxxi· and S converge to µµµi

and Σ in probability so ĝi(xxx) converges in distribution to gi(xxx) in that case.
The procedure works reasonably well for the case in which Ni, i = 1, . . . g are
large, relative to the length of the series n, a case that is relatively rare in time
series analysis. For this reason, we will resort to using spectral approximations
for the case in which data are given as long time series.

The performance of sample discriminant functions can be evaluated in sev-
eral different ways. If the population parameters are known, (7.114) and
(7.115) can be evaluated directly. If the parameters are estimated, the es-
timated Mahalanobis distance D̂2 can be substituted for the theoretical value
in very large samples. Another approach is to calculate the apparent error rates
using the result of applying the classification procedure to the training sam-
ples. If nij denotes the number of observations from population Πj classified
into Πi, the sample error rates can be estimated by the ratio

̂P (i|j) =
nij∑
i nij

(7.120)

for i �= j. If the training samples are not large, this procedure may be biased
and a resampling option like cross validation or the bootstrap can be em-
ployed. A simple version of cross validation is the jacknife procedure proposed
by Lachenbruch and Mickey (1968), which holds out the observation to be
classified, deriving the classification function from the remaining observations.
Repeating this procedure for each of the members of the training sample and
computing (7.120) for the holdout samples leads to better estimators of the
error rates.

Example 7.11 Discriminant Analysis Using Amplitudes from Earth-
quakes and Explosions

We can give a simple example of applying the above procedures to the
logarithms of the amplitudes of the separate P and S components of
the original earthquake and explosion traces. The logarithms (base 10)
of the maximum peak-to-peak amplitudes of the P and S components,
denoted by log10 P and log10 S, can be considered as two-dimensional
feature vectors, say, xxx = (x1, x2)′ = (log10 P, log10 S)′, from a bivariate
normal population with differering means and covariances. The original
data, from Kakizawa et al. (1998), are shown in Table 7.5 and in the
left-hand panel of Figure 7.13. The table includes the Novaya Zemlya
(NZ) event of unknown origin. The tendency of the earthquakes to have
higher values for log10 S, relative to log10 P has been noted by many
and the use of the logarithm of the ratio, i.e., log10 P − log10 S in some
references (see Lay, 1997, pp. 40-41) is a tacit indicator that a linear
function of the two parameters will be a useful discriminant.
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Figure 7.13 Classification of earthquakes and explosions using the magnitude
features (left panel) and the K-L and Chernoff disparity measures (right panel).

The sample means xxx1· = (4.25, 4.95)′ and xxx2· = (4.64, 4.73)′, and covari-
ance matrices

S1 =
(

.3096 .3954

.3954 .5378

)
and

S2 =
(

.0954 .0804

.0804 .1070

)
are immediate from (7.117), with the pooled covariance matrix given by

S =
(

.2025 .2379

.2379 .3238

)
from (7.118). Although the covariance matrices are not equal, we try
the linear discriminant function anyway, which yields (with equal prior
probabilities π1 = π2 = .5) the sample discriminant functions

̂g1(xxx) = 22.12x1 − .98x2 − 45.23

and ̂g2(xxx) = 42.61x2 − 16.8x2 − 59.80
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Table 7.5 Logarithms of Maximum Peak-to-Peak Amplitudes from P and S
Components for Eight Earthquakes and Eight Explosions

EQ log10 P log10 S EXP log10 P log10 S
1 3.91 4.67 1 4.55 4.88
2 4.78 5.71 2 4.74 4.43
3 3.98 4.86 3 4.90 5.09
4 3.76 4.14 3 4.60 4.86
5 3.80 4.14 5 4.81 4.76
6 4.88 5.56 6 4.36 4.55
7 5.06 6.03 6 5.04 5.06
8 3.80 4.45 8 4.08 4.14

NZ 3.18 3.27

from (7.119), with the estimated linear discriminant function (7.113) as

d̂l(xxx) = −20.49x1 + 15.82x2 + 14.57,

indicating log10 S − log10 P = x2 − x1 is not far from the optimal linear
discriminant function. The jacknifed posterior probabilities of being an
earthquake for the earthquake group ranged from .791 to 1.000, whereas
the explosion probabilities for the explosion group ranged from .814 to
.998, except for the first explosion, which was classified as an earthquake
with a posterior probability of .949. Hence, n12 = 1 for this particular
example. The unknown event, NZ, was classified as an earthquake, with
posterior probability .753. Components of the vector for the unknown
event NZ were well outside the range of the values spanned by the training
set, so the classification here is somewhat suspect. The quadratic dis-
criminant might be more appropriate here, given the observed differences
in the two covariance matrices. Applying the sample version of (7.116)
leads to essentially the same results, namely, the misclassification of the
first earthquake as an explosion with a posterior probability of .807 and
the classification of the unknown NZ event into the earthquake group.

Frequency Domain Discrimination

The feature extraction approach often works well for discriminating be-
tween classes of univariate or multivariate series when there is a simple low-
dimensional vector that seems to capture the essence of the differences between
the classes. It still seems sensible, however, to develop optimal methods for
classification that exploit the differences between the multivariate means and
covariance matrices in the time series case. Such methods can be based on
the Whittle approximation to the log likelihood given in §7.2. In this case,
the vector DFTs, say, XXX(ωk), are assumed to be approximately normal, with
means MMM j(ωk) and spectral matrices fj(ωk) for population Πj at frequencies
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ωk = k/n, for k = 0, 1, . . . [n/2], and are approximately uncorrelated at differ-
ent frequencies, say, ωk and ω� for k �= 
. Then, writing the complex normal
densities as in §7.2 leads to a criterion similar to (7.111); namely,

gj(XXX) = lnπj −
∑

0<ωk<1/2

[
ln |fj(ωk)| + XXX∗(ωk)f−1

j (ωk)XXX(ωk)

−2MMM∗
j (ωk)f−1

j (ωk)XXX(ωk) + MMM∗
j (k)f−1

j (ωk)MMM j(ωk)
]
, (7.121)

where the sum goes over frequencies for which |fj(ωk)| �= 0. The periodicity
of the spectral density matrix and DFT allows adding over 0 < k < 1/2. The
classification rule is as in (7.112).

In the time series case, it is more likely the discriminant analysis involves
assuming the covariance matrices are different and the means are equal. For
example, the tests, shown in Figure 7.12, imply, for the earthquakes and ex-
plosions, the primary differences are in the bivariate spectral matrices and the
means are essentially the same. For this case, it will be convenient to write
the Whittle approximation to the log likelihood in the form

ln pj(XXX) =
∑

0<ωk<1/2

[
− ln |fj(ωk)| − XXX∗(ωk)f−1

j (ωk)XXX(ωk)
]
, (7.122)

where we have omitted the prior probabilities from the equation. The quadratic
detector in this case can be written in the form

ln pj(XXX) =
∑

0<ωk<1/2

[
− ln |fj(ωk)| − tr

{
I(ωk)f−1

j (ωk)
}]

, (7.123)

where
I(ωk) = XXX(ωk)XXX∗(ωk) (7.124)

denotes the periodogram matrix. For equal prior probabilities, we may assign
an observation xxx into population Πi whenever

ln pi(XXX) > ln pj(XXX) (7.125)

for j �= i, j = 1, 2, . . . , g.
Numerous authors have considered various versions of discriminant analysis

in the frequency domain. Shumway and Unger (1974) considered (7.121) for
p = 1 and equal covariance matrices, so the criterion reduces to a simple
linear one. They apply the criterion to discriminating between earthquakes
and explosions using teleseismic P wave data in which the means over the two
groups might be considered as fixed. Alagón (1989) and Dargahi-Noubary and
Laycock (1981) considered discriminant functions of the form (7.121) in the
univariate case when the means are zero and the spectra for the two groups are
different. Taniguchi et al. (1994) adopted (7.122) as a criterion and discussed
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its non-Gaussian robustness. Shumway (1982) reviews general discriminant
functions in both the univariate and multivariate time series cases.

Measures of Disparity

Before proceeding to examples of discriminant and cluster analysis, it is
useful to consider the relation to the Kullback–Leibler (K-L) discrimination
information, as defined in Problem 2.4 of Chapter 2. Using the spectral ap-
proximation and noting the periodogram matrix has the approximate expec-
tation

EjI(ωk) = fj(ωk)

under the assumption that the data come from population Πj , and approxi-
mating the ratio of the densities by

ln
p1(XXX)
p2(XXX)

=
∑

0<ωk<1/2

[
− ln

|f1(ωk)|
|f2(ωk)| − tr

{(
f−1
2 (ωk) − f−1

1 (ωk)
)
I(ωk)

}]
,

we may write the approximate discrimination information as

I(f1; f2) =
1
n

E1 ln
p1(XXX)
p2(XXX)

=
1
n

∑
0<ωk<1/2

[
tr
{
f1(ωk)f−1

2 (ωk)
}− ln

|f1(ωk)|
|f2(ωk)| − p

]
. (7.126)

The approximation may be carefully justified by noting the multivatiate nor-
mal time series xxx = (xxx′

1, xxx
′
2 . . . , xxx′

n) with zero means and np × np stationary
covariance matrices Γ1 and Γ2 will have p, n × n blocks, with elements of the
form γ

(l)
ij (s − t), s, t = 1, . . . , n, i, j = 1, . . . , p for population Π�, 
 = 1, 2. The

discrimination information, under these conditions, becomes

I(1; 2 : xxx) =
1
n

E1 ln
p1(xxx)
p2(xxx)

=
1
2n

[
tr
{
Γ1Γ−1

2

}− ln
|Γ1|
|Γ2| − np

]
. (7.127)

The limiting result

lim
n→∞ I(1; 2 : xxx) =

1
2

∫ 1/2

−1/2

[
tr{f1(ω)f−1

2 (ω)} − ln
|f1(ω)|
|f2(ω)| − p

]
dω

has been shown, in various forms, by Pinsker (1964), Hannan (1970), and
Kazakos and Papantoni-Kazakos (1980). The discrete version of (7.126) is just
the approximation to the integral of the limiting form. The K-L measure of
disparity is not a true distance, but it can be shown that I(1; 2) ≥ 0, with
equality if and only if f1(ω) = f2(ω) almost everywhere. This result makes it
potentially suitable as a measure of disparity between the two densities.
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A connection exists, of course, between the discrimination information num-
ber, which is just the expectation of the likelihood criterion and the likelihood
itself. For example, we may measure the disparity between the sample and the
process defined by the theoretical spectrum fj(ωk) corresponding to population
Πj in the sense of Kullback (1978), as I(f̂ ; fj), where

f̂(ωk) = L−1
m∑

�=−m

I(ωk + 
/n) (7.128)

denotes the smoothed spectral matrix. The likelihood ratio criterion can be
thought of as measuring the disparity between the periodogram and the the-
oretical spectrum for each of the populations. To make the discrimination
information finite, we replace the periodogram implied by the log likelihood by
the sample spectrum. In this case, the classification procedure can be regarded
as finding the population closest, in the sense of minimizing disparity between
the sample and theoretical spectral matrices. The classification in this case
proceeds by simply choosing the population Πj that minimizes I(f̂ ; fj), i.e.,
assigning xxx to population Πi whenever

I(f̂ ; fi) < I(f̂ ; fj) (7.129)

for j �= i, j = 1, 2, . . . , g.
Kakizawa et al. (1998) proposed using the Chernoff (CH) information mea-

sure (Chernoff, 1952, Renyi, 1961), defined as

Bα(1; 2) = − lnE2

{(
p2(xxx)
p1(xxx)

)α}
, (7.130)

where the measure is indexed by a regularizing parameter α, for 0 < α < 1.
When α = .5, the Chernoff measure is the symmetric divergence proposed by
Bhattacharya (1943). For the multivariate normal case,

Bα(1; 2 : xxx) =
1
n

[
ln

|αΓ1 + (1 − α)Γ2|
|Γ2| − α ln

|Γ1|
|Γ2|

]
. (7.131)

The large sample spectral approximation to the Chernoff information measure
is analogous to that for the discrimination information, namely,

Bα(f1; f2) =
1
2n

∑
0<ωk<1/2

[
ln

|αf1(ωk) + (1 − α)f2(ωk)|
|f2(ωk)|

−α ln
|f1(ωk)|
|f2(ωk)|

]
. (7.132)

The Chernoff measure, when divided by α(1 − α), behaves like the discrimi-
nation information in the limit in the sense that it converges to I(1; 2 : xxx) for
α → 0 and to I(2; 1 : xxx) for α → 1. Hence, near the boundaries of the parame-
ter α, it tends to behave like discrimination information and for other values



460 Frequency Domain Methods

represents a compromise between the two information measures. The classifi-
cation rule for the Chernoff measure reduces to assigning xxx to population Πi

whenever
Bα(f̂ ; fi) < Bα(f̂ ; fj) (7.133)

for j �= i, j = 1, 2, . . . , g.
Although the classification rules above are well defined if the group spectral

matrices are known, this will not be the case in general. If there are g training
samples, xxxij , j = 1, . . . , Ni, i = 1 . . . , g, with Ni vector observations available
in each group, the natural estimator for the spectral matrix of the group i is
just the single-group spectral matrix (7.100), namely, with XXXij(ωk) denoting
the vector DFTs,

f̂i(ωk) =
1

Ni − 1

Ni∑
j=1

(
XXXij(ωk) − XXXi·(ωk)

)∗(
XXXij(ωk) − XXXi·(ωk)

)
, (7.134)

A second consideration is the choice of the regularization parameter α for
the Chernoff criterion, (7.132). For the case of g = 2 groups, it should be
chosen to maximize the disparity between the two group spectra, as defined in
(7.132). Kakizawa et al. (1998) simply plot (7.132) as a function of α, using the
estimated group spectra in (7.134), choosing the value that gives the maximum
disparity between the two groups.

Example 7.12 Discriminant Analysis for Earthquakes and Explosions

The simplest approaches to discriminating between the earthquake and
explosion groups have been based on either the relative amplitudes of
the P and S phases, as in Figure 7.4 or on relative power components
in various frequency bands. Considerable effort has been expended on
using various spectral ratios involving the bivariate P and S phases as
discrimination features. Kakizawa et al. (1998) mention a number of
measures that have be used in the seismological literature as features.
These features include ratios of power for the two phases and ratios of
power components in high- and low-frequency bands. The use of such
features of the spectrum suggests an optimal procedure based on discrim-
inating between the spectral matrices of two stationary processes would
be reasonable. The fact that the hypothesis that the spectral matrices
were equal, tested in Example 7.10, was also soundly rejected suggests the
use of a discriminant function based on spectral differences. Recall the
sampling rate is 40 points per second, leading to a folding frequency of 20
Hz. To avoid numerical problems, we used a broad band (2Hz, L = 51)
and the criteria (7.126) and (7.132), summed over the interval from 0 to 8
Hz, where the spectra were both positive. Narrowing the bandwidth and
summing over a broader interval did not substantially change the results.
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Table 7.6 Discriminant Scores I = I(f̂ ; f1) − I(f̂ ; f2) and
B = B.3(f̂ ; f1) − B.3(f̂ ; f2) for Earthquakes and Explosions

EQ I B EXP I B
1 8.51 .54 1 .29 −.25
2 .81 .50 2 −2.55 −.75
3 30.80 1.04 4 −1.82 −.61
4 2.73 .10 4 −1.89 −.44
5 7.69 .11 5 −1.16 −.45
6 21.50 .79 6 −2.12 −.61
7 20.31 .85 7 −2.10 −.59
8 15.54 .70 8 .93 −.21

The maximum value of the estimated Chernoff disparity Bα(f̂1; f̂2) oc-
curs for α = .3, and we use that value in the discriminant criterion
(7.132). Discriminant scores using the holdout classification functions
are shown in Table 7.6 for both criteria. We note the generally good per-
formance of the Chernoff measure, which separates the two populations
well and makes no errors; the discrimination information misclassified
explosions one and eight as earthquakes. The values for the two sets of
scores are plotted in the right-hand panel of Figure 7.13, and the earth-
quake variances of the discrimination information have larger variances
than do those for the explosions (the standard deviations were 9.34 and
1.25, respectively). The Chernoff discriminant scores are distributed on
either side of the decision point 0, with means .58 and -.48 for the earth-
quake and explosion groups, respectively; the standard deviations of the
two samples were .34 and .20. The NZ event was also classified using
the average spectral matrices of the eight earthquakes and explosions,
giving the value -.49 for the discimination information and -.31 for the
Chernoff measure, putting the event in the explosion population by this
criterion. Previously, in Example 7.11, the extracted log amplitudes clas-
sified this event in the earthquake group. The Russians have asserted no
mine blasting or nuclear testing occurred in the area in question, so the
event remains as somewhat of a mystery. The fact that it was relatively
removed geographically from the test set may also have introduced some
uncertainties into the procedure.

Cluster Analysis

For the purpose of clustering, it may be more useful to consider a symmetric
disparity measures and we introduce the J-Divergence measure

J(f1; f2) = I(f1; f2) + I(f2; f1) (7.135)
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and the symmetric Chernoff number

JBα(f1; f2) = Bα(f1; f2) + Bα(f2; f1) (7.136)

for that purpose. In this case, we define the disparity between the sample
spectral matrix of a single vector, xxx, and the population Πj as

J(f̂ ; fj) = I(f̂ ; fj) + I(fj ; f̂) (7.137)

and
JBα(f̂ ; fj) = Bα(f̂ ; fj) + Bα(fj ; f̂), (7.138)

respectively and use these as quasi-distances between the vector and population
Πj .

The measures of disparity can be used to cluster multivariate time series.
The symmetric measures of disparity, as defined above ensure that the disparity
between fi and fj is the same as the disparity between fj and fi. Hence, we
will consider the symmetric forms (7.137) and (7.138) as quasi-distances for
the purpose of defining a distance matrix for input into one of the standard
clustering procedures (see Johnson and Wichern, 1992). In general, we may
consider either hierarchical or partitioned clustering methods using the quasi-
distance matrix as an input.

For purposes of illustration, we may use the symmetric divergence (7.137),
which implies the quasi-distance between sample series with estimated spectral
matrices f̂i and f̂j would be (7.137); i.e.,

J(f̂i; f̂j) =
1
n

∑
0<ωk<1/2

[
tr
{
f̂i(ωk)f̂−1

j (ωk)
}

+ tr
{
f̂j(ωk)f̂−1

i (ωk)
}− 2p

]
,

(7.139)
for i �= j. We can also use the comparable form for the Chernoff divergence,
but we may not want to make an assumption for the regularization parameter
α.

For hierarchical clustering, we begin by clustering the two members of the
population that minimize the disparity measure (7.139). Then, these two items
form a cluster, and we can compute distances between unclustered items as
before. The distance between unnclustered items and a current cluster is de-
fined here as the average of the distances to elements in the cluster. Again, we
combine objects that are closest together. We may also compute the distance
between the unclustered items and clustered items as the closest distance,
rather than the average. Once a series is in a cluster, it stays there. At each
stage, we have a fixed number of clusters, depending on the merging stage.

Alternatively, we may think of clustering as a partitioning of the sample into
a prespecified number of groups. MacQueen (1967) has proposed this using
k-means clustering, using the Mahalonobis distance between an observation
and the group mean vectors. At each stage, a reassignment of an observation
into its closest affinity group is possible. To see how this procedure applies
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Table 7.7 Clustering Results for Earthquakes and Explosions
Beginning Cluster 1 Cluster 2 Cluster 3

Two Groups:
Random EQ 123678 EX 12345678

EQ 45 NZ
Hierarchical EQ 12345678 EX 12345678

NZ
Three Groups:

Random EQ 123678 EX 1234567 EQ 5 EX 8
EQ 4 NZ

Hierarchical EQ 123678 EX 1234567 EQ 45 EX 8
NZ

in the current context, consider a preliminary partition into a fixed number of
groups and define the disparity between the spectral matrix of the observation,
say, f̂ , and the average spectral matrix of the group, say, f̂i, as J(f̂ ; f̂i), where
the group spectral matrix can be estimated by (7.134). At any pass, a single
series is reassigned to the group for which its disparity is minimized. The
reassignment procedure is repeated until all observations stay in their current
groups. Of course, the number of groups must be specified for each repetition
of the partitioning algorithm and a starting partition must be chosen. This
assignment can either be random or chosen from a preliminary hierarchical
clustering, as described above. kip

Example 7.13 Cluster Analysis for Earthquakes and Explosions

It is instructive to try the clustering procedure on the population of
known earthquakes and explosions. Table 7.7 shows the results of ap-
plying partitioned clustering under the assumption that either two or
three groups are appropriate. Two groups would be simple assuming
the vectors classified naturally into the earthquake and explosion classes,
whereas three groups would imply possible outliers from the two pri-
mary groups. The starting partitions were defined by either randomly
assigning observations to groups or using the result of the hierarchichal
clustering procedure. The two-group partition with the hierarchical start
configuration tends to produce a final partition that agrees closely with
the known configuration, assuming the NZ event is an explosion. The
random starting partition puts two of the earthquakes into the explo-
sion group. For the three-group partitions, one or two earthquakes and
the last explosion join the third cluster that we have designated as the
outlying group.
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7.8 Principal Components and Factor Analysis

In this section, we introduce the related topics of spectral domain principal
components analysis and factor analysis for time series. The topics of principal
components and canonical analysis in the frequency domain are rigorously
presented in Brillinger (1981, Chapters 9 and 10) and many of the details
concerning these concepts can be found there.

The techniques presented here are related to each other in that they focus
on extracting pertinent information from spectral matrices. This information
is important because dealing directly with a high-dimensional spectral matrix
f(ω) itself is somewhat cumbersome because it is a function into the set of com-
plex, nonnegative-definite, Hermitian matrices. We can view these techniques
as easily understood, parsimonious tools for exploring the behavior of vector-
valued time series in the frequency domain with minimal loss of information.
Because our focus is on spectral matrices, we assume for convenience that the
time series of interest have zero means; the techniques are easily adjusted in
the case of nonzero means.

In this and subsequent sections, it will be convenient to work occasionally
with complex-valued time series. A p × 1 complex-valued time series can be
represented as xxxt = xxx1t−ixxx2t, where xxx1t is the real part and xxx2t is the imaginary
part of xxxt. The process is said to be stationary if E(xxxt) and E(xxxt+hxxx∗

t ) exist
and are independent of time t. The p × p autocovariance function,

Γxx(h) = E(xxxt+hxxx∗
t ) − E(xxxt+h)E(xxx∗

t ),

of xxxt satisfies conditions similar to those of the real-valued case. Writing
Γxx(h) = {γij(h)}, for i, j = 1, . . . , p, we have (i) γii(0) ≥ 0 is real, (ii)
|γij(h)|2 ≤ γii(0)γjj(0) for all integers h, and (iii) Γxx(h) is Hermitian, that is,
Γxx(h) = Γxx(h)∗. The spectral theory of complex-valued vector time series is
analogous to the real-valued case. For example, Γx(h) is a nonnegative-definite
function on the integers, and if

∑
h ||Γxx(h)|| < ∞, the spectral density matrix

of the complex series xxxt is given by

fxx(ω) =
∞∑

h=−∞
Γxx(h) exp(−2πihω).

Principal Components

Classical principal component analysis (PCA) is concerned with explaining the
variance–covariance structure among p variables, xxx = (x1, . . . , xp)′, through a
few linear combinations of the components of xxx. Suppose we wish to find a
linear combination

y = ccc′xxx = c1x1 + · · · + cpxp (7.140)

of the components of xxx such that var(y) is as large as possible. Because var(y)
can be increased by simply multiplying ccc by a constant, it is common to restrict



7.8: Principal Components and Factor Analysis 465

ccc to be of unit length; that is, ccc′ccc = 1. Noting that var(y) = ccc′Σxxccc, where
Σxx is the p × p variance–covariance matrix of xxx, another way of stating the
problem is to find ccc such that

max
ccc	=000

ccc′Σxxccc

ccc′ccc
. (7.141)

Denote the eigenvalue–eigenvector pairs of Σxx by {(λ1, eee1), . . . , (λp, eeep)},
where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and the eigenvectors are of unit length. The
solution to (7.141) is to choose ccc = eee1, in which case the linear combination
y1 = eee′

1xxx has maximum variance, var(y1) = λ1. In other words,

max
ccc	=000

ccc′Σxxccc

ccc′ccc
=

eee′
1Σxxeee1

eee′
1eee1

= λ1. (7.142)

The linear combination, y1 = eee′
1xxx, is called the first principal component.

Because the eigenvalues of Σxx are not necessarily unique, the first principal
component is not necessarily unique.

The second principal component is defined to be the linear combination
y2 = ccc′xxx that maximizes var(y2) subject to ccc′ccc = 1 and such that cov(y1, y2) =
0. The solution is to choose ccc = eee2, in which case, var(y2) = λ2. In general,
the k-th principal component, for k = 1, 2, . . . , p, is the the linear combination
yk = ccc′xxx that maximizes var(yk) subject to ccc′c = 1 and such that cov(yk, yj) =
0, for j = 1, 2, . . . , k − 1. The solution is to choose ccc = eeek, in which case
var(yk) = λk.

One measure of the importance of a principal component is to assess the
proportion of the total variance attributed to that principal component. The
total variance of xxx is defined to be the sum of the variances of the individual
components; that is, var(x1) + · · · + var(xp) = σ11 + · · · + σpp, where σjj is
the j-th diagonal element of Σxx. This sum is also denoted as tr(Σxx), or
the trace of Σxx. Because tr(Σxx) = λ1 + · · · + λp, the proportion of the
total variance attributed to the k-th principal component is given simply by
var(yk)

/
tr(Σxx) = λk

/ ∑p
j=1 λj .

Given a random sample xxx1, . . . , xxxn, the sample principal components are
defined as above, but with Σxx replaced by the sample variance–covariance
matrix, Sxx = (n − 1)−1∑n

i=1(xxxi − x̄̄x̄x)(xxxi − x̄̄x̄x)′. Further details can be found
in the introduction to classical principal component analysis in Johnson and
Wichern (1992, Chapter 9).

