Introdução à Probabilidade

Silvia Shimakura

silvia.shimakura@ufpr.br

Probabilidade

•O que é probabilidade?

Medida que quantifica a incerteza de um acontecimento futuro.

Como quantificar incerteza?

Definição clássica x Definição frequentista

Problema 1

- •Experimento 1: Lançamento de uma moeda balanceada
- •Espaço amostral: conjunto de todos os resultados possíveis

•Evento A: Cair cara voltada para cima A={Cara}

Cálculo de probabilidades

 Se os eventos simples de E forem equiprováveis a probabilidade de um evento A ocorrer:

$$P(A) = \frac{\text{número de elementos em } A}{\text{número de elementos em } E}$$

- •Experimento 1: $E = \{cara, coroa\} \rightarrow 2$ elementos
 - Evento A: $A = \{cara\} \rightarrow 1$ elemento
 - -P(A)=1/2

Problema 2

- •Experimento 2: Lançamento de uma moeda
- •Espaço amostral: E={Cara, Coroa}
- •Evento A: Cara

- •Eventos simples são equiprováveis?
- $\bullet P(C)=?$

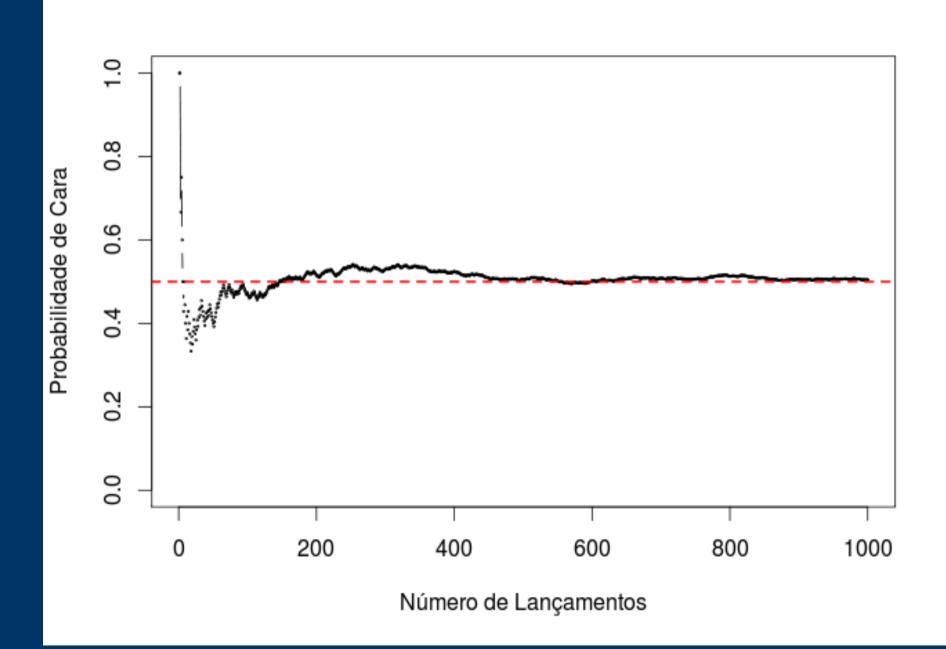
Visão frequentista de probabilidade

- Se os eventos simples n\u00e3o forem equiprov\u00e1veis
- Probabilidade: frequência relativa de ocorrência do evento para um grande número de ensaios

Frequência relativa

• C: Cara O: Coroa

Resultado	С	С	С	0	С	Ο	Ο	0	Ο	0	Ο	С
Frequência acumulada de Caras	1	2	3	3	4	4	4	4	4	4	4	5
Número de lançamentos	1	2	3	4	5	6	7	8	9	10	11	12
Freq. relativa de caras	1/1	2/2	3/3	3/4	4/5	4/6	4/7	4/8	4/9	4/10	4/11	5/12
%	100	100	100	75	80	67	57	50	44	40	36	42