For the case of time series, suppose we have a zero mean, p × 1, sta-
tionary vector process xxxt that has a p × p spectral density matrix given by
fxx(ω). Recall fxx(ω) is a complex-valued, nonnegative-definite, Hermitian
matrix. Using the analogy of classical principal components, and in particular
(7.140) and (7.141), suppose, for a fixed value of ω, we want to find a complex-
valued univariate process yt(ω) = ccc(ω)∗xt, where ccc(ω) is complex, such that
the spectral density of yt(ω) is maximized at frequency ω, and ccc(ω) is of unit
length, ccc(ω)∗ccc(ω) = 1. Because, at frequency ω, the spectral density of yt(ω)
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is fy(ω) = ccc(ω)∗fxx(ω)ccc(ω), the problem can be restated as: Find complex
vector ccc(ω) such that

max
ccc(ω)	=000

ccc(ω)∗fxx(ω)ccc(ω)
ccc(ω)∗ccc(ω)

. (7.143)

Let {(λ1(ω), eee1(ω)) ,. . . , (λp(ω), eeep(ω))} denote the eigenvalue–eigenvector pairs
of fxx(ω), where λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λp(ω) ≥ 0, and the eigenvectors are of
unit length. We note that the eigenvalues of a Hermitian matrix are real. The
solution to (7.143) is to choose ccc(ω) = eee1(ω); in which case the desired linear
combination is yt(ω) = eee1(ω)∗xxxt. For this choice,

max
ccc(ω)	=000

ccc(ω)∗fxx(ω)ccc(ω)
ccc(ω)∗ccc(ω)

=
eee1(ω)∗fx(ω)eee1(ω)

eee1(ω)∗eee1(ω)
= λ1(ω). (7.144)

This process may be repeated for any frequency ω, and the complex-valued
process, yt1(ω) = eee1(ω)∗xxxt, is called the first principal component at fre-
quency ω. The k-th principal component at frequency ω, for k = 1, 2, . . . , p, is
the complex-valued time series ytk(ω) = eeek(ω)∗xxxt, in analogy to the clas-
sical case. In this case, the spectral density of ytk(ω) at frequency ω is
fyk

(ω) = eeek(ω)∗fxx(ω)eeek(ω) = λk(ω).
The previous development of spectral domain principal components is re-

lated to the spectral envelope methodology first discussed in Stoffer et al. (1993).
We will present the spectral envelope in the next section, where we motivate
the use of principal components as it is presented above. Another way to mo-
tivate the use of principal components in the frequency domain was given in
Brillinger (1981, Chapter 9). Although this technique leads to the same analy-
sis, the motivation may be more satisfactory to the reader at this point. In this
case, we suppose we have a stationary, p-dimensional, vector-valued process xxxt

and we are only able to keep a univariate process yt such that, when needed,
we may reconstruct the vector-valued process, xxxt, according to an optimality
criterion.

Specifically, we suppose we want to approximate a mean-zero, stationary,
vector-valued time series, xxxt, with spectral matrix fxx(ω), by a univariate
process yt defined by

yt =
∞∑

j=−∞
ccc∗
t−jxxxj , (7.145)

where {cccj} is a p × 1 vector-valued filter, such that {cccj} is absolutely sum-
mable; that is,

∑∞
j=−∞ |cccj | < ∞. The approximation is accomplished so the

reconstruction of xxxt from yt, say,

x̂xxt =
∞∑

j=−∞
bbbt−jyj , (7.146)

where {bbbj} is an absolutely summable p×1 filter, is such that the mean square
approximation error

E{(xxxt − x̂xxt)∗(xxxt − x̂xxt)} (7.147)
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is minimized.
Let bbb(ω) and ccc(ω) be the transforms of {bbbj} and {cccj}, respectively. For

example,

ccc(ω) =
∞∑

j=−∞
cccj exp(−2πijω), (7.148)

and, consequently,

cccj =
∫ 1/2

−1/2
ccc(ω) exp(2πijω)dω. (7.149)

Brillinger (1981, Theorem 9.3.1) shows the solution to the problem is to choose
ccc(ω) to satisfy (7.143) and to set bbb(ω) = ccc(ω). This is precisely the previous
problem, with the solution given by (7.144). That is, we choose ccc(ω) = eee1(ω)
and bbb(ω) = eee1(ω); the filter values can be obtained via the inversion formula
given by (7.149). Using these results, in view of (7.145), we may form the first
principal component series, say yt1.

This technique may be extended by requesting another series, say, yt2, for
approximating xxxt with respect to minimum mean square error, but where the
coherency between yt2 and yt1 is zero. In this case, we choose ccc(ω) = eee2(ω).
Continuing this way, we can obtain the first q ≤ p principal components series,
say, yyyt = (yt1, . . . , ytq)′, having spectral density fq(ω) = diag{λ1(ω), . . . , λq(ω)}.
The series ytk is the k-th principal component series.

As in the classical case, given observations, xxx1, xxx2, . . . , xxxn, from the process
xxxt, we can form an estimate f̂xx(ω) of fxx(ω) and define the sample principal
component series by replacing fxx(ω) with f̂xx(ω) in the previous discussion.
Precise details pertaining to the asymptotic (n → ∞) behavior of the principal
component series and their spectra can be found in Brillinger (1981, Chapter
9). To give a basic idea of what we can expect, we focus on the first principal
component series and on the spectral estimator obtained by smoothing the
periodogram matrix, In(ωj); that is

f̂xx(ωj) =
m∑

�=−m

h�In(ωj + 
/n), (7.150)

where L = 2m + 1 is odd and the weights are chosen so h� = h−� are positive
and

∑
� h� = 1. Under the conditions for which f̂xx(ωj) is a well-behaved

estimator of fxx(ωj), and for which the largest eigenvalue of fxx(ωj) is unique,{
ηn

[
λ̂1(ωj) − λ1(ωj)

] /
λ1(ωj); ηn [̂eee1(ωj) − eee1(ωj)] ; j = 1, . . . , J

}
(7.151)

converges (n → ∞) jointly in distribution to independent, zero-mean nor-
mal distributions, the first of which is standard normal. In (7.151), η−2

n =∑m
�=−m h2

� , noting we must have L → ∞ and ηn → ∞, but L/n → 0 as
n → ∞. The asymptotic variance–covariance matrix of ê̂êe1(ω), say, Σe1(ω), is
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Figure 7.14 The individual periodograms of xtk, for k = 1, . . . , 8, in Example
7.14.

given by

Σe1(ω) = η−2
n λ1(ω)

p∑
�=2

λ�(ω) {λ1(ω) − λ�(ω)}−2
eee�(ω)eee∗

� (ω). (7.152)

The distribution of ê̂êe1(ω) depends on the other latent roots and vectors of
fx(ω). Writing êee1(ω) = (ê11(ω), ê12(ω), . . . , ê1p(ω))′, we may use this result
to form confidence regions for the components of êee1 by approximating the
distribution of

2 |ê̂êe1,j(ω) − eee1,j(ω)|2
s2

j (ω)
, (7.153)

for j = 1, . . . , p, by a χ2 distribution with two degrees of freedom. In (7.153),
s2

j (ω) is the j-th diagonal element of Σ̂e1(ω), the estimate of Σe1(ω). We can
use (7.153) to check whether the value of zero is in the confidence region by
comparing 2|ê̂êe1,j(ω)|2/s2

j (ω) with χ2
2(1 − α), the 1 − α upper tail cutoff of the

χ2
2 distribution.
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Figure 7.15 The estimated spectral density, λ̂1(j/128), of the first principal
component series in Example 7.14.

Example 7.14 Principal Component Analysis of the fMRI Data

Recall Example 1.6 of Chapter 1, where the vector time series xxxt =
(xt1, . . . , xt8)′, t = 1, . . . , 128, represents consecutive measures of aver-
age blood oxygenation level dependent (bold) signal intensity, which
measures areas of activation in the brain. Recall subjects were given
a non-painful brush on the hand and the stimulus was applied for 32
seconds and then stopped for 32 seconds; thus, the signal period is 64
seconds (the sampling rate was one observation every two seconds for 256
seconds). The series xtk for k = 1, 2, 3, 4 represent locations in cortex,
series xt5 and xt6 represent locations in the thalamus, and xt7 and xt8
represent locations in the cerebellum.

As is evident from Figure 1.6 in Chapter 1, different areas of the brain are
responding differently, and a principal component analysis may help in
indicating which locations are responding with the most spectral power,
and which locations do not contribute to the spectral power at the stim-
ulus signal period. In this analysis, we will focus primarily on the sig-
nal period of 64 seconds, which translates to four cycles in 256 seconds
or ω = 4/128 cycles per time point. In addition, all calculations were
performed using the standardized series; that is, we used xtk/sk, for
k = 1, . . . , 8, where sk is the sample standard deviation of the the k-th
series, in the computations.

Figure 7.14 shows individual periodograms of the series xtk for k =
1, . . . , 8. As was evident from Figure 1.6, a strong response to the brush
stimulus occurred in areas of the cortex. To estimate the spectral density
of xxxt, we used (7.150) with L = 5 and {h0 = 3/9, h±1 = 2/9, h±2 = 1/9}.
Calling the estimated spectrum f̂xx(j/128), for j = 0, 1, . . . , 64, we can
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Table 7.8 Magnitudes of the PC Vector at the Stimulus Frequency
in Example 7.14

Location 1 2 3 4 5 6 7 8∣∣ êee1( 4
128 )

∣∣ 0.46 0.40 0.45 0.40 0.28 0.15 0.09* 0.39

*The value of zero is in an approximate 99% confidence region for this component.

obtain the estimated spectrum of the first principal component series
yt1 by calculating the largest eigenvalue, λ̂1(j/128), of f̂xx(j/128) for
each j = 0, 1, . . . , 64. The result, λ̂1(j/128), is shown in Figure 7.15.
As expected, there is a large peak at the stimulus frequency 4/128,
wherein λ̂1(4/128) = 0.339. The total power at the stimulus frequency
is tr

(
f̂xx(4/128)

)
= 0.353, so the proportion of the power at frequency

4/128 attributed to the first principal component series is 0.339/0.353
= 96%. Because the first principal component explains nearly all of the
total power at the stimulus frequency, there is no need to explore the
other principal component series at this frequency.

The estimated first principal component series at frequency 4/128 is given
by ŷt1(4/128) = êee∗

1(4/128)xxxt, and the components of êee1(4/128) can give
insight as to which locations of the brain are responding to the brush
stimulus. Table 7.8 shows the magnitudes of êee1(4/128). In addition, an
approximate 99% confidence interval was obtained for each component
using (7.153). As expected, the analysis indicates that location 7 is not
contributing to the power at this frequency, but surprisingly, the analysis
suggests location 6 is responding to the stimulus.

Factor Analysis

Classical factor analysis is similar to classical principal component analysis.
Suppose xxx is a mean-zero, p×1, random vector with variance–covariance matrix
Σxx. The factor model proposes that xxx is dependent on a few unobserved
common factors, z1, . . . , zq, plus error. In this model, one hopes that q will be
much smaller than p. The factor model is given by

xxx = Bzzz + εεε, (7.154)

where B is a p × q matrix of factor loadings, zzz = (z1, . . . , zq)′ is a random
q × 1 vector of factors such that E(zzz) = 000 and E(zzzzzz′) = Iq, the q × q identity
matrix. The p × 1 unobserved error vector εεε is assumed to be independent
of the factors, with zero mean and diagonal variance-covariance matrix D =
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diag{δ2
1 , . . . , δ2

p}. Note, (7.154) differs from the multivariate regression model
in §5.7 because the factors, zzz, are unobserved. Equivalently, the factor model,
(7.154), can be written in terms of the covariance structure of xxx,

Σxx = BB′ + D; (7.155)

i.e., the variance-covariance matrix of xxx is the sum of a symmetric, nonnegative-
definite rank q ≤ p matrix and a nonnegative-definite diagonal matrix. If
q = p, then Σxx can be reproduced exactly as BB′, using the fact that Σxx =
λ1eee1eee

′
1 + · · · + λpeeepeee

′
p, where (λi, eeei) are the eigenvalue–eigenvector pairs of

Σxx. As previously indicated, however, we hope q will be much smaller than p.
Unfortunately, most covariance matrices cannot be factored as (7.155) when q
is much smaller than p.

To motivate factor analysis, suppose the components of xxx can be grouped
into meaningful groups. Within each group, the components are highly cor-
related, but the correlation between variables that are not in the same group
is small. A group is supposedly formed by a single construct, represented as
an unobservable factor, responsible for the high correlations within a group.
For example, a person competing in a decathlon performs p = 10 athletic
events, and we may represent the outcome of the decathlon as a 10 × 1 vector
of scores. The events in a decathlon involve running, jumping, or throwing,
and it is conceivable the 10 × 1 vector of scores might be able to be factored
into q = 4 factors, (1) arm strength, (2) leg strength, (3) running speed, and
(4) running endurance. The model (7.154) specifies that cov(xxx, zzz) = B, or
cov(xi, zj) = bij where bij is the ij-th component of the factor loading matrix
B, for i = 1, . . . , p and j = 1, . . . , q. Thus, the elements of B are used to
identify which hypothetical factors the components of xxx belong to, or load on.

At this point, some ambiguity is still associated with the factor model. Let
Q be a q × q orthogonal matrix; that is Q′Q = QQ′ = Iq. Let B∗ = BQ and
zzz∗ = Q′zzz so (7.154) can be written as

xxx = Bzzz + εεε = BQQ′zzz + εεε = B∗zzz∗ + εεε. (7.156)

The model in terms of B∗ and zzz∗ fulfills all of the factor model requirements,
for example, cov(zzz∗) = Q′cov(zzz)Q = QQ′ = Iq, so

Σxx = B∗cov(zzz∗)B′
∗ + D = BQQ′B′ + D = BB′ + D. (7.157)

Hence, on the basis of observations on xxx, we cannot distinguish between the
loadings B and the rotated loadings B∗ = BQ. Typically, Q is chosen so the
matrix B is easy to interpret, and this is the basis of what is called factor
rotation.

Given a sample xxx1, . . . , xxxn, a number of methods are used to estimate
the parameters of the factor model, and we discuss two of them here. The
first method is the principal component method. Let Sxx denote the sample
variance–covariance matrix, and let (λ̂i, êeei) be the eigenvalue–eigenvector pairs
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of Sxx. The p × q matrix of estimated factor loadings is found by setting

B̂ =
[
λ̂

1/2
1 êee1

∣∣∣ λ̂1/2
2 êee2

∣∣∣ · · · ∣∣∣ λ̂1/2
q êeeq

]
. (7.158)

The argument here is that if q factors exist, then

Sxx ≈ λ̂1êee1êee
′
1 + · · · + λ̂qêeeqêee

′
q = B̂B̂′, (7.159)

because the remaining eigenvalues, λ̂q+1, . . . , λ̂p, will be negligible. The es-
timated diagonal matrix of error variances is then obtained by setting D̂ =
diag{δ̂2

1 , . . . , δ̂2
p}, where δ̂2

j is the j-th diagonal element of Sxx − B̂B̂′.
The second method, which can give answers that are considerably different

from the principal component method is maximum likelihood. Upon further
assumption that in (7.154), zzz and ε are multivariate normal, the log likelihood
of B and D ignoring a constant is

−2 ln L(B, D) = n ln |Σxx| +
n∑

j=1

xxx′
jΣ

−1
xx xxxj . (7.160)

The likelihood depends on B and D through (7.155), Σxx = BB′ + D. As
discussed in (7.156)-(7.157), the likelihood is not well defined because B can
be rotated. Typically, restricting BD−1B′ to be a diagonal matrix is a com-
putationally convenient uniqueness condition. The actual maximization of the
likelihood is accomplished using numerical methods.

One obvious method of performing maximum likelihood for the Gaussian
factor model is the EM algorithm. For example, suppose the factor vector zzz
is known. Then, the factor model is simply the multivariate regression model
given in §5.7, that is, write X ′ = [xxx1, xxx2, . . . , xxxn] and Z ′ = [zzz1, zzz2, . . . , zzzn], and
note that X is n × p and Z is n × q. Then, the MLE of B is

B̂ = X ′Z(Z ′Z)−1 =

⎛⎝n−1
n∑

j=1

xxxjzzz
′
j

⎞⎠⎛⎝n−1
n∑

j=1

zzzjzzz
′
j

⎞⎠−1

def= CxzC
−1
zz , (7.161)

and the MLE of D is

D̂ = Diag

⎧⎨⎩n−1
n∑

j=1

(
xxxj − B̂zzzj

)(
xxxj − B̂zzzj

)′
⎫⎬⎭ ; (7.162)

that is, only the diagonal elements of the right-hand side of (7.162) are used.
The bracketed quantity in (7.162) reduces to

Cxx − CxzC
−1
zz C ′

xz, (7.163)

where Cxx = n−1∑n
j=1 xxxjxxx

′
j .
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Based on the derivation of the EM algorithm for the state-space model,
(4.66)-(4.75), we conclude that, to employ the EM algorithm here, given the
current parameter estimates, in Cxz, we replace xxxjzzz

′
j by xxxjz̃zz

′
j , where z̃zzj =

E(zzzj

∣∣ xxxj), and in Czz, we replace zzzjzzz
′
j by Pz + z̃zzjz̃zz

′
j , where Pz = var(zzzj

∣∣ xxxj).
Using the fact that the (p + q) × 1 vector (xxx′

j , zzz
′
j)

′ is multivariate normal with
mean-zero, and variance–covariance matrix given by(BB′ + D B

B′ Iq

)
, (7.164)

we have
z̃zzj ≡ E(zzzj

∣∣ xxxj) = B′(B′B + D)−1xxxj (7.165)

and
Pz ≡ var(zzzj

∣∣ xxxj) = Iq − B′(B′B + D)−1B. (7.166)

For time series, suppose xxxt is a stationary p × 1 process with p × p spectral
matrix fxx(ω). Analogous to the classical model displayed in (7.155), we may
postulate that at a given frequency of interest, ω, the spectral matrix of xxxt

satisfies
fxx(ω) = B(ω)B(ω)∗ + D(ω), (7.167)

where B(ω) is a complex-valued p × q matrix with rank
(B(ω)

)
= q ≤ p and

D(ω) is a real, nonnegative-definite, diagonal matrix. Typically, we expect q
will be much smaller than p.

As an example of a model that gives rise to (7.167), let xxxt = (xt1, . . . , xtp)′,
and suppose

xtj = cjst−τj
+ εtj , j = 1, . . . , p, (7.168)

where cj ≥ 0 are individual amplitudes and st is a common unobserved signal
(factor) with spectral density fss(ω). The values τj are the individual phase
shifts. Assume st is independent of εεεt = (εt1, . . . , εtp)′ and the spectral matrix
of εεεt, Dεε(ω), is diagonal. The DFT of xtj is given by

Xj(ω) = n−1/2
n∑

t=1

xtj exp(−2πitω)

and, in terms of the model (7.168),

Xj(ω) = aj(ω)Xs(ω) + Xεj (ω), (7.169)

where aj(ω) = cj exp(−2πiτjω), and Xs(ω) and Xεj (ω) are the respective
DFTs of the signal st and the noise εtj . Stacking the individual elements of
(7.169), we obtain a complex version of the classical factor model with one
factor, ⎛⎜⎝X1(ω)

...
Xp(ω)

⎞⎟⎠ =

⎛⎜⎝ a1(ω)
...

ap(ω)

⎞⎟⎠Xs(ω) +

⎛⎜⎝Xε1(ω)
...

Xεp(ω)

⎞⎟⎠ ,
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or more succinctly,

XXX(ω) = aaa(ω)Xs(ω) + XXXε(ω). (7.170)

From (7.170), we can identify the spectral components of the model; that is,

fxx(ω) = bbb(ω)bbb(ω)∗ + Dεε(ω), (7.171)

where bbb(ω) is a p × 1 complex-valued vector, bbb(ω)bbb(ω)∗ = aaa(ω)fss(ω)aaa(ω)∗.
Model (7.171) could be considered the one-factor model for time series. This
model can be extended to more than one factor by adding other independent
signals into the original model (7.168). More details regarding this and related
models can be found in Stoffer (1999).

Example 7.15 Single Factor Analysis of the fMRI Data

The fMRI data analyzed in Example 7.14 is well suited for a single factor
analysis using the model (7.168), or, equivalently, the complex-valued,
single factor model (7.170). In terms of (7.168), we can think of the signal
st as representing the brush stimulus signal. As before, the frequency of
interest is ω = 4/128, which corresponds to a period of 32 time points,
or 64 seconds.

A simple way to estimate the components bbb(ω) and Dεε(ω), as specified in
(7.171), is to use the principal components method. Let f̂xx(ω) denote
the estimate of the spectral density of xxxt = (xt1, . . . , xt8)′ obtained in
Example 7.14. Then, analogous to (7.158) and (7.159), we set

b̂bb(ω) =
√

λ̂1(ω) êee1(ω),

where
(
λ̂1(ω), êee1(ω)

)
is the first eigenvalue–eigenvector pair of f̂xx(ω).

The diagonal elements of D̂εε(ω) are obtained from the diagonal elements
of f̂xx(ω)− b̂bb(ω)̂bbb(ω)∗. The appropriateness of the model can be assessed
by checking the elements of the residual matrix, f̂xx(ω) − [̂bbb(ω)̂bbb(ω)∗ +
D̂εε(ω)], are negligible in magnitude.

Concentrating on the stimulus frequency, recall λ̂1(4/128) = 0.339. The
magnitudes of êee1(4/128) are displayed in Table 7.8, indicating all lo-
cations load on the stimulus factor except for location 7, and location
6 could be considered borderline. The diagonal elements of f̂xx(ω) −
b̂bb(ω)̂bbb(ω)∗ yield

D̂εε(4/128) = 0.001 × diag{0.27, 1.06, 0.45, 1.26, 1.64, 4.22, 4.38, 1.08}.



7.8: Principal Components and Factor Analysis 475

The magnitudes of the elements of residual matrix at ω = 4/128 are

0.001 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 0.19 0.14 0.19 0.49 0.49 0.65 0.46
0.19 0.00 0.49 0.86 0.71 1.11 1.80 0.58
0.14 0.49 0.00 0.62 0.67 0.65 0.39 0.22
0.19 0.86 0.62 0.00 1.02 1.33 1.16 0.14
0.49 0.71 0.67 1.02 0.00 0.85 1.11 0.57
0.49 1.11 0.65 1.33 0.85 0.00 1.81 1.36
0.65 1.80 0.39 1.16 1.11 1.81 0.00 1.57
0.46 0.58 0.22 0.14 0.57 1.36 1.57 0.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

indicating the model fit is good.

A number of authors have considered factor analysis in the spectral domain,
for example Priestley et al. (1974); Priestley and Subba Rao (1975); Geweke
(1977), and Geweke and Singleton (1981), to mention a few. An obvious
extension of simple model (7.168) is the factor model

xxxt =
∞∑

j=−∞
Λjssst−j + εεεt, (7.172)

where {Λj} is a real-valued p × q filter, ssst is a q × 1 stationary, unobserved
signal, with independent components, and εεεt is white noise. We assume the
signal and noise process are independent, ssst has q × q real, diagonal spectral
matrix fss(ω) = diag{fs1(ω), . . . , fsq(ω)}, and εεεt has a real, diagonal, p × p
spectral matrix given by Dεε(ω) = diag{fε1(ω), . . . , fεp(ω)}. If, in addition,∑ ||Λj || < ∞, the spectral matrix of xxxt can be written as

fxx(ω) = Λ(ω)fss(ω)Λ(ω)∗ + Dεε(ω) = B(ω)B(ω)∗ + Dεε(ω), (7.173)

where

Λ(ω) =
∞∑

t=−∞
Λt exp(−2πitω) (7.174)

and B(ω) = Λ(ω)f1/2
ss (ω). Thus, by (7.173), the model (7.172) is seen to

satisfy the basic requirement of the spectral domain factor analysis model;
that is, the p × p spectral density matrix of the process of interest, fxx(ω),
is the sum of a rank q ≤ p matrix, B(ω)B(ω)∗, and a real, diagonal matrix,
Dεε(ω). For the purpose of identifiability we set fss(ω) = Iq for all ω; in which
case, B(ω) = Λ(ω). As in the classical case [see (7.157)], the model is specified
only up to rotations; for details, see Bloomfield and Davis (1994).

Parameter estimation for the model (7.172), or equivalently (7.173), can
be accomplished using the principal component method. Let f̂xx(ω) be an
estimate of fxx(ω), and let

(
λ̂j(ω), êeej(ω)

)
, for j = 1, . . . , p, be the eigenvalue–

eigenvector pairs, in the usual order, of f̂xx(ω). Then, as in the classical case,
the p × q matrix B is estimated by

B̂(ω) =
[
λ̂1(ω)1/2 êee1(ω)

∣∣∣ λ̂2(ω)1/2 êee2(ω)
∣∣∣ · · · ∣∣∣ λ̂q(ω)1/2 êeeq(ω)

]
. (7.175)
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The estimated diagonal spectral density matrix of errors is then obtained by
setting D̂εε(ω) = diag{f̂ε1(ω), . . . , f̂εp(ω)}, where f̂εj(ω) is the j-th diagonal
element of f̂xx(ω) − B̂(ω)B̂(ω)∗.

Alternatively, we can estimate the parameters by approximate likelihood
methods. As in (7.170), let XXX(ωj) denote the DFT of the data xxx1, . . . , xxxn at
frequency ωj = j/n. Similarly, let XXXs(ωj) and XXXε(ωj) be the DFTs of the
signal and of the noise processes, respectively. Then, under certain conditions
(see Pawitan and Shumway, 1989), for 
 = 0,±1, . . . ,±m,

XXX(ωj + 
/n) = Λ(ωj)XXXs(ωj + 
/n) + XXXε(ωj + 
/n) + oas(n−α), (7.176)

where Λ(ωj) is given by (7.174) and oas(n−α) → 0 almost surely for some
0 ≤ α < 1/2 as n → ∞. In (7.176), the XXX(ωj + 
/n) are the DFTs of the
data at the L odd frequencies {ωj + 
/n; 
 = 0,±1, . . . ,±m} surrounding the
central frequency of interest ωj = j/n.

Under appropriate conditions {XXX(ωj + 
/n); 
 = 0,±1, . . . ,±m} in (7.176)
are approximately (n → ∞) independent, complex Gaussian random vectors
with variance–covariance matrix fxx(ωj). The approximate likelihood is given
by

−2 ln L
(B(ωj), Dεε(ωj)

)
= n ln

∣∣fxx(ωj)
∣∣+ m∑

�=−m

XXX∗(ωj + 
/n)f−1
xx (ωj)XXX(ωj + 
/n), (7.177)

with the constraint fxx(ωj) = B(ωj)B(ωj)∗ +Dεε(ωj). As in the classical case,
we can use various numerical methods to maximize L

(B(ωj), Dεε(ωj)
)

at every
frequency, ωj , of interest. For example, the EM algorithm discussed for the
classical case, (7.161)-(7.166), can easily be extended to this case.

Assuming fss(ω) = Iq, the estimate of B(ωj) is also the estimate of Λ(ωj).
Calling this estimate Λ̂(ωj), the time domain filter can be estimated by

Λ̂M
t = M−1

M−1∑
j=0

Λ̂(ωj) exp(2πijt/n), (7.178)

for some 0 < M ≤ n, which is the discrete and finite version of the inversion
formula given by

Λt =
∫ 1/2

−1/2
Λ(ω) exp(2πiωt)dω. (7.179)

Note that we have used this approximation earlier in Chapter 4, (4.135), for
estimating the time response of a frequency response function defined over a
finite number of frequencies.
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Figure 7.16 The seasonally adjusted, quarterly growth rate (as percentages) of
five macroeconomic series, Unemployment, GNP, Consumption, Government
Investment, and Private Investment in the U.S. between 1948 and 1988, n =
160 values.

Example 7.16 Government Spending, Private Investment, and
Unemployment in the U.S.

Figure 7.16 shows the seasonally adjusted, quarterly growth rate (as
percentages) of five macroeconomic series, Unemployment, GNP, Con-
sumption, Government Investment, and Private Investment in the U.S.
between 1948 and 1988, n = 160 values. These data are analyzed in the
time domain by Young and Pedregal (1998), who were investigating how
government spending and private capital investment influenced the rate
of unemployment.

Spectral estimation was performed on the detrended, standardized, and
tapered (using a cosine bell) growth rate values. Then, as described
in (7.150), a set of L = 11 triangular weights, {h0 = 6/36, h±1 =
5/36, h±2 = 4/36, h±3 = 3/36, h±4 = 2/36, h±5 = 1/36}, were used
to smooth in 5 × 5 periodogram matrices. Figure 7.17 shows the indi-
vidual estimated spectra (scaled by 1000) of each series in terms of the
number of cycles. We focus on three interesting frequencies. First, we
note the lack of spectral power near 40 cycles (ω = 40/160 = 1/4; one
cycle every four quarters, or one year), indicating the data have been sea-
sonally adjusted. In addition, because of the seasonal adjustment, some
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Figure 7.17 The individual estimated spectra (scaled by 1000) of each series
show in Figure 7.16 in terms of the number of cycles in 160 quarters.

spectral power appears near the seasonal frequency; this is a distortion
apparently caused by the method of seasonally adjusting the data. Next,
we note spectral power appears near 10 cycles (ω = 10/160 = 1/16; one
cycle every four years) in Unemployment, GNP, Consumption, and, to
lesser degree, in Private Investment. Finally, spectral power appears near
five cycles (ω = 5/160 = 1/32; one cycle every 8 years) in Government
Investment, and perhaps to lesser degrees in Unemployment, GNP, and
Consumption.

Figure 7.18 shows the coherences among various series. At the frequencies
of interest (ω = 5/160 and 10/160), pairwise, GNP, Unemployment,
Consumption, and Private Investment (except for Unemployment and
Private Investment) are coherent. Government Investment is either not
coherent or minimally coherent with the other series.

Figure 7.19 shows λ̂1(ω) and λ̂2(ω), the first and second eigenvalues of
the estimated spectral matrix f̂xx(ω). These eigenvalues suggest the
first factor is identified by the frequency of one cycle every four years,
whereas the second factor is identified by the frequency of one cycle
every eight years. The modulus of the corresponding eigenvectors at the
frequencies of interest, êee1(10/160) and êee2(5/160), are shown in Table 7.9.
These values confirm Unemployment, GNP, Consumption, and Private
Investment load on the first factor, and Government Investment loads
on the second factor. The remainder of the details involving the factor
analysis of these data is left as an exercise.
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Figure 7.18 The squared coherencies between the various series displayed in
Figure 7.16 in terms of the number of cycles in 160 quarters.

Table 7.9 Magnitudes of the Eigenvectors in Example 7.16

Series Unemp GNP Cons G. Inv. P. Inv.∣∣ êee1( 10
160 )

∣∣ 0.51 0.51 0.57 0.05 0.41

∣∣ êee2( 5
160 )

∣∣ 0.17 0.03 0.39 0.87 0.27

7.9 The Spectral Envelope

The concept of spectral envelope for the spectral analysis and scaling of cate-
gorical time series was first introduced in Stoffer et al. (1993). Since then, the
idea has been extended in various directions (not only restricted to categorical
time series), and we will explore these problems as well. First, we give a brief
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Figure 7.19 The first, λ̂1(ω), and second, λ̂2(ω), eigenvalues (scaled by 1000)
of the estimated spectral matrix f̂xx(ω) in terms of the number of cycles in
160 quarters.

introduction to the concept of scaling time series.
The spectral envelope was motivated by collaborations with researchers who

collected categorical-valued time series with an interest in the cyclic behavior
of the data. For example, Table 7.10 shows the per-minute sleep state of an
infant taken from a study on the effects of prenatal exposure to alcohol. Details
can be found in Stoffer et al. (1988), but, briefly, an electroencephalographic
(EEG) sleep recording of approximately two hours is obtained on a full-term
infant 24 to 36 hours after birth, and the recording is scored by a pediatric
neurologist for sleep state. Sleep state is categorized, per minute, into one of
six possible states: qt: quiet sleep - trace alternant, qh: quiet sleep - high
voltage, tr: transitional sleep, al: active sleep - low voltage, ah: active sleep
- high voltage, and aw: awake. This particular infant was never awake during
the study.

It is not difficult to notice a pattern in the data if we concentrate on active
vs. quiet sleep (that is, focus on the first letter). But, it would be difficult to
try to assess patterns in a longer sequence, or if more categories were present,
without some graphical aid. One simple method would be to scale the data,
that is, assign numerical values to the categories and then draw a time plot of
the scaled series. Because the states have an order, one obvious scaling is

1 = qt 2 = qh 3 = tr 4 = al 5 = ah 6 = aw, (7.180)

and Figure 7.20 shows the time plot using this scaling. Another interesting
scaling might be to combine the quiet states and the active states:

1 = qt 1 = qh 2 = tr 3 = al 3 = ah 4 = aw. (7.181)

The time plot using (7.181) would be similar to Figure 7.20 as far as the
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Figure 7.20 Time plot of the EEG sleep state data in Table 7.10 using the
scaling in (7.180).

cyclic (in and out of quiet sleep) behavior of this infant’s sleep pattern. Figure
7.21 shows the periodogram of the sleep data using the scaling in (7.180). A
large peak exists at the frequency corresponding to one cycle every 60 minutes.
As we might imagine, the general appearance of the periodogram using the
scaling (7.181) (not shown) is similar to Figure 7.20. Most of us would feel
comfortable with this analysis even though we made an arbitrary and ad hoc
choice about the particular scaling. It is evident from the data (without any

Table 7.10 Infant EEG Sleep-States (per minute)
(read down and across)

ah qt qt al tr qt al ah
ah qt qt ah tr qt al ah
ah qt tr ah tr qt al ah
ah qt al ah qh qt al ah
ah qt al ah qh qt al ah
ah tr al ah qt qt al ah
ah qt al ah qt qt al ah
ah qt al ah qt qt al ah
tr qt tr tr qt qt al tr
ah qt ah tr qt tr al
tr qt al ah qt al al
ah qt al ah qt al al
ah qt al ah qt al al
qh qt al ah qt al ah
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Figure 7.21 Periodogram of the EEG sleep state data in Figure 7.20 based on
the scaling in (7.180). The peak corresponds to a frequency of approximately
one cycle every 60 minutes.

scaling) that if the interest is in infant sleep cycling, this particular sleep study
indicates an infant cycles between active and quiet sleep at a rate of about one
cycle per hour.

The intuition used in the previous example is lost when we consider a long
DNA sequence. Briefly, a DNA strand can be viewed as a long string of linked
nucleotides. Each nucleotide is composed of a nitrogenous base, a five carbon
sugar, and a phosphate group. There are four different bases, and they can be
grouped by size; the pyrimidines, thymine (T) and cytosine (C), and the purines,
adenine (A) and guanine (G). The nucleotides are linked together by a backbone
of alternating sugar and phosphate groups with the 5′ carbon of one sugar
linked to the 3′ carbon of the next, giving the string direction. DNA molecules
occur naturally as a double helix composed of polynucleotide strands with the
bases facing inwards. The two strands are complementary, so it is sufficient to
represent a DNA molecule by a sequence of bases on a single strand. Thus, a
strand of DNA can be represented as a sequence of letters, termed base pairs
(bp), from the finite alphabet {A, C, G, T}. The order of the nucleotides contains
the genetic information specific to the organism. Expression of information
stored in these molecules is a complex multistage process. One important task
is to translate the information stored in the protein-coding sequences (CDS)
of the DNA. A common problem in analyzing long DNA sequence data is in
identifying CDS dispersed throughout the sequence and separated by regions
of noncoding (which makes up most of the DNA). Table 7.11 shows part of
the Epstein–Barr virus (EBV) DNA sequence. The entire EBV DNA sequence
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Table 7.11 Part of the Epstein–Barr Virus DNA Sequence
(read across and down)

AGAATTCGTC TTGCTCTATT CACCCTTACT TTTCTTCTTG CCCGTTCTCT TTCTTAGTAT
GAATCCAGTA TGCCTGCCTG TAATTGTTGC GCCCTACCTC TTTTGGCTGG CGGCTATTGC
CGCCTCGTGT TTCACGGCCT CAGTTAGTAC CGTTGTGACC GCCACCGGCT TGGCCCTCTC
ACTTCTACTC TTGGCAGCAG TGGCCAGCTC ATATGCCGCT GCACAAAGGA AACTGCTGAC
ACCGGTGACA GTGCTTACTG CGGTTGTCAC TTGTGAGTAC ACACGCACCA TTTACAATGC
ATGATGTTCG TGAGATTGAT CTGTCTCTAA CAGTTCACTT CCTCTGCTTT TCTCCTCAGT
CTTTGCAATT TGCCTAACAT GGAGGATTGA GGACCCACCT TTTAATTCTC TTCTGTTTGC
ATTGCTGGCC GCAGCTGGCG GACTACAAGG CATTTACGGT TAGTGTGCCT CTGTTATGAA
ATGCAGGTTT GACTTCATAT GTATGCCTTG GCATGACGTC AACTTTACTT TTATTTCAGT
TCTGGTGATG CTTGTGCTCC TGATACTAGC GTACAGAAGG AGATGGCGCC GTTTGACTGT
TTGTGGCGGC ATCATGTTTT TGGCATGTGT ACTTGTCCTC ATCGTCGACG CTGTTTTGCA
GCTGAGTCCC CTCCTTGGAG CTGTAACTGT GGTTTCCATG ACGCTGCTGC TACTGGCTTT
CGTCCTCTGG CTCTCTTCGC CAGGGGGCCT AGGTACTCTT GGTGCAGCCC TTTTAACATT
GGCAGCAGGT AAGCCACACG TGTGACATTG CTTGCCTTTT TGCCACATGT TTTCTGGACA
CAGGACTAAC CATGCCATCT CTGATTATAG CTCTGGCACT GCTAGCGTCA CTGATTTTGG
GCACACTTAA CTTGACTACA ATGTTCCTTC TCATGCTCCT ATGGACACTT GGTAAGTTTT
CCCTTCCTTT AACTCATTAC TTGTTCTTTT GTAATCGCAG CTCTAACTTG GCATCTCTTT
TACAGTGGTT CTCCTGATTT GCTCTTCGTG CTCTTCATGT CCACTGAGCA AGATCCTTCT

consists of approximately 172,000 bp.
We could try scaling according to the purine–pyrimidine alphabet, that is

A = G = 0 and C = T = 1, but this is not necessarily of interest for every
CDS of EBV. Numerous possible alphabets of interest exist. For example, we
might focus on the strong–weak hydrogen-bonding alphabet C = G = 0 and
A = T = 1. Although model calculations as well as experimental data strongly
agree that some kind of periodic signal exists in certain DNA sequences, a
large disagreement about the exact type of periodicity exists. In addition,
a disagreement exists about which nucleotide alphabets are involved in the
signals.

If we consider the naive approach of arbitrarily assigning numerical values
(scales) to the categories and then proceeding with a spectral analysis, the re-
sult will depend on the particular assignment of numerical values. For example,
consider the artificial sequence ACGTACGTACGT. . . . Then, setting A = G = 0
and C = T = 1 yields the numerical sequence 010101010101. . . , or one cycle
every two base pairs. Another interesting scaling is A = 1, C = 2, G = 3, and
T = 4, which results in the sequence 123412341234. . . , or one cycle every four
bp. In this example, both scalings (that is, {A, C, G, T} = {0, 1, 0, 1} and {A,
C, G, T} = {1, 2, 3, 4}) of the nucleotides are interesting and bring out different
properties of the sequence. Hence, we do not want to focus on only one scaling.
Instead, the focus should be on finding all possible scalings that bring out all
of the interesting features in the data. Rather than choose values arbitrarily,
the spectral envelope approach selects scales that help emphasize any periodic
feature that exists in a categorical time series of virtually any length in a quick
and automated fashion. In addition, the technique can help in determining
whether a sequence is merely a random assignment of categories.
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The Spectral Envelope for Categorical Time Series

As a general description, the spectral envelope is a frequency-based, principal
components technique applied to a multivariate time series. First, we will
focus on the basic concept and its use in the analysis of categorical time series.
Technical details can be found in Stoffer et al. (1993).

Briefly, in establishing the spectral envelope for categorical time series, the
basic question of how to efficiently discover periodic components in categorical
time series was addressed. This, was accomplished via nonparametric spectral
analysis as follows. Let xt, t = 0, ±1, ±2, . . . , be a categorical-valued time
series with finite state-space C = {c1, c2, . . ., ck}. Assume xt is stationary and
pj = Pr{xt = cj} > 0 for j = 1, 2, . . . , k. For βββ = (β1, β2, . . . , βk)′ ∈ Rk,
denote by xt(βββ) the real-valued stationary time series corresponding to the
scaling that assigns the category cj the numerical value βj , j = 1, 2, . . . , k.
The spectral density of xt(βββ) will be denoted by fxx(ω;βββ). The goal is to
find scalings βββ, so the spectral density is in some sense interesting, and to
summarize the spectral information by what is called the spectral envelope.

In particular, βββ is chosen to maximize the power at each frequency, ω, of
interest, relative to the total power σ2(βββ) = var{xt(βββ)}. That is, we chose
βββ(ω), at each ω of interest, so

λ(ω) = max
β

{
fxx(ω;βββ)

σ2(βββ)

}
, (7.182)

over all βββ not proportional to 111k, the k × 1 vector of ones. Note, λ(ω) is not
defined if βββ = a111k for a ∈ R because such a scaling corresponds to assigning
each category the same value a; in this case, fxx(ω ; βββ) ≡ 0 and σ2(βββ) = 0. The
optimality criterion λ(ω) possesses the desirable property of being invariant
under location and scale changes of βββ.

As in most scaling problems for categorical data, it is useful to represent
the categories in terms of the unit vectors uuu1, uuu2, . . ., uuuk, where uuuj represents
the k × 1 vector with a one in the j-th row, and zeros elsewhere. We then
define a k-dimensional stationary time series yyyt by yyyt = uuuj when xt = cj .
The time series xt(βββ) can be obtained from the yyyt time series by the rela-
tionship xt(βββ) = βββ′yyyt. Assume the vector process yyyt has a continuous spec-
tral density denoted by fyy(ω). For each ω, fyy(ω) is, of course, a k × k
complex-valued Hermitian matrix. The relationship xt(βββ) = βββ′yyyt implies
fxx(ω; βββ) = βββ′fyy(ω)βββ = βββ′fre

yy(ω)βββ, where fre
yy(ω) denotes the real part2

of fyy(ω). The imaginary part disappears from the expression because it is
skew-symmetric, that is, f im

yy (ω)′ = −f im
yy (ω). The optimality criterion can

thus be expressed as

λ(ω) = max
β

{
βββ′fre

yy(ω)βββ
βββ′V βββ

}
, (7.183)

2In this section, it is more convenient to write complex values in the form z = zre + izim,
which represents a change from the notation used previously.
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where V is the variance–covariance matrix of yyyt. The resulting scaling βββ(ω) is
called the optimal scaling.

The yyyt process is a multivariate point process, and any particular com-
ponent of yyyt is the individual point process for the corresponding state (for
example, the first component of yyyt indicates whether the process is in state
c1 at time t). For any fixed t, yyyt represents a single observation from a sim-
ple multinomial sampling scheme. It readily follows that V = D − p p′, where
p = (p1, . . ., pk)′, and D is the k×k diagonal matrix D = diag{p1, . . ., pk}. Be-
cause, by assumption, pj > 0 for j = 1, 2, . . . , k, it follows that rank(V ) = k−1
with the null space of V being spanned by 111k. For any k×(k−1) full rank ma-
trix Q whose columns are linearly independent of 111k, Q′V Q is a (k−1)×(k−1)
positive-definite symmetric matrix.

With the matrix Q as previously defined, define λ(ω) to be the largest
eigenvalue of the determinantal equation

|Q′fre
yy(ω)Q − λ(ω)Q′V Q| = 0,

and let bbb(ω) ∈ Rk−1 be any corresponding eigenvector, that is,

Q′fre
yy(ω)Qbbb(ω) = λ(ω)Q′V Qbbb(ω).

The eigenvalue λ(ω) ≥ 0 does not depend on the choice of Q. Although the
eigenvector bbb(ω) depends on the particular choice of Q, the equivalence class
of scalings associated with βββ(ω) = Qbbb(ω) does not depend on Q. A convenient
choice of Q is Q = [Ik−1 | 000 ]′, where Ik−1 is the (k − 1) × (k − 1) identity
matrix and 000 is the (k − 1) × 1 vector of zeros . For this choice, Q′fre

yy(ω)Q
and Q′V Q are the upper (k −1)× (k −1) blocks of fre

yy(ω) and V , respectively.
This choice corresponds to setting the last component of βββ(ω) to zero.

The value λ(ω) itself has a useful interpretation; specifically, λ(ω)dω rep-
resents the largest proportion of the total power that can be attributed to the
frequencies (ω, ω + dω) for any particular scaled process xt(βββ), with the max-
imum being achieved by the scaling βββ(ω). Because of its central role, λ(ω) is
defined to be the spectral envelope of a stationary categorical time series.

The name spectral envelope is appropriate since λ(ω) envelopes the stan-
dardized spectrum of any scaled process. That is, given any βββ normalized so
that xt(βββ) has total power one, fxx(ω ; βββ) ≤ λ(ω) with equality if and only if
βββ is proportional to βββ(ω).

Given observations xt, for t = 1, . . . , n, on a categorical time series, we
form the multinomial point process yyyt, for t = 1, . . . , n. Then, the theory for
estimating the spectral density of a multivariate, real-valued time series can be
applied to estimating fyy(ω), the k×k spectral density of yyyt. Given an estimate
f̂yy(ω) of fyy(ω), estimates λ̂(ω) and β̂̂β̂β(ω) of the spectral envelope, λ(ω), and
the corresponding scalings, βββ(ω), can then be obtained. Details on estimation
and inference for the sample spectral envelope and the optimal scalings can be
found in Stoffer et al. (1993), but the main result of that paper is as follows:
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If f̂yy(ω) is a consistent spectral estimator and if for each j = 1, . . ., J , the
largest root of fre

yy(ωj) is distinct, then{
ηn[λ̂(ωj) − λ(ωj)]/λ(ωj), ηn[β̂̂β̂β(ωj) − βββ(ωj)]; j = 1, . . . , J

}
(7.184)

converges (n → ∞) jointly in distribution to independent zero-mean, normal,
distributions, the first of which is standard normal; the asymptotic covariance
structure of β̂̂β̂β(ωj) is discussed in Stoffer et al. (1993). Result (7.184) is similar
to (7.151), but in this case, βββ(ω) and β̂̂β̂β(ω) are real. The term ηn is the same as
in (7.184), and its value depends on the type of estimator being used. Based on
these results, asymptotic normal confidence intervals and tests for λ(ω) can be
readily constructed. Similarly, for βββ(ω), asymptotic confidence ellipsoids and
chi-square tests can be constructed; details can be found in Stoffer et al. (1993,
Theorems 3.1 – 3.3).

Peak searching for the smoothed spectral envelope estimate can be aided
using the following approximations. Using a first-order Taylor expansion, we
have

log λ̂(ω) ≈ log λ(ω) +
λ̂(ω) − λ(ω)

λ(ω)
, (7.185)

so ηn[log λ̂(ω) − log λ(ω)] is approximately standard normal. It follows that
E[log λ̂(ω)] ≈ log λ(ω) and var[log λ̂(ω)] ≈ η−2

n . If no signal is present in a se-
quence of length n, we expect λ(j/n) ≈ 2/n for 1 < j < n/2, and hence approx-
imately (1−α)×100% of the time, log λ̂(ω) will be less than log(2/n)+(zα/ηn),
where zα is the (1 − α) upper tail cutoff of the standard normal distribution.
Exponentiating, the α critical value for λ̂(ω) becomes (2/n) exp(zα/ηn). Use-
ful values of zα are z.001 = 3.09, z.0001 = 3.71, and z.00001 = 4.26, and from
our experience, thresholding at these levels works well.

Example 7.17 Spectral Analysis of DNA Sequences

We give explicit instructions for the calculations involved in estimating
the spectral envelope of a DNA sequence, xt, for t = 1, . . . , n, using the
nucleotide alphabet.

• In this example, we hold the scale for T fixed at zero. In this case, we
form the 3 × 1 data vectors yyyt:

yyyt = (1, 0, 0)′ if xt = A; yyyt = (0, 1, 0)′ if xt = C;
yyyt = (0, 0, 1)′ if xt = G; yyyt = (0, 0, 0)′ if xt = T.

The scaling vector is βββ = (β1, β2, β3)′, and the scaled process is xt(βββ) =
βββ′yyyt.

• Calculate the DFT of the data

YYY (j/n) = n−1/2
n∑

t=1

yyyt exp(−2πitj/n).
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Figure 7.22 Smoothed sample spectral envelope of the BNRF1 gene from the
Epstein–Barr virus.

Note YYY (j/n) is a 3×1 complex-valued vector. Calculate the periodogram,
I(j/n) = YYY (j/n)YYY ∗(j/n), for j = 1, . . . , [n/2], and retain only the real
part, say, Ire(j/n).

• Smooth the Ire(j/n) to obtain an estimate of fre
yy(j/n). For example,

using (7.150) with L = 3 and triangular weighting, we would calculate

f̂re
yy(j/n) =

1
4
Ire

(
j − 1

n

)
+

1
2
Ire

(
j

n

)
+

1
4
Ire

(
j + 1

n

)
.

• Calculate the 3 × 3 sample variance–covariance matrix,

Syy = n−1
n∑

t=1

(yyyt − yyy)(yyyt − yyy)′,

where yyy = n−1∑n
t=1 yyyt is the sample mean of the data.

• For each ωj = j/n, j = 0, 1, . . . , [n/2], determine the largest eigenvalue
and the corresponding eigenvector of the matrix 2n−1S

−1/2
yy f̂re

yy(ωj)S
−1/2
yy .

Note, S
1/2
yy is the unique square root matrix of Syy.

• The sample spectral envelope λ̂(ωj) is the eigenvalue obtained in the
previous step. If bbb(ωj) denotes the eigenvector obtained in the previous
step, the optimal sample scaling is β̂ββ(ωj) = S

−1/2
yy bbb(ωj); this will result

in three values, the value corresponding to the fourth category, T being
held fixed at zero.
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Figure 7.23 Smoothed sample spectral envelope of the BNRF1 gene from the
Epstein–Barr virus: (a) first 1000 bp, (b) second 1000 bp, (c) third 1000 bp,
and (d) last 954 bp.

Example 7.18 Dynamic Analysis of the Gene Labeled BNRF1 of the
Epstein–Barr Virus

In this example, we focus on a dynamic (or sliding-window) analysis of
the gene labeled BNRF1 (bp 1736-5689) of Epstein–Barr. Figure 7.22
shows the spectral envelope, using (7.150) with L = 11 and h0 = 6/36, h1 =
5/36, . . . , h5 = 1/36, of the entire coding sequence (3954 bp long). The
figure also shows a strong signal at frequency 1/3; the corresponding
optimal scaling was A = 0.04, C = 0.71, G = 0.70, T = 0, which indi-
cates the signal is in the strong–weak bonding alphabet, S = {C, G} and
W = {A, T}.

Figure 7.23 shows the result of computing the spectral envelope over three
nonoverlapping 1000-bp windows and one window of 954 bp, across the
CDS, namely, the first, second, third, and fourth quarters of BNRF1.
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An approximate 0.0001 significance threshold is .69%. The first three
quarters contain the signal at the frequency 1/3 (Figure 7.23a-c); the
corresponding sample optimal scalings for the first three windows were
(a) A = 0.06, C = 0.69, G = 0.72, T = 0; (b) A = 0.09, C = 0.70, G =
0.71, T = 0; (c) A = 0.18, C = 0.59, G = 0.77, T = 0. The first two windows
are consistent with the overall analysis. The third section, however,
shows some minor departure from the strong-weak bonding alphabet.
The most interesting outcome is that the fourth window shows that no
signal is present. This leads to the conjecture that the fourth quarter of
BNRF1 of Epstein–Barr is actually noncoding.

The Spectral Envelope for Real-Valued Time Series

The concept of the spectral envelope for categorical time series was extended
to real-valued time series, {xt; t = 0,±1,±2, . . . , }, in McDougall et al. (1997).
The process xt can be vector-valued, but here we will concentrate on the uni-
variate case. Further details can be found in McDougall et al. (1997). The
concept is similar to projection pursuit (Friedman and Stuetzle, 1981). Let
G denote a k-dimensional vector space of continuous real-valued transforma-
tions with {g1, . . . , gk} being a set of basis functions satisfying E[gi(xt)2] < ∞,
i = 1, . . . , k. Analogous to the categorical time series case, define the scaled
time series with respect to the set G to be the real-valued process

xt(βββ) = βββ′yyyt = β1g1(xt) + · · · + βkgk(xt)

obtained from the vector process

yyyt =
(
g1(Xt), . . . , gk(Xt)

)′
,

where βββ = (β1, . . . , βk)′ ∈ Rk. If the vector process, yyyt, is assumed to have
a continuous spectral density, say, fyy(ω), then xt(βββ) will have a continuous
spectral density fxx(ω;βββ) for all βββ �= 000. Noting, fxx(ω;βββ) = βββ′fyy(ω)βββ =
βββ′fre

yy(ω)βββ, and σ2(βββ) = var[xt(βββ)] = βββ′V βββ, where V = var(yyyt) is assumed to
be positive definite, the optimality criterion

λ(ω) = sup
βββ 	=000

{
βββ′fre

yy(ω)βββ
βββ′V βββ

}
, (7.186)

is well defined and represents the largest proportion of the total power that
can be attributed to the frequency ω for any particular scaled process xt(βββ).
This interpretation of λ(ω) is consistent with the notion of the spectral en-
velope introduced in the previous section and provides the following working
definition: The spectral envelope of a time series with respect to the space G
is defined to be λ(ω).

The solution to this problem, as in the categorical case, is attained by
finding the largest scalar λ(ω) such that

fre
yy(ω)βββ(ω) = λ(ω)V βββ(ω) (7.187)
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for βββ(ω) �= 000. That is, λ(ω) is the largest eigenvalue of fre
yy(ω) in the metric of

V , and the optimal scaling, βββ(ω), is the corresponding eigenvector.
If xt is a categorical time series taking values in the finite state-space S =

{c1, c2, . . . , ck}, where cj represents a particular category, an appropriate choice
for G is the set of indicator functions gj(xt) = I(xt = cj). Hence, this is
a natural generalization of the categorical case. In the categorical case, G
does not consist of linearly independent g’s, but it was easy to overcome this
problem by reducing the dimension by one. In the vector-valued case, xxxt =
(x1t, . . . , xpt)′, we consider G to be the class of transformations from Rp into R
such that the spectral density of g(xxxt) exists. One class of transformations of
interest are linear combinations of xxxt. In Tiao et al. (1993), for example, linear
transformations of this type are used in a time domain approach to investigate
contemporaneous relationships among the components of multivariate time
series. Estimation and inference for the real-valued case are analogous to the
methods described in the previous section for the categorical case. We focus
on two examples here; numerous other examples can be found in McDougall
et al. (1997).

Example 7.19 Residual Analysis

A relevant situation may be when xt is the residual process obtained
from some modeling procedure. If the fitted model is appropriate, the
residuals should exhibit properties similar to an iid sequence. Depar-
tures of the data from the fitted model may suggest model misspecifica-
tion, non-Gaussian data, or the existence of a nonlinear structure, and
the spectral envelope would provide a simple diagnostic tool to aid in a
residual analysis.