Tipos especiais de eventos

•Evento complementar de A: elementos do espaço amostral E que não estão em A

$$E=\{1, 2, 3, 4, 5, 6\}$$
 $A=\{1, 3\}$

$$\bar{A} = \{2, 4, 5, 6\}$$

- •Evento interseção: elementos estão em A e em B $A=\{1,3\}$ $B=\{2,4,6\}$ $A\cap B=\emptyset$
- •Evento união: elementos que estão em A ou B $AUB=\{1, 2, 3, 4, 6\}$

Tipos especiais de eventos

•Eventos mutuamente exclusivos: não existem elementos comuns em A e B

$$A = \{1, 3\}$$
 $B = \{2, 4, 6\}$ $A \cap B = \emptyset$

Propriedades de probabilidade

- $\bullet 0 \le P(A) \le 1$, para qualquer evento A
- $\bullet P(E)=1$, em que E é o espaço amostral
- $P(\bar{A}) = 1 P(A)$
- •Para dois <u>eventos A e B quaisquer</u>, a probabilidade de que A ou B ocorra:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•Se <u>A e B são mutuamente exclusivos</u>, a probabilidade de que A ou B ocorra é a soma das probabilidades.

$$P(A \cup B) = P(A) + P(B)$$

Probabilidade condicional

- É a probabilidade de B dado que A ocorreu.
 Notação: P(B|A)
- •Para A e B quaisquer $P(B|A)=P(A\cap B)/P(A)$ $P(A\cap B)=P(A) P(B|A)$
- •Para <u>A e B independentes</u> P(B|A) = P(B) $P(A \cap B) = P(A) P(B)$

- •Espaço amostral: 6 elementos com prob 1/6 cada $E=\{1,2,3,4,5,6\}$
- •Evento B: face 5 ou 6
- •B=?
- •P(B)=???

- •Espaço amostral: 6 elementos com prob 1/6 cada $E=\{1,2,3,4,5,6\}$
- •Evento B: face 5 ou 6
 B={5, 6}
- •P(B)=?

- •Espaço amostral: 6 elementos com prob 1/6 cada $E=\{1,2,3,4,5,6\}$
- •Evento B: face 5 ou 6 B={5, 6}
- $\bullet P(B) = 2/6$

- •Espaço amostral: 6 elementos com prob 1/6 cada $E=\{1,2,3,4,5,6\}$
- •Evento B: face 5 ou 6

$$B=\{5, 6\}$$

 $\bullet P(B) = 2/6$

Se soubermos que o resultado no primeiro dado é maior do que 3, qual será a probabilidade da face ser 5 ou 6?

Exemplo (cont.)

•Evento B:

$$B=\{5, 6\} \rightarrow P(B)=2/6$$

•Evento A: face é maior do que 3 $A=\{4, 5, 6\} \rightarrow P(A)=3/6$

- •Evento interseção: $A \cap B = \{5, 6\} \rightarrow P(A \cap B) = 2/6$
- $\bullet P(B|A)=?$

Exemplo (cont.)

- •Evento B: face 5 ou 6 $B=\{5, 6\} \rightarrow P(B)=2/6$
- •Evento A: face é maior do que 3 $A=\{4, 5, 6\} \rightarrow P(A)=3/6$
- •Evento interseção: $A \cap B = \{5, 6\} \rightarrow P(A \cap B) = 2/6$

$$P(B|A)=P(A\cap B)/P(A)=(2/6)/(3/6)=2/3$$

- •A e B são independentes?
- •A e B são mutuamente exclusivos?

Exemplo: Distribuição de peso e pressão arterial

Pressão arterial				
	Excesso	Normal	Deficiente	Total
Elevada	0,10	0,08	0,02	0,2
Normal	0,15	0,45	0,20	0,8
Total	0,25	0,53	0,22	1

- •Prob. de uma pessoa escolhida ao acaso ter pressão elevada?
- Prob. de uma pessoa escolhida ao acaso ter pressão elevada e excesso de peso?
- •Sabendo que a pessoa tem excesso de peso, qual a probabilidade de uma pessoa escolhida ao acaso ter pressão elevada?

Exemplo: Distribuição de peso e pressão arterial (cont.)

- •Peso em excesso e pressão arterial normal são eventos mutuamente exclusivos?
- •Pressão arterial e peso são independentes?