The series considered here is the quarterly U.S. real GNP which was
analyzed in Chapter 3, Examples (3.35) and (3.36). Recall an MA(2)
model was fit to the growth rate, and the residuals from this fit are
plotted in Figure 3.16 . As discussed in Example (3.36), the residuals
from the model fit appear to be uncorrelated; there appears to be one
or two outliers, but their magnitudes are not that extreme. In addition,
the standard residual analyses showed no obvious structure among the
residuals.

Although the MA(2) model appears to be appropriate, Tiao and Tsay
(1994) investigated the possibility of nonlinearities in GNP growth rate.
Their overall conclusion was that there is subtle nonlinear behavior in the
data because the economy behaves differently during expansion periods
than during recession periods.

The spectral envelope, used as a diagnostic tool on the residuals, clearly
indicates the MA(2) model is not adequate, and that further analysis is
warranted. Here, the generating set G = {x, |x|, x2}—which seems nat-
ural for a residual analysis—was used to estimate the spectral envelope
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Figure 7.24 Spectral envelope with respect to G = {x, |x|, x2} of the residuals
from an MA(2) fit to the U.S. GNP growth rate data.

for the residuals from the MA(2) fit, and the result is plotted in Fig-
ure 7.24. A smoothed periodogram estimate was obtained using L = 21
and triangular weighting, h0 = 11/121, h±1 = 10/121, . . . , h±10 = 1/121
in (7.150). Clearly, the residuals are not iid, and considerable power
is present at the low frequencies. The presence of spectral power at
very low frequencies in detrended economic series has been frequently
reported and is typically associated with long-range dependence. In fact,
our choice of G was partly influenced by the work of Ding et al. (1993)
who applied transformations of the form |xt|d, for d ∈ (0, 3], to the S&P
500 stock market series. The estimated optimal transformation at the
first nonzero frequency, ω = 0.006, was β̂̂β̂β(0.006) = (1, 20,−2916)′, which
leads to the transformation

y = x + 20|x| − 2916x2. (7.188)

This transformation is plotted in Figure 7.25. The transformation given
in (7.188) is basically the absolute value (with some slight curvature and
asymmetry) for most of the residual values, but the effect of extreme-
valued residuals (outliers) is dampened.

Example 7.20 Optimal Transformations

In this example, we consider a contrived data set, in which we know the
optimal transformation, say, g0, and we determine whether the technol-
ogy can find the transformation when g0 is not in G. The data, xt, are
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Figure 7.25 Estimated optimal transformation, (7.188), for the GNP residuals
at ω = 0.006.

Figure 7.26 Periodogram, in decibels, of the data generated from (7.189) after
tapering by a cosine bell.

generated by the nonlinear model

xt = exp{3 sin(2πtω0) + εt}, t = 1, . . . , 512, (7.189)

where ω0 = 51/512 and εt is white Gaussian noise with a variance of 16.
This example is adapted from Breiman and Friedman (1985), where the
ACE algorithm is introduced. The optimal transformation in this case
is g0(xt) = ln(xt), wherein the data are generated from a sinusoid plus
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Figure 7.27 Spectral envelope with respect to G = {x,
√

x, 3
√

x} of data gen-
erated from (7.189).

Figure 7.28 Log transformation, y = ln(x) (solid line), the estimated opti-
mal transformation at ω0 as given in (7.190) (dashed line), and the estimated
optimal transformation at ω0 using the inappropriate basis {x, x2, x3} (short-
dashed line).
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Figure 7.29 Spectral envelope with respect to G = {x, x2, x3}.

noise. Of the 512 generated data, about 98% were less than 4000. Occa-
sionally, the data values were extremely large (the data exceeded 100,000
about four times). The periodogram, in decibels [10 log10 X(ωj)], of the
standardized and tapered (by a cosine bell) data is shown in Figure 7.26
and provides no evidence of any dominant frequency, including ω0.

In contrast, the sample spectral envelope (Figure 7.27) computed with
respect to G = {x,

√
x, 3

√
x} has no difficulty in isolating ω0. No smooth-

ing was used here; so, based on Stoffer et al. (1993, Theorem 3.2), an
approximate 0.0001 null significance threshold for the spectral envelope
is 4.84% (the null hypothesis being that xt is iid).

Figure 7.28 compares the estimated optimal transformation with respect
to G with the log transformation for values less than 4000. The estimated
transformation at ω0 is given by

y = −.6 + 0.0003x − 0.3638
√

x + 1.9304 3
√

x; (7.190)

that is, β̂̂β̂β(ω0) = (0.0003,−0.3638, 1.9304)′ after rescaling so (7.190) can
be compared directly with y = ln(x).

Finally, it is worth mentioning the result obtained when the rather inap-
propriate basis, {x, x2, x3}, was used. Surprisingly, the spectral envelope
in this case (Figure 7.29) looks similar to that of Figure 7.27. Also,
the resulting estimated optimal transformation at ω0, is close to the log
transformation. In fact, as seen in Figure 7.28, it looks like what we
would imagine as a linear approximation to y = ln(x) within the range
of most of the data.
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Problems

Section 7.2

7.1 Consider the complex Gaussian distribution for the random variable XXX =
XXXc − iXXXs, as defined in (7.1)-(7.3), where the argument ωk has been
suppressed. Now, the 2p × 1 real random variable ZZZ = (XXX ′

c,XXX
′
s)

′ has a
multivariate normal distribution with density

p(ZZZ) = (2π)−p|Σ|−1/2 exp
{

−1
2
(ZZZ − µµµ)′Σ−1(ZZZ − µµµ)

}
,

where µµµ = (MMM ′
c,MMM

′
s)

′ is the mean vector. Prove

|Σ| =
(

1
2

)2p

|C − iQ|2,

using the result that the eigenvectors and eigenvalues of Σ occur in pairs,
i.e., (vvv′

c, vvv
′
s)

′ and (vvv′
s,−vvv′

c)
′, where vvvc−ivvvs denotes the eigenvector of fxx.

Show that
1
2
(ZZZ − µµµ)′Σ−1(ZZZ − µµµ)) = (XXX − MMM)∗f−1(XXX − MMM)

so p(XXX) = p(ZZZ) and we can identify the density of the complex mul-
tivariate normal variable XXX with that of the real multivariate normal
ZZZ.

7.2 Prove f̂ in (7.6) maximizes the log likelihood (7.5) by minimizing the
negative of the log likelihood

L ln |f | + L tr {f̂f−1}
in the form

L
∑

i

(
λi − lnλi − 1

)
+ Lp + L ln |f̂ |,

where the λi values correspond to the eigenvalues in a simultaneous diag-
onalization of the matrices f and f̂ ; i.e., there exists a matrix P such that
P ∗fP = I and P ∗f̂P = diag (λ1, . . . , λp) = Λ. Note, λi − lnλi − 1 ≥ 0
with equality if and only if λi = 1, implying Λ = I maximizes the log
likelihood and f = f̂ is the maximimizing value.

Section 7.3

7.3 Verify (7.19) and (7.20) for the mean-squared prediction error MSE in
(7.12). Use the orthogonality principle, which implies

MSE = E

[
(yt −

∞∑
r=−∞

βββ′
rxxxt−r)yt

]
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and gives a set of equations involving the autocovariance functions. Then,
use the spectral representations and Fourier transform results to get the
final result.

7.4 Consider the predicted series

ŷt =
∞∑

r=−∞
βββ′

rxxxt−r,

where βββr satisfies (7.14). Show the ordinary coherence between yt and
ŷt is exactly the multiple coherence (7.21).

7.5 Consider the complex regression model (7.29) in the form

YYY = XB + VVV ,

where YYY = (Y1, Y2, . . . YL)′ denotes the observed DFTs after they have
been re-indexed and X = (XXX1,XXX2, . . . ,XXXL)′ is a matrix containing the
reindexed input vectors. The model is a complex regression model with
YYY = YYY c − iYYY s, X = Xc − iXs,BBB = BBBc − iBBBs, and VVV = VVV c − iVVV s denoting
the representation in terms of the usual cosine and sine transforms. Show
the partitioned real regression model involving the 2L×1 vector of cosine
and sine transforms, say,(

YYY c

YYY s

)
=
(

Xc −Xs

Xs Xc

)(
BBBc

BBBs

)
+
(

VVV c

VVV s

)
,

is isomorphic to the complex regression regression model in the sense that
the real and imaginary parts of the complex model appear as components
of the vectors in the real regression model. Use the usual regression
theory to verify (7.28) holds. For example, writing the real regression
model as

yyy = xbbb + vvv,

the isomorphism would imply

L(f̂yy − f̂∗
xy f̂−1

xx f̂xy) = YYY ∗YYY − YYY ∗X(X∗X)−1X∗YYY

= yyy′yyy − yyy′x(x′x)−1x′yyy.

Section 7.4

7.6 Consider estimating the function

ψt =
∞∑

r=−∞
aaa′

rβββt−r
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by a linear filter estimator of the form

ψ̂t =
∞∑

r=−∞
aaa′

rβ̂ββt−r,

where β̂ββt is defined by (7.43). Show a sufficient condition for ψ̂t to be an
unbiased estimator; i.e., E ψ̂t = ψt, is

H(ω)Z(ω) = I

for all ω. Similarly, show any other unbiased estimator satisfying the
above condition has minimum variance (see Shumway and Dean, 1968),
so the estimator given is a best linear unbiased (BLUE) estimator.

7.7 Consider a linear model with mean value function µt and a signal αt

delayed by an amount τj on each sensor, i.e.,

yjt = µt + αt−τj
+ vjt

Show the estimators (7.43) for the mean and the signal are the Fourier
transforms of

M̂(ω) =
Y·(ω) − φ(ω)Bw(ω)

1 − |φ(ω)|2
and

Â(ω) =
Bw(ω) − φ(ω)Y·(ω)

1 − |φ(ω)|2 ,

where

φ(ω) =
1
N

N∑
j=1

eee2πiωτj

and Bw(ω) is defined in (7.65).

Section 7.5

7.8 Consider the estimator (7.68) as applied in the context of the random
coefficient model (7.66). Prove the filter coefficients for the minimum
mean square estimator can be determined from (7.69) and the mean
square covariance is given by (7.72).

7.9 For the random coefficient model, verify the expected mean square of the
regression power component is

E[SSR(ωk)] = E[Y ∗(ωk)Z(ωk)S−1
z (ωk)Z∗(ωk)Y (ωk)]

= Lfβ(ωk)tr {Sz(ωk)} + Lqfv(ωk).
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Recall, the underlying frequency domain model is

YYY (ωk) = Z(ωk)BBB(ωk) + VVV (ωk),

where BBB(ωk) has spectrum fβ(ωk)Iq and VVV (ωk) has spectrum fv(ωk)IN

and the two processes are uncorrelated.

Section 7.6

7.10 Suppose we have I = 2 groups and the models

y1jt = µt + α1t + v1jt

for the j = 1, . . . , N observations in group 1 and

y2jt = µt + α2t + v2jt

for the j = 1, . . . , N observations in group 2, with α1t+α2t = 0. Suppose
we want to test equality of the two group means; i.e.,

yijt = µt + vijt, i = 1, 2.

Derive the residual and error power components corresponding to (7.84)
and (7.85) for this particular case.

7.11 Verify the forms of the linear compounds involving the mean given in
(7.91) and (7.92), using (7.89) and (7.90).

7.12 Show the ratio of the two smoothed spectra in (7.104) has the indicated
F -distribution when f1(ω) = f2(ω). When the spectra are not equal,
show the variable is proportional to an F -distribution, where the pro-
portionality constant depends on the ratio of the spectra.

Section 7.7

7.13 The problem of detecting a signal in noise can be considered using the
model

xt = st + wt, t = 1, . . . , n,

for p1(xxx) when a signal is present and the model

xt = wt, t = 1, . . . , n,

for p2(xxx) when no signal is present. Under multivariate normality, we
might specialize even further by assuming the vector www = (w1, . . . , wn)′

has a multivariate normal distribution with mean 0 and covariance ma-
trix Σ = σ2

wIn, corresponding to white noise. Assuming the signal vector
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sss = (s1, . . . , sn)′ is fixed and known, show the discriminant function
(7.113) becomes the matched filter

1
σ2

w

n∑
t=1

stxt − 1
2

(
S

N

)
+ ln

π1

π2
,

where (
S

N

)
=
∑n

t=1 s2
t

σ2
w

denotes the signal-to-noise ratio. Give the decision criterion if the prior
probabilities are assumed to be the same. Express the false alarm and
missed signal probabilities in terms of the normal cdf and the signal-to-
noise ratio.

7.14 Assume the same additive signal plus noise representations as in the
previous problem, except, the signal is now a random process with a
zero mean and covariance matrix σ2

sI. Derive the comparable version
of (7.116) as a quadratic detector, and characterize its performance un-
der both hypotheses in terms of constant multiples of the chi-squared
distribution.

Section 7.8

7.15 The data set ch5fmri.dat contains data from other stimulus conditions
in the fMRI experiment, as discussed in Example 7.14 (one location—
Caudate—was left out of the analysis for brevity). Perform princi-
pal component analyses on the stimulus conditions (i) awake-heat and
(ii) awake-shock, and compare your results to the results of Example 7.14.

7.16 For this problem, consider the first three earthquake series listed in
eq+exp.dat.

(a) Estimate and compare the spectral density of the P component and
then of the S component for each individual earthquake.

(b) Estimate and compare the squared coherency between the P and
S components of each individual earthquake. Comment on the
strength of the coherence.

(c) Let xti be the P component of earthquake i = 1, 2, 3, and let xxxt =
(xt1, xt2, xt3)′ be the 3 × 1 vector of P components. Estimate the
spectral density, λ1(ω), of the first principal component series of xxxt.
Compare this to the corresponding spectra calculated in (a).

(d) Analogous to part (c), let yyyt denote the 3 × 1 vector series of S
components of the first three earthquakes. Repeat the analysis of
part (c) on yyyt.
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7.17 In the factor analysis model (7.155), let p = 3, q = 1, and

Σxx =

⎡⎣ 1 .4 .9
.4 1 .7
.9 .7 1

⎤⎦ .

Show there is a unique choice for B and D, but δ2
3 < 0, so the choice is

not valid.

7.18 Extend the EM algorithm for classical factor analysis, (7.161)-(7.166),
to the time series case of maximizing ln L

(B(ωj), Dεε(ωj)
)

in (7.177).
Then, for the data used in Example 7.16, find the approximate maximum
likelihood estimates of B(ωj) and Dεε(ωj), and, consequently, Λt.

Section 7.9

7.19 Verify, as stated in (7.182), the imaginary part of a k×k spectral matrix,
f im(ω), is skew symmetric, and then show βββ′f im

yy (ω)βββ = 0 for a real k×1
vector, βββ.

7.20 Repeat the analysis of Example 7.18 on BNRF1 of herpesvirus saimiri
(the data file is bnrf1hvs.dat), and compare the results with the results
obtained for Epstein–Barr.

7.21 For the NYSE returns, say, rt, analyzed in Chapter 5, Example 5.4:

(a) Estimate the spectrum of the rt. Does the spectral estimate appear
to support the hypothesis that the returns are white?

(b) Examine the possibility of spectral power near the zero frequency
for a transformation of the returns, say, g(rt), using the spectral
envelope with Example 7.19 as your guide. Compare the optimal
transformation near or at the zero frequency with the usual trans-
formation yt = r2

t .



Appendix A
Large Sample Theory

A.1 Convergence Modes

The study of the optimality properties of various estimators (such as the sam-
ple autocorrelation function) depends, in part, on being able to assess the
large-sample behavior of these estimators. We summarize briefly here the
kinds of convergence useful in this setting, namely, mean square convergence,
convergence in probability, and convergence in distribution.

We consider first a particular class of random variables that plays an impor-
tant role in the study of second-order time series, namely, the class of random
variables belonging to the space L2, satisfying E|x|2 < ∞. In proving certain
properties of the class L2 we will often use, for random variables x, y ∈ L2, the
Cauchy–Schwarz inequality,

|E(xy)|2 ≤ E(|x|2)E(|y|2), (A.1)

and the Tchebycheff inequality,

P{|x| ≥ a} ≤ E(|x|2)
a2 , (A.2)

for a > 0.
Next, we investigate the properties of mean square convergence of random

variables in L2.

Definition A.1 A sequence of L2 random variables {xn}, is said to converge
in mean square to a random variable x ∈ L2, denoted by

xn
ms→ x, (A.3)

if and only if
E|xn − x|2 → 0 (A.4)

as n → ∞.
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Example A.1 Mean Square Convergence of the Sample Mean

Consider the white noise sequence wt and the signal plus noise series

xt = µ + wt.

Then, because

E|x̄n − µ|2 =
σ2

w

n
→ 0

as n → ∞, where x̄n = n−1∑n
t=1 xt is the sample mean, we have x̄n

ms→ µ.

We summarize some of the properties of mean square convergence as fol-
lows. If xn

ms→ x, and yn
ms→ y, then, as n → ∞,

(i) E(xn) → E(x); (A.5)
(ii) E(|xn|2) → E(|x|2); (A.6)

(iii) E(xnyn) → E(xy). (A.7)

We also note the L2 completeness theorem known as the Riesz–Fisher The-
orem.

Theorem A.1 Let {xn} be a sequence in L2. Then, there exists an x in L2

such that xn
ms→ x if and only if

E|xn − xm|2 → 0 (A.8)

for m, n → ∞.

Often the condition of Theorem A.1 is easier to verify to establish that a mean
square limit x exists without knowing what it is. Sequences that satisfy (A.8)
are said to be Cauchy sequences in L2 and (A.8) is also known as the Cauchy
criterion for L2.

Example A.2 Time Invariant Linear Filter

As an important example of the use of the Riesz–Fisher Theorem A.1 and
the properties (i), (ii), and (iii) of mean square convergent series given
in (A.5)–(A.7), a time-invariant linear filter is defined as a convolution
of the form

yt =
∞∑

j=−∞
ajxt−j (A.9)

for each t = 0,±1,±2, . . ., where xt is a weakly stationary input se-
ries with mean µx and autocovariance function γx(h), and aj , for j =
0,±1,±2, . . . are constants satisfying

∞∑
j=−∞

|aj | < ∞. (A.10)
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The output series yt defines a filtering or smoothing of the input series
that changes the character of the time series in a predictable way. We
need to know the conditions under which the outputs yt in (A.9) and the
linear process (1.31) exist.

Considering the sequence

yn
t =

n∑
j=−n

ajxt−j , (A.11)

n = 1, 2, . . ., we need to show first that yn
t has a mean square limit. By

Theorem A.1, it is enough to show that

E |yn
t − ym

t |2 → 0

as m, n → ∞. For n > m > 0,

E |yn
t − ym

t |2 = E

∣∣∣∣∣∣
∑

m<|j|≤n

ajxt−j

∣∣∣∣∣∣
2

=
∑

m<|j|≤n

∑
m≤|k|≤n

ajakE(xt−jxt−k)

≤
∑

m<|j|≤n

∑
m≤|k|≤n

|aj ||ak||E(xt−jxt−k)|

≤
∑

m<|j|≤n

∑
m≤|k|≤n

|aj ||ak|(E|xt−j |2)1/2(E|xt−k|2)1/2

= γx(0)

⎛⎝ ∑
m≤|j|≤n

|aj |
⎞⎠2

→ 0

as m, n → ∞, because γx(0) is a constant and {aj} is absolutely sum-
mable (the second inequality follows from the Cauchy–Schwarz inequal-
ity).

Although we know that the sequence {yn
t } given by (A.11) converges in

mean square, we have not established its mean square limit. It should be
obvious, however, that yn

t
ms→ yt as n → ∞, where yt is given by (A.9).1

Finally, we may use (A.5) and (A.7) to establish the mean, µy and autoco-
variance function, γy(h) of yt. In particular we have,

µy = µx

∞∑
j=−∞

aj , (A.12)

1If S denotes the mean square limit of yn
t , then using Fatou’s Lemma, E|S − yt|2 =

E lim infn→∞ |S − yn
t |2 ≤ lim infn→∞ E|S − yn

t |2 = 0, which establishes that yt is the mean
square limit of yn

t .
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and

γy(h) = E

∞∑
j=−∞

∞∑
k=−∞

aj(xt+h−j − µx)aj(xt−k − µx)

=
∞∑

j=−∞

∞∑
k=−∞

ajγx(h − j + k)ak (A.13)

A second important kind of convergence is convergence in probability.

Definition A.2 The sequence {xn}, for n = 1, 2, . . ., converges in proba-
bility to a random variable x, denoted by

xn
p→ x, (A.14)

if and only if
P{|xn − x| > ε} → 0 (A.15)

for all ε > 0, as n → ∞.

An immediate consequence of the Tchebycheff inequality, (A.2), is that

P{|xn − x| ≥ ε} ≤ E(|xn − x|2)
ε2

,

so convergence in mean square implies convergence in probability, i.e.,

xn
ms→ x ⇒ xn

p→ x. (A.16)

This result implies, for example, that the filter (A.9) exists as a limit in prob-
ability because it converges in mean square [it is also easily established that
(A.9) exists with probability one]. We mention, at this point, the useful Weak
Law of Large Numbers which states that, for an independent identically dis-
tributed sequence xn of random variables with mean µ, we have

x̄n
p→ µ (A.17)

as n → ∞, where x̄n = n−1∑n
t=1 xt is the usual sample mean.

We also will make use of the following concepts.

Definition A.3 For order in probability we write

xn = op(an) (A.18)

if and only if
xn

an

p→ 0. (A.19)

The term boundedness in probability, written xn = Op(an), means that
for every ε > 0, there exists a δ(ε) > 0 such that

P

{∣∣∣∣xn

an

∣∣∣∣ > δ(ε)
}

≤ ε (A.20)

for all n.
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Under this convention, e.g., the notation for xn
p→ x becomes xn − x =

op(1). The definitions can be compared with their nonrandom counterparts,
namely, for a fixed sequence xn = o(1) if xn → 0 and xn = O(1) if xn, for
n = 1, 2, . . . is bounded. Some handy properties of op(·) and Op(·) are as
follows.

(i) If xn = op(an) and yn = op(bn), then xnyn = op(anbn) and xn + yn =
op(max(an, bn)).

(ii) If xn = op(an) and yn = Op(bn), then xnyn = op(anbn).

(iii) Statement (i) is true if Op(·) replaces op(·).

Example A.3 Convergence and Order in Probability for the Sample
Mean

For the sample mean, x̄n, of iid random variables with mean µ and
variance σ2, by the Tchebycheff inequality,

P{|x̄n − µ| > ε} ≤ E[(x̄n − µ)2]
ε2

=
σ2

nε2
→ 0,

as n → ∞. It follows that x̄n
p→ µ, or x̄n − µ = op(1). To find the rate,

it follows that, for δ(ε) > 0,

P
{√

n |x̄n − µ| > δ(ε)
} ≤ σ2/n

δ2(ε)/n
=

σ2

δ2(ε)

by Tchebycheff’s inequality, so taking ε = σ2/δ2(ε) shows that δ(ε) =
σ/

√
ε does the job and

x̄n − µ = Op(n−1/2).

For k × 1 random vectors xxxn, convergence in probability, written xxxn
p→ xxx

or xxxn −xxx = op(1) is defined as element-by-element convergence in probability,
or equivalently, as convergence in terms of the Euclidean distance

‖xxxn − xxx‖ p→ 0, (A.21)

where ‖aaa‖ =
∑

j a2
j for any vector aaa. In this context, we note the result that

if xxxn
p→ xxx and g(xxxn) is a continuous mapping,

g(xxxn)
p→ g(xxx). (A.22)
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Furthermore, if xxxn−aaa = Op(δn) with δn → 0 and g(·) is a function with con-
tinuous first derivatives continuous in a neighborhood of aaa = (a1, a2, . . . , ak)′,
we have the Taylor series expansion in probability

g(xxxn) = g(aaa) +
∂g(xxx)
∂xxx

∣∣∣∣′
xxx=aaa

(xxxn − aaa) + Op(δn), (A.23)

where
∂g(xxx)
∂xxx

∣∣∣∣
xxx=aaa

=
(

∂g(xxx)
∂x1

∣∣∣∣
xxx=aaa

, . . . ,
∂g(xxx)
∂xk

∣∣∣∣
xxx=aaa

)′

denotes the vector of partial derivatives with respect to x1, x2, . . . , xk, evalu-
ated at aaa. This result remains true if Op(δn) is replaced everywhere by op(δn).

Example A.4 Expansion for the Logarithm of the Sample Mean

With the same conditions as Example A.3, consider g(x̄n) = log x̄n,
which has a derivative at µ, for µ > 0. Then, because x̄n−µ = Op(n−1/2)
from Example A.3, the conditions for the Taylor expansion in probability,
(A.23), are satisfied and we have

log x̄n = log µ + µ−1(x̄n − µ) + Op(n−1/2).

The large sample distributions of sample mean and sample autocorrelation
functions defined earlier can be developed using the notion of convergence in
distribution.

Definition A.4 A sequence of k×1 random vectors {xxxn} is said to converge
in distribution, written

xxxn
d→ xxx (A.24)

if and only if
Fn(xxx) → F (xxx) (A.25)

at the continuity points of distribution function F (·).

Example A.5 Convergence in Distribution

Consider a sequence {xn} of iid normal random variables with mean zero
and variance 1/n. Now, using the normal cdf (1.10), we have Fn(x) =
Φ(

√
nx), so

Fn(x) →
{ 0 x < 0,

1/2, x = 0
1, x > 0

and we may take

F (x) =
{

0, x < 0
1, x ≥ 0,

because the point where the two functions differ is not a continuity point
of F (x).
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The distribution function relates uniquely to the characteristic function
through the Fourier transform, defined as a function with vector argument
λλλ = (λ1, λ2, . . . , λk)′, say

φ(λλλ) = E(exp{iλλλ′xxx})

=
∫

exp{iλλλ′xxx} dF (xxx). (A.26)

Hence, for a sequence {xxxn} we may characterize convergence in distribution of
Fn(·) in terms of convergence of the sequence of characteristic functions φn(·),
i.e.,

φn(λλλ) → φ(λλλ) ⇔ Fn(xxx) d→ F (xxx), (A.27)

where ⇔ means that the implication goes both directions. In this connection,
the Cramér–Wold device says that for every ccc = (c1, c2, . . . , ck)′

ccc′xxxn
d→ ccc′xxx ⇔ xxxn

d→ xxx. (A.28)

Also, convergence in probability implies convergence in distribution, namely,

xxxn
p→ xxx ⇒ xxxn

d→ xxx, (A.29)

but the converse is only true when xxxn
d→ ccc, where ccc is a constant vector. If

xxxn
d→ xxx and yyyn

d→ ccc are two sequences of random vectors and ccc is a constant
vector,

xxxn + yyyn
d→ xxx + ccc (A.30)

and
yyy′

nxxxn
d→ ccc′xxx. (A.31)

For a continuous mapping h(xxx),

xxxn
d→ xxx ⇒ h(xxxn) d→ h(xxx). (A.32)

A number of results in time series depend on making a series of approx-
imations to prove convergence in distribution. For example, we have that if
xxxn

d→ xxx can be approximated by the sequence yyyn in the sense that

yyyn − xxxn = op(1), (A.33)

then we have that yyyn
d→ xxx, so the approximating sequence yyyn has the same

limiting distribution as xxx. We present the following Basic Approximation The-
orem (BAT) that will be used later to derive asymptotic distributions for the
sample mean and ACF.
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Theorem A.2 Let xxxn for n = 1, 2, . . . , and yyymn for m = 1, 2, . . . , be random
k × 1 vectors such that

(i) yyymn
d→ yyym as n → ∞ for each m;

(ii) yyym
d→ yyy as m → ∞;

(iii) limm→∞ lim supn→∞ P{|xxxn − yyymn| > ε} = 0 for every ε > 0.

Then, xxxn
d→ yyy.

As a practical matter, condition (iii) is implied by the Tchebycheff inequality
if

(iii′) E{|xxxn −yyymn|2} → 0 (A.34)

as m, n → ∞, and (iii′) is often much easier to establish than (iii).
The theorem allows approximation of the underlying sequence in two steps,

through the intermediary sequence yyymn, depending on two arguments. In the
time series case, n is generally the sample length and m is generally the number
of terms in an approximation to the linear process of the form (A.11).

Proof. The proof of the theorem is a simple exercise in using the characteristic
functions and appealing to (A.27). We need to show

|φxxxn − φyyy | → 0,

where we use the shorthand notation φ ≡ φ(λλλ) for ease. First,

|φxxxn − φyyy | ≤ |φxxxn
− φyyymn

| + |φyyymn
− φyyym

| + |φyyym
− φyyy |. (A.35)

By the condition (ii) and (A.27), the last term converges to zero, and by
condition (i) and (A.27), the second term converges to zero and we only need
consider the first term in (A.35). Now, write∣∣φxxxn

− φyyymn

∣∣ =
∣∣∣E(eiλλλ′xxxn − eiλλλ′yyymn)

∣∣∣
≤ E

∣∣∣eiλλλ′xxxn
(
1 − eiλλλ′(yyymn−xxxn))∣∣∣

= E
∣∣∣1 − eiλλλ′(yyymn−xxxn)

∣∣∣
= E

{∣∣∣1 − eiλλλ′(yyymn−xxxn)
∣∣∣ I{|yyymn − xxxn| < δ}

}
+ E

{∣∣∣1 − eiλλλ′(yyymn−xxxn)
∣∣∣ I{|yyymn − xxxn| ≥ δ}

}
,

where δ > 0 and I{A} denotes the indicator function of the set A. Then, given
λλλ and ε > 0, choose δ(ε) > 0 such that∣∣∣1 − eiλλλ′(yyymn−xxxn)

∣∣∣ < ε
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if |yyymn−xxxn| < δ, and the first term is less than ε, an arbitrarily small constant.
For the second term, note that∣∣∣1 − eiλλλ′(yyymn−xxxn)

∣∣∣ ≤ 2

and we have

E
{∣∣∣1 − eiλλλ′

(yyymn−xxxn)
∣∣∣ I{|yyymn − xxxn| ≥ δ}

}
≤ 2P

{|yyymn − xxxn| ≥ δ
}
,

which converges to zero as n → ∞ by property (iii).

A.2 Central Limit Theorems

We will generally be concerned with the large-sample properties of estimators
that turn out to be normally distributed as n → ∞.

Definition A.5 A sequence of random variables {xn} is said to be asymp-
totically normal with mean µn and variance σ2

n if, as n → ∞,

σ−1
n (xn − µn) d→ z,

where z has the standard normal distribution. We shall abbreviate this as

xn ∼ AN(µn, σ2
n), (A.36)

where ∼ will denote is distributed as.

We state the important Central Limit Theorem, as follows.

Theorem A.3 Let x1, . . . , xn be independent and identically distributed with
mean µ and variance σ2. If x̄n = (x1 + · · · + xn)/n denotes the sample mean,
then

x̄n ∼ AN(µ, σ2/n). (A.37)

Often, we will be concerned with a sequence of k × 1 vectors {xxxn}. The
following definition is motivated by the Cramér–Wold device considered earlier.

Definition A.6 We define asymptotic normality for the vector case as

xxxn ∼ AN(µµµn, Σn) (A.38)

if and only if
ccc′xxxn ∼ AN(ccc′µµµn, ccc′Σnccc) (A.39)

for all ccc and Σn is positive definite.
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In order to begin to consider what happens for dependent data in the lim-
iting case, it is necessary to define, first of all, a particular kind of dependence
known as M-dependence. We say that a time series xt is M-dependent if the
set of values xs, s ≤ t is independent of the set of values xs, s ≥ t + M + 1,
so time points separated by more than M units are independent. A central
limit theorem for such dependent processes, used in conjunction with the Basic
Approximation Theorem, will allow us to develop large-sample distributional
results for the sample mean x̄ and the sample ACF ρ̂x(h) in the stationary
case.

In the arguments that follow, we often make use of the formula for the
variance of x̄n in the stationary case, namely,

var x̄n = n−1
(n−1)∑

u=−(n−1)

(
1 − |u|

n

)
γ(u). (A.40)

To prove the above formula, letting u = s − t and v = t in

n2E[(x̄n − µ)2] =
n∑

s=1

n∑
t=1

E[(xs − µ)(xt − µ)]

=
n∑

s=1

n∑
t=1

γ(s − t)

=
−1∑

u=−(n−1)

n∑
v=−(u−1)

γ(u) +
n−1∑
u=0

n−u∑
v=1

γ(u)

=
−1∑

u=−(n−1)

(n + u)γ(u) +
n−1∑
u=0

(n − u)γ(u)

=
(n−1)∑

u=−(n−1)

(n − |u|)γ(u)

gives the required result. We shall also use the fact that, for

∞∑
u=−∞

|γ(u)| < ∞,
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we would have, by dominated convergence,2

n var x̄n →
∞∑

u=−∞
γ(u), (A.41)

because |(1 − |u|/n)γ(u)| ≤ |γ(u)| and (1 − |u|/n)γ(u) → γ(u). We may now
state the M-Dependent Central Limit Theorem as follows.

Theorem A.4 If xt is a strictly stationary M-dependent sequence of random
variables with mean zero and autocovariance function γ(·) and if

VM =
M∑

u=−M

γ(u), (A.42)

where VM �= 0,
x̄n ∼ AN(0, VM/n). (A.43)

Proof. To prove the theorem, using Theorem A.2, the Basic Approximation
Theorem, we may construct a sequence of variables ymn approximating

n1/2x̄n = n−1/2
n∑

t=1

xt

in the dependent case and then simply verify conditions (i), (ii), and (iii) of
Theorem A.2. For m > 2M , we may first consider the approximation

ymn = n−1/2[(x1 + · · · + xm−M ) + (xm+1 + · · · + x2m−M )
+ (x2m+1 + · · · + x3m−M ) + · · · + (x(r−1)m+1 + · · · + xrm−M )]

= n−1/2(z1 + z2 + · · · + zr),

where r = [n/m], with [n/m] denoting the greatest integer less than or equal
to n/m. This approximation contains only part of n1/2x̄n, but the random
variables z1, z2, . . . , zr are independent because they are separated by more
than M time points, e.g., m + 1 − (m − M) = M + 1 points separate z1 and
z2. Because of strict stationarity, z1, z2, . . . , zr are identically distributed with
zero means and variances

Sm−M =
∑

|u|≤M

(m − M − |u|)γ(u)

by a computation similar to that producing (A.40). We now verify the condi-
tions of the Basic Approximation Theorem hold.

2Dominated convergence technically relates to convergent sequences (with respect to a
sigma-additive measure µ) of measurable functions fn → f bounded by an integrable func-
tion g,

∫
g dµ < ∞. For such a sequence,∫

fn dµ →
∫

f dµ.

For the case in point, take fn(u) = (1 − |u|/n)γ(u) for |u| < n and as zero for |u| ≥ n. Take
µ(u) = 1, u = ±1, ±2, . . . to be counting measure.
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(i): Applying the Central Limit Theorem to the sum ymn gives

ymn = n−1/2
r∑

i=1

zi = (n/r)−1/2r−1/2
r∑

i=1

zi.

Because (n/r)−1/2 → m1/2 and

r−1/2
r∑

i=1

zi
d→ N(0, Sm−M ),

it follows from (A.31) that

ymn
d→ ym ∼ N(0, Sm−M/m).

as n → ∞, for a fixed m.

(ii): Note that as m → ∞, Sm−M/m → VM using dominated convergence,
where VM is defined in (A.42). Hence, the characteristic function of ym,
say,

φm(λ) = exp
{

−1
2
λ2 Sm−M

m

}
→ exp

{
−1

2
λ2 VM

}
,

as m → ∞, which is the characteristic function of a random variable
y ∼ N(0, VM ) and the result follows because of (A.27).

(iii): To verify the last condition of the BAT theorem,

n1/2x̄n − ymn = n−1/2[(xm−M+1 + · · · + xm)
+ (x2m−M+1 + · · · + x2m)
+ (x(r−1)m−M+1 + · · · + x(r−1)m)
...

+ (xrm−M+1 + · · · + xn)]
= n−1/2(w1 + w2 + · · · + wr),

so the error is expressed as a scaled sum of iid variables with variance
SM for the first r − 1 variables and

var(wr) =
∑

|u|≤m−M

(
n − [n/m]m + M − |u|

)
γ(u)

≤∑|u|≤m−M (m + M − |u|)γ(u).

Hence,
var [n1/2x̄ − ymn] = n−1[(r − 1)SM + var wr],

which converges to m−1SM as n → ∞. Because m−1SM → 0 as m → ∞,
the condition of (iii) holds by the Tchebycheff inequality.
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A.3 The Mean and Autocorrelation Functions

The background material in the previous two sections can be used to develop
the asymptotic properties of the sample mean and ACF used to evaluate sta-
tistical significance. In particular, we are interested in verifying Property P1.1.

We begin with the distribution of the sample mean x̄n, noting that (A.41)
suggests a form for the limiting variance. In all of the asymptotics, we will use
the assumption that xt is a linear process, as defined in Definition 1.12, but
with the added condition that {wt} is iid. That is, throughout this section we
assume

xt = µx +
∞∑

j=−∞
ψjwt−j (A.44)

where wt ∼ iid(0, σ2
w), and the coefficients satisfy

∞∑
j=−∞

|ψj | < ∞. (A.45)

Before proceeding further, we should note that the exact sampling dis-
tribution of x̄n is available if the distribution of the underlying vector xxx =
(x1, x2, . . . , xn)′ is multivariate normal. Then, x̄n is just a linear combination
of jointly normal variables that will have the normal distribution

x̄n ∼ N

⎛⎝µx, n−1
∑

|u|<n

(
1 − |u|

n

)
γx(u)

⎞⎠ , (A.46)

by (A.40). In the case where xt are not jointly normally distributed, we have
the following theorem.

Theorem A.5 If xt is a linear process of the form (A.44) and
∑

j ψj �= 0,
then

x̄n ∼ AN(µx, n−1V ), (A.47)

where

V =
∞∑

h=−∞
γx(h) = σ2

w

( ∞∑
j=−∞

ψj

)2

(A.48)

and γx(·) is the autocovariance function of xt.

Proof. To prove the above, we can again use the Basic Approximation The-
orem A.2 by first defining the strictly stationary 2m-dependent linear process
with finite limits

xm
t =

m∑
j=−m

ψjwt−j
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as an approximation to xt to use in the approximating mean

x̄n,m = n−1
n∑

t=1

xm
t .

Then, take
ymn = n1/2(x̄n,m − µx)

as an approximation to n1/2(x̄n − µx).

(i): Applying Theorem A.4, we have

ymn
d→ ym ∼ N(0, Vm),

as n → ∞, where

Vm =
2m∑

h=−2m

γx(h) = σ2
w

( m∑
j=−m

ψj

)2

.

To verify the above, we note that for the general linear process with
infinite limits, (1.33) implies that

∞∑
h=−∞

γx(h) = σ2
w

∞∑
h=−∞

∞∑
j=−∞

ψj+hψj = σ2
w

( ∞∑
j=−∞

ψj

)2

,

so taking the special case ψj = 0, for |j| > m, we obtain Vm.

(ii): Because Vm → V in (A.48) as m → ∞, we may use the same character-
istic function argument as under (ii) in the proof of Theorem A.4 to note
that

ym
d→ y ∼ N(0, V ),

where V is given by (A.48).

(iii): Finally,

var
[
n1/2(x̄n − µx) − ymn

]
= n var

⎡⎣n−1
n∑

t=1

∑
|j|>m

ψjwt−j

⎤⎦
= σ2

w

⎛⎝ ∑
|j|>m

ψj

⎞⎠2

→ 0

as m → ∞.
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In order to develop the sampling distribution of the sample autocovariance
function, γ̂x(h), and the sample autocorrelation function, ρ̂x(h), we need to
develop some idea as to the mean and variance of γ̂x(h) under some reasonable
assumptions. These computations for γ̂x(h) are messy, and we consider a
comparable quantity

γ̃x(h) = n−1
n∑

t=1

(xt+h − µx)(xt − µx) (A.49)

as an approximation. By Problem 1.29,

n1/2[γ̃x(h) − γ̂x(h)] = op(1),

so that limiting distributional results proved for n1/2γ̃x(h) will hold for n1/2γ̂x(h)
by (A.33).

We begin by proving formulas for the variance and for the limiting variance
of γ̃x(h) under the assumptions that xt is a linear process of the form (A.44),
satisfying (A.45) with the white noise variates wt having variance σ2

w as before,
but also required to have fourth moments satisfying

E(w4
t ) = ησ4

w < ∞, (A.50)

where η is some constant. We seek results comparable with (A.40) and (A.41)
for γ̃x(h). To ease the notation, we will henceforth drop the subscript x from
the notation.

Using (A.49), E[γ̃(h)] = γ(h). Under the above assumptions, we show now
that, for p, q = 0, 1, 2, . . .,

cov [γ̃(p), γ̃(q)] = n−1
(n−1)∑

u=−(n−1)

(
1 − |u|

n

)
Vu, (A.51)

where

Vu = γ(u)γ(u + p − q) + γ(u + p)γ(u − q)

+ (η − 3)σ4
w

∑
i

ψi+u+qψi+uψi+pψi. (A.52)

The absolute summability of the ψj can then be shown to imply the absolute
summability of the Vu.3 Thus, the dominated convergence theorem implies

n cov [γ̃(p), γ̃(q)] →
∞∑

u=−∞
Vu

= (η − 3)γ(p)γ(q) (A.53)

+
∞∑

u=−∞

[
γ(u)γ(u + p − q) + γ(u + p)γ(u − q)

]
.

3Note:
∑∞

j=−∞ |aj | < ∞ and
∑∞

j=−∞ |bj| < ∞ implies
∑∞

j=−∞ |ajbj | < ∞.
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To verify (A.51) is somewhat tedious, so we only go partially through the
calculations, leaving the repetitive details to the reader. First, rewrite (A.44)
as

xt = µ +
∞∑

i=−∞
ψt−iwi,

so that

E[γ̃(p)γ̃(q)] = n−2
∑
s,t

∑
i,j,k,�

ψs+p−iψs−jψt+q−k ψt−�E(wiwjwkw�).

Then, evaluate, using the easily verified properties of the wt series

E(wiwjwkw�) =

⎧⎨⎩ ησ4
w if i = j = k = 


σ4
w if i = j �= k = 


0 if i �= j, i �= k and i �= 
.

To apply the rules, we break the sum over the subscripts i, j, k, 
 into four
terms, namely,∑

i,j,k,�

=
∑

i=j=k=�

+
∑

i=j 	=k=�

+
∑

i=k 	=j=�

+
∑

i=�	=j=k

= S1 + S2 + S3 + S4.

Now,

S1 = ησ4
w

∑
i

ψs+p−iψs−iψt+q−iψt−i

= ησ4
w

∑
i

ψi+s−t+pψi+s−tψi+qψi,

where we have let i′ = t − i to get the final form. For the second term,

S2 =
∑

i=j 	=k=�

ψs+p−iψs−jψt+q−kψt−�E(wiwjwkw�)

=
∑
i	=k

ψs+p−iψs−iψt+q−kψt−kE(w2
i )E(w2

k).

Then, using the fact that ∑
i	=k

=
∑
i,k

−
∑
i=k

,

we have

S2 = σ4
w

∑
i,k

ψs+p−iψs−iψt+q−kψt−k − σ4
w

∑
i

ψs+p−iψs−iψt+q−iψt−i

= γ(p)γ(q) − σ4
w

∑
i

ψi+s−t+pψi+s−tψi+qψi,



Large Sample Theory 517

letting i′ = s − i, k′ = t − k in the first term and i′ = s − i in the second term.
Repeating the argument for S3 and S4 and substituting into the covariance
expression yields

E[γ̃(p)γ̃(q)] = n−2
∑
s,t

[
γ(p)γ(q) + γ(s − t)γ(s − t + p − q)

+ γ(s − t + p)γ(s − t − q)

+ (η − 3)σ4
w

∑
i

ψi+s−t+pψi+s−tψi+qψi

]
.

Then, letting u = s − t and subtracting E[γ̃(p)]E[γ̃(q)] = γ(p)γ(q) from the
summation leads to the result (A.52). Summing (A.52) over u and applying
dominated convergence leads to (A.53).

The above results for the variances and covariances of the approximating
statistics γ̃(·) enable proving the following central limit theorem for the auto-
covariance functions γ̂(·).

Theorem A.6 If xt is a stationary linear process of the form (A.44) satisfying
the fourth moment condition (A.50), then, for fixed K,⎛⎜⎜⎝

γ̂(0)
γ̂(1)

...
γ̂(K)

⎞⎟⎟⎠ ∼ AN

⎡⎢⎢⎣
⎛⎜⎜⎝

γ(0)
γ(1)

...
γ(K)

⎞⎟⎟⎠ , n−1V

⎤⎥⎥⎦ ,

where V is the matrix with elements given by

vpq = (η − 3)γ(p)γ(q)

+
∞∑

u=−∞

[
γ(u)γ(u − p + q) + γ(u + q)γ(u − p)

]
. (A.54)

Proof. It suffices to show the result for the approximate autocovariance (A.49)
for γ̃(·) by the remark given below it (see also Problem 1.29). First, define the
strictly stationary (2m + K)-dependent (K + 1) × 1 vector

yyym
t =

⎛⎜⎜⎜⎝
(xm

t − µ)2

(xm
t+1 − µ)(xm

t − µ)
...

(xm
t+K − µ)(xm

t − µ)

⎞⎟⎟⎟⎠ ,

where

xm
t = µ +

m∑
j=−m

ψjwt−j
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is the usual approximation. The sample mean of the above vector is

ȳyymn = n−1
n∑

t=1

yyym
t =

⎛⎜⎜⎝
γ̃mn(0)
γ̃mn(1)

...
γ̃mn(K)

⎞⎟⎟⎠ ,

where

γ̃mn(h) = n−1
n∑

t=1

(xm
t+h − µ)(xm

t − µ)

denotes the sample autocovariance of the approximating series. Also,

Eyyym
t =

⎛⎜⎜⎝
γm(0)
γm(1)

...
γm(K)

⎞⎟⎟⎠ ,

where γm(h) is the theoretical covariance function of the series xm
t . Then,

consider the vector
yyymn = n1/2[ȳyymn − E(ȳyymn)]

as an approximation to

yyyn = n1/2

⎡⎢⎢⎣
⎛⎜⎜⎝

γ̃(0)
γ̃(1)

...
γ̃(K)

⎞⎟⎟⎠−

⎛⎜⎜⎝
γ(0)
γ(1)

...
γ(K)

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

where E(ȳyymn) is the same as E(yyym
t ) given above. The elements of the vector

approximation yyymn are clearly n1/2(γ̃mn(h) − γ̃m(h)). Note that the elements
of yyyn are based on the linear process xt, whereas the elements of yyymn are
based on the m-dependent linear process xm

t . To obtain a limiting distribution
for yyyn, we apply the Basic Approximation Theorem A.2 using yyymn as our
approximation. We now verify (i), (ii), and (iii) of Theorem A.2.

(i): First, let ccc be a (K+1)×1 vector of constants, and apply the central limit
theorem to the (2m+K)−dependent series ccc′yyymn using the Cramér–Wold
device (A.28). We obtain

ccc′yyymn = n1/2ccc′[ȳyymn − E(ȳyymn)] d→ ccc′yyym ∼ N(0, ccc′Vmccc),

as n → ∞, where Vm is a matrix containing the finite analogs of the
elements vpq defined in (A.54).

(ii): Note that, since Vm → V as m → ∞, it follows that

ccc′yyym
d→ ccc′yyy ∼ N(0, ccc′V ccc),

so, by the Cramér–Wold device, the limiting (K + 1) × 1 multivariate
normal variable is N(000, V ).
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(iii): To show condition (iii) of the Basic Approximation Theorem, we can
focus on the element-by-element components of

P
{|yyyn − yyymn| > ε

}
.

For example, using the Tchebycheff inequality, the h-th element of the
probability statement can be bounded by

nε−2var (γ̃(h) − γ̃m(h))

= ε−2 {n var γ̃(h) + n var γ̃m(h) − 2n cov[γ̃(h), γ̃m(h)]} .

Using the results that led to (A.53), we see that the preceding expression
approaches

(vhh + vhh − 2vhh)/ε2 = 0,

as m, n → ∞.

To obtain a result comparable to Theorem A.6 for the autocorrelation func-
tion ACF, we note the following theorem.

Theorem A.7 If xt is a stationary linear process of the form (1.31) satisfying
the fourth moment condition (A.50), then for fixed K,⎛⎜⎝ ρ̂(1)

...
ρ̂(K)

⎞⎟⎠ ∼ AN

⎡⎢⎣
⎛⎜⎝ ρ(1)

...
ρ(K)

⎞⎟⎠ , n−1W

⎤⎥⎦ ,

where W is the matrix with elements given by

wpq =
∞∑

u=−∞

[
ρ(u + p)ρ(u + q) + ρ(u − p)ρ(u + q) + 2ρ(p)ρ(q)ρ2(u)

− 2ρ(p)ρ(u)ρ(u + q) − 2ρ(q)ρ(u)ρ(u + p)
]

=
∞∑

u=1

[ρ(u + p) + ρ(u − p) − 2ρ(p)ρ(u)]

× [ρ(u + q) + ρ(u − q) − 2ρ(q)ρ(u)], (A.55)

where the last form is more convenient.

Proof. To prove the theorem, we use the delta method4 for the limiting
distribution of a function of the form

ggg(x0, x1, . . . , xK) = (x1/x0, . . . , xK/x0)′,

4The delta method states that if a k-dimensional vector sequence xxxn ∼ AN(µµµ, a2
nΣ),

with an → 0, and ggg(xxx) is an r × 1 continuously differentiable vector function of xxx, then
ggg(xxxn) ∼ AN(ggg(µµµ), a2

nDΣD′) where D is the r × k matrix with elements dij = ∂gi(xxx)
∂xj

∣∣
µµµ

.
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where xh = γ̂(h), for h = 0, 1, . . . , K. Hence, using the delta method and
Theorem A.6,

ggg (γ̂(0), γ̂(1), . . . , γ̂(K)) = (ρ̂(1), . . . , ρ̂(K))′

is asymptotically normal with mean vector (ρ(1), . . . , ρ(K))′ and covariance
matrix

n−1W = n−1DV D′,

where V is defined by (A.54) and D is the (K + 1) × K matrix of partial
derivatives

D =
1
x2

0

⎛⎜⎜⎝
−x1 x0 0 . . . 0
−x2 0 x0 . . . 0

...
...

...
. . .

...
−xK 0 0 . . . x0,

⎞⎟⎟⎠
Substituting γ(h) for xh, we note that D can be written as the patterned
matrix

D =
1

γ(0)
( −ρρρ IK ) ,

where ρρρ = (ρ(1), ρ(2), . . . , ρ(K))′ is the K × 1 matrix of autocorrelations and
IK is the K × K identity matrix. Then, it follows from writing the matrix V
in the partitioned form

V =
(

v00 vvv′
1

vvv1 V22

)
that

W = γ−2(0)
[
v00ρρρρρρ

′ − ρρρvvv′
1 − vvv1ρρρ

′ + V22
]
,

where vvv1 = (v10, v20, . . . , vK0)′ and V22 = {vpq; p, q = 1, . . . , K}. Hence,

wpq = γ−2(0)
[
vpq − ρ(p)v0q − ρ(q)vp0 + ρ(p)ρ(q)v00

]
=

∞∑
u=−∞

[
ρ(u)ρ(u − p + q) + ρ(u − p)ρ(u + q) + 2ρ(p)ρ(q)ρ2(u)

− 2ρ(p)ρ(u)ρ(u + q) − 2ρ(q)ρ(u)ρ(u − p)
]
.

Interchanging the summations, we get the wpq specified in the statement of
the theorem, finishing the proof.

Specializing the theorem to the case of interest in this chapter, we note
that if {xt} is iid with finite fourth moment, then wpq = 1 for p = q and is
zero otherwise. In this case, for h = 1, . . . , K, the ρ̂(h) are asymptotically
independent and jointly normal with

ρ̂(h) ∼ AN(0, n−1). (A.56)

This justifies the use of (1.38) and the discussion below it as a method for
testing whether a series is white noise.
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For the cross-correlation, it has been noted that the same kind of approxi-
mation holds and we quote the following theorem for the bivariate case, which
can be proved using similar arguments (see Brockwell and Davis, 1991, p. 410).

Theorem A.8 If

xt =
∞∑

j=−∞
αjwt−j,1

and

yt =
∞∑

j=−∞
βjwt−j,2

are two linear processes of the form with absolutely summable coefficients and
the two white noise sequences are iid and independent of each other with vari-
ances σ2

1 and σ2
2, then for h ≥ 0,

ρ̂xy(h) ∼ AN

(
ρxy(h), n−1

∑
j

ρx(j)ρy(j)
)

(A.57)

and the joint distribution of (ρ̂xy(h), ρ̂xy(k))′ is asymptotically normal with
mean vector zero and

cov (ρ̂xy(h), ρ̂xy(k)) = n−1
∑

j

ρx(j)ρy(j + k − h). (A.58)

Again, specializing to the case of interest in this chapter, as long as at least
one of the two series is white (iid) noise, we obtain

ρ̂xy(h) ∼ AN
(
0, n−1), (A.59)

which justifies Property P1.2.
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Time Domain Theory

B.1 Hilbert Spaces and the Projection
Theorem

Most of the material on mean square estimation and regression can be em-
bedded in a more general setting involving an inner product space that is
also complete (that is, satisfies the Cauchy condition). Two examples of inner
products are E(xy∗), where the elements are random variables, and

∑
xiy

∗
i ,

where the elements are sequences. These examples include the possibility of
complex elements, in which case, ∗ denotes the conjugation. We denote an
inner product, in general, by the notation 〈x, y〉. Now, define an inner product
space by its properties, namely,

(i) 〈x, y〉 = 〈y, x〉∗

(ii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
(iii) 〈αx, y〉 = α〈x, y〉
(iv) 〈x, x〉 = ‖x‖2 ≥ 0

(v) 〈x, x〉 = 0 iff x = 0.