Pressão arterial				
	Excesso	Normal	Deficiente	Total
Elevada	0,10	0,08	0,02	0,2
Normal	0,15	0,45	0,20	0,8
Total	0,25	0,53	0,22	1

- •Suponha que existam dois estados de saúde mutuamente exclusivos e exaustivos: D+ doente e D- não doente
- Seja T+ teste positivo e T- teste negativo
- •Num estudo sobre o teste ergométrico, Wriner et al. (1979) compararam os resultados obtidos entre indivíduos com e sem doença coronariana.
- •T+: mais de 1mm de depressão ou elevação do segmento ST, por pelo menos 0,08s, em comparação com paciente em repouso.
- •D+ e D-: angiografia (teste padrão ouro).

Doença coronariana	Teste Ergométrico								
	T+		T-		Total				
D+	815	a	208	b	1023	a+b			
D-	115	С	327	d	442	c+d			
Total	930	a+c	535	b+d	1465	n			

Temos interesse em responder as perguntas:

- •Qual a probabilidade do teste ser positivo dado que o paciente é doente?
- •Qual a probabilidade do teste ser negativo dado que o paciente não é doente?

Doença coronariana	Teste Ergométrico								
	T+		T-		Total				
D+	815	a	208	b	1023	a+b			
D-	115	С	327	d	442	c+d			
Total	930	a+c	535	b+d	1465	n			

Temos interesse em responder as perguntas:

- •Qual a probabilidade do teste ser positivo dado que o paciente é doente? P(T+|D+)=s
- •Qual a probabilidade do teste ser negativo dado que o paciente não é doente? P(T-|D-)=e

 Qual a probabilidade de que uma pessoa com resultado de teste positivo realmente tenha a doença?

 Qual a probabilidade de que uma pessoa com resultado de teste positivo realmente tenha a doença?
 P(D+|T+)=VPP

Teorema de Bayes

•Se A1, A2, ... An são n eventos mutuamente exclusivos e exaustivos, tais que:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n) = 1$$

Pelo Teorema de Bayes:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + ... + P(A_n)P(B|A_n)}$$

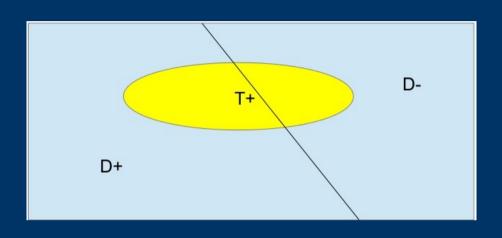
Teorema de Bayes

•Se A1 e A2 são 2 eventos mutuamente exclusivos e exaustivos, tais que:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) = 1$$

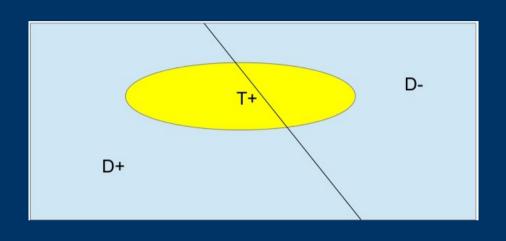
Pelo Teorema de Bayes:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2)}$$



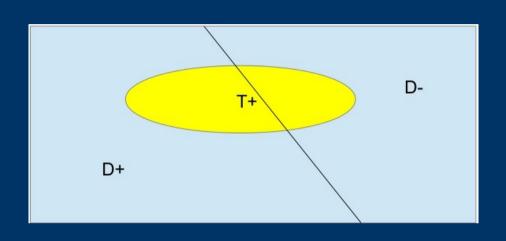
• D+
$$\cap$$
 D- = \emptyset

- D+ U D- = E
- Conhecidos:
 - p=P(D+)
 - P(D-)=1-p
 - s=P(T+|D+)
 - e=P(T-|D-)



• D+
$$\cap$$
 D- = \emptyset

- D+ U D- = E
- Conhecidos:
 - p=P(D+)
 - P(D-)=1-p
 - s=P(T+|D+)
 - e=P(T-|D-)



- D+ \cap D- = \emptyset
- D+ U D- = E
- Conhecidos:
 - P(D+) e P(D-)
 - P(T+|D+) e P(T-|D-)

$$VPP = P(D + | T +) = \frac{ps}{ps + (1-p)(1-e)}$$