We introduced the notation ‖ ·‖ for the norm or distance in property (iv). The
norm satisfies the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖ (B.1)

and the Cauchy–Schwarz inequality

|〈x, y〉|2 ≤ ‖x‖2‖y‖2, (B.2)

which we have seen before for random variables in (A.36). Now, a Hilbert space,
H, is defined as an inner product space with the Cauchy property. In other
words, H is a complete inner product space. This means that every Cauchy
sequence converges in norm; that is, xn → x ∈ H if an only if ‖xn − xm‖ → 0

522
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as m, n → ∞. This is just the L2 completeness Theorem A.1 for random
variables.

For a broad overview of Hilbert space techniques that are useful in statisti-
cal inference and in probability, see Small and McLeish (1994). Also, Brockwell
and Davis (1991, Chapter 2) is a nice summary of Hilbert space techniques that
are useful in time series analysis. In our discussions, we mainly use the pro-
jection theorem (Theorem B.1) and the associated orthogonality principle as
a means for solving various kinds of linear estimation problems.

Theorem B.1 Let M be a closed subspace of the Hilbert space H and let y be
an element in H. Then, y can be uniquely represented as

y = ŷ + z, (B.3)

where ŷ belongs to M and z is orthogonal to M; that is, 〈z, w〉 = 0 for all w
in M. Furthermore, the point ŷ is closest to y in the sense that, for any w in
M, ‖y − w‖ ≥ ‖y − ŷ‖, where equality holds if and only if w = ŷ.

We note that (B.3) and the statement following it yield the orthogonality
property

〈y − ŷ, w〉 = 0 (B.4)

for any w belonging to M, which can sometimes be used easily to find an
expression for the projection. The norm of the error can be written as

‖y − ŷ‖2 = 〈y − ŷ, y − ŷ〉
= 〈y − ŷ, y〉 − 〈y − ŷ, ŷ〉
= 〈y − ŷ, y〉 (B.5)

because of orthogonality.
Using the notation of Theorem B.1, we call the mapping PMy = ŷ, for

y ∈ H, the projection mapping of H onto M. In addition, the closed span of a
finite set {x1, . . . , xn} of elements in a Hilbert space, H, is defined to be the set
of all linear combinations w = a1x1 + · · · + anxn, where a1, . . . , an are scalars.
This subspace of H is denoted by M = sp{x1, . . . , xn}. By the projection
theorem, the projection of y ∈ H onto M = sp{x1, . . . , xn} is unique and
given by

PMy = a1x1 + · · · + anxn,

where {a1, . . . , an} are found using the orthogonality principle

〈y − PMy, xj〉 = 0 j = 1, . . . , n.

Evidently, {a1, . . . , an} can be obtained by solving
n∑

i=1

ai〈xi, xj〉 = 〈y, xj〉 j = 1, . . . , n. (B.6)

When the elements of H are vectors, this problem is the linear regression
problem.
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Example B.1 Linear Regression Analysis

For the regression model introduced in §2.2, we want to find the regression
coefficients βi that minimize the residual sum of squares. Consider the
vectors yyy = (y1, . . . , yn)′ and zzzi = (z1i, . . . , zni)′, for i = 1, . . . , q and the
inner product

〈zzzi, yyy〉 =
n∑

t=1

ztiyt = zzz′
i yyy.

We solve the problem of finding a projection of the observed yyy on the
linear space spanned by β1zzz1 + · · ·+βqzzzq, that is, linear combinations of
the zzzi. The orthogonality principle gives

〈yyy −
q∑

i=1

βizzzi, zzzj〉 = 0

for j = 1, . . . , q. Writing the orthogonality condition, as in (B.6), in
vector form gives

yyy′zzzj =
q∑

i=1

βizzz
′
izzzj j = 1, . . . , q, (B.7)

which can be written in the usual matrix form by letting Z = (zzz1, . . . , zzzq),
which is assumed to be full rank. That is, (B.7) can be written as

yyy′Z = βββ′(Z ′Z), (B.8)

where βββ = (β1, . . . , βq)′. Transposing both sides of (B.8) provides the
solution for the coefficients,

β̂̂β̂β = (Z ′Z)−1Z ′yyy.

The mean square error in this case would be

‖yyy −
q∑

i=1

β̂izzzi‖2 = 〈yyy −
q∑

i=1

β̂izzzi , yyy〉

= 〈yyy, yyy〉 −
q∑

i=1

β̂i〈zzzi , yyy〉

= yyy′yyy − β̂ββ
′
Z ′yyy,

which is in agreement with §2.2.

The extra generality in the above approach hardly seems necessary in the
finite dimensional case, where differentiation works perfectly well. It is conve-
nient, however, in many cases to regard the elements of H as infinite dimen-
sional, so that the orthogonality principle becomes of use. For example, the
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projection of the process {xt; t = 0±1,±2, . . .} on the linear manifold spanned
by all filtered convolutions of the form

x̂t =
∞∑

k=−∞
akxt−k

would be in this form.
There are some useful results, that we state without proof, pertaining to

projection mappings.

Theorem B.2 Under the established notation and conditions:

(i) PM(ax + by) = aPMx + bPMy, for x, y ∈ H, where a and b are scalars.

(ii) If ||yn − y|| → 0, then PMyn → PMy, as n → ∞.

(iii) w ∈ M if and only if PMw = w. Consequently, a projection mapping
can be characterized by the property that P 2

M = PM, in the sense that,
for any y ∈ H, PM(PMy) = PMy.

(iv) Let M1 and M2 be closed subspaces of H. Then, M1 ⊆ M2 if and only
if PM1(PM2y) = PM1y for all y ∈ H.

(v) Let M be a closed subspace of H and let M⊥ denote the orthogonal
complement of M. Then, M⊥ is also a closed subspace of H, and for
any y ∈ H, y = PMy + PM⊥y.

Part (iii) of Theorem B.2 leads to the well-known result, often used in
linear models, that a square matrix M is a projection matrix if and only if it is
symmetric and idempotent (that is, M2 = M). For example, using notation of
Example B.1 for linear regression, the projection of yyy onto sp{zzz1, . . . , zzzq}, the
space generated by the columns of Z, is PZ(yyy) = Zβ̂̂β̂β = Z(Z ′Z)−1Z ′yyy. The
matrix M = Z(Z ′Z)−1Z ′ is an n × n, symmetric and idempotent matrix of
rank q (which is the dimension of the space that M projects yyy onto). Parts
(iv) and (v) of Theorem B.2 are useful for establishing recursive solutions for
estimation and prediction.

By imposing extra structure, conditional expectation can be defined as a
projection mapping for random variables in L2 with the equivalence relation
that, for x, y ∈ L2, x = y if Pr(x = y) = 1. In particular, for y ∈ L2, if M is a
closed subspace of L2 containing 1, the conditional expectation of y given M
is defined to be the projection of y onto M, namely, EMy = PMy. This means
that conditional expectation, EM, must satisfy the orthogonality principle of
the Projection Theorem and that the results of Theorem B.2 remain valid
(the most widely used tool in this case is item (iv) of the theorem). If we let
M(x) denote the closed subspace of all random variables in L2 that can be
written as a (measurable) function of x, then we may define, for x, y ∈ L2,
the conditional expectation of y given x as E(y|x) = EM(x)y. This idea may
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be generalized in an obvious way to define the conditional expectation of y
given xxx = (x1, . . . , xn); that is E(y|xxx) = EM(xxx)y. Of particular interest to
us is the following result which states that, in the Gaussian case, conditional
expectation and linear prediction are equivalent.

Theorem B.3 Under the established notation and conditions, if (y, x1, . . . , xn)
is multivariate normal, then

E(y
∣∣ x1, . . . , xn) = Psp{1,x1,...,xn}y.

Proof. First, by the projection theorem, the conditional expectation of y given
xxx = {x1, . . . , xn} is the unique element EM(xxx)y that satisfies the orthogonality
principle,

E
{(

y − EM(xxx)y
)
w
}

= 0 for all w ∈ M(xxx).

We will show that ŷ = Psp{1,x1,...,xn}y is that element. In fact, by the projection
theorem, ŷ satisfies

〈y − ŷ, xi〉 = 0 for i = 0, 1, . . . , n,

where we have set x0 = 1. But 〈y − ŷ, xi〉 = cov(y − ŷ, xi) = 0, implying that
y − ŷ and (x1, . . . , xn) are independent because the vector (y − ŷ, x1, . . . , xn)′

is multivariate normal. Thus, if w ∈ M(xxx), then w and y − ŷ are independent
and, hence, 〈y − ŷ, w〉 = E{(y − ŷ)w} = E(y − ŷ)E(w) = 0, recalling that
0 = 〈y − ŷ, 1〉 = E(y − ŷ).

In the Gaussian case, conditional expectation has an explicit form. Let yyy =
(y1, . . . , ym)′, xxx = (x1, . . . , xn)′, and suppose the (m + n) × 1 vector (yyy′, xxx′)′ is
multivariate normal. Then

E(yyy
∣∣ xxx) = µµµy + ΣyxΣ−1

xx (xxx − µµµx) (B.9)

var(yyy
∣∣ xxx) = Σyy − ΣyxΣ−1

xx Σxy, (B.10)

where µµµy = E(yyy) is m × 1, Σyy = var(yyy) is m × m, µµµx = E(xxx) is an n × 1
vector, Σyx = Σ′

xy = cov(yyy,xxx) is m × n, and Σxx = var(xxx) is an n × n matrix,
assumed to be nonsingular.

B.2 Causal Conditions for ARMA Models

In this section, we prove Property P3.1 of §3.2 pertaining to the causality of
ARMA models. The proof of Property P3.2, which pertains to invertibility of
ARMA models, is similar.

Proof of Property P3.1. Suppose first that the roots of φ(z), say, z1, . . . , zp,
lie outside the unit circle. We write the roots in the following order, 1 < |z1| ≤
|z2| ≤ · · · ≤ |zp|, noting that z1, . . . , zp are not necessarily unique, and put
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|z1| = 1 + ε, for some ε > 0. Thus, φ(z) �= 0 as long as |z| < |z1| = 1 + ε and,
hence, φ−1(z) exists and has a power series expansion,

1
φ(z)

=
∞∑

j=0

ajz
j , |z| < 1 + ε.

Now, choose a value δ such that 0 < δ < ε, and set z = 1 + δ, which is inside
the radius of convergence. It then follows that

φ−1(1 + δ) =
∞∑

j=0

aj(1 + δ)j < ∞. (B.11)

Thus, we can bound each of the terms in the sum in (B.11) by constant, say,
|aj(1 + δ)j | < c, for c > 0. In turn, |aj | < c(1 + δ)−j , from which it follows
that ∞∑

j=0

|aj | < ∞. (B.12)

Hence, φ−1(B) exists and we may apply it to both sides of the ARMA model,
φ(B)xt = θ(B)wt, to obtain

xt = φ−1(B)φ(B)xt = φ−1(B)θ(B)wt.

Thus, putting ψ(B) = φ−1(B)θ(B), we have

xt = ψ(B)wt =
∞∑

j=0

ψjwt−j ,

where the ψ-weights, which are absolutely summable, can be evaluated by
ψ(z) = φ−1(z)θ(z), for |z| ≤ 1.

Now, suppose xt is a causal process; that is, it has the representation

xt =
∞∑

j=0

ψjwt−j ,

∞∑
j=0

|ψj | < ∞.

In this case, we write
xt = ψ(B)wt,

and premultiplying by φ(B) yields

φ(B)xt = φ(B)ψ(B)wt. (B.13)

In addition to (B.13), the model is ARMA, and can be written as

φ(B)xt = θ(B)wt. (B.14)
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From (B.13) and (B.14), we see that

φ(B)ψ(B)wt = θ(B)wt. (B.15)

Now, let

a(z) = φ(z)ψ(z) =
∞∑

j=0

ajz
j |z| ≤ 1

and, hence, we can write (B.15) as

∞∑
j=0

ajwt−j =
q∑

j=0

θjwt−j . (B.16)

Next, multiply both sides of (B.16) by wt−h, for h = 0, 1, 2, . . . , and take
expectation. In doing this, we obtain

ah = θh, h = 0, 1, . . . , q

ah = 0, h > q. (B.17)

From (B.17), we conclude that

φ(z)ψ(z) = a(z) = θ(z), |z| ≤ 1. (B.18)

If there is a complex number in the unit circle, say z0, for which φ(z0) = 0,
then by (B.18), θ(z0) = 0. But, if there is such a z0, then φ(z) and θ(z) have
a common factor which is not allowed. Thus, we may write ψ(z) = θ(z)/φ(z).
In addition, by hypothesis, we have that |ψ(z)| < ∞ for |z| ≤ 1, and hence

|ψ(z)| =
∣∣∣∣ θ(z)
φ(z)

∣∣∣∣ < ∞, for |z| ≤ 1. (B.19)

Finally, (B.19) implies φ(z) �= 0 for |z| ≤ 1; that is, the roots of φ(z) lie outside
the unit circle.

B.3 Large Sample Distribution of the AR(p)
Conditional Least Squares Estimators

In §3.6 we discussed the conditional least squares procedure for estimating the
parameters φ1, φ2, . . . , φp and σ2

w in the AR(p) model

xt =
p∑

k=1

φkxt−k + wt,

where we assume µ = 0, for convenience. Write the model as

xt = φφφ′xxxt−1 + wt, (B.20)
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where xxxt−1 = (xt−1, xt−2, . . . , xt−p)′ is a p × 1 vector of lagged values, and
φφφ = (φ1, φ2, . . . , φp)′ is the p × 1 vector of regression coefficients. Assuming
observations are available at x1, . . . , xn, the conditional least squares procedure
is to minimize

Sc(φφφ) =
n∑

t=p+1

(
xt − φφφ′xxxt−1

)2
with respect to φφφ. The solution is

φ̂φφ =

(
n∑

t=p+1

xxxt−1xxx
′
t−1

)−1 n∑
t=p+1

xxxt−1xt (B.21)

for the regression vector φφφ; the conditional least squares estimate of σ2
w is

σ̂2
w =

1
n − p

n∑
t=p+1

(
xt − φ̂φφ

′
xxxt−1

)2
. (B.22)

As pointed out following (3.104), Yule–Walker estimators and least squares
estimators are approximately the same in that the estimators differ only by
inclusion or exclusion of terms involving the endpoints of the data. Hence, it is
easy to show the asymptotic equivalence of the two estimators; this is why, for
AR(p) models, (3.93) and (3.118), are equivalent. Details on the asymptotic
equivalence can be found in Brockwell and Davis (1991, Chapter 8).

Here, we use the same approach as in Appendix A, replacing the lower
limits of the sums in (B.21) and (B.22) by one and noting the asymptotic
equivalence of the estimators

φ̃φφ =

(
n∑

t=1

xxxt−1xxx
′
t−1

)−1 n∑
t=1

xxxt−1xt (B.23)

and

σ̃2
w =

1
n

n∑
t=1

(
xt − φ̃φφ

′
xxxt−1

)2
(B.24)

to those two estimators. In (B.23) and (B.24), we are acting as if we are able
to observe x1−p, . . . , x0 in addition to x1, . . . , xn. The asymptotic equivalence
is then seen by arguing that for n sufficiently large, it makes no difference
whether or not we observe x1−p, . . . , x0. In the case of (B.23) and (B.24), we
obtain the following theorem.

Theorem B.4 Let xt be a causal AR(p) series with white (iid) noise wt sat-
isfying E(w4

t ) = ησ4
w. Then,

φ̃φφ ∼ AN
(

φφφ, n−1σ2
wΓ−1

p

)
, (B.25)
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where Γp = {γ(i − j)}p
i,j=1 is the p × p autocovariance matrix of the vector

xxxt−1. We also have, as n → ∞,

n−1
n∑

t=1

xxxt−1xxx
′
t−1

p→ Γp (B.26)

and
σ̃2

w
p→ σ2

w. (B.27)

Proof. First, (B.26) follows from the fact that E(xxxt−1xxx
′
t−1) = Γp, recalling

that from Theorem 1.6, second-order sample moments converge in probability
to their population moments for linear processes in which wt has a finite fourth
moment. To show (B.25), we can write

φ̃φφ =

(
n∑

t=1

xxxt−1xxx
′
t−1

)−1 n∑
t=1

xxxt−1(xxx′
t−1φφφ + wt)

= φφφ +

(
n∑

t=1

xxxt−1xxx
′
t−1

)−1 n∑
t=1

xxxt−1wt,

so that

n1/2(φ̃φφ − φφφ) =

(
n−1

n∑
t=1

xxxt−1xxx
′
t−1

)−1

n−1/2
n∑

t=1

xxxt−1wt

=

(
n−1

n∑
t=1

xxxt−1xxx
′
t−1

)−1

n−1/2
n∑

t=1

uuut,

where uuut = xxxt−1wt. We use the fact that wt and xxxt−1 are independent to write
Euuut = E(xxxt−1)E(wt) = 000, because the errors have zero means. Also,

Euuutuuu
′
t = Exxxt−1wtwtxxx

′
t−1

= Exxxt−1xxx
′
t−1Ew2

t

= σ2
wΓp.

In addition, we have, for h > 0,

Euuut+huuu′
t = Exxxt+h−1wt+hwtxxx

′
t−1

= Exxxt+h−1wtxxx
′
t−1Ewt+h

= 0.

A similar computation works for h < 0.
Next, consider the mean square convergent approximation

xm
t =

m∑
j=0

ψjwt−j
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for xt, and define the (m+p)-dependent process uuum
t = wt(xm

t−1, x
m
t−2, . . . , x

m
t−p)

′.
Note that we need only look at a central limit theorem for the sum

ynm = n−1/2
n∑

t=1

λλλ′uuum
t ,

for arbitrary vectors λλλ = (λ1, . . . , λp)′, where ynm is used as an approximation
to

Sn = n−1/2
n∑

t=1

λλλ′uuut.

First, apply the m-dependent central limit theorem to ynm as n → ∞ for fixed
m to establish (i) of Theorem A.4. This result shows ynm

d→ ym, where ym is
asymptotically normal with covariance λλλ′Γ(m)

p λλλ, where Γ(m)
p is the covariance

matrix of uuum
t . Then, we have Γ(m)

p → Γp, so that ym converges in distribution
to a normal random variable with mean zero and variance λλλ′Γpλλλ and we have
verified part (ii) of Theorem A.4. We verify part (iii) of Theorem A.4 by noting
that

E[(Sn − ynm)2] = n−1
n∑

t=1

λλλ′E[(uuut − uuum
t )(uuut − uuum

t )′]λλλ

clearly converges to zero as n, m → ∞ because

xt − xm
t =

∞∑
j=m+1

ψjwt−j

form the components of uuut − uuum
t .

Now, the form for
√

n(φ̃φφ − φφφ) contains the premultiplying matrix(
n−1

n∑
t=1

xxxt−1xxx
′
t−1

)−1
p→ Γ−1

p ,

because (A.22) can be applied to the function that defines the inverse of the
matrix. Then, applying (A.31), shows that

n1/2
(
φ̃φφ − φφφ

)
d→ N

(
0, σ2

wΓ−1
p ΓpΓ−1

p

)
,

so we may regard it as being multivariate normal with mean zero and covari-
ance matrix σ2

wΓ−1
p .

To investigate σ̃2
w, note

σ̃2
w = n−1

n∑
t=1

(
xt − φ̃φφ

′
xxxt−1

)2

= n−1
n∑

t=1

x2
t − n−1

n∑
t=1

xxx′
t−1xt

(
n−1

n∑
t=1

xxxt−1xxx
′
t−1

)−1

n−1
n∑

t=1

xxxt−1xt
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p→ γ(0) − γγγ′
pΓ

−1
p γγγp

= σ2
w,

and we have that the sample estimator converges in probability to σ2
w, which

is written in the form of (3.59).

The arguments above imply that, for sufficiently large n, we may consider
the estimator φ̂φφ in (B.21) as being approximately multivariate normal with
mean φφφ and variance–covariance matrix σ2

wΓ−1
p /n. Inferences about the para-

meter φφφ are obtained by replacing the σ2
w and Γp by their estimates given by

(B.22) and

Γ̂p = n−1
n∑

t=p+1

xxxt−1xxx
′
t−1,

respectively. In the case of a nonzero mean, the data xt are replaced by xt − x̄
in the estimates and the results of Theorem B.4 remain valid.

B.4 The Wold Decomposition

The ARMA approach to modeling time series is generally implied by the as-
sumption that the dependence between adjacent values in time is best ex-
plained in terms of a regression of the current values on the past values. This
assumption is partially justified, in theory, by the Wold decomposition.

In this section we assume that {xt; t = 0,±1,±2, . . .} is a stationary,
mean-zero process. Using the notation of §B.1, we define

Mn = sp{xt, −∞ < t ≤ n}, with M−∞ =
∞⋂

n=−∞
Mn,

and
σ2 = E (xn+1 − PMn

xn+1)
2
.

Next, we say that {vt; t = 0,±1,±2, . . .} is a deterministic process if and
only if σ2 = 0. That is, a deterministic process is one in which its future is
perfectly predictable from its past; a simple example is vt = cos(.2πt). We are
now ready to present the decomposition.

Theorem B.5 (The Wold Decomposition) Under the conditions and no-
tation of this section, if σ2 > 0, then xt can be expressed as

xt =
∞∑

j=0

ψjwt−j + vt

where
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• ∑∞
j=0 ψ2

j < ∞ (ψ0 = 1)

• {wt} is white noise with variance σ2

• wt ∈ Mt

• E(wtvt) = 0 for all s, t = 0,±1,±2, . . . .

• vt ∈ M−∞

• {vt} is deterministic.

The proof of the decomposition follows from the theory of §B.1 by defining
the unique sequences:

(i) wt = xt − PMt−1xt,

(ii) ψj = σ−2 < xt, wt−j >= σ−2E(xtwt−j), and

(iii) vt = xt −∑∞
j=0 ψjwt−j .

Although every stationary process can be represented by the Wold decom-
position, it does not mean that the decomposition is the best way to describe
the process. In addition, there may be some dependence structure among the
{wt}; we are only guaranteed that the sequence is an uncorrelated sequence.
The theorem, in its generality, falls short of our needs because we would prefer
the noise process, {wt}, to be white independent noise. But, the decomposi-
tion does give us the confidence that we will not be completely off the mark
by fitting ARMA models to time series data.



Appendix C
Spectral Domain Theory

C.1 Spectral Representation Theorem

In this section, we present a spectral representation for the process xt itself,
which allows us to think of a stationary process as a random sum of sines
and cosines as described in (4.4). In addition, we present results that justify
representing the autocovariance function γx(h) of the weakly stationary process
xt in terms of a non-negative spectral density function. The spectral density
function essentially measures the variance or power in a particular kind of
periodic oscillation in the function. We denote this spectral density of variance
function by f(ω), where the variance is measured as a function of the frequency
of oscillation ω, measured in cycles per unit time.

First, we consider developing a representation for the autocovariance func-
tion of a stationary, possibly complex, series xt with zero mean and autocovari-
ance function γx(h) = E(xt+hx∗

t ). We prove the representation for arbitrary
non-negative definite functions γ(h) and then simply note the autocovariance
function is Hermitian non-negative definite, because, for any set of complex
constants, at, t = 0 ± 1,±2, . . ., we may write, for any finite subset,

E

∣∣∣∣∣
n∑

s=1

a∗
sxs

∣∣∣∣∣
2

=
n∑

s=1

n∑
t=1

a∗
sγ(s − t)at ≥ 0.

The representation is stated in terms of non-negative definite functions and
a spectral distribution function F (ω) that is monotone nondecreasing, and
continuous from the right, taking the values F (−1/2) = 0 and F (1/2) = σ2 =
γx(0) at ω = −1/2 and 1/2, respectively.

Theorem C.1 A function γ(h), for h = 0 ± 1,±2, . . . is Hermitian non-
negative definite if and only if it can be expressed as

γ(h) =
∫ 1/2

−1/2
exp{2πiωh}dF (ω) (C.1)

534
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where F (·) is monotone non-decreasing. The function F (·) is right continuous,
bounded in [−1/2, 1/2], and uniquely determined by the conditions F (−1/2) =
0, F (1/2) = γ(0).

Proof. To prove the result, note first if γ(h) has the representation above,

n∑
s=1

n∑
t=1

a∗
sγ(s − t)at =

∫ 1/2

−1/2
a∗

sγ(s − t)ate
2πiω(s−t)dF (ω)

=
∫ 1/2

−1/2

∣∣∣∣∣
n∑

s=1

ase
−2πiωs

∣∣∣∣∣
2

dF (ω)

≥ 0

and γ(h) is non-negative definite. Conversely, suppose γ(h) is a non-negative
definite function, and define the non-negative function

fn(ω) = n−1
n∑

s=1

n∑
t=1

e−2πiωsγ(s − t)e2πiωt

= n−1
(n−1)∑

u=−(n−1)

(n − |u|)e−2πiωuγ(u) (C.2)

≥ 0.

Now, let Fn(ω) be the distribution function corresponding to fn(ω)I(−1/2,1/2],
where I(·) denotes the indicator function of the interval in the subscript. Note
that Fn(ω) = 0, ω ≤ −1/2 and Fn(ω) = Fn(1/2) for ω ≥ 1/2. Then,∫ 1/2

−1/2
e2πiωudFn(ω) =

∫ 1/2

−1/2
e2πiωufn(ω) dω

=
{

(1 − |u|/n)γ(u), |u| < n
0, elsewhere.

We also have

Fn(1/2) =
∫ 1/2

−1/2
fn(ω) dω

=
∫ 1/2

−1/2

∑
|u|<n

(1 − |u|/n)γ(u)e−2πiωudω

= γ(0).

Now, by Helly’s first convergence theorem (Bhat, 1985, p. 157), there exists a
subsequence Fnk

converging to F , and by the Helly-Bray Lemma (see Bhat,
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p. 157), this implies∫ 1/2

−1/2
e2πiωudFnk

(ω) →
∫ 1/2

−1/2
e2πiωudF (ω)

and, from the right-hand side of the earlier equation,

(1 − |u|/nk)γ(u) → γ(u)

as nk → ∞, and the required result follows.

Next, present the version of the Spectral Representation Theorem in terms
of a mean-zero, stationary process, xt. We refer the reader to Hannan (1970,
§2.3) for details. This version allows us to think of a stationary process as
being generated (approximately) by a random sum of sines and cosines such
as described in (4.4).

Theorem C.2 If xt is a mean-zero stationary process, with spectral distribu-
tion F (ω) as given in Theorem C.1, then there exists a complex-valued stochas-
tic process z(ω), on the interval ω ∈ [−1/2, 1/2], having stationary uncorrelated
increments, such that xt can be written as the stochastic integral

xt =
∫ 1/2

−1/2
exp(−2πitω)dz(ω)

where, for −1/2 ≤ ω1 ≤ ω2 ≤ 1/2,

var {z(ω2) − z(ω1)} = F (ω2) − F (ω1).

An uncorrelated increment process such as z(ω) is a mean-zero, finite vari-
ance, continuous-time stochastic process for which events occurring in non-
overlapping intervals are uncorrelated. The integral in this representation is a
stochastic integral. To understand its meaning, let ω0, ω1, . . . , ωn be a partition
of the interval [−1/2, 1/2]. Define

In =
n∑

j=1

exp(−2πitωj)[z(ωj) − z(ωj−1)].

Then, assuming it exists, I =
∫ 1/2

−1/2 exp(−2πitωj)dz(ω) is defined to be the
mean square limit of In as n → ∞. Theorem C.2 allows us to think of a
stationary process, approximately, as the random superposition of sines and
cosines.

In general, the spectral distribution function can be a mixture of discrete
and continuous distributions. The special case of greatest interest is the ab-
solutely continuous case, namely, when dF (ω) = f(ω)dω, and the resulting
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function is the spectral density considered in §4.3. What made the proof of
Theorem C.1 difficult was that, after we defined

fn(ω) =
(n−1)∑

h=−(n−1)

(
1 − |h|

n

)
γ(h)e−2πiωh

in (C.2), we could not simply allow n → ∞ because γ(h) may not be absolutely
summable. If, however, γ(h) is absolutely summable we may define f(ω) =
limn→∞ fn(ω), and we have the following result.

Theorem C.3 If γ(h) is the autocovariance function of a stationary process,
xt, with

∞∑
h=−∞

|γ(h)| < ∞, (C.3)

then the spectral density of xt is given by

f(ω) =
∞∑

h=−∞
γ(h)e−2πiωh. (C.4)

We may extend the representation to the vector case xxxt = (xt1, . . . , xtp)′

by considering linear combinations of the form

yt =
p∑

j=1

a∗
jxtj ,

which will be stationary with autocovariance functions of the form

γy(h) =
p∑

j=1

p∑
k=1

a∗
jγjk(h)ak,

where γjk(h) is the usual cross-covariance function between xtj and xtk. To
develop the spectral representation of γjk(h) from the representations of the
univariate series, consider the linear combinations

yt1 = xtj + xtk

and
yt2 = xtj + ixtk,

which are both stationary series with respective representations

γy1(h) = γj(h) + γjk(h) + γkj(h) + γk(h)

=
∫ 1/2

−1/2
e2πiωhdG1(ω)
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and

γy2(h) = γj(h) + iγkj(h) − iγjk(h) + γk(h)

=
∫ 1/2

−1/2
e2πiωhdG2(ω).

Introducing the spectral representations for γj(h) and γk(h) yields

γjk(h) =
∫ 1/2

−1/2
e2πiωhdFjk(ω),

with
Fjk(ω) =

1
2
[G1(ω) + iG2(ω) − (1 + i)(Fj(ω) + Fk(ω)].

Now, under the summability condition
∞∑

h=−∞
|γjk(h)| < ∞,

we have the representation

γjk(h) =
∫ 1/2

−1/2
e2πiωhfjk(ω)dω,

where the cross-spectral density function has the inverse Fourier representation

fjk(ω) =
∞∑

h=−∞
γjk(h)e−2πiωh.

The cross-covariance function satisfies γjk(h) = γkj(−h), which implies fjk(ω) =
fkj(−ω) using the above representation.

Then, defining the autocovariance function of the general vector process xxxt

as the p × p matrix

Γ(h) = E[(xxxt+h − µµµx)(xxxt − µµµx)′],

and the p × p spectral matrix as f(ω) = {fjk(ω), j, k = 1, . . . , p}, we have the
representation in matrix form, written as

Γ(h) =
∫ 1/2

−1/2
e2πiωhf(ω) dω, (C.5)

and the inverse result

f(ω) =
∞∑

h=−∞
Γ(h)e−2πiωh. (C.6)

which appears as Property P4.3 in §4.6. Theorem C.2 can also be extended to
the multivariate case.
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C.2 Large Sample Distribution of the DFT and
Smoothed Periodogram

We have previously introduced the DFT, for the stationary zero-mean process
xt, observed at t = 1, . . . , n as

d(ω) = n−1/2
n∑

t=1

xt e−2πiωt, (C.7)

as the result of matching sines and cosines of frequency ω against the series
xt. We will suppose now that xt has an absolutely continuous spectrum f(ω)
corresponding to the absolutely summable autocovariance function γ(h). Our
purpose in this section is to examine the statistical properties of the complex
random variables d(ωk), for ωk = k/n, k = 0, 1, . . . , n − 1 in providing a basis
for the estimation of f(ω). To develop the statistical properties, we examine
the behavior of

Sn(ω, ω) = E
{

|d(ω)|2
}

= n−1E

[ n∑
s=1

xs e−2πiωs
n∑

t=1

xte
2πiωt

]

= n−1
n∑

s=1

n∑
t=1

e−2πiωse2πiωtγ(s − t)

=
(n−1)∑

u=−(n−1)

(1 − |u|/n)γ(u)e−2πiωu, (C.8)

where we have let u = s − t. Using dominated convergence,

Sn(ω, ω) →
∞∑

u=−∞
γ(u)e−2πiωu = f(ω),

as n → ∞, making the large sample variance of the Fourier transform equal to
the spectrum evaluated at ω. We have already seen this result in Theorem C.3.
For exact bounds it is also convenient to add an absolute summability assump-
tion for the autocovariance function, namely,

θ =
∞∑

h=−∞
|h||γ(h)| < ∞. (C.9)
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Example C.1 Condition (C.9) Verified for an AR(1)

We may write the condition for an AR(1) series. xt = φxt−1 + wt, as

θ =
σ2

w

1 − φ2

∞∑
h=−∞

|h|φ|h|

being finite. Note the condition is equivalent to summability of

∞∑
h=1

hφh = φ

∞∑
h=1

hφh−1

= φ
∂

∂φ

∞∑
h=1

φh

=
φ

(1 − φ)2
,

and hence,

θ =
2σ2

wφ

(1 − φ)3(1 + φ)
< ∞.

To elaborate further, we derive two approximation lemmas.

Lemma C.1 For Sn(ω, ω) as defined in (C.8) and θ in (C.9) finite, we have

|Sn(ω, ω) − f(ω)| ≤ θ

n
(C.10)

or
Sn(ω, ω) = f(ω) + O(n−1). (C.11)

Proof. To prove the lemma, write

n|Sn(ω, ω) − fx(ω)| =

∣∣∣∣∣∣
∑

|u|<n

(n − |u|)γ(u)e−2πiωu − n

∞∑
u=−∞

γ(u)e−2πiωu

∣∣∣∣∣∣
=

∣∣∣∣∣∣−n
∑

|u|≥n

γ(u)e−2πiωu −
∑

|u|<n

|u|γ(u)e−2πiωu

∣∣∣∣∣∣
≤

∑
|u|≥n

|u||γ(u)| +
∑

|u|<n

|u||γ(u)|

= θ,

which establishes the lemma.
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Lemma C.2 For ωk = k/n, ω� = 
/n, ωk − ω� �= 0,±1,±2,±3, . . ., and θ in
(C.9), we have

|Sn(ωk, ω�)| ≤ θ

n
= O(n−1), (C.12)

where
Sn(ωk, ω�) = E{d(ωk)d(ω�)}. (C.13)

Proof. Write

n|Sn(ωk, ω�)| =
−1∑

u=−(n−1)

γ(u)
n∑

v=−(u−1)

e−2πi(ωk−ω�)ve−2πiωku

+
n−1∑
u=0

γ(u)
n−u∑
v=1

e−2πi(ωk−ω�)ve−2πiωku.

Now, for the first term, with u < 0,

n∑
v=−(u−1)

e−2πi(ωk−ω�)v =
( n∑

v=1

−
−u∑
v=1

)
e−2πi(ωk−ω�)v

= 0 −
−u∑
v=1

e−2πi(ωk−ω�)v.

For the second term with u ≥ 0,

n−u∑
v=1

e−2πi(ωk−ω�)v =
( n∑

v=1

−
n∑

v=n−u+1

)
e−2πi(ωk−ω�)v

= 0 −
n∑

v=n−u+1

e−2πi(ωk−ω�)v.

Consequently,

n|Sn(ωk, ω�)| =

∣∣∣∣∣∣−
−1∑

u=−(n−1)

γ(u)
−u∑
v=1

e−2πi(ωk−ω�)ve−2πiωku

−
n−1∑
u=1

γ(u)
n∑

v=n−u+1

e−2πi(ωk−ω�)ve−2πiωku

∣∣∣∣∣
≤

0∑
u=−(n−1)

(−u)|γ(u)| +
n−1∑
u=1

u|γ(u)|

=
(n−1)∑

u=−(n−1)

|u| |γ(u)|.
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Hence, we have

Sn(ωk, ω�) ≤ θ

n
,

and the asserted relations of the lemma follow.

Because the DFTs are approximately uncorrelated, say, of order 1/n, when
the frequencies are of the form ωk = k/n, we shall compute at those frequencies.
The behavior of f(ω) at neighboring frequencies, however, will often be of
interest and we shall use Lemma C.3 below to handle such cases

Lemma C.3 For |ωk − ω| ≤ L/2n and θ in (C.9), we have

|f(ωk) − f(ω)| ≤ πθL

n
(C.14)

or
f(ωk) − f(ω) = O(L/n). (C.15)

Proof. To prove Lemma C.3, we write the difference

|f(ωk) − f(ω)| =

∣∣∣∣∣
∞∑

h=−∞
γ(h)

(
e−2πiωkh − e−2πiωh)

∣∣∣∣∣
≤

∞∑
h=−∞

|γ(h)||e−πi(ωk−ω)h − eπi(ωk−ω)h|

= 2
∞∑

h=−∞
|γ(h)|| sin[π(ωk − ω)h]|

≤ 2π|ωk − ω|
∞∑

h=−∞
|h||γ(h)|

≤ πθL

n

because | sin x| ≤ |x|.
The main use of the properties described by Lemmas C.1 and C.2 is in

identifying the covariance structure of the DFT, say,

d(ωk) = n−1/2
n∑

t=1

xt e−2πiωkt

= dc(ωk) − ids(ωk),

where

dc(ωk) = n−1/2
n∑

t=1

xt cos(2πωkt)

and

ds(ωk) = n−1/2
n∑

t=1

xt sin(2πωkt)
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are the cosine and sine transforms, respectively, of the observed series, de-
fined previously in (4.24) and (4.25). For example, assuming zero means for
convenience, we will have

E[dc(ωk)dc(ω�)] =
1
4
n−1

n∑
s=1

n∑
t=1

γ(s − t)
(
e2πiωks + e−2πiωks

)
×(e2πiω�t + e−2πiω�t

)
=

1
4
[
Sn(−ωk, ωl) + Sn(ωk, ω�) + Sn(ω�, ωk)

+Sn(ωk,−ω�)
]
.

Lemmas C.1 and C.2 imply, for k = 
,

E[dc(ωk)dc(ω�)] =
1
4
[
O(n−1) + f(ωk) + O(n−1)

+f(ωk) + O(n−1) + O(n−1)
]

=
1
2
f(ωk) + O(n−1). (C.16)

For k �= 
, all terms are O(n−1). Hence, we have

E[dc(ωk)dc(ω�)] =
{ 1

2f(ωk) + O(n−1), k = 

O(n−1), k �= 
.

(C.17)

A similar argument gives

E[ds(ωk)ds(ω�)] =
{ 1

2f(ωk) + O(n−1), k = 
,
O(n−1), k �= 


(C.18)

and we also have E[ds(ωk)dc(ω�)] = O(n−1) for all k, 
. We may summarize
the results of Lemmas C.1–C.3 as follows.

Theorem C.4 For a stationary mean zero process with autocovariance func-
tion satisfying (C.9) and frequencies ωk:n, such that |ωk:n − ω| < 1/n, are
close to some target frequency ω, the cosine and sine transforms (4.24) and
(4.25) are approximately uncorrelated with variances equal to (1/2)f(ω), and
the error in the approximation can be uniformly bounded by πθL/n.

Now, consider estimating the spectrum in a neighborhood of some target
frequency ω, using the periodogram estimator

I(ωk:n) = |d(ωk:n)|2 = d2
c(ωk:n) + d2

s(ωk:n),

where we take |ωk:n − ω| ≤ n−1 for each n. In case the series xt is Gaussian
with zero mean,(

dc(ωk:n)
ds(ωk:n)

)
d→ N

{(
0
0

)
,
1
2

(
f(ω) 0

0 f(ω)

)}
,
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and we have that
2 I(ωk:n)

f(ω)
d→ χ2

2,

where χ2
ν denotes a chi-squared random variable with ν degrees of freedom,

as usual. Unfortunately, the distribution does not become more concentrated
as n → ∞, because the variance of the periodogram estimator does not go to
zero.

We develop a fix for the deficiencies mentioned above by considering the
average of the periodogram over a set of frequencies in the neighborhood of ω.
For example, we can always find a set of L = 2m + 1 frequencies of the form
{ωj:n + k/n; k = 0,±1,±2, . . . , m}, for which

f(ωj:n + k/n) = f(ω) + O(Ln−1)

by Lemma C.3. As n increases, the values of the separate frequencies change.
Now, we can consider the smoothed periodogram estimator, f̂(ω), given in

(4.56); this case includes the averaged periodogram, f̄(ω). First, we note that
(C.9), θ =

∑∞
h=−∞ |h||γ(h)| < ∞, is a crucial condition in the estimation of

spectra. In investigating local averages of the periodogram, we will require a
condition on the rate of (C.9), namely

n∑
h=−n

|h||γ(h)| = O(n−1/2). (C.19)

One can show that a sufficient condition for (C.19) is that the time series is
the linear process given by,

xt =
∞∑

j=−∞
ψjwt−j ,

∞∑
j=0

√
j |ψj | < ∞ (C.20)

where wt ∼ iid(0, σ2
w) and wt has finite fourth moment,

E(w4
t ) = ησ4

w < ∞.

We leave it to the reader (Problem 4.40) to show (C.20) implies (C.19) under
the condition that wt ∼ wn(0, σ2

w).
We now state the following lemma.

Lemma C.4 Suppose xt is the linear process given by (C.20), and let I(ωj)
be the periodogram of the data {x1, . . . , xn}. Then

cov (I(ωj), I(ωk)) =

⎧⎨⎩ 2f2(ωj) + o(1) ωj = ωk = 0, 1/2
f2(ωj) + o(1) ωj = ωk �= 0, 1/2
O(n−1) ωj �= ωk.
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The proof of Lemma C.4 is straight forward but tedious, and details may
be found in Fuller (1976, Theorem 7.2.1) or in Brockwell and Davis (1991,
Theorem 10.3.2). For demonstration purposes, we present the proof of the
lemma for the pure white noise case; i.e., xt = wt, in which case f(ω) ≡ σ2

w.
By definition, the periodogram in this case is

I(ωj) = n−1
n∑

s=1

n∑
t=1

wswte
2πiωj(t−s),

where ωj = j/n, and hence

E{I(ωj)I(ωk)} = n−2
n∑

s=1

n∑
t=1

n∑
u=1

n∑
v=1

wswtwuwve2πiωj(t−s)e2πiωk(u−v).

Now when all the subscripts match, E(wswtwuwv) = ησ4
w, when two of the

subscripts match, E(wswtwuwv) = σ4
w, otherwise, E(wswtwuwv) = 0. Thus,

E{I(ωj)I(ωk)} = n−1(η − 3)σ4
w + σ4

w

(
1 + n−2[A(ωj + ωk) + A(ωk − ωj)]

)
,

where

A(u) =

∣∣∣∣∣
n∑

t=1

e2πiut

∣∣∣∣∣
2

.

Noting that EI(ωj) = n−1∑n
t=1 E(w2

t ) = σ2
w, we have

cov{I(ωj), I(ωk)} = E{I(ωj)I(ωk)} − σ4
w.

= n−1(η − 3)σ4
w + n−2σ4

w[A(ωj + ωk) + A(ωk − ωj)].

Thus we conclude that

var{I(ωj)} = n−1(η − 3)σ4
w + σ4

w for ωj �= 0, 1/2

var{I(ωj)} = n−1(η − 3)σ4
w + 2σ4

w for ωj = 0, 1/2

cov{I(ωj), I(ωk)} = n−1(η − 3)σ4
w for ωj �= ωk,

which establishes the result in this case. We also note that if wt is Gaussian,
then η = 3 and the periodogram ordinates are independent. Using Lemma C.4,
we may establish the following fundamental result.

Theorem C.5 Suppose xt is the linear process given by (C.20). Then, with
f̂(ω) defined in (4.56) and corresponding conditions on the weights hk, we
have, as n → ∞,

(i) E
(
f̂(ω)

)
→ f(ω)

(ii)
(∑m

k=−m h2
k

)−1
cov

(
f̂(ω), f̂(λ)

)
→ f2(ω) for ω = λ �= 0, 1/2.
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In (ii), replace f2(ω) by 0 if ω �= λ and by 2f2(ω) if ω = λ = 0 or 1/2.

Proof. (i): First, recall (4.29)

E [I(ωj:n)] =
n−1∑

h=−(n−1)

(
n − |h|

n

)
γ(h)e−2πiωj:nh def= fn(ωj:n).

But since fn(ωj:n) → f(ω) uniformly, and |f(ωj:n) − f(ωj:n + k/n)| → 0 by
the continuity of f , we have

Ef̂(ω) =
m∑

k=−m

hkEI(ωj:n + k/n) =
m∑

k=−m

hkfn(ωj:n + k/n)

=
m∑

k=−m

hk [f(ω) + o(1)] → f(ωj),

because
∑m

k=−m hk = 1.

(ii): First, suppose we have ωj:n → ω1 and ω�:n → ω2, and ω1 �= ω2. Then, for
n large enough to separate the bands, using Lemma C.4, we have

∣∣∣cov (f̂(ω1), f̂(ω2)
)∣∣∣ =

∣∣∣∣∣∣
∑

|k|≤m

∑
|r|≤m

hk hrcov
[
I(ωj:n+k/n), I(ω�:n+r/n)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|k|≤m

∑
|r|≤m

hk hr O(n−1)

∣∣∣∣∣∣
≤ c

n

⎛⎝ ∑
|k|≤m

hk

⎞⎠2

(where c is a constant)

≤ cL

n

⎛⎝ ∑
|k|≤m

h2
k

⎞⎠ ,

which establishes (ii) for the case of different frequencies. The case of the
same frequencies, i.e., var[f̂(ω1)] is established in a similar manner to the
above arguments.

Theorem C.5 justifies the distributional properties used throughout §4.5
and in Chapter 7. We may extend the results of this section to vector series of
the form xxxt = (xt1, . . . , xtp)′, when the cross-spectrum is given by

fij(ω) =
∞∑

h=−∞
γij(h)e−2πiωh

= cij(ω) − iqij(ω), (C.21)
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where

cij(ω) =
∞∑

h=−∞
γij(h) cos(2πωh) (C.22)

and

qij(ω) =
∞∑

h=−∞
γij(h) sin(2πωh) (C.23)

denote the cospectrum and quadspectrum, respectively. We denote the DFT
of the series xtj by

dj(ωk) = n−1/2
n∑

t=1

xtj e−2πiωkt

= dcj(ωk) − idsj(ωk),

where dcj and dsj are the cosine and sine transforms of xtj , for j = 1, 2, . . . , p.
We bound the covariance structure as before and summarize the results as
follows.

Theorem C.6 The covariance structure of the multivariate cosine and sine
transforms, subject to

θij =
∞∑

h=−∞
|h||γij(h)| < ∞, (C.24)

is given by

E[dci(ωk)dcj(ω�)] =
{ 1

2cij(ωk) + O(n−1), k = 

O(n−1), k �= 
.

(C.25)

E[dci(ωk)dsj(ω�)] =
{ − 1

2qij(ωk) + O(n−1), k = 

O(n−1), k �= 


(C.26)

E[dsi(ωk)dcj(ω�)] =
{ 1

2qij(ωk) + O(n−1), k = 

O(n−1), k �= 


(C.27)

E[dsi(ωk)dsj(ω�)] =
{ 1

2cij(ωk) + O(n−1), k = 

O(n−1), k �= 
.

(C.28)

Proof. We define

Sij
n (ωk, ω�) =

n∑
s=1

n∑
t=1

γij(s − t)e−2πiωkse2πiω�t. (C.29)
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Then, we may verify the theorem with manipulations like

E[dci(ωk)dsj(ωk)] =
1
4i

n∑
s=1

n∑
t=1

γij(s − t)(e2πiωks + e−2πiωks)

×(e2πiωkt − e−2πiωkt)

=
1
4i

[
Sij

n (−ωk, ωk) + Sij
n (ωk, ωk)

−Sij
n (ωk, ωk) − Sij

n (ωk,−ωk)
]

=
1
4i

[
cij(ωk) − iqij(ωk)

−(cij(ωk) + iqij(ωk)) + O(n−1)
]

= −1
2
qij(ωk) + O(n−1),

where we have used the fact that the properties given in Lemmas C.1–C.3 can
be verified for the cross-spectral density functions fij(ω), i, j = 1, . . . , p.

Now, if the underlying multivariate time series xxxt is a normal process, it is
clear that the DFTs will be jointly normal and we may define the vector DFT,
ddd(ωk) = (d1(ωk), . . . , dp(ωk))′ as

ddd(ωk) = n−1/2
n∑

t=1

xxxt e−2πωkt

= dddc(ωk) − iddds(ωk), (C.30)

where

dddc(ωk) = n−1/2
n∑

t=1

xxxt cos(2πωkt) (C.31)

and

ddds(ωk) = n−1/2
n∑

t=1

xxxt sin(2πωkt) (C.32)

are the cosine and sine transforms, respectively, of the observed vector series
xxxt. Then, constructing the vector of real and imaginary parts (ddd′

c(ωk), ddd′
s(ωk))′,

we may note it has mean zero and 2p × 2p covariance matrix

Σ(ωk) =
1
2

(
C(ωk) −Q(ωk)
Q(ωk) C(ωk)

)
(C.33)

to order n−1 as long as ωk − ω = O(n−1). We have introduced the p × p
matrices C(ωk) = {cij(ωk)} and Q = {qij(ωk)}. The complex random variable
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ddd(ωk) has covariance

S(ωk) = E[ddd(ωk)ddd∗(ωk)]

= E

[(
dddc(ωk) − iddds(ωk)

)(
dddc(ωk) − iddds(ωk)

)∗]
= E[dddc(ωk)dddc(ωk)′] + E[ddds(ωk)ddds(ωk)′]

−i
(
E[ddds(ωk)dddc(ωk)′] − E[dddc(ωk)ddds(ωk)′]

)
= C(ωk) − iQ(ωk). (C.34)

If the process xxxt has a multivariate normal distribution, the complex vector
ddd(ωk) has approximately the complex multivariate normal distribution with
mean zero and covariance matrix S(ωk) = C(ωk) − iQ(ωk) if the real and
imaginary parts have the covariance structure as specified above. In the next
section, we work further with this distribution and show how it adapts to the
real case. If we wish to estimate the spectral matrix S(ω), it is natural to take
a band of frequencies of the form ωk:n + 
/n, for 
 = −m, . . . , m as before, so
that the estimator becomes (4.87) of §4.6. A discussion of further properties
of the multivariate complex normal distribution is deferred.

It is also of interest to develop a large sample theory for cases in which
the underlying distribution is not necessarily normal. If xt is not necessarily
a normal process, some additional conditions are needed to get asymptotic
normality. In particular, introduce the notion of a generalized linear process

yyyt =
∞∑

r=−∞
Arwwwt−r, (C.35)

where wwwt is a p×1 vector white noise process with p×p covariance E[wwwtwww
′
t] = G

and the p × p matrices of filter coefficients At satisfy

∞∑
t=−∞

tr{AtA
′
t} =

∞∑
t=−∞

‖At‖2 < ∞. (C.36)

In particular, stable vector ARMA processes satisfy these conditions. For
generalized linear processes, we state the following general result from Han-
nan (1970, p.224).

Theorem C.7 If xxxt is generated by a generalized linear process with a con-
tinuous spectrum that is not zero at ω and ωk:n + 
/n are a set of frequencies
within L/n of ω, the joint density of the cosine and sine transforms (C.31)
and (C.32) converges to that of L independent 2p × 1 normal vectors with co-
variance matrix Σ(ω) with structure given by (C.33). At ω = 0 or ω = 1/2,
the distribution is real with covariance matrix 2Σ(ω).

The above result provides the basis for inference involving the Fourier trans-
forms of stationary series because it justifies approximations to the likelihood
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function based on multivariate normal theory. We make extensive use of this
result in Chapter 7, but will still need a simple form to justify the distribu-
tional result for the sample coherence given in (4.93). The next section gives
an elementary introduction to the complex normal distribution.

C.3 The Complex Multivariate Normal
Distribution

The multivariate normal distribution will be the fundamental tool for express-
ing the likelihood function and determining approximate maximum likelihood
estimators and their large sample probability distributions. A detailed treat-
ment of the multivariate normal distribution can be found in standard texts
such as Anderson (1984). We will use the multivariate normal distribution of
the p × 1 vector x = (x1, x2, . . . , xp)′, as defined by its density function

p(xxx) = (2π)−p/2|Σ|−1/2 exp
{−1

2
(xxx − µµµ)′Σ−1(xxx − µµµ)

}
, (C.37)

which can be shown to have mean vector E[xxx] = µµµ = (µ1, . . . , µp)′ and covari-
ance matrix

Σ = E[(xxx − µµµ)(xxx − µµµ)′]. (C.38)

We use the notation xxx ∼ Np{µµµ,Σ} for densities of the form (C.37) and note
that linearly transformed multivariate normal variables of the form yyy = Axxx,
with A a q ×p matrix q ≤ p, will also be multivariate normal with distribution

yyy ∼ Nq{Aµµµ, AΣA′}. (C.39)

Often, the partitioned multivariate normal , based on the vector xxx =
(xxx′

1, xxx
′
2)

′, split into to p1 × 1 and p2 × 1 components xxx1 and xxx2, respectively,
will be used where p = p1 +p2. If the mean vector µµµ = (µµµ′

1, µµµ
′
2)

′ and covariance
matrices

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
(C.40)

are also compatibly partitioned, the marginal distribution of any subset of
components is multivariate normal, say,

xxx1 ∼ Np1{µµµ1, Σ11},

and that the conditional distribution xxx2 given xxx1 is normal with mean

E[xxx2|xxx1] = µµµ2 + Σ21Σ−1
11 (xxx1 − µµµ1) (C.41)

and conditional covariance

cov[xxx2|xxx1] = Σ22 − Σ21Σ−1
11 Σ12. (C.42)
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In the previous section, the real and imaginary parts of the DFT had a
partitioned covariance matrix as given in (C.33), and we use this result to say
the complex p × 1 vector

zzz = xxx1 − ixxx2 (C.43)

has a complex multivariate normal distribution, with mean vector µµµz = µµµ1−iµµµ2
and p × p covariance matrix

Σz = C − iQ (C.44)

if the real multivariate 2p×1 normal vector xxx = (xxx′
1, xxx

′
2)

′ has a real multivariate
normal distribution with mean vector µµµ = (µµµ′

1, µµµ
′
2)

′ and covariance matrix

Σ =
1
2

(
C −Q
Q C

)
. (C.45)

The restrictions C ′ = C and Q′ = −Q are necessary for the matrix Σ to be
a covariance matrix, and these conditions then imply Σz = Σ∗

z is Hermitian.
The probability density function of the complex multivariate normal vector zzz
can be expressed in the concise form

pzzz(zzz) = π−p|Σz|−1 exp{−(zzz − µµµz)
∗Σ−1

z (zzz − µµµz)}, (C.46)

and this is the form that we will often use in the likelihood. The result follows
from showing that pxxx(xxx1, xxx2) = pzzz(zzz) exactly, using the fact that the quadratic
and Hermitian forms in the exponent are equal and that |Σx| = |Σz|2. The
second assertion follows directly from the fact that the matrix Σx has repeated
eigenvalues, λ1, λ2, . . . , λp corresponding to eigenvectors (α′

1, α
′
2)

′ and the same
set, λ1, λ2, . . . , λp corresponding to (α′

2,−α′
1)

′. Hence

|Σx| =
p∏

i=1

λ2
i = |Σz|2.

For further material relating to the complex multivariate normal distribution,
see Goodman (1963), Giri (1965), or Khatri (1965).

Example C.2 A Bivariate Complex Normal Distribution

Consider the joint distribution of the complex random variables u1 =
x1 − ix2 and u2 = y1 − iy2, where the partitioned vector (x1, x2, y1, y2)′

has a real multivariate normal distribution with mean (0, 0, 0, 0)′ and
covariance matrix

Σ =
1
2

⎛⎜⎜⎝
cxx 0 cxy −qxy

0 cxx qxy cxy

cxy qxy cyy 0
−qxy cyx 0 cyy

⎞⎟⎟⎠ . (C.47)
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Now, consider the conditional distribution of yyy = (y1, y2)′, given xxx =
(x1, x2)′. Using (C.41), we obtain

E(yyy
∣∣ xxx) =

(
x1 −x2
x2 x1

)(
b1
b2

)
, (C.48)

where

(b1, b2) =
(

cyx

cxx
,
qyx

cxx

)
. (C.49)

It is natural to identify the cross-spectrum

fxy = cxy − iqxy, (C.50)

so that the complex variable identified with the pair is just

b = b1 − ib2

=
cyx − iqyx

cxx

=
fyx

fxx
,

and we identify it as the complex regression coefficient. The conditional
covariance follows from (C.42) and simplifies to

cov(yyy
∣∣ xxx) =

1
2
fy·x I2, (C.51)

where I2 denotes the 2 × 2 identity matrix and

fy·x = cyy − c2
xy + q2

xy

cxx

= fyy − |fxy|2
fxx

(C.52)

Example C.2 leads to an approach for justifying the distributional results
for the function coherence given in (4.93). That equation suggests that the re-
sult can be derived using the regression results that lead to the F-statistics
in §2.2. Suppose that we consider L values of the sine and cosine trans-
forms of the input xt and output yt, which we will denote by dx,c(ωk +

/n), dx,s(ωk + 
/n), dy,c(ωk + 
/n), dy,s(ωk + 
/n), sampled at L = 2m + 1
frequencies, 
 = −m, . . . , m, in the neighborhood of some target frequency
ω. Suppose these cosine and sine transforms are re-indexed and denoted by
dx,cj , dx,sj , dy,cj , dy,sj , for j = 1, 2, . . . , L, producing 2L real random variables
with a large sample normal distribution that have limiting covariance matrices
of the form (C.47) for each j. Then, the conditional normal distribution of the
2 × 1 vector dy,cj , dy,sj given dx,cj , dx,sj , given in Example C.2, shows that we
may write, approximately, the regression model
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(
dy,cj

dy,sj

)
=
(

dx,cj −dx,sj

dx,sj dx,cj

)(
b1
b2

)
+
(

Vcj

Vsj

)
,

where Vcj , Vsj are approximately uncorrelated with approximate variances

E[V 2
cj ] = E[V 2

sj ] = (1/2)fy·x.

Now, construct, by stacking, the 2L × 1 vectors yyyc = (dy,c1, . . . , dy,cL)′, yyys =
(dy,s1, . . . , dy,sL)′, xxxc = (dx,c1, . . . , dx,cL)′ and xxxs = (dx,s1, . . . , dx,sL)′, and
rewrite the regression model as(

yyyc

yyys

)
=
(

xxxc −xxxs

xxxs xxxc

)(
b1
b2

)
+
(

vvvc

vvvs

)
where vvvc and vvvs are the error stacks. Finally, write the overall model as the
regression model in Chapter 2, namely,

yyy = Zbbb + vvv,

making the obvious identifications in the previous equation. Conditional on Z,
the model becomes exactly the regression model considered in Chapter 2 where
there are q = 2 regression coefficients and 2L observations in the observation
vector yyy. To test the hypothesis of no regression for that model, we use an
F-Statistic that depends on the difference between the residual sum of squares
for the full model, say,

RSS = yyy′yyy − yyy′Z(Z ′Z)−1Z ′yyy (C.53)

and the residual sum of squares for the reduced model, RSS0 = yyy′yyy. Then,

F2,2L−2 = (L − 1)
RSS0 − RSS

RSS
(C.54)

has the F-distribution with 2 and 2L − 2 degrees of freedom. Also, it follows
by substitution for yyy that

RSS0 = yyy′yyy
= yyy′

cyyyc + yyy′
syyys

=
L∑

j=1

(d2
y,cj + d2

y,sj)

= Lf̂y(ω),

which is just the sample spectrum of the output series. Similarly,

Z ′Z =

(
Lf̂x 0
0 Lf̂x

)
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and

Z ′yyy =
(

(xxx′
cyyyc + xxx′

syyys)
(xxx′

cyyys − xxx′
syyyc)

)

=

⎛⎜⎝
∑L

j=1(dx,cjdy,cj + dx,sjdy,sj)∑L
j=1(dx,cjdy,sj − dx,sjdy,cj)

⎞⎟⎠
=

(
Lĉyx

Lq̂yx

)
.

together imply that

yyy′Z(Z ′Z)−1Z ′yyy = L |f̂xy|2/f̂x.

Substituting into (C.54) gives

F2,2L−2 = (L − 1)
|f̂xy|2/f̂x(

f̂y − |f̂xy|2/f̂x

) ,

which converts directly into the F-statistic (4.93), using the sample coherence
defined in (4.92).
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Scheffé, H. (1959). The Analysis of Variance. New York: Wiley.

Schuster, A. (1898). On the investigation of hidden periodicities with applica-
tion to a supposed 26 day period of meteorological phenomena. Terrestrial
Magnetism, III, 11-41.

Schuster, A. (1906). On the periodicities of sunspots. Phil. Trans. R. Soc.,
Ser. A, 206, 69-100.

Schwarz, F. (1978). Estimating the dimension of a model. Ann. Stat., 6,
461-464.

Schweppe, F.C. (1965). Evaluation of likelihood functions for Gaussian signals.
IEEE Trans. Inform. Theory, IT-4, 294-305.

Seber, G.A.G. (1977). Linear Regression Analysis. New York: Wiley.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility.
In Time Series Models in Econometrics, Finance and Other Fields , pp
1-100. D.R. Cox, D.V. Hinkley, and O.E. Barndorff-Nielson eds. London:
Chapman and Hall.

Shumway, R.H. and W.C. Dean (1968). Best linear unbiased estimation for
multivariate stationary processes. Technometrics, 10, 523-534.



566 References

Shumway, R.H. (1970). Applied regression and analysis of variance for sta-
tionary time series. J. Am. Stat. Assoc., 65, 1527-1546.

Shumway, R.H. (1971). On detecting a signal in N stationarily correlated noise
series. Technometrics, 10, 523-534.

Shumway, R.H. and A.N. Unger (1974). Linear discriminant functions for
stationary time series. J. Am. Stat. Assoc., 69, 948-956.

Shumway, R.H. (1982). Discriminant analysis for time series. In Classification,
Pattern Recognition and Reduction of Dimensionality, Handbook of Statis-
tics Vol. 2, pp. 1-46. P.R. Krishnaiah and L.N. Kanal, eds. Amsterdam:
North Holland.

Shumway, R.H. and D.S. Stoffer (1982). An approach to time series smoothing
and forecasting using the EM algorithm. J. Time Series Anal., 3, 253-264.

Shumway, R.H. (1983). Replicated time series regression: An approach to
signal estimation and detection. In Time Series in the Frequency Domain,
Handbook of Statistics Vol. 3, pp. 383-408. D.R. Brillinger and P.R.
Krishnaiah, eds. Amsterdam: North Holland.

Shumway, R.H. (1988). Applied Statistical Time Series Analysis. Englewood
Cliffs, NJ: Prentice-Hall.

Shumway, R.H., R.S. Azari, and Y. Pawitan (1988). Modeling mortality fluc-
tuations in Los Angeles as functions of pollution and weather effects. En-
viron. Res., 45, 224-241.

Shumway, R.H. and D.S. Stoffer (1991). Dynamic linear models with switching.
J. Am. Stat. Assoc., 86, 763-769, (Correction: V87 p. 913).

Shumway, R.H. and K.L. Verosub (1992). State space modeling of paleocli-
matic time series. In Pro. 5th Int. Meeting Stat. Climatol.. Toronto, pp.
22-26, June, 1992.

Shumway, R.H. (1996). Statistical approaches to seismic discrimination. In
Monitoring a Comprehensive Test Ban Treaty, pp. 791-803. A.M. Dainty
and E.S. Husebye eds. Doordrecht, The Netherlands: Kluwer Academic

Shumway, R.H., S.E. Kim and R.R. Blandford (1999). Nonlinear estimation
for time series observed on arrays. Chapter 7, S. Ghosh, ed. Asymptotics,
Nonparametrics and Time Series, pp. 227-258. New York: Marcel Dekker.

Small, C.G. and D.L. McLeish (1994). Hilbert Space Methods in Probability
and Statistical Inference. New York: Wiley.

Smith, A.F.M. and M. West (1983). Monitoring renal transplants: An appli-
cation of the multiprocess Kalman filter. Biometrics, 39, 867-878.

Spliid, H. (1983). A fast estimation method for the vector autoregressive mov-
ing average model with exogenous variables. J. Am. Stat. Assoc., 78,
843-849.

Stoffer, D.S. (1982). Estimation of Parameters in a Linear Dynamic System
with Missing Observations. Ph.D. Dissertation. Univ. California, Davis.



References 567

Stoffer, D.S. (1987). Walsh-Fourier analysis of discrete-valued time series. J.
Time Series Anal., 8, 449-467.

Stoffer, D.S., M. Scher, G. Richardson, N. Day, and P. Coble (1988). A Walsh-
Fourier analysis of the effects of moderate maternal alcohol consumption
on neonatal sleep-state cycling. J. Am. Stat. Assoc., 83, 954-963.

Stoffer, D.S. and K.D. Wall (1991). Bootstrapping state space models: Gaussian
maximum likelihood estimation and the Kalman filter. J. Am. Stat. As-
soc., 86, 1024-1033.

Stoffer, D.S., D.E. Tyler, and A.J. McDougall (1993). Spectral analysis for
categorical time series: Scaling and the spectral envelope. Biometrika, 80,
611-622.

Stoffer, D.S. and D.E. Tyler (1998). Matching sequences: Cross-spectral analy-
sis of categorical time series Biometrika, 85, 201-213.

Stoffer, D.S. (1999). Detecting common signals in multiple time series using
the spectral envelope. J. Am. Stat. Assoc., 94, 1341-1356.

Stoffer, D.S. and K.D. Wall (2004). Resampling in State Space Models. In
State Space and Unobserved Component Models Theory and Applications,
Chapter 9, pp. 227-258. Andrew Harvey, Siem Jan Koopman, and Neil
Shephard, eds. Cambridge: Cambridge University Press.

Subba-Rao, T. (1981). On the theory of bilinear time series models. J. R.
Stat. Soc. B, 43, 244-255.

Sugiura, N. (1978). Further analysis of the data by Akaike’s information cri-
terion and the finite corrections, Commun. Statist, A, Theory Methods, 7,
13-26.

Taniguchi, M., M.L. Puri, and M. Kondo (1994). Nonparametric approach for
non-Gaussian vector stationary processes. J. Mult. Anal., 56, 259-283.

Tanner, M. and W.H. Wong (1987). The calculation of posterior distributions
by data augmentation (with discussion). J. Am. Stat. Assoc., 82, 528-554.

Tiao, G.C. and R.S. Tsay (1989). Model specification in multivariate time
series (with discussion). J. Roy. Statist. Soc. B, 51, 157-213.

Tiao, G. C. and R.S. Tsay (1994). Some advances in nonlinear and adaptive
modeling in time series analysis. J. Forecast., 13, 109-131.

Tiao, G.C., R.S. Tsay and T .Wang (1993). Usefulness of linear transforma-
tions in multivariate time series analysis. Empir. Econ., 18, 567-593.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with
discussion). Ann. Stat., 22, 1701-1728.

Tong, H. (1983). Threshold Models in Nonlinear Time Series Analysis. Springer
Lecture Notes in Statistics, 21. New York: Springer-Verlag.

Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach.
Oxford: Oxford Univ. Press.



568 References

Tsay, R. (1987). Conditional hetereroscadasticity in time series analysis. J.
Am. Stat. Assoc., 82, 590-604.

Venables, W.N. and B.D. Ripley (1994). Modern Applied Statistics with S-
Plus. New York: Springer-Verlag.

Walker, G. (1931). On periodicity in series of related terms. Proc. R. Soc.
Lond., Ser. A, 131, 518-532.

Watson, G.S. (1966). Smooth regression analysis. Sankhya, 26, 359-378.
Weiss, A.A. (1984). ARMA models with ARCH errors. J. Time Series Anal.,

5, 129-143.
West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models

2nd ed. New York: Springer-Verlag.
Whittle, P. (1961). Gaussian estimation in stationary time series. Bull. Int.

Stat. Inst., 33, 1-26.
Wiener, N. (1949). The Extrapolation, Interpolation and Smoothing of Sta-

tionary Time Series with Engineering Applications. New York: Wiley.
Wu, C.F. (1983). On the convergence properties of the EM algorithm. Ann.

Stat., 11, 95-103.
Young, P.C. and D.J. Pedregal (1998). Macro-economic relativity: Govern-

ment spending, private investment and unemployment in the USA. Centre
for Research on Environmental Systems and Statistics, Lancaster Univer-
sity, U.K.

Yule, G.U. (1927). On a method of investigating periodicities in disturbed
series with special reference to Wolfer’s Sunspot Numbers. Phil. Trans.
R. Soc. Lond., A226, 267-298.



Index

ACF, 22, 25
large sample distribution, 30,

519
multidimensional, 37
of an AR(p), 106
of an AR(1), 87
of an AR(2), 100
of an ARMA(1,1), 105
of an MA(q), 104
sample, 30

AIC, 53, 153
multivariate case, 302

AICc, 54, 153, 229
multivariate case, 302

Aliasing, 12
Amplitude, 176

of a filter, 225
Analysis of Power, see ANOPOW
ANOPOW, 423, 431, 432

designed experiments, 438
AR model, 14, 85

conditional sum of squares, 127
bootstrap, 137
conditional likelihood, 127
estimation

large sample distribution, 123,
529

likelihood, 126
maximum likelihood estimation,

126
missing data, 409
operator, 86
polynomial, 94
spectral density, 186, 228
threshold, 290

unconditional sum of squares,

126
vector, see VAR
with observational noise, 328

ARCH model
ARCH(m), 285
ARCH(1), 281
estimation, 282
GARCH, 286, 388

ARFIMA model, 272, 276
ARIMA model, 141

fractionally integrated, 276
multiplicative seasonal models,

159
multivariate, 302

ARMA model, 93
ψ-weights, 102
conditional least squares, 128
pure seasonal models

behavior of ACF and PACF,
156

unconditional least squares, 128
backcasts, 121
behavior of ACF and PACF, 109
bootstrap, 359
causality of, 95
conditional least squares, 130
forecasts, 116

mean square prediction error,
117

based on infinite past, 116
prediction intervals, 119
truncated prediction, 118

Gauss–Newton, 131
in state-space form, 357
invertibilty of, 96

large sample distribution of
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estimators, 133
likelihood, 128
MLE, 128
multiplicative seasonal model,

156
pure seasonal model, 155
unconditional least squares, 131
vector, see VARMA model

ARMAX model, 305, 317, 356
bootstrap, 359
for cross-sectional data, 395
in state-space form, 356
with time-varying parameters,

397
Autocorrelation function, see ACF
Autocovariance function, 20, 25, 87

multidimensional, 36, 37
random sum of sines and cosines,

177
sample, 30

Autocovariance matrix, 35
sample, 36

Autoregressive Integrated Moving
Average Model, see ARIMA
model

Autoregressive models, see AR model
Autoregressive Moving Average

Models, see ARMA model

Backcasting, 120
Backshift operator, 61
Bandwidth, 197, 214
Bartlett kernel, 207
Beam, 427
Best linear predictor, see BLP
BIC, 54
BLP, 111

m-step-ahead prediction, 115
mean square prediction error,

115
one-step-ahead prediction, 112
definition, 111
one-step-ahead prediction

mean square prediction error,
112

stationary processes, 111

Bone marrow transplant series, 325,
352

Bonferroni inequality, 203
Bootstrap, 137, 198, 229, 359

stochastic volatility, 391
Bounded in probability Op, 504

Canonical correlation, 309
Cauchy sequence, 522
Cauchy–Schwarz inequality, 501, 522
Causal, 89, 95, 526

conditions for an AR(2), 97
vector model, 306

CCF, 23, 27
large sample distribution, 31
sample, 31

Central Limit Theorem, 509
M-dependent, 511

Cepstral analysis, 263
Characteristic function, 507
Chernoff information, 459
Cluster analysis, 461
Coherence, 216

estimation, 218
hypothesis test, 218, 554
multiple, 420

Completeness of L2, 502
Complex normal distribution, 550
Complex roots, 101
Conditional least squares, 128
Convergence in distribution, 506

Basic Approximation Theorem,
507

Convergence in probability, 504
Convolution, 220
Cosine transform

large sample distribution, 539
of a vector process, 416
properties, 192

Cospectrum, 215
of a vector process, 416

Cramér–Wold device, 507
Cross-correlation function, see CCF
Cross-covariance function, 22

sample, 31
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Cross-spectrum, 215
Cycle, 176

Daniell kernel, 204, 205
modified, 205

Deconvolution, 435
Density function, 19
Designed experiments, see ANOPOW
Deterministic process, 532
Detrending, 49
DFT, 69

inverse, 188
large sample distribution, 539
multidimensional, 257
of a vector process, 416

likelihood, 417
Differencing, 60, 61
Discrete wavelet transform, see DWT
Discriminant analysis, 451
DLM, 324, 355

Bayesian approach, 376
bootstap, 359
for cross-sectional data, 396

form for mixed linear models,
400

innovations form, 358
maximum likelihood estimation

large sample distribution, 347
via EM algorithm, 344, 350
via Newton-Raphson, 340

MCMC methods, 379
observability, 346
observation equation, 325
state equation, 324
steady-state, 346
with switching, 362

EM algorithm, 370
maximum likelihood

estimation, 369
DNA series, 482, 488
Durbin–Levinson algorithm, 113
DWT, 239
Dynamic Fourier analysis, 232

Earthquake series, 10, 210, 232, 241,
245, 414, 448, 454, 460, 463

EEG sleep data, 480
EM algorithm, 342

complete data likelihood, 343
DLM with missing observations,

350
expectation step, 343
maximization step, 344

Explosion series, 10, 210, 232, 241,
245, 414, 448, 454, 460, 463

Exponentially Weighted Moving
Averages, 142

Factor analysis, 470
EM algorithm, 472

Federal Reserve Board Index
production, 160
unemployment, 160

Fejér kernel, 207, 214
FFT, 69
Filter, 61

amplitude, 225, 226
band-pass, 255
design, 255
high-pass, 222, 255
linear, 220
low-pass, 223, 255
matrix, 227
optimum, 252
phase, 225, 226
recursive, 255
seasonal adjustment, 255
spatial, 256
time-invariant, 502

fMRI, see Functional magnetic
resonance imaging series

Folding frequency, 177
Fourier transform, 184

discrete, see DFT
fast, see FFT
finite, see DFT
pairs, 184

Fractional difference, 62, 272
fractional noise, 272

Frequency bands, 183, 197
Frequency response function, 221
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of a first difference filter, 222
of a moving average filter, 222

Functional magnetic resonance
imaging series, 9, 413, 440,

442, 445, 469, 474

Gaussian distribution, 19
Gibbs sampler, see MCMC
Glacial varve series, 62, 132, 151, 274
Global temperature series, 5, 58, 62,

327
Gradient vector, 341, 408
Growth rate, 143, 280

Hessian matrix, 341, 408
Hidden Markov model, 364, 368

estimation, 370
Hilbert space, 522

closed span, 523
conditional expectation, 525
projection mapping, 523
regression, 524

Homogeneous difference equation
first order, 98
general solution, 102
second order, 98

solution, 99

Impulse response function, 220
Influenza series, 290, 371
Infrasound series, 427, 429, 432, 436,

437
Inner product space, 522
Innovations, 148, 331, 339

standardized, 148
steady-state, 346

Innovations algorithm, 115
Interest rate and inflation rate series,

359
Invertible, 92

vector model, 306

J-divergence measure, 461
Johnson & Johnson quarterly

earnings series, 4, 352
Joint distribution function, 18

Kalman filter, 331
correlated noise, 356
innovations form, 358
Riccati equation, 346
stability, 345
with missing observations, 348
with switching, 366

Kalman smoother, 335, 406
for the lag-one covariance, 337
with missing observations, 348

Kullback-Leibler information, 79, 458

LA Pollution – Mortality Study, 54,
75, 77, 294, 303, 305, 311,

318
Lag, 22, 28
Lagged regression model, 296
Lead, 28
Leakage, 208

sidelobe, 208
Least squares estimation, see LSE
Likelihood

AR(1) model, 126
conditional, 127
innovations form, 128, 340

Linear filter, see Filter
Linear process, 28, 95
Ljung–Box–Pierce statistic, 149
Local level model, 333, 336
Long memory, 62, 272

estimation, 274
estimation of d, 278
spectral density, 277

Longitudinal data, 394, 400
LSE, 51

conditional sum of squares, 127
Gauss–Newton, 130
unconditional, 126

MA model, 13, 90
autocovariance function, 21, 104
Gauss–Newton, 132
mean function, 19
operator, 91
polynomial, 94
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spectral density, 185
Markov chain Monte Carlo, see

MCMC
Maximum likelihood estimation, see

MLE
MCMC, 377

nonlinear and non-Gaussian
state-space models, 381, 384

rejection sampling, 379
Mean function, 19
Mean square convergence, 501
Method of moments estimators, see

Yule–Walker
Minimum mean square error

predictor, 110
Missing data, 348, 350
Mixed linear models, 400
MLE

ARMA model, 128
conditional likelihood, 127
DLM, 340
state-space model, 340
via EM algorithm, 342
via Newton–Raphson, 129, 340
via scoring, 129

Mortality series, see LA Pollution –
Mortality Study

Moving average model, see MA
model

New York Stock Exchange, 6, 390
Newton–Raphson, 129
Normal distribution, 19

multivariate, 550
NYSE, see New York Stock Exchange

Order in probability op, 504
Orthogonality property, 523

PACF, 107
of an MA(1), 108
iterative solution, 114
large sample results, 123
of an AR(p), 108
of an AR(1), 107
of an MA(q), 108

Parameter redundancy, 94
Partial autocorrelation function, see

PACF
Partial autoregression matrices, 309
Partial canonical correlation, 310
Parzen window, 213
Period, 176
Periodogram, 70, 188

disribution, 193
matrix, 457
scaled, 68

Phase, 177
of a filter, 225

Pitch period, 6
Pollution series, see LA Pollution –

Mortality Study
Prediction equations, 111
Prenatal smoking and growth series,

397
Prewhiten, 297
Principal components, 464
Projection Theorem, 523

Quadspectrum, 215
of a vector process, 416

Random sum of sines and cosines,
177, 534, 536

Random walk, 15, 19, 24
autocovariance function, 22

Recruitment series, 7, 33, 65, 109,
120, 194, 199, 205, 219, 248,
298

Regression
ANOVA table, 52
autocorrelated errors, 293

Cochrane-Orcutt procedure,
294

for jointly stationary series, 417
ANOPOW table, 423

Hilbert space, 524
lagged, 245
model, 49
multiple correlation, 53
multivariate, 302
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normal equations, 51
periodic, 72
polynomial, 72
random coefficients, 434
spectral domain, 417
stochastic, 359, 434

ridge correction, 435
with deterministic inputs, 426

Return, 6, 143, 280
Riesz–Fisher Theorem, 502

Scaling, 480
Scatterplot matrix, 57, 64, 65
Scatterplot smoothers, 72

kernel, 74
lowess, 75, 77
nearest neighbors, 75
splines, 76, 77

Score vector, 341
Shasta Lake series, 412, 423
SIC, 54, 153, 229

multivariate case, 302, 304
Signal plus noise, 16, 17, 251, 427

mean function, 20
Signal-to-noise ratio, 16, 252
Sinc kernel, 214
Sine transform

large sample distribution, 539
of a vector process, 416
properties, 192

Soil surface temperature series, 36,
38, 257

Southern Oscillation Index, 7, 33, 65,
194, 199, 205, 209, 219, 222,
229, 248, 254, 298

Spectral density, 183
autoregression, 229
estimation, 197

adjusted degrees of freedom,
198

bandwidth stability, 203
confidence interval, 198
degrees of freedom, 198
large sample distribution, 197
nonparametric, 228

parametric, 228
resolution, 203

matrix, 217
linear filter, 227

of a filtered series, 221
of a moving average, 185
of an AR(2), 186
of white noise, 184
wavenumber, 256

Spectral distribution function, 182
Spectral envelope, 479

categorical time series, 484
real-valued time series, 489

Spectral Representation Theorem,
181, 182, 534, 536, 537

vector process, 217, 537
Speech series, 6, 33
State-space model

Bayesian approach, 333, 376
general, 377
linear, see DLM
non-Gaussian, 377, 384
nonlinear, 377, 384

MCMC methods, 381
Stationary

Gaussian series, 29
jointly, 27
strictly, 23
weakly, 24

Stochastic process, 11
realization, 11

Stochastic regression, 359
Stochastic trend, 141
Stochastic volatility

bootstrap, 391
Stochastic volatility model, 388

estimation, 390
Structural component model, 352,

371

Taper, 207, 209
cosine bell, 207

Taylor series expansion in probability,
506

Tchebycheff inequality, 501
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Temperature series, see LA Pollution
– Mortality Study

Threshold autoregressive model, 290
Time series, 11

categorical, 484
complex-valued, 464
multidimensional, 36, 256
multivariate, 23, 35
two-dimensional, 256

Transfer function model, 296
Transformation

Box-Cox, 62
via spectral envelope, 491

Triangle inequality, 522
Tukey-Hanning window, 214

U.S. GNP series, 144, 150, 154, 283,
490

U.S. macroeconomic series, 477
U.S. population series, 153
Unconditional least squares, 128

VAR model, 303, 304
estimation

large sample distribution, 316
operator, 306

Variogram, 39, 45
VARMA model, 305

autocovariance function, 306
estimation

Spliid algorithm, 317
identifiability of, 309

Varve series, 278
VMA model, 306

operator, 306
Volatility, 6, 280

Wavelet analysis, 235
waveshrink, 244

Wavenumber spectrum, 256
estimation, 257

Weak law of large numbers, 504
White noise, 12

autocovariance function, 21
Gaussian, 12
vector, 303

Whittle likelihood, 231, 457
Wold Decomposition, 532

Yule–Walker
equations, 122

vector model, 307, 309
estimators, 122

AR(2), 123
MA(1), 125

large sample results, 123
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